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We study the approximation of two-layer compositions f(x) = g(¢(x)) via deep networks with
RelU activation, where ¢ is a geometrically intuitive, dimensionality reducing feature map. We
focus on two intuitive and practically relevant choices for ¢: the projection onto a low-dimensional
embedded submanifold and a distance to a collection of low-dimensional sets. We achieve near optimal
approximation rates, which depend only on the complexity of the dimensionality reducing map ¢
rather than the ambient dimension. Since ¢ encapsulates all nonlinear features that are material to the
function f, this suggests that deep nets are faithful to an intrinsic dimension governed by f rather than
the complexity of the domain of f. In particular, the prevalent assumption of approximating functions
on low-dimensional manifolds can be significantly relaxed using functions of type f(x) = g(¢(x)) with
¢ representing an orthogonal projection onto the same manifold.
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1. Introduction

In the past decade neural networks emerged as powerful tools
to construct state-of-the-art solutions for various different data
analysis tasks. Much of this progress is of empirical nature and
cannot be explained by current mathematical theory. This led to
a re-emerging interest for developing a theoretical understanding
of deep networks in recent years. In this work we contribute to
the effort by studying the approximative capacity of deep net-
works with respect to practically motivated composite function
classes in the high-dimensional regime.

Approximation properties of shallow and deep networks have
been studied for over three decades and gained much traction
during the rise of neural networks around the 80s and 90s
(Cybenko, 1989; Hornik, Stinchcombe, & White, 1989; Leshno,
Lin, Pinkus, & Schocken, 1993; Mhaskar, 1993, 1996). It is well-
known that shallow networks (with non-polynomial activation)
are universal approximators, which means they can approximate
any continuous function on a compact subset of RP arbitrarily
well (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993).
Furthermore, it has been established that the number of re-
quired nonzero network parameters for uniformly approximating
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a c*-function to accuracy & on a compact subset of RP is in
o(e~P/*) (Mhaskar, 1996; Pinkus, 1999). Similar results hold
for deep networks with the additional benefit that the approx-
imation can be localized, contrary to approximation via shallow
networks (Chui, Li, & Mhaskar, 1994, 1996; Mhaskar, 1993).

In modern networks differentiable sigmoidal activation func-
tions are often replaced by the rectified linear unit activation
(ReLU), because such networks do not suffer the vanishing gra-
dient problem and can thus be more easily trained via backprop-
agation (Goodfellow, Bengio, Courville, & Bengio, 2016). Approx-
imation properties of ReLU networks received much attention in
recent years (Bolcskei, Grohs, Kutyniok, & Petersen, 2019; Grohs,
Perekrestenko, Elbrachter, & Bolcskei, 2019; Petersen & Voigt-
laender, 2018; Shaham, Cloninger, & Coifman, 2018; Shen, Yang, &
Zhang, 2019; Telgarsky, 2017; Yarotsky, 2017, 2018). The bottom
line is that ReLU networks are at least as expressive as networks
with differentiable sigmoidal activation. Moreover, a series of
recent works (Fang, Feng, Huang, & Zhou, 2020; Zhou, 2020a,
2020b) shows that this is also true for deep convolutional ReLU
networks, which are significantly less flexible compared to fully-
connected networks. To comply with modern neural network
practice, we concentrate on the RelLU activation in this work,
though we emphasize that we have no reason to believe our
results are special to this choice.

Approximating functions either through differentiable sig-
moidal networks or ReLU networks suffers from the curse of
dimensionality, because the number of required parameters for
approximating f € C% on a compact subset of RP is exponential
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in D. Since high-dimensional problems are ubiquitous in applied
areas, it is of great interest to identify narrower but sufficiently
rich function classes that allow for faster approximation rates
with at most polynomial dependency on D.

Three decades ago, the author of Barron (1993) showed that
functions f, whose Fourier transform f satisfies

-
RD

can be approximated by a shallow network to accuracy ¢ using
just ©(¢~2) neurons. Functions satisfying such conditions are said
to be of Barron-type and they are under continuous investigation
ever since (Barron, 1994; Klusowski & Barron, 2016; Montanelli,
Yang, & Du, 2019). Unfortunately, the constant involved in O(e~?)
depends on C;, which in turn increases exponentially with the di-
mension D under standard regularity assumptions alone. Several
works (Kurkova & Sanguineti, 2001, 2002; Mhaskar, 2004) have
subsequently investigated conditions on f that imply the growth
of C; is at most polynomial in D.

In Mhaskar, Liao, and Poggio (2016, 2017), Mhaskar and Poggio
(2016), Poggio, Anselmi, and Rosasco (2015), Poggio, Mhaskar,
Rosasco, Miranda, and Liao (2017) and Schmidt-Hieber (2020) the
benefit of depth of networks has been analyzed by studying ap-
proximation properties of deep nets for compositional functions
of the type f(x) = g o ... o g1(x). Intuitively, if all intermediate
functions g, : R®"! — R’ are easier to approximate than the
final target f, deep networks can approximate f more efficiently
by mimicking the compositional structure of the function. This
situation arises, for instance, if each component g; , : RCT 5 R,
p=1,...,¢, depends on at most k of the £ — 1 coordinates of the
previous output, i.e., can be written as g (I¢ p(X)) = g¢ p(x) for a
map Iy : Rf~! — R that selects k coordinates, independently of
x. In this case, assuming all components g ,,p = 1,...,¢, £ =
1,...,L are a-Hoélder, the function f can be approximated uni-
formly up to error & using O(e~%/*) nonzero parameters (here,
L is treated as a constant). The missing dependence on D in
the exponent show that compositions pave a way for defining
classes of functions that are narrow enough to avoid the curse
of dimensionality (Mhaskar & Poggio, 2016, 2020; Poggio et al.,
2017). This led to the notion of ‘blessing of compositionality’ as a
cure to the curse of dimensionality.

Another line of research, which is motivated by the popularity
of nonlinear dimension reduction methods, studies approxima-
tion of f : M C [0,1]° — R on low-dimensional domains
M, such as a d-dimensional embedded submanifold. The authors
of Shaham et al. (2018) established that uniform approximations
to accuracy e require just O(e~%*) parameters, replacing the
ambient dimension D with the intrinsic manifold dimension d.
Similar results have been shown in Chen, Jiang, Liao, and Zhao
(2019), Chui and Mhaskar (2018), Schmidt-Hieber (2019) and ex-
tended to more general notions of dimensionality or other types
of neural networks (Mhaskar, 2020a, 2020b; Nakada & Imaizumi,
2019), including radial basis function networks and abstract gen-
eralizations thereof. Therefore, certain approximation systems,
including deep networks, adapt to the intrinsic dimension of the
domain of the target.

Approximation on low-dimensional domains is appealing be-
cause it is geometrically intuitive and can, to some extent, be
checked in practice by analyzing local covariance matrices of a
given data set. However, defining the complexity of an approx-
imation task via the domain of the target has some significant
drawbacks, which we highlight in the next section.

wf(w)‘ dow < o0,
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1.1. Drawbacks of measuring complexity by the target domain

Noisy manifold hypothesis. Many theoretical results that alleviate
the curse of dimensionality are based either explicitly or im-
plicitly on the exact manifold hypothesis, which states that data
is supported on a low-dimensional manifold. In view of usu-
ally noisy real-world data, the exact manifold hypothesis seems
overly stringent and in fact has been criticized for being rarely
observable in practice (Hein & Maier, 2007a, 2007b). A more
realistic alternative is to model real-world data as a sum of
clean data, which is supported on a low-dimensional manifold
M (think of the ‘face manifold’ consisting of images of faces He,
Yan, Hu, Niyogi, & Zhang, 2005), plus noise, which generically
pushes data points off the clean data manifold. If the noise is
unstructured, we can simplistically assume that it concentrates
in the local normal space of M, and we may associate to x €
RP the orthogonal projection () argmin,c ,q llx — z||, as
the clean data sample. We now aim for approximating functions
f(x) g(maq(x)), where g : M — R describes a function of
interest defined on clean data. See Fig. 1a for an illustration of
the setting.

Following results in Chen et al. (2019), Schmidt-Hieber (2019)
and Shaham et al. (2018) about approximation over low-
dimensional domains, we are tempted to think there is a signifi-
cant difference between approximating a function g : M — R on
M or a function f(x) = g(mwa(x)) on a full-dimensional tubular
domain around M. We will prove that, in fact, both functions
are approximable with similarly sized networks and by using the
same amount of information about the target f.

We add that the stringency of the exact manifold hypothesis
is often recognized and discussed in the literature. For instance,
the authors of Chui and Mhaskar (2018) explain that their ap-
proximation results are robust to an inexact manifold hypothesis,
because noise that spreads only in s < D directions in the local
normal space increases the dimensionality of the data manifold
to just d + s <« D. Furthermore, Mhaskar (2020b) proposes a
Hermite polynomial based approximation scheme for functions
on manifolds, which is robust to a degree of off-manifold noise.
The theory in Cheng and Cloninger (2019) includes off-manifold
noise under the assumption that the noise vanishes exponentially
fast with increased distance from the manifold.

Adaptivity to function complexity. The same argument as in the
previous paragraph can be made when approximating a func-
tion that just depends on a lower dimensional set of linear or
nonlinear transformations of the input, as is common in the
sufficient dimension reduction literature (Li, 2018). To give a
simple example, we may consider the swiss role manifold M as
in Figs. 1b-1c, where the colors indicate values of two different
Lipschitz-continuous functions. Based on previously mentioned
approximation results (Chen et al., 2019; Schmidt-Hieber, 2019;
Shaham et al., 2018), both functions can be approximated using
deep networks with O(g~"/4mM)y = O(¢=1/2) parameters. How-
ever, the complexity of functions in 1b and 1c differs, because
we can express f in 1b as f(x) = g(m,(x)), where y is a one-
dimensional manifold. In other words, there exists a submanifold
y C M with dim(y) = 1 that contains all material information
for recovering the target function f.

Classification problems with class attractors. Another example,
where the domain of the target is not a suitable measure of
complexity, are classification problems with class attractors, see
Fig. 1d. Here, we assume that the class label depends only on the
proximity of the input to a low-dimensional attractor set, such
as for instance a finite set of points. Hence, if we were aware of
the attractor set, the target function is completely determined by
evaluating the distance to the set, indicating that the complexity
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(d)

Examples highlighting drawbacks of defining the approximation complexity via the target domain. In 1a the target function depends just on the projection of

the input onto a low-dimensional manifold, yet the data is spread in a full-dimensional subset of R”. 1b-1c show two functions whose domain is the swiss role, but
which are of different complexity because the function in 1b just depends on a single nonlinear transformation of the data (the red curve). 1d shows a classification
problem where labels are assigned based on the proximity to a few class attractors (bold dots). In all three cases the dimensionality of the approximation domain
is not a suitable measure for the difficulty of the approximation problem. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

of the target function is dictated by the complexity of the dis-
tance metric and the set of attractors, rather than the domain
of the target. Classification problems, where a finite number of
attractors exist, are the main object of study in few-shot learning,
see for instance (Sung et al., 2018). In these problems the goal is
to predict class labels after querying a tiny amount of samples,
which are ideally points that serve as class attractors with respect
to a, possibly prescribed, metric.

1.2. Contribution

Our main goal is to extend approximation guarantees of deep
nets from functions defined on low-dimensional domains to func-
tions that encode low-dimensionality in the joint input-output
relation x — f(x). We study two classes of functions, which
resemble two layer composite functions f(x) = g(¢(x)), where
¢(x) takes the role of a geometrically intuitive, dimensionality
reducing feature map. By resorting to such a function-driven
notion of low-complexity, we alleviate the drawbacks raised in
the previous section.

Functions of projections to low-dimensional sets. We first consider
functions that model ¢ as an orthogonal projection onto a d-
dimensional Riemannian submanifold M C [0, 1]°. In this case
we can write the target f : A € [0, 1]° — R as

f(x)=g(mm(x)) where mum(x)e argrAnAin X —zll, (1)
ze

and the approximation domain A is assumed to be contained in a
tubular region around M. The width of this region is constrained
to guarantee that m(x) is Lipschitz-continuous, as described in
detail in Section 2. We refer to the associated function class as
Class 1 below.

Assumption (1) naturally includes the popular case A = M
and 7, = Id, which has been studied in Chen et al. (2019),
Chui and Mhaskar (2018), Mhaskar (2020a, 2020b), Nakada and

Imaizumi (2019), Schmidt-Hieber (2019) and Shaham et al. (2018).
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In the present case the approximation domain A does however
not need to be low-dimensional. Rather, Eq. (1) imposes that
f is locally constant in D — d directions, corresponding to the
local normal space of M. If we were able to extract a subset
of the approximation space A C A, whose projection 7 x(A) is
supported on a small patch of the manifold M so that curvature
effects of M are negligible, we can view f |4 as a constant function
with optimal regularity in D — d directions corresponding to
the local normal space, and regularity dictated by gl ) in the
remaining d directions. Following this intuition, our viewpoint
is aligned with recent work on approximation of functions in
anisotropic Besov spaces (Suzuki, 2018; Suzuki & Nitanda, 2019).
Contribution We achieve the same approximation guarantee
that is achieved in Nakada and Imaizumi (2019), Schmidt-Hieber
(2019) and Shaham et al. (2018) for the case A = M. Namely,
if M is a d-dimensional manifold satisfying some common regu-
larity assumptions and g is a-Holder with respect to the geodesic
metric on M, functions of Class 1 can be approximated uniformly
to accuracy ¢ using a deep ReLU network based on ©(e~%%) point
queries of f and with ©(log(D)D log?(¢~')e~%*) nonzero param-
eters arranged in O(log(D)log?(¢~")) layers. The result is optimal
in terms of the number of required function queries according to
nonlinear width theory (DeVore, Howard, & Micchelli, 1989), and
optimal (apart from logarithmic factors) in terms of the required
network dimensions (Yarotsky, 2018, Theorem 1). We believe
the result sheds a new light on the relevance of the manifold
hypothesis, because we identify local invariances encoded in x
f(x) as the key factor to simplify the approximation problem, as
opposed to the complexity of the underlying data manifold.

Functions of distances to low-dimensional sets. Second, we study
functions that depend only on distances to a collection of finite
or low-dimensional sets Cq, ..., Cy. Mathematically, we assume
f:10,11° — R can be written as

M
f0=Y g (Izgi:? m(x, Z)”> :

=1

(2)



A. Cloninger and T. Klock

where m(-, -) is a metric and p € N can be an arbitrary scalar,
which makes m(-, -)P efficiently approximable by deep neural
networks (think of m(-, -/ = ||- — -||’;,, which is a polynomial of
degree p in the coordinates and thus efficiently approximable, see
Lemma A.2). For functions satisfying (2), low-dimensionality will
be encoded by assuming that packings of Cy,...,Cy at scale ¢
with respect to m(-, -) have cardinality O(e~%). This morally says
Ci,...,Cy are d-dimensional submanifolds, though we do not
require any regularity about C, and we also cover the case d = 0.
The associated function class is referred to as Class 2 below.
Contribution For a-Hélder smooth g1, ..., gy, we show that
functions of type (2) can be uniformly approximated to accuracy &
with ReLU nets based on O(¢~%) queries from each g1, ..., gy and
with O (log(e™")eminll.di/ 4 g=d/ep (g1/*)) nonzero network
parameters. Here, Pp(¢) describes the number of nonzero pa-
rameters required to uniformly approximate m(-, -)’ to accuracy
. If the metric can be efficiently approximated by a deep net,
e.g., by bounding Py, (¢) € O(Dlog(D)log(¢~1)) such as in the case
m(-, - = ||- — -||P, we require in total O(D log(D)e~™n1.d}/@) pa-
rameters in the network. For d < 1, which corresponds to the sit-
uation in Fig. 1d, the associated requirement O(D log(D)log(s~!)
e~ 1/%) is comparable to approximating a univariate function with
a shallow or deep network (Mhaskar, 1996; Yarotsky, 2017,
2018). Similarly, the number of required function queries O(e™¢)
per g, i = 1,..., M, matches the minimal number of queries
needed to approximate an arbitrary e-Hélder univariate functions
according to nonlinear width theory (DeVore et al., 1989).

1.3. Organization of the paper

Section 2 rigorously introduces functions of type (1) and
presents the corresponding approximation guarantee. Section 3
does the same for functions of type (2). Section 4 presents im-
plications of our results to nonparametric estimation problems.
Section 5 introduces preparatory material about ReLU calculus
and Sections 6 and 7 present the proofs of our main results.
We conclude in Section 8. Appendix contains some additional
statements and proofs about differential geometry and ReLU
approximation theory.

1.4. Notation

For N € N we let [N] := {1, ..., N}. cl(B) denotes the closure
of a set B and Im(M) denotes the image of an operator M. |A|
denotes the absolute value if A € R, the length if A is an interval,
and the cardinality if A is a finite set. We denote avvbh = max{a, b}
and a A b = min{a, b}. The ReLU activation function is denoted
(t), = max{0, t}.

I-1l, denotes the standard Euclidean p-norm for vectors and
I-]l, denotes the spectral norm for matrices. We denote dist(z; A)
= infpea llz — pll, for z € R? and A C RP. B,(x) denotes the
standard ||-]|,-ball of radius r around x, while B, r(v) denotes
the geodesic ball on a manifold M of radius r around v. ||A|lg
counts the number of nonzero entries of a matrix A. L,(A) contains
function with finite pth order Lebesgue norm.

We use A < B, respectively, A > B, if there exists a uniform
constant C such that A < CB, respectively A > CB. Furthermore,
we write A< BifA<Band A > B.

Finally, we define the ReLU activation function (t), =0Vt =
max{0, t} and introduce the following definition of a deep ReLU
network.

Definition 1.1 (Grohs et al,, 2019, Definition 2.1). Let L > 2 and
No,...,N, € Nog.Amap @ : RN — RM s called a ReLU network
if there exist matrices A, € RNe*Ne-1 and vectors b, € RN for

407

Neural Networks 141 (2021) 404-419
£ e [L] so that @(x) = W, y;_1+b;, where y, is recursively defined
by yo := x and
Yo = (Aye-1+by), for £e[l—-1].

Furthermore, we define L(®) := L as the number of layers,

lA¢llg + lIbellp as the number of nonzero parameters, and

B(®) := max{|(be)il . |(Ac)j| : i € Np.j € No—y, € € [L]}

as a bound for the absolute value over all parameters.

2. Main result: projection-based target functions

In this section we rigorously introduce projection-based func-
tions as foreshadowed in (1) and we present the corresponding
approximation guarantee. Before doing so, we introduce some
well-known preparatory concepts from differential geometry.
These are also summarized in Table 1.

Preparatory material from differential geometry. Let M C RP
be a nonempty, connected, compact, d-dimensional Riemannian
submanifold. A manifold M has an associated medial axis

Med(M) := {x e R” : 3p # q € M,

) (3)
lp —xll, = llg — x|l = dist(x; M)},

which contains all points x € RP with set-valued orthogonal pro-
jection w(x) = argmin, ., [|x — z||,. The local reach (sometimes
called local feature size Boissonnat & Ghosh, 2014) is defined by

(4)

and describes the minimum distance needed to travel from a
point v € M to the closure of the medial axis. The smallest local
reach tp := inf,ecnq TaA(v) is called reach of M.

Another important concept, which we use in the following,
is the geodesic metric. Since compact Riemannian manifolds are
geodesically complete by the Hopf-Rinow theorem, there exists
a length-minimizing geodesic y : [t, t'] — M between any two
points y(t) = v and y(t') = v/, where the length is defined by

/

lyl = ft[ I (s)Il, ds. The geodesic metric on M is defined as

T (v) == dist(v; Med(M))

dp(v, V') =inf{ly| 1y e Cl([t, t]), y : [t, 1] = M, y(t) =,
y(t) =}

(5)

We can extend d,, to tubular regions T 2 M around M

by dr(x,x") d (7 aq(x), TA(X')), provided the orthogonal
projection 4 is uniquely defined for x, x’ € T.

Main result. We are now interested in approximating functions
of the type f = g o m,. To state the function class in rigorous
terms, we define the set

M(q)={xeR’:x=v+u, veM, uecker(A(v)"),

llully < gTam(v)}

(6)

where the columns of A(v) € RP*? represent an orthonormal
basis of the tangent space of M at v. The set M(q) represents
a tubular region around the manifold M with local tube radius
qtaq(v), where to4(v) is the local reach as defined in (4). Since
Tm(v) > Ty for all v € M, M(q) contains, for instance, the tube
of constant radius qr,, around M. However, in regions where
M has small curvature, the tube radius may also be significantly
larger due to its scaling with the local reach.
The class of projection-based functions is defined as follows.
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Table 1
Notations used for different geometrical concepts throughout the paper.
Symbol Description
M A connected compact d-dimensional Riemannian submanifold of RP
d Dimension of the manifold M
T A Orthogonal projection 7 a(x) = argmin,. o4 [IX — z||;
Med(M) Medial axis of M, i.e. set with non-unique projections 7 x4 (X)
A(v) D x d matrix containing columnwise orthonormal basis for the tangent space M at v
Tm(v) Local reach at v € M, i.e. distance to travel in Im(A(v))* to reach Med(M)
M Infimum over all local reaches, throughout assumed positive
M(q) Tube of radius q € [0, 1) times local reach around M, see (6)
daq(v, V) Geodesic metric on M
dr(v, v') Geodesic metric on M extended to T 2 M by dr(x, X') := d ap(waa(X), Taqa (X))
Bar(v) Geodesic ball of radius r around v € M
Vol(M) Volume of the manifold M
P, ¢, A) §-packing number of a set ¢ with respect to metric A

Class 1 The target f A C [0,1° — R can be writ-
ten as f(x) = g(mwa(x)) for a connected, compact,
nonempty, d-dimensional manifold M with tp4 > 0,
A C M(q) C [0, 1]° for some g € [0, 1), and where
T pm(X) == argmin, »4 ||x — z||,. The functiong : M —
[0, 1] is w-Ho6lder with Holder constant L, i.e., satisfies
fora € (0,1]and L >0

lg(v) — g(v')| < LdS, (v, v) forall v,v' e M. (7)

The condition A < M(q) for some ¢ < 1 is important
because it is a necessary for f to inherit smoothness properties
from g. Namely, if A intersects the medial axis Med(,M), see the
definition in (3), the projection 7, is not uniquely defined over
A and, as a consequence, f may not be well-defined as well. If
A N Med(M) = @ but dist(A; Med(M)) = 0, f might be well-
defined and continuous on .4, but we cannot expect f to be locally
Holder-continuous at points arbitrarily close to the medial axis.
As shown in the following Lemma, enforcing A € M(q) for some
q < 1 solves these issues and implies that f inherits «-Holder
regularity of g with a Holder constant equal to the product of the
Hélder constant of g and (1 —¢q)~ .

Lemma 2.1. Consider a connected, compact, d-dimensional Rie-
mannian submanifold of M C RP with tpy > 0 and let q <
[0, 1).

(1) If x € M(q) has decomposition x = v + u for v € M and
u e ker(A(v)") with |lull, < qta(v), then ma(x) is uniquely
determined by 1 a4 (x) = v.

(2) The projection w4 satisfies ||7rM(x) - 7rM(x/)H2 < (1—¢q)!
||x — x’||2 forall x, X' € M(q).

Proof. The proof is deferred to Appendix A.1 in Appendix. O

We can now present our main approximation guarantee.

Theorem 2.2. Let f be of Class 1 and define Cq := Vol(M)d/?,
Cq == C4d¥?(1— q)~2¢, where Cy is the volume of the Euclidean unit
ball in RY. For & € (0, T5/2) there exists a ReLU network ®, which
uses n < Cae~? point queries of f and has its dimensions bounded
according to B(®) < 72, W(®) < DCpe™?, and

C DC,C
L®) 5 Clog? (f) + log (ﬂ "8;;) ,
M

C DC,C
4 —d 1 n g2 q —d q-M
P(®) < CCme log (;) + De log(rﬁ,@“d)’
such that
L
sup |f (x) — (x)| < (1 + 2) £ 9)
xeA (] - Q) «
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Alternatively, with access to n > (tr./2)?Caq point queries of f,

we can construct a ReLU network & (with dimensions as in (8) and
£ = (Cpq/n)"4) that approximates f up to
) El

el

1—qp
The same construction can be achieved with a network @ with
L(®) < 1og(B(@)L(D), W(D) < (W(D))*, P(D) < log(B(@))P(D)
and B(®) < 2 according to Grohs et al. (2019, Proposition A.1).

Cm
n

sup [f(x) — @(x)| <
xe A

Proof. A proof sketch and full proof details are given in Sec-
tion 6. O

Theorem 2.2 shows that functions of Class 1 can be uniformly
approximated to accuracy e with a budget of ©O(¢~%%) queries
of f and a network with O(log?(¢~1)e~%/*) nonzero parameters
arranged in O(log(e~1)) layers. Since the problem class contains
a-Hélder functions on RY, this result is optimal in terms of
the number of needed function queries according to the the-
ory of nonlinear width (DeVore et al, 1989). Moreover, apart
from logarithmic factors, it is optimal in terms of the number
of nonzero parameters in the network (Yarotsky, 2018, Theorem
1). A bound for the number of nonzero parameters can be used
to control covering numbers of the associated ReLU function
spaces (Schmidt-Hieber, 2020, Lemma 5). Bounds for covering
numbers can then be combined with statistical learning theory
to provide estimation guarantees for empirical risk minimization,
see the details in Section 4. We also note that W(®) and P(®)
have a mild log-linear dependency on the ambient dimension D,
which is possibly not avoidable apart from cutting the log-factors.

The constant Cu, is intrinsic to M and arises from bounding
the cardinality of an e-covering of M as in Lemma 6.1. The
constant C; and the factor (1 — q)~! in (9) are extrinsic as they
depend on the approximation domain .4 via (1 — q)~'. The factor
(1 — q)~! indicates that approximating f becomes increasingly
challenging as dist(.4; Med(M)) shrinks, i.e., as the approximation
domain approaches the medial axis, where 7 4 is set-valued and
f loses regularity.

The number of needed queries of f and the required dimension
of the network in Theorem 2.2 are, apart from log-factors and
constants, similar to the case A = M and 7, Id (Nakada
& Imaizumi, 2019; Schmidt-Hieber, 2019; Shaham et al., 2018).
Hence, previously studied function classes can be significantly
extended without compromising on the ability of deep networks
to approximate them.

Remark 2.3. 1. Instead of defining M implicitly by the target
f as in Class 1, we can also start with a fixed manifold M, an
associated approximation domain M(q) for g € [0, 1), and ask
how well all functions of the type f(x) g(maq(x)) can be
approximated over M(q). Theorem 2.2 applies to this case as
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well. Furthermore, we note that all weights except for the last
layer are used for the approximation of , in our construction.
Therefore, if we approximate two functions f(x) = g(m4(x)) and
f(x) = g(mwaq(x)) using the proposed construction, the associated
networks differ only in the last layer.

2. As the proof in Section 6 will show, there is no significant
advantage of the RelU activation for the construction of the
approximating network. Therefore, we believe that similar con-
structions are realizable with other common activation functions.
We focus on the ReLU in this work simply because it is the most
prominent choice in practice.

3. The results of Theorem 2.2 are achieved with networks
that have duplicate weights, for the sake of an easier analysis.
Removing duplicate weights only affects the constant factors in
the bounds of Theorem 2.2.

As a corollary of Theorem 2.2, we can also derive an approxi-
mation guarantee for 7 4.

Corollary 2.4. Let q € [0, 1) and let M be a nonempty, connected,
compact d-dimensional manifold with t,, > 0 and M(q) < [0, 11°.
For ¢ € (0, torq/2) there exists a ReLU network @ with architecture
constrained as in Theorem 2.2 and

<e.

sup [[mra(X) — (X o S (10)

xeM(q)
Proof. The proof is given at the end of Section 6. O
3. Main result: distance-based target functions

We now study distance-based target functions as foreshad-
owed by Eq. (2). The rigorous definition of the function class
requires the well-known concept of packing numbers.

Definition 3.1 (Vershynin, 2018, Section 4.2). Let C be a set
endowed with a metric A and let § > 0. We say Z C C is
8-separated if for any z # z' € Z we have A(z,Z') > 8. 2
is maximal separated if adding any other point in Z destroys
the separability property. The cardinality of the largest maxi-
mal separated set is called the packing number and denoted by
P(S, Z, A).

Class 2 Let Cq,...,Cu < [0, 1]° be nonempty closed sets, let
m(-, -) : [0, 1]° — [0, 1] be a continuous (normalized)
metric, and assume there exists §; > 0 such that
P(S,Ce,m) < 84 forall 8 < 8 and £ € [M].
Furthermore, assume there exists p > 0 so that m?
is ReLU-approximable in the sense that, for any fixed
z € [0,1]° and ¢ > 0, there exists a ReLU net ¥, .
with sup,coqp [m(x, 2P — ¥, .(x)| < & and

L(¥;,) < L(e), W(¥;) < Wn(e), P(¥;e) < Pm(s),
B(Wz,s) < Bn(e).

(11)
We consider functions of the form f(x) = Zy:]gz

(minzec, m(x, z)P), with g : [0, 1] — [0, 1] satisfying
for some o € (0, 1]

o

for all t,t' €0, 1].

(12)

|ge(t) =g < L[t —¢'

The parameter p > 1 in Class 2 can be useful for making
functions m(x, z)? more easily approximable compared to m(x, z)
(think of pth order Euclidean norms raised to the power p, which
are degree p polynomials and can be easily approximated as
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shown in Lemma A.2). Furthermore, (11) should be seen as a
definition of L,(&), Wi(g), Pm(€), Bm(e) rather than as an assump-
tion, because it poses almost no restriction on the metric m
in view of universal approximation theorems. However, if the
approximation of m? is responsible for an overwhelming majority
of the required nonzero parameters in the network construction
or scales exponentially in D, the corresponding metric m does
not induce an interesting function class in the sense of reducing
the original complexity of approximating f. We return to this
point after stating the main result by discussing some practically
relevant metrics m.

Theorem 3.2. Let f be a function of Class 2. For any ¢ € (0, 2pdy)
there exists a ReLU network &, which uses n < ¢~! point queries
from each g4, ..., gy and has its dimensions bounded according to

L(®) < dlog(pe™") + Lm(e),
W(@) < Mpe VW, (e)

P(®) < Mpidlog(pe e~ "D 4 Mple 4Py (e)
and B(®) < 1V By (¢), such that

sup |f(x) — @(x)| < ML&”.
xe[0,11P

)
)
(13)

Alternatively, with access to n point queries from each g1, ..., gu,
we can construct a ReLU network & (with dimensions as above and
e =< n~!) that approximates f up to

ML

sup [f(x) — ()| < — -
xe A n

Proof. The proof is deferred to Section 7. O

As long as Liy(&), Wi (e), and Py(e) grow at most polylogarith-
mically in ¢! and possibly polynomially in D, Theorem 3.2 shows
that their contribution to the overall network complexity is
negligible. Specifically, Theorem 3.2 then implies approximation
of f to accuracy ¢ using O(¢~!) queries from each g1, ..., gy and
O(polylog(e~")e~("V9)) nonzero parameters arranged in O(polylog
(e71)) layers. If M = 1, querying g; is similar to querying f
and the result is optimal according to the theory of nonlinear
width (DeVore et al., 1989). Moreover, if d < 1 and if we neglect
logarithmic factors, the number of required nonzero parameters
is optimal among all networks whose depth grows at most
logarithmically in e~ (Yarotsky, 2018, Theorem 1). We remark
that 2. and 3. of Remark 2.3 about the importance of the ReLU
activation and the use of weight duplication apply to Theorem 3.2
as well.

Metrics induced by L,-norms present a practical and versatile
instance of metrics that can be efficiently approximated by deep
networks. Specifically, we require O(Dlog(D/¢)) nonzero param-
eters, arranged in O(log(D/¢)) layers as shown in Lemma A.2,
so that the overall number of nonzero parameters of the ap-
proximating network equals O(Dlog(D/g)e~V9) (L, and Ly, are
actually exactly realizable with smaller networks, see also Re-
mark A.7). We can also consider variations of L,-norms, for in-
stance by first transforming inputs through a sparsity induc-
ing basis (e.g., a wavelet transformation operator) and then use
an L;-norm, or by considering weighted sums of multiple L,-
norms, where each L,-norm measures the discrepancy of two
points at different scales. To give a concrete example, we re-
fer to the work Shirdhonkar and Jacobs (2008) and Leeb and
Coifman (2016), who approximate the earth movers distance
for histograms using a weighted sum of L-norms of wavelet
coefficients of histogram differences.

We also note that Class 2 contains radial functions with M = 1,
d=0,and m(-,-) = ||- — -||§. Chui, Lin, and Zhou (2019) prove



A. Cloninger and T. Klock

an approximation rate for radial functions similar to ours using
smooth activation functions and McCane and Szymanski (2017)
show dimension-free but sub-optimal rates for ReLU networks.
Interestingly, Chui et al. (2019) also prove that shallow net-
works cannot achieve dimension-free rates, because they cannot
leverage the compositional nature of f.

4. Implications on nonparametric estimation problems

In this section we briefly highlight some implications of our
results on nonparametric estimation problems. We will focus on
regression problems with X being a random input vector in R?,
Y = f(X) + ¢, and E[¢|X] = 0. Furthermore, we assume f is
of Class 1 or Class 2 (where the metric m is assumed to be as
efficiently approximable as L,-norms by a deep ReLU net).

Several very recent works (Bauer, Kohler, et al., 2019; Schmidt-
Hieber, 2019, 2020) studied the performance of the empirical risk
minimizer

N
e argmin Z

JeNy i=1

(tif(x,-) - Yi)z, (14)

where the hypothesis space Ny contains ReLU networks ¥ with
complexity bounded by L(¥) < Ly, W(¥) < Wy, P(¥) < Py,
B(¥) < By, and Ly, Wy, Py, By depend on the size of the training
data {(X;, Y;) : i € [N]}. The complexity of My can be controlled
in terms of Ly, Wy, Py and By (Schmidt-Hieber, 2020, Lemma
5), and a bias-variance tradeoff analysis allows for establish-
ing estimation rates for (14), whenever the approximation error
infyepny E(W(X) — f(X))? can be bounded in terms of Ly, Wy, Py
and By.

Following this strategy, Theorems 2.2 and 3.2 can be used to
derive the estimation guarantees

B (600 —700)

|

where © absorbs log-factors in N. The corresponding relations
between the architectural constraints and the size of the training
data N are given by

~ 20
O(N™ 7)),
2a

O(N™ 2+ ),

if fis of Class 1,
if fis of Class 2,

as N — oo, (15)

Ly € 8(1), Py e & (N550), Wy e 6 (Nw5),

By €O (szﬁ) , for Class 1,

and Ly € O(1), Py € O(N%) Wy €& (Nz?ﬁ)
By € O (1), for Class 2.

The rates in (15) are statistically minimax optimal for Class 1
(even if X is supported exactly on a d-dimensional manifold) and
minimax optimal for Class 2 if d < 1 (Stone, 1982).

To the best of our knowledge, the literature does not pro-
vide algorithms for estimating f with the rate (15) under the
assumptions imposed in Class 1 or Class 2. Focusing on Class
1, a few special cases have been considered in the literature.
First, if X is supported exactly on M, classical methods such as
k nearest neighbors, piecewise polynomials, or kernel methods
achieve the rate (15) (Bickel & Li, 2007; Kpotufe, 2011; Ye & Zhou,
2008). Second, if M is a linear subspace, methods from suffi-
cient dimension reduction literature combined with traditional
estimators achieve (15) under certain reasonable assumptions (Li,
2018; Ma & Zhu, 2013). Third, if dim(M) = 1 and g is strictly
monotone along the manifold, Kereta, Klock, and Naumova (2020)
achieve near-optimal rates in the case ¢ = 0. Still, none of these
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approaches achieves (15) in the generality that is considered
here, which indicates a gap between the performance of ‘tradi-
tional estimators’ and deep neural networks. We add though that
computing the global minimizer (14) within small (polynomial)
runtime is not well-understood, because networks ¥y € Ny are
underparametrized by the choice P(¥y) < N.

Finally, we note that checking whether a function belongs to
Class 1 or Class 2 is challenging in practice, because the input
{Xi : i € [N]} does not reveal the compositional nature of
x — f(x) by itself. Instead, the compositional nature is only
visible when jointly using {(X;,Y;) : i € [N]}, for instance by
inspecting derivative tensors of the function f. As an example,
Hessian matrices of functions that belong to Class 1 have at most
d nontrivial eigenvalues at any point x € A and the nontrivial
eigenspace corresponds to a subspace of the tangent space of M.
For functions of Class 2, derivative tensors also tend to have a
specific shape, whose precise form depends on the distance m
and the parameter M.

5. Preparatory material: a brief primer on ReLU calculus

ReLU calculus refers to a framework for developing ReLU net-
work approximation guarantees based on successively approxi-
mating increasingly complex building blocks. Corresponding re-
sults have been developed in recent years (Bolcskei et al., 2019;
Grohs et al., 2019; Petersen & Voigtlaender, 2018; Yarotsky, 2017,
2018), following the increased popularity of the ReLU activation
in practice. This section gives an overview of some of the results,
which we use in the remainder. Throughout, deep ReLU networks
are defined as stated in Definition 1.1.

The first step towards developing approximation guarantees
with ReLU nets is to endow the space of ReLU nets with two basic
operations, namely compositions and linear combinations.

Lemma 5.1 (Composition Grohs et al., 2019, Lemma 2.5). Let & :
RM — RMi gnd &, : RM1 — RM2 be two RelU nets. There
exists a ReLU net ¥ : RY% — RM2 with ¥(x) = ®o(P1(x))
and L(¥) = (1) + L(P2), W(¥) = max{W(Dy), W(P,), 2Ny, },
P(¥) = 2(P(®1) + P(®3)), and B(¥) < B(®1) V B(®,).

Lemma 5.2 (Linear combination Grohs et al, 2019, Lemma 2.7).
Let {®; : i € [N]} be a set of ReLU networks with similar input
dimension Ny. There exist ReLU networks ¥, and ¥, that realize the
maps Y1(x) = (1 P1(x), ..., anPn(x)) and Wr(x) = Zf’zl o Pi(x).
For j € {1,2)}, they satisfy L(¥;) = maXjen L(®i), W(¥;) <
YLy @V W(®), P(¥) = YL (P(P)+W(B)+2(L—L(@)+1),
and B(lp]) < max{1, maXije[n] B(d),) V ail

Using compositions of ReLU nets, the next step is to approx-
imate the square function x +— x2, for instance by using the
so-called ‘saw-tooth function’ approximation (Yarotsky, 2017).
Then, by using the identity

1
=2 (¢ +y - x—yr),

one can establish approximation guarantees for arbitrary multi-
plication and for multivariate polynomials of arbitrary degree. We
exemplarily report the results of Grohs et al. (2019) in the next
lemma.

Lemma 5.3 (Grohs et al, 2019, Proposition 3.2, 3.4 and 3.6). Let
e €(0,1/2).

(1) There exists a network with L(®) < log(1/¢e), W(®) = 3,P(P) <
log(1/¢), and B(®) < 1 such that sup,o 1 |®(x) — x*| < .

(2) Let R > 1. There exists a network @ with L(®) < log(R/¢e),
W(®) < 5, P(®) < log(R/e) and B(®) < 1 so that sup c(_g g2
[D(x,y) —xy| < e.
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Table 2
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Basic ReLU calculus results that are relevant to the manuscript. We use x € RP for vectors and t € R for scalars.
The approximation accuracy is ¢ in the respective metric and ©(-) means as ¢ — 0. L, W, P, and B denote bounds
on depth, width, number of parameters, and coefficient size of the network respectively.

Map Metric L(®) W(®) P(®) B(®) Reference

x> |11 Loo([—R. RIP) o(p*log([R1D/e)) 9D o(DL(®)) 1 Lemma A.2
(x,t) > tx Loo([—R, RIP+1) oO(log(R?/e)) 5D o(DL(®)) 1 Lemma A.3
te> 1/t Loo([R™", R)) O(R* log*(R/¢)) 9 oL(®)) 1 Lemma A.4
x> x/IXli Leo(fx:RV<|Ixl; <R})  O(R*log*(R/¢)) o(D) o(DL(®)) 1 Lemma A.5
X > min; X; Exact on RP 2[log,(D)] 3[D/2] 11D[log,(D)] 1 Lemma A.6

(3) Let m € N, a € R™!, R > 1. There exists a network @ with
(@) < mlog(1/e) + m?log(R) + mlog([llall1). W(®) < 9,
P(®) < L(@), B(®) < 1, and sup,_g g |P(X) — Y g aix'| < &.

A natural next step is to study the approximation of functions
with a certain degree of regularity. This can be done for instance
by using local Taylor expansions and by approximating Taylor
polynomials and indicator functions through deep networks. As
a result, ReLU nets are able to uniformly approximate functions
with a certain degree of regularity with an optimal number of
function queries and nonzero parameters, see e.g. Schmidt-Hieber
(2020) and Yarotsky (2017, 2018). As an example (and since
it suffices for our purposes), we present a simplified version
of Schmidt-Hieber (2020, Theorem 5) for «-Holder univariate
functions.

Theorem 5.4 (Simplified Version of Schmidt-Hieber, 2020, Theorem
5. Let L > 1, « € (0,1] and consider f : [0,1] — R with
f(t)—f(s)] < L|t—s|* for all t,s € [0,1]. For any ¢ > 0
there exists a ReLU network & that uses n < ! point queries of
f and has complexity bounded by L(®) < log(1/¢e), W(®) < 1/,
P(®) <log(1/e)1/e, B(®) < 1 such that

sup [f(x) — @(x)| < Le“.
xe[0, 1]k

Proof. With « € (0, 1], Schmidt-Hieber (2020, Theorem 5) gives
(using the same notation as in the reference)

sup |f(x) — ()| SLN2™™ 4+ LN7¢,

xe[0, 1]k

where N and m effectively describe width and depth of the
approximating network &. By choosing N 1/e and m
log,(1/£179))) with suitable universal constants both summands
are bounded by Le*/2, giving the asserted approximation guar-
antee. The required network size can be read of from Schmidt-
Hieber (2020, Theorem 5) by inserting N and m. For counting
the number of required queries of f, we note that & approxi-
mates a piecewise constant approximation of f based on O(s¢~!)
subintervals. O

—
=

~
=

The aforementioned results present a small subset of existing
approximation results for ReLU nets and give an idea how we can
gradually approximate maps of increasing complexity. To facili-
tate the proofs for our results in the next two sections, we require
some additional elementary approximations. These are listed in
Table 2, with proofs deferred to Appendix A.2 in Appendix.

6. Proof of Theorem 2.2

We first give a proof sketch that outlines the strategy and
additionally highlights the main challenges compared to the pre-
viously studied case A M and 7y Id. Afterwards we
present the proof details. Throughout we let Cq, Coq and C; be
the constants defined in Theorem 2.2.
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6.1. Proof sketch and comparison with the case A = M

Our proof strategy shares some similarities with existing proof
strategies for the case A = M, see for instance Nakada and
Imaizumi (2019), Schmidt-Hieber (2019) and Shaham et al. (2018),
but also differs in some aspects due to additional complications
arising from the high-dimensional approximation domain. In both
cases, we can start with a maximal separated §-net {zq, ..., zx}
of M (see Definition 3.1), which has cardinality bounded by K ~
Ca8~¢ according to Lemma 6.1. Then, by defining U; as geodesic
balls U; := {z € M : dx(z, z;) < 8}, the subsets Uy, ..., Ug cover
the manifold M and the preimages 7 (Uy), ..., 75, (Ux) cover
the approximation domain A € M(q). Hence, for any partition of
unity n1, ..., ng subject to n;,}(Ul), e, n/(,ll(UK), we can express
f by f(x) = 32 f(xmi(x).

Let us now denote the orthoprojector onto the tangent space
at z; € M by A;. If we are in the case A = M, we naturally
have U; = n/(,ll(U,-) N A and the sets U; are isomorphic to A;(U;)
(provided § < 1t/2, ie., the covering of M is sufficiently
fine Schmidt-Hieber, 2019; Shaham et al., 2018). Therefore, ap-
proximating fn; over U; is morally like approximating a func-
tion on a compact subset of RY and we can apply results from
Mhaskar (1993, 1996) and Yarotsky (2017) to achieve approxi-
mation guarantees that depend exponentially on d instead of D.
By linear combination of the resulting C,,8~¢ approximants, we
then obtain an approximation to f.

In the case M C A C M(q) the aforementioned strategy
unfortunately cannot be used, because each #; in the partition
of unity is supported on a compact subset of RP, which is not
isomorphic to a compact set in R% Hence, naively using re-
sults from Mhaskar (1993, 1996) and Yarotsky (2017) to ap-
proximate an arbitrary partition of unity 71, ..., ngx subject to
n/f,ll(Ul), e, n;,}(UK) incurs the curse of dimensionality.

Instead, we will use a finer covering of M at the scale § ~ ¢
(as opposed to § &~ 1,4 in the case A = M) and employ
the piecewise constant approximation f(x) = >, f(x)ni(x) ~
> 8(z)ni(x). If ny,...,nx form a partition of unity with the
localization property

sup
xeM(q):ni(x)#0

dM(q)(Xv Zi) 5 g, (]7)
the piecewise constant approximation f(x) ~ Y. g(z;)ni(x) is ac-
curate up to O(g*) for «-Holder g. We note however that we have
to approximate K ~ C,.e~? functions 1, ..., nx by deep net-
works, which means that we can allocate at most O(polylog(s 1))
nonzero parameters for each individual approximation to match
the overall result achieved in Theorem 2.2. Thus, n;’s have to
satisfy (17), while also being approximable by relatively small
networks.

Designing such #;’s is main difficulty of the proof. We first
derive an auxiliary result to locally approximate the extended
geodesic metric dqq)(X, zi) = dam(ma(x), z;) around z; by basic
features of the input vector x. Namely, Proposition 6.2 shows that,
for any p € [q, 1), we have the local metric equivalence

! ||
1-p 2

Az) " (x = 2|, < damig(x. 20) < |AGz)" (x — z; (18)
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Fig. 2. Schematic ReLU construction used to approximate Class 1. At each node we illustrate the feature of x that is being approximated by the network. Green nodes
can be exactly realized (assuming the previous layer is exact) with finite width layers, whereas blue nodes are approximated to accuracy O(e) using O(polylog(¢~"))
layers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for every x contained in By ,(;,(z;) and with |A(z)"(x — z)|, <
(1 — p)taq. Intuitively, a point x satisfies x € Bp;,,(;)(zi) and
|Az)" (x —z)|, < (1 = p)raq if it is contained in an Ly-ball
around z; that extends up to pta(z;) in normal direction and
(1 — p)toq in tangential direction. Eq. (18) implies that we can
approximate d (%, z;) on such balls using lA@zZ) T (x — z)]|2.

Crucially, ||x — z|l, and ||A(z;) T (x — z)||, are simple features of
the input x, because (after taking squares) they are composed of
a linear transformation followed by a polynomial of degree 2 of
the input x. Hence, we can approximate these features efficiently
using deep networks and construct a partition of unity function
accordingly. The precise construction reads

0= [ 1- ("X - zfllz>2 . <||A<zmx —znllz)z
PTam(zi) he
+
7i(x)
d i = — .
and - m(X) = o,

where h is a bandwidth parameter that is suitably chosen as a
function of q and t . As shown in Proposition 6.3 and Lemma 6.4,
n; satisfies (17) and can be approximated to accuracy ¢ by a ReLU
network @; with O(polylog(¢~!)) nonzero parameters.

Finally, after recalling that linear combinations of ReLU net-
works are still ReLU networks, we approximate f by

K
D(x) =) g(z)Oi(x). (19)
i=1

A schematic illustration of the complete approximating network
is depicted in Fig. 2.

6.2. Proof details

Let us first collect some elementary facts from differential
geometry that are required in the following.

Lemma 6.1. Let M be a d-dimensional compact connected Rieman-
nian manifold embedded in [0, 1]° with reach o, > 0, Lebesgue
volume Vol(M), and endowed with the Riemannian metric induced
by RP. Let v,z € M.

(DIf lv—2zll; < Ta/2 then dp(v,2) < Tm(1 -

VI=2Tv =zl /tm).

(2) For any r € (0, Toq/2) we have Vol(Bar(v)) < Ca(tar/(Ta —
2r))4re,
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(3) The tangent space orthoprojectors A(v)A(v)T e RP*P satisfy
perturbation bounds

1
[AA@)T - AAR) |, < —dpm(v, 2). (20)
™™

(4) The local reach as defined in (4) satisfies the perturbation bound

lTm(v) — Tm(2)] < v = zll; < dp(v, 2). (21)

(5) We have P(8, M,dr) < 3%Wol(M)d¥?5~¢ for any § €
(0, %TM)

(6) Let Z be a maximal §-separated set of M with respect to
the geodesic metric. For any p with p§ € (0, tp/4) we have
|2 N Bagps(v)| < Ca(5p/d)-.

Proof. Property (1) can be found in Genovese, Perone-Pacifico,
Verdinelli, and Wasserman (2012, Lemma 3) and (2) is derived
in Chazal (2013, Proposition 1.1). (3) is similar to Boissonnat,
Lieutier, and Wintraecken (2019, Corollary 3), after noticing that

[A(W)A)T — A2)A(z)" ||, = sin £ (A(v), A2))
s (Z(A(U%A(Z))>
<2sin| —222 )

B

2

where / (A(v), A(z)) denotes the maximum principal angle be-
tween subspaces Im(A(v)) and Im(A(z)). For (4) we assume with-
out loss of generality To((v) > 7a(z). Then the result follows
from

T(v) — Ta(z) = dist(v; Med(M)) — dist(z; Med(M))
< |lv — z|l, + dist(z; Med(M))
— dist(z; Med(M)) = ||[v — z|l, < damq(v, 2).

Property (5) can be found in Baraniuk and Wakin (2009) and
Niyogi, Smale, and Weinberger (2008). For (6) we first note that
ZNB g ps(v) is still a 5-separated set of the geodesic ball By ps(v),
which implies |Z N Baqps(v)| < P(8, Brgps(v), dag). Since the
reach of the geodesic ball B, ps(v) is also bounded by 7,4, we
can apply Property (2) and Property (5) to get

d 4 dydr odsd g9
P(8, Baps(v), das) < & VOI(B/\;&M(U)MZ <22 C;l: A

= C4(5pV/d)’.

The first step to prove Theorem 2.2 rigorously establishes
the local metric equivalence (18) between the geodesic metric
dm(maqa(x), 2) and |Az)"(x — 2)|

O

>
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Proposition 6.2. Let M be a connected compact d-dimensional
Riemannian submanifold of R? and let ¢ € [0, 1). For x € M(q)
with v = w(x) and arbitrary z € M we have

dist(x; M
[A2) T (x - 2)], < (1 n g M) )dM(z,v).
T;m V (Tm(v) — dm(v, 2))
(22)
Let now p € [q,1) arbitrary. Then for x € By, )(2) with
[Az)T(x -z ||2 < Py, we have
dm(z,v) < ||A x—2)],- (23)

Proof. Throughout the proof we denote P(z) = A(z)A(z)' as
the orthoprojector onto the tangent space of M at z € M.
For (22) we use P(v)(x — v) = O from part (1) of Lemma 2.1,
lz—v|l, < dam(z,v), and the tangent perturbation bound (20)
applied to the geodesic path y;,_,, from z to v with reach bound

Ty, = infyeim(y,_,) TAm(y) to compute
IP(z)(x — 2)ll; < [IP(z)(v — 2)ll, + [IP(z)(x — v)ll; < da(v,2)
+ IP(z) — P(v)ll3 Ix — vl
dist(x;
< du(v, 2)+ My ),
Yz—v

Furthermore, by the 1-Lipschitz property of the local reach, see
(21), we have

Ty, = Inf - Ty () = ta(v) = sup  |Ta(y) — T (V)]
yelm(yz—v) yelm(yz—v)
> Tm(v) — daq(v, 2).

Since the global bound 7,,_, > 74 holds due to Im(y,_,,) C M,
we obtain

dist(x; M)
T(v) — dM<v,z))> Apalv, 2).

For the opposite direction (23) we let w := ||P(z)(x — z)||, and
X :=z+Q(z)(x — z), where Q(z) := Id — P(z). By construction we
have P(z)(x —z) = 0 and

Q2)x — 2)ll, = [IP(2)(x — 2], = .

Furthermore, since x € By, ,(»)(2), @ < ]%prM, and g < tq(2),
we can bound

IP(z)(x — 2)ll, < <1 + T

[x=%], = llx—2 -

% =z], < lIx =2l + [x— ], < praa(e) + @

p -
Tm < PTam(2),

< ptm(z) +

forp = % < 1. We thus have the decomposition X = z+(x—2z)
forz € M, X —z L Im(P(2)), and |k —z||, < pra(2). Part (1) in
Lemma 2.1 implies z = 7 4(x) and X € M(p). Using the Lipschitz
property of 7, in part (2) of Lemma 2.1 and x € M(q) C M(p),
X € M(p), we get

3

—p)

rM, so that we can apply part

-3, =

lv—zll; = “ﬂM(X) —7TM(>~<)H2 = .

21

We further not that
2(1 -p)
(1) of Lemma 6.1 to get

20v -2zl 2o — zII3
dp(0.2) < Taq ,M/: <o -z, + 2=zl
™ ™

<2lv—zll,. O

w <

We now introduce the partition of unity functions 5, ..., ng
and show that they satisfy the desired localization property.
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Proposition 6.3. Consider a connected compact d-dimensional
Riemannian submanifold M < RP and let ¢ € [0,1). Let Z =
{z1,...,2z/} C M be a maximal 5-separated set of M with respect
to d . Define bandwidth parameters p := 1(14q) and h := —2

1—gp~1
and functions 7, n : M(q) — R!Z! componentwise by
2
- X — zill; 2 HA(ZI')T(X - zi)”z
M=\ G ) T\ e
(24)
7i(x)
and ni(x) = — .
ol

There exists a universal constant C such that if § € (0, C(1—q)?Tpq)
we have

8
sup  day(*,z) S (25)
renmamoozo T (1 - qP
(1—q) < Iy < C (26)

Proof. Denote v = m(x). We will a few times require in the
following the bandwidth ratio

3h _36(q+1)€[ 36 72
1-p (1—-q? " L(O0—-9q? (1—q)p?
By construction n;(x) # 0 implies x € B, ,(;)(z) and Az (x —
z)ll2 < hd. Thus, as soon as § < Er,,, Wthh is implied by
8 < —(1 — q)%tpm, We have”A z)(x—2z Hz < T‘L'M. Applying

Proposition 6.2 gives (25) by
3h 72
<—48< 8
1-p ~ (1—gqp
We now concentrate on the lower bound in (26). Denote j €
argmin;e| z; daq)(X, ). Since Z is a maximal §-separated set of
M, we have dnq)(X, zj) < 8. Eq. (22) in Proposition 6.2 implies

dist(x; M)
Az (x - 2)|, < (1 + m> §< (1 +
_ (1 P
- o

T
. 1
provided § < ErM.

d g%, z1) = d (v, 7))

qTm(v)

(V) — 8) 8

)85(1+2q)8§38,

Using the triangle inequality to get |x —sz2 < 84 lx—vl;
and the 1-Lipschitz continuity of t,(-) in (21) to further bound
Ix — vy < qTaq(v) < q(8 + Taa(Z)), it follows that
||x—z,»|}2§5+q5+qw(zj)§7 Ttay_a, 4
ptrm(z) ptam(z) P Ptm P M

Inserting the definition of the bandwidth parameter h, we thus
obtain

q q

_x=zl,  Ja@ -z, o a4 3
PTMm(Z)) hé - P TMm h 27)
1 ( q) 4
>—({1-=-)——6.
2 p TM
This is bounded from below by (1 —qgp~1) as soon as
1—
s< M9y =279 whichis implied by
16 p 16 1+g¢
5 (1—q)tpm
P i

16

Since squaring one of the subtracted terms in (27) reduces their
size, we get the lower bound ||7(x)||; > 7i(x) > %(1 —pq ") >
1/8(1 — q).
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For the upper bound on |[7(x)||; we notice that n;j(x) # 0
implies by Proposition 6.2

1-p
> ——dpmg)(Zis X)

hé§ > ||A(z,-)T(x — z,<)||2 3 provided
S < (1—ay T
E

Thus, 7i(x) # 0 implies daqq(x,z:) < 3h(1 — p)~13, ie, all z's
contributing to ||7]|; are contained within a geodesic ball of radius
3h(1—p)~'8 around v. As soon as %8 < %rM, which is implied
by § < 288(1 — q)*t 4, we can then use part (5) of Lemma 6.1 to
bound

3h

<Ci[5——
‘_ d( 1-p

<C572
_d(1

d
ZNBy 3 5(v) J&)
*1-p

d
_7(1)2\/3) <G,

Since each #7;(x) is individually bounded by 1, the upper bound on
[I7(x)]l; in (26) follows. O

We next show that n can be uniformly approximated by a
ReLU net of small complexity.

Lemma 6.4. Assume the setting of Proposition 6.3 with § < t/2
and M(q) € [0, 1]°. For all ¢ € (0, 1) there exists a ReLU-net &
with complexity bounded as in (31) such that

sup [In(x) — @(X)Il; <e.
xeM(q)

(28)

Proof. Recall that 2 = {z;,...,7z} C M is a maximal §-
separated set of M with respect to d,, and that we have ¢ 1<
In(x)Il; < Cq (see right hand side in (26)). The proof is split into
two parts. First, we describe how to approximate 7; for some i €
[1Z2]], and afterwards we describe how to combine the networks
to approximate 7 : R? — RIZl,

1. Approximating 7);: Let ® be a ReLU net that approximates
||~||§ over [—1,1]° to accuracy § > 0 (existence is proven in
Lemma A.2). Furthermore, let ¥; realize x — x — z;, and [ realize
x — A(z)"(x — z). For bandwidth parameters p and h as in
Proposition 6.3, we then define a ReLU network

- OWi(x)  O(N(x)
¢i =11- — .
) ( (prm@)?  (ho)? >+

Comparing @; with 7; we obtain by 1-Lipschitzness of the ReLU
and the triangle inequality

‘ O(Wi(x)) — lIx — zl12

sup | ®i(x) — ii(x)| <

xeM(q) (PTm(zi))?
X)) — |A@)T(x - z)|;
(h8)? (29)
g g

= im@E T (hop

1 1

< <

= ((pw)z " (ha)Z) =1
where we used x — z; € [—1, 1]° since x,z; € [0,1]°, p > 1/2,
and h > 1. To compute the complexity of ®@; we apply the rules of
ReLU composition and linear combination in Lemmas 5.1 and 5.2,
and the complexity bounds in Lemma A.2. We have L(® o ¥;) <
L(©) + L(¥) < log(D/E), W(O o %) < D, P(6 0 ¥) S Dlog(D/é),
and B(® o ¥;) < 1, and the same bounds hold for ® o I;. Thus, by
the rules of ReLU linear combination in Lemma 5.2 (the additional

5¢
'L’M(S)z
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ReLU activation in the last layer does not matter for the absolute
bounds) we have

L(®) < log(D/e™"), W(®;) <D,
B(®;) < 1/(ptam)* Vv 1/(hs)>.

P(®;) < Dlog(D& 1),

2. Approximating 7: Define now & (x) = (®1(x), ..., D z((x)).
Using (29) we note that
@l = 17()lh] < D) = 71Xl
12| -
~ 5|Z|& (30)
<D 1dix) — milx)| < e

i=1

Thus, with Cq*1 < Inx)ll; < Cq we get 1/2qu1 < 1P| < 2¢,
for & < (erS)z/(IOCq |Z|). Now, let A be a network that approx-
imates £;-normalization up to &/2 for inputs u with (2Cq)’1 <
lull;, < 2C; as in Lemma A.5. Setting @(x) A(D(x)), the

approximation error be decomposed into

3 & &
19007 n6l = | APl ||5><(xx))|| ||<z”>((xx))|| i
1 1 1 1
P ORI
=27 | 1een el |

For the second term, by twice applying triangle inequalities and
reusing (30), we obtain

o) i) 12(x) = Xl
1ol 1AMl | 7)1
@)l — 7)1 ]
172G
10|2| ¢
()

Combining both bounds yields and setting &
|Z|) yields the result.

Lastly, we bound the complexity of @. Following the rules of
ReLU compositions and combinations in Lemmas 5.1 and 5.2, and
using the cardinality bound |2]| < C,8~¢ as in Lemma 6.1, we
have

(TA8)?e/(20C,

5 4.2 DGy 12|
(@) = L(A) + L(P1) S (G log*(Co/e) + log | ————
(tmb)e
C DC,C
4, 2 (Y qabm
< Cq log (8) + log (Wg)
W(®) < |Z|W(®1) £ DCmS™,
- C
P(®) < P(A)+ |2| P(@1) < C; |2] log® <—">
&
DC, | Z|
+|Z|Dlo 1 31
121 g(@a%) (31)
DC,Ca

C
< CHCus ™ log? (—q> +Ds¢ log(
€

B(®)=B(®) St vE2 O

).

Finally we combine Lemma 6.4 with the «-Holder property of
g to conclude the proof.

2 824d
Ty, 0% Te

Proof of Theorem 2.2. Let Z := {zy,...,zx} be a maximal sepa-
rated e-net of M with K := | 2| < Cye™¢ by Lemma 6.1 and let
g(Z) = (g(z1), ..., &(z¢)) € RX. By Lemma 6.4, we can construct
a network ® : R? — RX, which approximates the partition of
unity function n(x) in (25) over A € M(q) up to accuracy &“. To
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approximate the target f we define the net
K

W(x) =) ()04

i=1

— (—8(z)Oi(x)); = (8(Z), O(x)). (32)
Taking arbitrary x € A C M(q), we can first use triangle and
Holder inequalities to get

[f(x) — 2(x)| = 1g(mm(x)) — (8(2), ©(x))|
< lg(mam(x)) — ((Z), n(x))|
+ (g ( ), (n(x) — ©X))|
< Hg(mm(x)1k — &(2), n(x))|
+ IIg( Moo () — @)l
< Hg(mm(x)1k — g(Z), n(x))| + &*.

where 1x = [1,...,1] € RX and where we used (1g, n(x)) =
1, |1g(Z)lc < 1. The first term can be bounded by Hélder’s
inequality and Proposition 6.3 according to
Kg(mm(x))1k — &(Z), n(x))| = sup g (7 ra(x)) — &(zi)]
;(x)7#0
<L sup df, (7

ie[K]
7;(x)7#0

<L _ ’
~ ((1—q)2’“‘") ’

which shows the approximation error bound. To bound the com-
plexity of @ we note that the network is a composition of ® with
a two-layer network that has first layer weights +g(Z) € [—1, 1]¥
and second layer weights +1. Therefore, the complexity of @
is dominated by the complexity of @ and can be read off from
Lemma 6.4, respectively, from (31) in the proof. O

m(x), z1)

Proof of Corollary 2.4. For each k € [D] we can approxi-
mate x +—> e;nM(x) via a ReLU net &, using Theorem 2.2 for
g() = ekT(-). By stacking these networks, we obtain the ap-
proximating network @(x) = (®4(x), ..., @p(x)), which achieves
the asserted guarantee. Note that by construction (19) we have
Dp(x) = Zﬁ(:](z,-)k@i(x). Since @; is independent of k, correspond-
ing weights can be shared in constructing @, so that the network
architecture adheres to the bounds in Theorem 2.2. O

7. Proof of Theorem 3.2

Theorem 3.2 follows by the ReLU composition rule after ap-
proximating g and x > min,cc m(x, z)P. Let us separately prove
the latter result now and then give the proof of Theorem 3.2.

Lemma 7.1. Let ¢ < [0, 11° be nonempty and closed, m :
[0, 11° x [0, 11° — [0, 1] a metric satisfying (11) for some p > 1,
and assume there exists 8, > 0 so that P(8,¢, m) < 8¢ for all
8 € (0, 8p). For any ¢ € (0, 2p8y) there exists a ReLU network @
with L(®) < dlog(pe™") + Lm(e), W(®) < (p/e)'Wn(e), P(®) <
(p/e)* (dlog(pe™") + Pm(e)), and B(®) < 1V By(e) satisfying

minm(x, z)P —
zeC

sup ¢(x)‘ < 2s. (33)

xe[0,11P

Proof. Let Z C C be a maximal separated ¢/p-net of C, which
has cardinality bounded according to [Z]| < (p/¢)? as soon as
& < pdo. For each z € z, let ¥, , be a ReLU network that
approximates m(x, z;)* up to accuracy ¢ and let I’ : Rl — R
be a network that realizes I'(u) = min;e[z|; U; (See Lemma A.6).
We set @(x) = I'(¥;, 6, - . ., ¥y o). Using the triangle inequality,
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we decompose

minm(x, z)P — <D(x)‘
zeC

(x,z)P x)’

+

min m(x, z)?

— min m(x, z)p‘
zZeZ zeC

< |minm(x, z)’ —

min !Ilzys(x)‘
zeZ

zeZ
+ |min m(x, z)’ — min m(x, z)p‘ (34)
zeZ zeC

For the first term, we immediately have
minm(x, z)’ — min lI/M(x)‘ < max |m(x, z) — ¥, . (x)| <.
zeZ zeZ zeZ

For the second term in (34) we note that there exists v(x) € C
satisfying m(x, v(x)) = min,cc m(x, z) because C is closed and
nonempty (v(x) does need to be unique). Then, by |a’? — b?| <
pla v bY?=D|a—b|, m(-,-) € [0, 1], and the inverse triangle
inequality we have

,2) — m(x, v(x))’

minm(x, z)P — mlnm(x z) ’ =
zeZ

< pmln m(z, v(x)) < e,
zeZ

with the last inequality following by the ¢/p covering property of
Z. It remains to bound complexity of the network in terms of ¢
and Z. Using the rules of compositions and linear combinations
of networks in Lemmas 5.1 and 5.2 we have

L) =LT)+L(¥, .-
< dlog(pe™") + Li(e)
W(®) = max{W(I"), W((¥;,¢, - . .
< (p/e) Wn(e),
P(@) S P(I) + P(Wry e, - - Way ) S P + |Z] P(Wz )
S |1Z1og(121) + | 2] P(¥, )
< (p/e)! (dlog(pe™") + Pm(e)) ,
B(®) < B(I')V B(¥,60 -+ - Wy e)) < 1V B(e). O

Vo)) S 108(121) + L(Y%, e /2)

Vo)) 2121} S IZIW (Y%, )

To prove Theorem 3.2 we now combine Lemma 7.1 with
Theorem 5.4 in Section 5, which provides approximation bounds
for univariate a-Holder functions like g1, ..., gu.

Proof of Theorem 3.2. Consider the case M = 1 first and let
g1 =g,C =C. let ¥ : RP — R be the ReLU net approximating
X +— minyee m(x, z)P up to accuracy ¢ according to Lemma 7.1,
with ¢ < 2pdp, and let ® : R — R be a ReLU net that realizes
o) = 1At = 1—(1-t),. Furthermore, by Theorem 5.4
there exists a ReLU network §2 that approximates g to accuracy
Le* over [0, 1]. We define the overall approximation by &(x) :=
£2(6(¥(x))) and compute

‘g (min m(x,z)”) (w(x)))

zeC

- q>(x)‘ = ‘g (rgcn m(x, z)”) - 2(0
< g (minm(x. 27) - (@@ )|

+ 1g(6WP (X)) — 2(OW(x)))
< ‘g (ggcn m(x, Z)"> - g(@(W(X)))‘ + Le®, (35)

where we used ®(¥(x)) € [0, 1] by construction and the approx-
imation guarantees about £2 in the last step. For the first term in
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(35), we use the o-Holder property of g to get

¢ (minm(x, 2)") - g(O(w ()| <1

o

rzneigl m(x, z)’ — O(¥(x))

o
=L|minm(x,z)’ — 1 A ¥(x)
zeC

<1l ’

minm(x, z)P — ¥(x)
zeC

< L(2e)* < L&,

where the second to last inequality is an equality if ¥(x) < 1, and
follows from m(x, z) < 1if ¥(x) > 1. To bound the complexity of
@ we will use the rules of compositions according to Lemma 5.1.
We have B(®) < max{B(£2), B(®),B(¥)} <1V By(e) and

L(®) < L(2)+L(O)+ L(W) < log(e™") + dlog(pe ™) + Ln(e)
< dlog(pe™") + Li(e),
W(@) < max{W(R), W(O), W)} < e + ple ™ Wp(e)
< pleT MV IWy(e),
P(®) < P(2)+ P(O) + P(¥) < log(s™ e ™!

+ p’e™ (dlog(pe ") + Pm(e))

< pldlog(pe e~V + pleTPy(e).

For the case M > 1 we construct networks &, approximating
g¢(m(x, C;)) to accuracy Le* each, and then use x — Z?L Dy(x),
which can be realized by a ReLU net according to Lemma 5.2. The
error follows from the triangle inequality and the dimensions can
be deduced from Lemma 5.2. O

8. Conclusion and future directions

In this work we study the uniform approximation of certain
compositional functions by deep ReLU networks. The consid-
ered function classes are motivated by practical examples and
generalize some frequently studied function classes, including
functions defined on low-dimensional domains. We have proven
uniform approximation guarantees with moderately deep net-
works, a near-optimal dependency on the number of nonzero
network parameters, and optimal dependency on the number of
required function queries. Our results suggest that local invari-
ances encoded in the mapping x — f(x) drive the approximation
complexity rather than the complexity of the domain of the
target.

We plan to extend our guarantees to projection-based func-
tions f(x) = g(wam(x)) using projections maq(x) = argmin,
d(x, z) based on other metrics d and less regular sets M. This
allows for considering more general nonlinear reduction maps ¢
and thus further enhances our knowledge about the adaptivity of
deep networks. Furthermore we plan to study the influence of the
domain of the target (or more practically a given data set) on the
training process of deep networks. While approximability is not
crucially dependent on the data domain according to our results,
training deep networks via backpropagation may still be affected
by the domain of the data.
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Appendix

A.1. Proof of Lemma 2.1

For the proof we recall simplified version of Federer (1959,
Theorem 4.8) tailored to manifolds.

Theorem A.1 (Federer, 1959, (6) and (7) in Theorem 4.8).
M C RP be a compact submanifold of RP.

(1) Let v € M and x € RP so that sup,-o{mam(v + tx) = v} €
(0, 00), then v 4 rx & Int(Med(M)°). -

(2) Let x € Med(M)© and (7 a4(x)) > 0. Then for any z € M
we have

Let

_lrmx) — 23 x — Tl
2T pq (g (%))

(X — (%), Taq(x) — 2) >

Proof of Lemma 2.1. Part 1: We first note that dist(x; M) <
lx—vl, < gtm(v) < tam(v), which implies x ¢ Med(M),
and thus there exists a unique projection 7 (x) according to the
construction of Med(M). To show m(x) = v, we consider a
proof by contradiction. Assume m,(x) # v and denote

{”M <U+t||u||2> :”}'

We have | > 0, since u 1 Im(A(v)) and 7y, > O (see for
instance Niyogi et al., 2008, Section 4), and | < gt (v), since
7 am(x) # v. By part (1) in Theorem A.1 we get w := v + lﬁ &

Int(Med(M)®). Therefore, for any ¢ > 0 there exists, with By(w)
being a Euclidean ball of radius ¢ around w,

[ :=sup
>0

¥ € B(w) N (Int(Med(M)))" = B.(w) N cl(Med(M)).
Using the existence of such a y for every ¢ > 0, we get
Tm) < v =yll; < llv—wly + llw —yll,

<llv—=xl+ lw =yl < grmv) +e.
Letting ¢ — 0 and recalling q < 1, this is a false statement.
Part 2: Using part (2) of Theorem A.1, we have for any x € M(q)
and v € M
lmam®) = vlI3 X = )l

2t (7 (X))

Taking arbitrary x, X' € M(q) we obtain by the Cauchy-Schwartz
inequality and (36)

X = mp(X), Tm(X) — v) = (36)

|x =X, [ra(x) = wadX)|, = & = ¥, wAd(X) = TTp0(X)
= (X — (%) + Tar(X) — T (X)) + Tpa(X) — X, g (X)

— (X))

> | — )]
1 ”X/ B NM(X/)Hz
where we used x, X' € M(q) in the last inequality. O

Clx w1
Tam(T (X))

2 (X))

x<1

= | ) = a3 (1 = q),

2

A.2. Additional result from ReLU calculus

In this section we prove the approximation guarantees listed
in Table 2.
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Lemma A.2 (pth Power of L,-norm). Letp € N, &,R > 0. There
exists a ReLU network @ with L(®) < p? log([R1D/e), W(®) < 9D,
P(®) < Dp?log([R1D/¢) and B(®) < 1 such that

sup |[Ixl[p — @(x)| < e.
xe[—R,RIP

Furthermore, ||x||; can be realized exactly with L(®
2D, P(®) = 4D and B(®) = 1.

) =2 W()

Proof. Following part (3) in Lemma 5.3, there exists a ReLU
network I' that approximates t +— P to accuracy sD~' > 0 on
[—R, R]. Set &(x) = Z?:l I'(x;). For arbitrary x € [—R, R]® we
have

D
lixlp — @) < > ¥ — 6x)| < e
i=1

The complexity of @ is bounded according to the rules in Lem-
mas 5.1, 5.2 and the bounds in Lemma 5.3 for the network I". We
obtain B(®) < max{1,B(I")} = 1, W(®) = D2 v W(I")) < 9D,
and

L(®) = L(I") < p(log(D/e) + plog([R1)) < p* log([R1D/¢)
P(®) = D(P(I")+ W(I") + 1) < DL(y) < Dp*log([R1D/s).

For p = 1 we notice ||x||; = Z?zl x| = Z?=1 *)y — (=X 4,
which defines a shallow network with width 2D and 4D nonzero
parameters. [

Lemma A.3 (Multiplication). Let ¢ € (0, %) and a > 0. There
exists a ReLU network @ : RP x R — RP with L(®) < log(a?e™1),
W(®) < 5D, P(®) < Dlog(a’s~ 1) and B(®) < 1 with

sup
[IXlloo <a, lyl<a

l@(x, ¥) — x|l < &.

Proof. By part b) of Lemma 5.3 there exists a ReLU net ¥ :
R? — R approximating xy up to accuracy & on [—a, a]>. We
set @(x,y) = (¥(x1,y), ..., ¥(xp,y)), which can be realized by
a ReLU net (Lemma 5.2). Furthermore, using dimension bounds
in Lemma 5.3, we get L(®) = L(W¥) < log(a®e™ 1), W(®) <
DW(¥) < 5D, P(®) = D (P(¥) + W(¥)+ 1) < Dlog(a?s~ 1) and
B(@®)<1VBW)<1 O

Lemma A.4 (Division). Let ¢ € (0,1) and a € R>. There exists
a network @ : R — R with L(®) < a*log(a/e), W(®) < 9,
P(®) < a*log?(a/e) and B(®) < 1, so that

sup

i

Proof. We follow the proof strategy of Telgarsky (2017, Lemma
3.6) but combine it with part c) of Lemma 5.3. Set ¢ % and
r = [a® In(22)]. First, we notice t~' = ¢ Y (1 — ct)' so cutting
the series at i = r results in the approximation error

z—cg(l—ct)i ci(l—ct)i

i=r+1
Now let p(t) = ¢ i,z so that p(1 —ct) = ¢ ;_,(1
and notice that 0 < 1 —ct < 1sincet € [a',al and c = a” .
Using part ¢) of Lemma 5.3, we can approximate p over [0, 1] to
accuracy § with a network ¥ adhering to the dimension bounds
L) <rlog(1/e) + 1% +rlog([c]), W(¥) <9, P(¥) < L(¥), and

<e&.

1
(1)~

=

&
2.

— ct)
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B(¥) < 1. Therefore, we get for any t € [a~!, a]
1 1
‘t —Y(l—ct)| < . —p(1 —ct)| + Ip(1 — ct) = ¥(1 — ct)]
<-4+ £ <
-+ - <e.
=515 =

We can simplify the bounds on L(¥) and thus P(¥) by recog-
nizing that r? =< a*log?(a/¢) dominates the terms r log(1/¢) and
rlog(fc]). O

Lemma A.5 (L-normalization). Let a > 1, ¢ € (0, %). There exists
a ReLU network & : RP — R with L(®) < a*log?® (%), W(®) <D,
P(®) < a*Dlog? (2), and B(®) < 1 such that

X

D(x) — ——

sup
lIx1l4

1
a<Ixll1=<a

o0

Proof. We combine four networks: a network realizing the
identity, a network realizing the 1-norm, a network realizing ap-
proximate division based on Lemma A.4, and a network realizing
approximate multiplication based on Lemma A.3. The identity
map Idp : RP® — RP can be realized by a two-layer net ¥ (x) =
(x), —(—x), and x — ||x]|; can be realize by a two-layer ReLU net
Ox) = ZiD:] (xi)+ + (—x;). Furthermore, let I" denote a ReLU
net approximating univariate division on [a~!, a] up to accuracy
>:» whose existence has been shown in Lemma A.4, and let £2
denote a ReLU net approximating (x,y) — yx on [—2a, 2a]*!
to accuracy % Then we set @(x) (W (x), I'(O(x))), which
satisfies

D(x)

= 120, I(lx111)) = X (1M1l oo

115 1l

X
xI(lIxll4) — W
1

e
< —
-2
where we used |[x||; < a in the last inequality. To compute
the dimensions of @&, first note that the composition rules in
Lemma 5.1 imply B(I" 0 ®) = B(I"')VB(®) <8 va ! and
a a
LT o®)=LO)+LTI) < 2+ dlog? (7) < @ log? (7) ,
e e
W(I 0 ®) = max{W(®), W(I'), 2} < 2DV 16,
a
P(I" 0 ) = 2P(I") + 2P(®) < @ log? (7) +D.
&

_|_

oo

< e = < Sl = <
e £ LA
-2 *2a "9a =

Then, using linear combination and concatenation rules of ReLU
nets in Lemmas 5.1, 5.2 we obtain
L®)=L8R)+LWE), T 00)) < log(a®/e) +2 v a*log® (a/e)
< a*log® (a/e)
W(D)=W(R)VvW((¥x), T o®))
<5DVE4+WMW)+W(I 0c®)) <D,
P(@) S P(2)+ P((¥(x), I 0 @) SP(£2) + P(¥)+ P(I" 0 ©)
+ LT o®)+W(W)+W(I 00)

)+ D + a* log? (g) < a’Dlog? (g) ,
B(®)=B(2)VB(¥, I 0®))
< max{1, B(¥),B(I'),B(®)} < 1.

< Dlog(a®s™!

O

Lemma A.6. Let K > 2. There exists a ReLU network &y
RX — R with L(®x) < 2[logy(K)], W(Pk) < 3[K/2], P(Pk) <
11K [log,(K)1 and B(®k) < 1 such that ®(x) = min;e(x) X;.
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Proof. Without loss of generality we assume K is even as we
can otherwise just replace x by repeating one of its arguments
without changing the bounds on the dimension of the network.
We proof the statement by induction. For K = 2 define a network

Dy(X) = (X)) — (=Xx1) 1 — (X1 —X2) 4 = X1 — (X1 — X2); = X{ AXp.

Clearly, L(®,) = 2, W(®,) = 3, P(d,) = 7, and B(®;) = 1, which
proves the induction start. For the induction step (K — 1) —> K
we assume the statement holds up to K — 1 and we set &g =
D (Pa(x1,X2), - .., Pa(Xk—1, X¢)), which realizes minyec; x;. To
compute the network complexity we use composition and par-
allelization rules from Lemmas 5.1, 5.2. This gives B(®x) < 1
and

Ld) =L <¢§) FUDy) =2 {mgz (g)—‘ +2
2 [logy (K) — 11+ 2 = 2 Jlog, (K)T,

K K
W(@) = max |W(@y, W(es, ..., 2),K)} = SW(e) < 35,

P(®x)

2P (cpg) +2P(Dy, ..., D)

< 11K ’Vlogz (gﬂ + K(P(@) + W(D,) + 1)

< 11K [log, (K)] — 11K + 11K. O

Remark A.7. The L,,-norm can be realized by a ReLU net due to
Lemma A.6 and the identity

IXlloo = lgg[a[;]( x| = gg[a[;]( &)+ (=x), = — min —((x) L+ (=x) 1)
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