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a b s t r a c t

We study the approximation of two-layer compositions f (x) = g(φ(x)) via deep networks with
ReLU activation, where φ is a geometrically intuitive, dimensionality reducing feature map. We
focus on two intuitive and practically relevant choices for φ: the projection onto a low-dimensional
embedded submanifold and a distance to a collection of low-dimensional sets. We achieve near optimal
approximation rates, which depend only on the complexity of the dimensionality reducing map φ

rather than the ambient dimension. Since φ encapsulates all nonlinear features that are material to the
function f , this suggests that deep nets are faithful to an intrinsic dimension governed by f rather than
the complexity of the domain of f . In particular, the prevalent assumption of approximating functions
on low-dimensional manifolds can be significantly relaxed using functions of type f (x) = g(φ(x)) with
φ representing an orthogonal projection onto the same manifold.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade neural networks emerged as powerful tools
o construct state-of-the-art solutions for various different data
nalysis tasks. Much of this progress is of empirical nature and
annot be explained by current mathematical theory. This led to
re-emerging interest for developing a theoretical understanding
f deep networks in recent years. In this work we contribute to
he effort by studying the approximative capacity of deep net-
orks with respect to practically motivated composite function
lasses in the high-dimensional regime.
Approximation properties of shallow and deep networks have

een studied for over three decades and gained much traction
uring the rise of neural networks around the 80s and 90s
Cybenko, 1989; Hornik, Stinchcombe, & White, 1989; Leshno,
in, Pinkus, & Schocken, 1993; Mhaskar, 1993, 1996). It is well-
nown that shallow networks (with non-polynomial activation)
re universal approximators, which means they can approximate
ny continuous function on a compact subset of RD arbitrarily
ell (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993).
urthermore, it has been established that the number of re-
uired nonzero network parameters for uniformly approximating
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a Cα-function to accuracy ε on a compact subset of RD is in
O(ε−D/α) (Mhaskar, 1996; Pinkus, 1999). Similar results hold
for deep networks with the additional benefit that the approx-
imation can be localized, contrary to approximation via shallow
networks (Chui, Li, & Mhaskar, 1994, 1996; Mhaskar, 1993).

In modern networks differentiable sigmoidal activation func-
tions are often replaced by the rectified linear unit activation
(ReLU), because such networks do not suffer the vanishing gra-
dient problem and can thus be more easily trained via backprop-
agation (Goodfellow, Bengio, Courville, & Bengio, 2016). Approx-
imation properties of ReLU networks received much attention in
recent years (Bölcskei, Grohs, Kutyniok, & Petersen, 2019; Grohs,
Perekrestenko, Elbrächter, & Bölcskei, 2019; Petersen & Voigt-
laender, 2018; Shaham, Cloninger, & Coifman, 2018; Shen, Yang, &
Zhang, 2019; Telgarsky, 2017; Yarotsky, 2017, 2018). The bottom
line is that ReLU networks are at least as expressive as networks
with differentiable sigmoidal activation. Moreover, a series of
recent works (Fang, Feng, Huang, & Zhou, 2020; Zhou, 2020a,
2020b) shows that this is also true for deep convolutional ReLU
networks, which are significantly less flexible compared to fully-
connected networks. To comply with modern neural network
practice, we concentrate on the ReLU activation in this work,
though we emphasize that we have no reason to believe our
results are special to this choice.

Approximating functions either through differentiable sig-
moidal networks or ReLU networks suffers from the curse of
dimensionality, because the number of required parameters for

α D
approximating f ∈ C on a compact subset of R is exponential
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n D. Since high-dimensional problems are ubiquitous in applied
reas, it is of great interest to identify narrower but sufficiently
ich function classes that allow for faster approximation rates
ith at most polynomial dependency on D.
Three decades ago, the author of Barron (1993) showed that

unctions f , whose Fourier transform f̂ satisfies

f =

∫
RD

⏐⏐⏐ωf̂ (ω)
⏐⏐⏐ dω < ∞,

an be approximated by a shallow network to accuracy ε using
ust O(ε−2) neurons. Functions satisfying such conditions are said
o be of Barron-type and they are under continuous investigation
ver since (Barron, 1994; Klusowski & Barron, 2016; Montanelli,
ang, & Du, 2019). Unfortunately, the constant involved in O(ε−2)
epends on Cf , which in turn increases exponentially with the di-
ension D under standard regularity assumptions alone. Several
orks (Kurková & Sanguineti, 2001, 2002; Mhaskar, 2004) have
ubsequently investigated conditions on f that imply the growth
f Cf is at most polynomial in D.
In Mhaskar, Liao, and Poggio (2016, 2017), Mhaskar and Poggio

2016), Poggio, Anselmi, and Rosasco (2015), Poggio, Mhaskar,
osasco, Miranda, and Liao (2017) and Schmidt-Hieber (2020) the
enefit of depth of networks has been analyzed by studying ap-
roximation properties of deep nets for compositional functions
f the type f (x) = gL ◦ . . . ◦ g1(x). Intuitively, if all intermediate
unctions gℓ : Rℓ−1

→ Rℓ are easier to approximate than the
inal target f , deep networks can approximate f more efficiently
y mimicking the compositional structure of the function. This
ituation arises, for instance, if each component gℓ,p : Rℓ−1

→ R,
= 1, . . . , ℓ, depends on at most k of the ℓ−1 coordinates of the
revious output, i.e., can be written as g̃ℓ,p(Iℓ,p(x)) = gℓ,p(x) for a
ap Iℓ,p : Rℓ−1

→ Rk that selects k coordinates, independently of
. In this case, assuming all components gℓ,p, p = 1, . . . , ℓ, ℓ =

, . . . , L are α-Hölder, the function f can be approximated uni-
ormly up to error ε using O(ε−k/α) nonzero parameters (here,
is treated as a constant). The missing dependence on D in

he exponent show that compositions pave a way for defining
lasses of functions that are narrow enough to avoid the curse
f dimensionality (Mhaskar & Poggio, 2016, 2020; Poggio et al.,
017). This led to the notion of ‘blessing of compositionality’ as a
ure to the curse of dimensionality.
Another line of research, which is motivated by the popularity

f nonlinear dimension reduction methods, studies approxima-
ion of f : M ⊆ [0, 1]D → R on low-dimensional domains
, such as a d-dimensional embedded submanifold. The authors

f Shaham et al. (2018) established that uniform approximations
o accuracy ε require just O(ε−d/α) parameters, replacing the
mbient dimension D with the intrinsic manifold dimension d.
imilar results have been shown in Chen, Jiang, Liao, and Zhao
2019), Chui and Mhaskar (2018), Schmidt-Hieber (2019) and ex-
ended to more general notions of dimensionality or other types
f neural networks (Mhaskar, 2020a, 2020b; Nakada & Imaizumi,
019), including radial basis function networks and abstract gen-
ralizations thereof. Therefore, certain approximation systems,
ncluding deep networks, adapt to the intrinsic dimension of the
omain of the target.
Approximation on low-dimensional domains is appealing be-

ause it is geometrically intuitive and can, to some extent, be
hecked in practice by analyzing local covariance matrices of a
iven data set. However, defining the complexity of an approx-
mation task via the domain of the target has some significant

rawbacks, which we highlight in the next section. e

405
.1. Drawbacks of measuring complexity by the target domain

oisy manifold hypothesis. Many theoretical results that alleviate
he curse of dimensionality are based either explicitly or im-
licitly on the exact manifold hypothesis, which states that data
s supported on a low-dimensional manifold. In view of usu-
lly noisy real-world data, the exact manifold hypothesis seems
verly stringent and in fact has been criticized for being rarely
bservable in practice (Hein & Maier, 2007a, 2007b). A more
ealistic alternative is to model real-world data as a sum of
lean data, which is supported on a low-dimensional manifold

(think of the ‘face manifold’ consisting of images of faces He,
an, Hu, Niyogi, & Zhang, 2005), plus noise, which generically
ushes data points off the clean data manifold. If the noise is
nstructured, we can simplistically assume that it concentrates
n the local normal space of M, and we may associate to x ∈
D the orthogonal projection πM(x) = argminz∈M ∥x − z∥2 as
he clean data sample. We now aim for approximating functions
(x) = g(πM(x)), where g : M → R describes a function of
nterest defined on clean data. See Fig. 1a for an illustration of
he setting.

Following results in Chen et al. (2019), Schmidt-Hieber (2019)
nd Shaham et al. (2018) about approximation over low-
imensional domains, we are tempted to think there is a signifi-
ant difference between approximating a function g : M → R on

or a function f (x) = g(πM(x)) on a full-dimensional tubular
omain around M. We will prove that, in fact, both functions
re approximable with similarly sized networks and by using the
ame amount of information about the target f .
We add that the stringency of the exact manifold hypothesis

s often recognized and discussed in the literature. For instance,
he authors of Chui and Mhaskar (2018) explain that their ap-
roximation results are robust to an inexact manifold hypothesis,
ecause noise that spreads only in s ≪ D directions in the local
ormal space increases the dimensionality of the data manifold
o just d + s ≪ D. Furthermore, Mhaskar (2020b) proposes a
ermite polynomial based approximation scheme for functions
n manifolds, which is robust to a degree of off-manifold noise.
he theory in Cheng and Cloninger (2019) includes off-manifold
oise under the assumption that the noise vanishes exponentially
ast with increased distance from the manifold.

daptivity to function complexity. The same argument as in the
revious paragraph can be made when approximating a func-
ion that just depends on a lower dimensional set of linear or
onlinear transformations of the input, as is common in the
ufficient dimension reduction literature (Li, 2018). To give a
imple example, we may consider the swiss role manifold M as
n Figs. 1b–1c, where the colors indicate values of two different
ipschitz-continuous functions. Based on previously mentioned
pproximation results (Chen et al., 2019; Schmidt-Hieber, 2019;
haham et al., 2018), both functions can be approximated using
eep networks with O(ε−1/dim(M)) = O(ε−1/2) parameters. How-
ver, the complexity of functions in 1b and 1c differs, because
e can express f in 1b as f (x) = g(πγ (x)), where γ is a one-
imensional manifold. In other words, there exists a submanifold
⊂ M with dim(γ ) = 1 that contains all material information

or recovering the target function f .

lassification problems with class attractors. Another example,
here the domain of the target is not a suitable measure of
omplexity, are classification problems with class attractors, see
ig. 1d. Here, we assume that the class label depends only on the
roximity of the input to a low-dimensional attractor set, such
s for instance a finite set of points. Hence, if we were aware of
he attractor set, the target function is completely determined by
valuating the distance to the set, indicating that the complexity



A. Cloninger and T. Klock Neural Networks 141 (2021) 404–419

t
w
p
i
t

o
t
o
a
s

φ
r
n
t

F
f
d
w

f

a
t
t
d
C

Fig. 1. Examples highlighting drawbacks of defining the approximation complexity via the target domain. In 1a the target function depends just on the projection of
he input onto a low-dimensional manifold, yet the data is spread in a full-dimensional subset of RD . 1b–1c show two functions whose domain is the swiss role, but
hich are of different complexity because the function in 1b just depends on a single nonlinear transformation of the data (the red curve). 1d shows a classification
roblem where labels are assigned based on the proximity to a few class attractors (bold dots). In all three cases the dimensionality of the approximation domain
s not a suitable measure for the difficulty of the approximation problem. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
.

f the target function is dictated by the complexity of the dis-
ance metric and the set of attractors, rather than the domain
f the target. Classification problems, where a finite number of
ttractors exist, are the main object of study in few-shot learning,
ee for instance (Sung et al., 2018). In these problems the goal is
to predict class labels after querying a tiny amount of samples,
which are ideally points that serve as class attractors with respect
to a, possibly prescribed, metric.

1.2. Contribution

Our main goal is to extend approximation guarantees of deep
nets from functions defined on low-dimensional domains to func-
tions that encode low-dimensionality in the joint input–output
relation x ↦→ f (x). We study two classes of functions, which
resemble two layer composite functions f (x) = g(φ(x)), where
(x) takes the role of a geometrically intuitive, dimensionality
educing feature map. By resorting to such a function-driven
otion of low-complexity, we alleviate the drawbacks raised in
he previous section.

unctions of projections to low-dimensional sets. We first consider
unctions that model φ as an orthogonal projection onto a d-
imensional Riemannian submanifold M ⊆ [0, 1]D. In this case
e can write the target f : A ⊆ [0, 1]D → R as

(x) = g(πM(x)) where πM(x) ∈ argmin
z∈M

∥x − z∥2 , (1)

nd the approximation domain A is assumed to be contained in a
ubular region around M. The width of this region is constrained
o guarantee that πM(x) is Lipschitz-continuous, as described in
etail in Section 2. We refer to the associated function class as
lass 1 below.
Assumption (1) naturally includes the popular case A = M

and πM = Id, which has been studied in Chen et al. (2019),
Chui and Mhaskar (2018), Mhaskar (2020a, 2020b), Nakada and
Imaizumi (2019), Schmidt-Hieber (2019) and Shaham et al. (2018)
406
In the present case the approximation domain A does however
not need to be low-dimensional. Rather, Eq. (1) imposes that
f is locally constant in D − d directions, corresponding to the
local normal space of M. If we were able to extract a subset
of the approximation space A ⊆ A, whose projection πM(A) is
supported on a small patch of the manifold M so that curvature
effects of M are negligible, we can view f |A as a constant function
with optimal regularity in D − d directions corresponding to
the local normal space, and regularity dictated by g|πM(A) in the
remaining d directions. Following this intuition, our viewpoint
is aligned with recent work on approximation of functions in
anisotropic Besov spaces (Suzuki, 2018; Suzuki & Nitanda, 2019).

Contribution We achieve the same approximation guarantee
that is achieved in Nakada and Imaizumi (2019), Schmidt-Hieber
(2019) and Shaham et al. (2018) for the case A = M. Namely,
if M is a d-dimensional manifold satisfying some common regu-
larity assumptions and g is α-Hölder with respect to the geodesic
metric on M, functions of Class 1 can be approximated uniformly
to accuracy ε using a deep ReLU network based on O(ε−d/α) point
queries of f and with O(log(D)D log2(ε−1)ε−d/α) nonzero param-
eters arranged in O(log(D) log2(ε−1)) layers. The result is optimal
in terms of the number of required function queries according to
nonlinear width theory (DeVore, Howard, & Micchelli, 1989), and
optimal (apart from logarithmic factors) in terms of the required
network dimensions (Yarotsky, 2018, Theorem 1). We believe
the result sheds a new light on the relevance of the manifold
hypothesis, because we identify local invariances encoded in x ↦→

f (x) as the key factor to simplify the approximation problem, as
opposed to the complexity of the underlying data manifold.

Functions of distances to low-dimensional sets. Second, we study
functions that depend only on distances to a collection of finite
or low-dimensional sets C1, . . . , CM . Mathematically, we assume
f : [0, 1]D → R can be written as

f (x) =

M∑
gℓ

(
min
z∈Cℓ

m(x, z)p
)

, (2)

ℓ=1
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here m(·, ·) is a metric and p ∈ N can be an arbitrary scalar,
hich makes m(·, ·)p efficiently approximable by deep neural

networks (think of m(·, ·)p = ∥· − ·∥
p
p, which is a polynomial of

egree p in the coordinates and thus efficiently approximable, see
emma A.2). For functions satisfying (2), low-dimensionality will
e encoded by assuming that packings of C1, . . . , CM at scale ε

ith respect to m(·, ·) have cardinality O(ε−d). This morally says
1, . . . , CM are d-dimensional submanifolds, though we do not
equire any regularity about Cℓ and we also cover the case d = 0.
he associated function class is referred to as Class 2 below.
Contribution For α-Hölder smooth g1, . . . , gM , we show that

unctions of type (2) can be uniformly approximated to accuracy ε

ith ReLU nets based onO(ε−α) queries from each g1, . . . , gM and
ith O

(
log(ε−1)ε−min{1,d}/α

+ ε−d/αPm(ε1/α)
)

nonzero network
arameters. Here, Pm(ε) describes the number of nonzero pa-
ameters required to uniformly approximate m(·, ·)p to accuracy
. If the metric can be efficiently approximated by a deep net,
.g., by bounding Pm(ε) ∈ O(D log(D) log(ε−1)) such as in the case
(·, ·)p = ∥· − ·∥

p
p, we require in total O(D log(D)ε−min{1,d}/α) pa-

ameters in the network. For d ≤ 1, which corresponds to the sit-
ation in Fig. 1d, the associated requirement O(D log(D) log(ε−1)
−1/α) is comparable to approximating a univariate function with
shallow or deep network (Mhaskar, 1996; Yarotsky, 2017,

018). Similarly, the number of required function queries O(ε−α)
er gi, i = 1, . . . ,M , matches the minimal number of queries
eeded to approximate an arbitrary α-Hölder univariate functions
ccording to nonlinear width theory (DeVore et al., 1989).

.3. Organization of the paper

Section 2 rigorously introduces functions of type (1) and
resents the corresponding approximation guarantee. Section 3
oes the same for functions of type (2). Section 4 presents im-
lications of our results to nonparametric estimation problems.
ection 5 introduces preparatory material about ReLU calculus
nd Sections 6 and 7 present the proofs of our main results.
e conclude in Section 8. Appendix contains some additional

tatements and proofs about differential geometry and ReLU
pproximation theory.

.4. Notation

For N ∈ N we let [N] := {1, . . . ,N}. cl(B) denotes the closure
f a set B and Im(M) denotes the image of an operator M . |A|

enotes the absolute value if A ∈ R, the length if A is an interval,
nd the cardinality if A is a finite set. We denote a∨b = max{a, b}
nd a ∧ b = min{a, b}. The ReLU activation function is denoted
t)+ = max{0, t}.

∥·∥p denotes the standard Euclidean p-norm for vectors and
·∥2 denotes the spectral norm for matrices. We denote dist(z; A)
= infp∈A ∥z − p∥2 for z ∈ RD and A ⊂ RD. Br (x) denotes the
tandard ∥·∥2-ball of radius r around x, while BM,r (v) denotes
he geodesic ball on a manifold M of radius r around v. ∥A∥0
ounts the number of nonzero entries of a matrix A. Lp(A) contains
unction with finite pth order Lebesgue norm.

We use A ≲ B, respectively, A ≳ B, if there exists a uniform
onstant C such that A ≤ CB, respectively A ≥ CB. Furthermore,
e write A ≍ B if A ≲ B and A ≳ B.
Finally, we define the ReLU activation function (t)+ = 0∨ t =

ax{0, t} and introduce the following definition of a deep ReLU
etwork.

efinition 1.1 (Grohs et al., 2019, Definition 2.1). Let L ≥ 2 and
0, . . . ,NL ∈ N>0. A map Φ : RN0 → RNL is called a ReLU network
f there exist matrices A ∈ RNℓ×Nℓ−1 and vectors b ∈ RNℓ for
ℓ ℓ
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∈ [L] so that Φ(x) = WLyL−1+bL, where yℓ is recursively defined
y y0 := x and

ℓ := (Aℓyℓ−1 + bℓ)+ for ℓ ∈ [L − 1].

urthermore, we define L(Φ) := L as the number of layers,
(Φ) := maxℓ=0,...,L Nℓ as the maximum width, P(Φ) :=

∑L
ℓ=1

Aℓ∥0 + ∥bℓ∥0 as the number of nonzero parameters, and

(Φ) := max{|(bℓ)i| ,
⏐⏐(Aℓ)ij

⏐⏐ : i ∈ Nℓ, j ∈ Nℓ−1, ℓ ∈ [L]}

s a bound for the absolute value over all parameters.

. Main result: projection-based target functions

In this section we rigorously introduce projection-based func-
ions as foreshadowed in (1) and we present the corresponding
pproximation guarantee. Before doing so, we introduce some
ell-known preparatory concepts from differential geometry.
hese are also summarized in Table 1.

reparatory material from differential geometry. Let M ⊆ RD

e a nonempty, connected, compact, d-dimensional Riemannian
ubmanifold. A manifold M has an associated medial axis

Med(M) :=
{
x ∈ RD

: ∃p ̸= q ∈ M,

∥p − x∥2 = ∥q − x∥2 = dist(x;M)} ,
(3)

hich contains all points x ∈ RD with set-valued orthogonal pro-
ection πM(x) = argminz∈M ∥x − z∥2. The local reach (sometimes
alled local feature size Boissonnat & Ghosh, 2014) is defined by

M(v) := dist(v;Med(M)) (4)

nd describes the minimum distance needed to travel from a
oint v ∈ M to the closure of the medial axis. The smallest local
each τM := infv∈M τM(v) is called reach of M.

Another important concept, which we use in the following,
s the geodesic metric. Since compact Riemannian manifolds are
eodesically complete by the Hopf–Rinow theorem, there exists
length-minimizing geodesic γ : [t, t ′] → M between any two
oints γ (t) = v and γ (t ′) = v′, where the length is defined by
γ | =

∫ t ′

t ∥γ̇ (s)∥2 ds. The geodesic metric on M is defined as

dM(v, v′) := inf{|γ | : γ ∈ C1([t, t ′]), γ : [t, t ′] → M, γ (t) = v,

γ (t ′) = v′
}.

(5)

e can extend dM to tubular regions T ⊇ M around M
y dT (x, x′) := dM(πM(x), πM(x′)), provided the orthogonal
rojection πM is uniquely defined for x, x′

∈ T .

ain result. We are now interested in approximating functions
f the type f = g ◦ πM. To state the function class in rigorous
erms, we define the set

M(q) :=
{
x ∈ RD

: x = v + u, v ∈ M, u ∈ ker(A(v)⊤),

∥u∥2 < qτM(v)
}
,

(6)

here the columns of A(v) ∈ RD×d represent an orthonormal
asis of the tangent space of M at v. The set M(q) represents
tubular region around the manifold M with local tube radius

τM(v), where τM(v) is the local reach as defined in (4). Since
M(v) ≥ τM for all v ∈ M, M(q) contains, for instance, the tube
f constant radius qτM around M. However, in regions where
has small curvature, the tube radius may also be significantly

arger due to its scaling with the local reach.
The class of projection-based functions is defined as follows.
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Table 1
Notations used for different geometrical concepts throughout the paper.
Symbol Description

M A connected compact d-dimensional Riemannian submanifold of RD

d Dimension of the manifold M
πM Orthogonal projection πM(x) = argminz∈M ∥x − z∥2
Med(M) Medial axis of M, i.e. set with non-unique projections πM(x)
A(v) D × d matrix containing columnwise orthonormal basis for the tangent space M at v

τM(v) Local reach at v ∈ M, i.e. distance to travel in Im(A(v))⊥ to reach Med(M)
τM Infimum over all local reaches, throughout assumed positive
M(q) Tube of radius q ∈ [0, 1) times local reach around M, see (6)
dM(v, v′) Geodesic metric on M
dT (v, v′) Geodesic metric on M extended to T ⊇ M by dT (x, x′) := dM(πM(x), πM(x′))
BM,r (v) Geodesic ball of radius r around v ∈ M
Vol(M) Volume of the manifold M
P(δ, C, ∆) δ-packing number of a set C with respect to metric ∆
ε

s

Class 1 The target f : A ⊆ [0, 1]D → R can be writ-
ten as f (x) = g(πM(x)) for a connected, compact,
nonempty, d-dimensional manifold M with τM > 0,
A ⊆ M(q) ⊆ [0, 1]D for some q ∈ [0, 1), and where
πM(x) := argminz∈M ∥x − z∥2. The function g : M →

[0, 1] is α-Hölder with Hölder constant L, i.e., satisfies
for α ∈ (0, 1] and L ≥ 0⏐⏐g(v) − g(v′)

⏐⏐ ≤ Ldα
M(v, v′) for all v, v′

∈ M. (7)

The condition A ⊆ M(q) for some q < 1 is important
because it is a necessary for f to inherit smoothness properties
from g . Namely, if A intersects the medial axis Med(M), see the
definition in (3), the projection πM is not uniquely defined over
A and, as a consequence, f may not be well-defined as well. If
A ∩ Med(M) = ∅ but dist(A;Med(M)) = 0, f might be well-
defined and continuous on A, but we cannot expect f to be locally
Hölder-continuous at points arbitrarily close to the medial axis.
As shown in the following Lemma, enforcing A ⊆ M(q) for some
q < 1 solves these issues and implies that f inherits α-Hölder
regularity of g with a Hölder constant equal to the product of the
Hölder constant of g and (1 − q)−1.

Lemma 2.1. Consider a connected, compact, d-dimensional Rie-
mannian submanifold of M ⊆ RD with τM > 0 and let q ∈

[0, 1).
(1) If x ∈ M(q) has decomposition x = v + u for v ∈ M and

∈ ker(A(v)⊤) with ∥u∥2 < qτM(v), then πM(x) is uniquely
determined by πM(x) = v.
(2) The projection πM satisfies

πM(x) − πM(x′)

2 ≤ (1 − q)−1

x − x′

2 for all x, x′

∈ M(q).

roof. The proof is deferred to Appendix A.1 in Appendix. □

We can now present our main approximation guarantee.

heorem 2.2. Let f be of Class 1 and define CM := Vol(M)dd/2,
q := Cddd/2(1−q)−2d, where Cd is the volume of the Euclidean unit
all in Rd. For ε ∈ (0, τM/2) there exists a ReLU network Φ , which
ses n ≲ CMε−d point queries of f and has its dimensions bounded
ccording to B(Φ) ≲ ε−2, W (Φ) ≲ DCMε−d, and

L(Φ) ≲ C4
q log2

(
Cq

εα

)
+ log

(
DCqCM

τ 2
Mε3+d

)
,

P(Φ) ≲ C4
q CMε−d log2

(
Cq

εα

)
+ Dε−d log

(
DCqCM

τ 2
Mε3+d

)
,

(8)

such that

sup |f (x) − Φ(x)| ≲
(
1 +

L
2α

)
εα. (9)
x∈A (1 − q)
408
Alternatively, with access to n ≳ (τM/2)dCM point queries of f ,
we can construct a ReLU network Φ (with dimensions as in (8) and

≍ (CM/n)1/d) that approximates f up to

up
x∈A

|f (x) − Φ(x)| ≲
(
1 +

L
(1 − q)2α

)(
CM

n

) α
d

.

The same construction can be achieved with a network Φ̃ with
L(Φ̃) ≲ log(B(Φ))L(Φ), W (Φ̃) ≲ (W (Φ))2, P(Φ̃) ≲ log(B(Φ))P(Φ)
and B(Φ̃) ≤ 2 according to Grohs et al. (2019, Proposition A.1).

Proof. A proof sketch and full proof details are given in Sec-
tion 6. □

Theorem 2.2 shows that functions of Class 1 can be uniformly
approximated to accuracy ε with a budget of O(ε−d/α) queries
of f and a network with O(log2(ε−1)ε−d/α) nonzero parameters
arranged in O(log(ε−1)) layers. Since the problem class contains
α-Hölder functions on Rd, this result is optimal in terms of
the number of needed function queries according to the the-
ory of nonlinear width (DeVore et al., 1989). Moreover, apart
from logarithmic factors, it is optimal in terms of the number
of nonzero parameters in the network (Yarotsky, 2018, Theorem
1). A bound for the number of nonzero parameters can be used
to control covering numbers of the associated ReLU function
spaces (Schmidt-Hieber, 2020, Lemma 5). Bounds for covering
numbers can then be combined with statistical learning theory
to provide estimation guarantees for empirical risk minimization,
see the details in Section 4. We also note that W (Φ) and P(Φ)
have a mild log-linear dependency on the ambient dimension D,
which is possibly not avoidable apart from cutting the log-factors.

The constant CM is intrinsic to M and arises from bounding
the cardinality of an ε-covering of M as in Lemma 6.1. The
constant Cq and the factor (1 − q)−1 in (9) are extrinsic as they
depend on the approximation domain A via (1− q)−1. The factor
(1 − q)−1 indicates that approximating f becomes increasingly
challenging as dist(A;Med(M)) shrinks, i.e., as the approximation
domain approaches the medial axis, where πM is set-valued and
f loses regularity.

The number of needed queries of f and the required dimension
of the network in Theorem 2.2 are, apart from log-factors and
constants, similar to the case A = M and πM = Id (Nakada
& Imaizumi, 2019; Schmidt-Hieber, 2019; Shaham et al., 2018).
Hence, previously studied function classes can be significantly
extended without compromising on the ability of deep networks
to approximate them.

Remark 2.3. 1. Instead of defining M implicitly by the target
f as in Class 1, we can also start with a fixed manifold M, an
associated approximation domain M(q) for q ∈ [0, 1), and ask
how well all functions of the type f (x) = g(πM(x)) can be

approximated over M(q). Theorem 2.2 applies to this case as
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ell. Furthermore, we note that all weights except for the last
ayer are used for the approximation of πM in our construction.
Therefore, if we approximate two functions f (x) = g(πM(x)) and
f (x) = g̃(πM(x)) using the proposed construction, the associated
networks differ only in the last layer.

2. As the proof in Section 6 will show, there is no significant
advantage of the ReLU activation for the construction of the
approximating network. Therefore, we believe that similar con-
structions are realizable with other common activation functions.
We focus on the ReLU in this work simply because it is the most
prominent choice in practice.

3. The results of Theorem 2.2 are achieved with networks
hat have duplicate weights, for the sake of an easier analysis.
emoving duplicate weights only affects the constant factors in
he bounds of Theorem 2.2.

As a corollary of Theorem 2.2, we can also derive an approxi-
ation guarantee for πM.

Corollary 2.4. Let q ∈ [0, 1) and let M be a nonempty, connected,
compact d-dimensional manifold with τM > 0 and M(q) ⊆ [0, 1]D.
For ε ∈ (0, τM/2) there exists a ReLU network Φ with architecture
constrained as in Theorem 2.2 and

sup
x∈M(q)

∥πM(x) − Φ(x)∥∞ ≲ ε. (10)

Proof. The proof is given at the end of Section 6. □

3. Main result: distance-based target functions

We now study distance-based target functions as foreshad-
owed by Eq. (2). The rigorous definition of the function class
requires the well-known concept of packing numbers.

Definition 3.1 (Vershynin, 2018, Section 4.2). Let C be a set
endowed with a metric ∆ and let δ > 0. We say Z ⊂ C is
δ-separated if for any z ̸= z ′

∈ Z we have ∆(z, z ′) > δ. Z
is maximal separated if adding any other point in Z destroys
the separability property. The cardinality of the largest maxi-
mal separated set is called the packing number and denoted by
P(δ,Z, ∆).

Class 2 Let C1, . . . , CM ⊆ [0, 1]D be nonempty closed sets, let
m(·, ·) : [0, 1]D → [0, 1] be a continuous (normalized)
metric, and assume there exists δ0 > 0 such that
P(δ, Cℓ,m) ≲ δ−d for all δ < δ0 and ℓ ∈ [M].
Furthermore, assume there exists p > 0 so that mp

is ReLU-approximable in the sense that, for any fixed
z ∈ [0, 1]D and ε > 0, there exists a ReLU net Ψz,ε
with supx∈[0,1]D

⏐⏐m(x, z)p − Ψz,ε(x)
⏐⏐ ≤ ε and

L(Ψz,ε) ≤ Lm(ε), W (Ψz,ε) ≤ Wm(ε), P(Ψz,ε) ≤ Pm(ε),
B(Ψz,ε) ≤ Bm(ε).

(11)

We consider functions of the form f (x) =
∑M

ℓ=1 gℓ(
minz∈Cℓ

m(x, z)p
)
, with gℓ : [0, 1] → [0, 1] satisfying

for some α ∈ (0, 1]⏐⏐gℓ(t) − gℓ(t ′)
⏐⏐ ≤ L

⏐⏐t − t ′
⏐⏐α for all t, t ′ ∈ [0, 1].

(12)

The parameter p ≥ 1 in Class 2 can be useful for making
functions m(x, z)p more easily approximable compared to m(x, z)
(think of pth order Euclidean norms raised to the power p, which
are degree p polynomials and can be easily approximated as
409
shown in Lemma A.2). Furthermore, (11) should be seen as a
definition of Lm(ε),Wm(ε), Pm(ε), Bm(ε) rather than as an assump-
tion, because it poses almost no restriction on the metric m
in view of universal approximation theorems. However, if the
approximation of mp is responsible for an overwhelming majority
of the required nonzero parameters in the network construction
or scales exponentially in D, the corresponding metric m does
not induce an interesting function class in the sense of reducing
the original complexity of approximating f . We return to this
point after stating the main result by discussing some practically
relevant metrics m.

Theorem 3.2. Let f be a function of Class 2. For any ε ∈ (0, 2pδ0)
there exists a ReLU network Φ , which uses n ≲ ε−1 point queries
from each g1, . . . , gM and has its dimensions bounded according to

L(Φ) ≲ d log(pε−1) + Lm(ε),

W (Φ) ≲ Mpdε−(1∨d)Wm(ε)

P(Φ) ≲ Mpdd log(pε−1)ε−(1∨d)
+ Mpdε−dPm(ε)

and B(Φ) ≤ 1 ∨ Bm(ε), such that

sup
x∈[0,1]D

|f (x) − Φ(x)| ≲ MLεα. (13)

Alternatively, with access to n point queries from each g1, . . . , gM ,
we can construct a ReLU network Φ (with dimensions as above and
ε ≍ n−1) that approximates f up to

sup
x∈A

|f (x) − Φ(x)| ≲
ML
nα

.

Proof. The proof is deferred to Section 7. □

As long as Lm(ε), Wm(ε), and Pm(ε) grow at most polylogarith-
mically in ε−1 and possibly polynomially in D, Theorem 3.2 shows
that their contribution to the overall network complexity is
negligible. Specifically, Theorem 3.2 then implies approximation
of f to accuracy ε using O(ε−1) queries from each g1, . . . , gM and
O(polylog(ε−1)ε−(1∨d)) nonzero parameters arranged inO(polylog
ε−1)) layers. If M = 1, querying g1 is similar to querying f
and the result is optimal according to the theory of nonlinear
width (DeVore et al., 1989). Moreover, if d ≤ 1 and if we neglect
logarithmic factors, the number of required nonzero parameters
is optimal among all networks whose depth grows at most
logarithmically in ε−1 (Yarotsky, 2018, Theorem 1). We remark
that 2. and 3. of Remark 2.3 about the importance of the ReLU
activation and the use of weight duplication apply to Theorem 3.2
as well.

Metrics induced by Lp-norms present a practical and versatile
instance of metrics that can be efficiently approximated by deep
networks. Specifically, we require O(D log(D/ε)) nonzero param-
eters, arranged in O(log(D/ε)) layers as shown in Lemma A.2,
so that the overall number of nonzero parameters of the ap-
proximating network equals O(D log(D/ε)ε−(1∨d)) (L1 and L∞ are
actually exactly realizable with smaller networks, see also Re-
mark A.7). We can also consider variations of Lp-norms, for in-
stance by first transforming inputs through a sparsity induc-
ing basis (e.g., a wavelet transformation operator) and then use
an L1-norm, or by considering weighted sums of multiple Lp-
norms, where each Lp-norm measures the discrepancy of two
points at different scales. To give a concrete example, we re-
fer to the work Shirdhonkar and Jacobs (2008) and Leeb and
Coifman (2016), who approximate the earth movers distance
for histograms using a weighted sum of L1-norms of wavelet
coefficients of histogram differences.

We also note that Class 2 contains radial functions withM = 1,
∥ ∥

2
d = 0, and m(·, ·) = · − · 2. Chui, Lin, and Zhou (2019) prove
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n approximation rate for radial functions similar to ours using
mooth activation functions and McCane and Szymanski (2017)
show dimension-free but sub-optimal rates for ReLU networks.
Interestingly, Chui et al. (2019) also prove that shallow net-
works cannot achieve dimension-free rates, because they cannot
leverage the compositional nature of f .

4. Implications on nonparametric estimation problems

In this section we briefly highlight some implications of our
results on nonparametric estimation problems. We will focus on
regression problems with X being a random input vector in RD,
Y = f (X) + ζ , and E[ζ |X] = 0. Furthermore, we assume f is
of Class 1 or Class 2 (where the metric m is assumed to be as
efficiently approximable as Lp-norms by a deep ReLU net).

Several very recent works (Bauer, Kohler, et al., 2019; Schmidt-
Hieber, 2019, 2020) studied the performance of the empirical risk
minimizer

Φ̂ ∈ argmin
Ψ̂ ∈NN

N∑
i=1

(
Ψ̂ (Xi) − Yi

)2
, (14)

where the hypothesis space NN contains ReLU networks Ψ̂ with
complexity bounded by L(Ψ̂ ) ≤ LN , W (Ψ̂ ) ≤ WN , P(Ψ̂ ) ≤ PN ,
B(Ψ̂ ) ≤ BN , and LN ,WN , PN , BN depend on the size of the training
data {(Xi, Yi) : i ∈ [N]}. The complexity of NN can be controlled
in terms of LN ,WN , PN and BN (Schmidt-Hieber, 2020, Lemma
5), and a bias–variance tradeoff analysis allows for establish-
ing estimation rates for (14), whenever the approximation error
infΨ ∈NN E (Ψ (X) − f (X))2 can be bounded in terms of LN ,WN , PN
and BN .

Following this strategy, Theorems 2.2 and 3.2 can be used to
derive the estimation guarantees

E
(
Φ̂(X) − f (X)

)2
∈

{
Õ(N−

2α
2α+d ), if f is of Class 1,

Õ(N−
2α

2α+(1∨d) ), if f is of Class 2,
as N → ∞, (15)

where Õ absorbs log-factors in N . The corresponding relations
between the architectural constraints and the size of the training
data N are given by

LN ∈ Õ(1), PN ∈ Õ
(
N

d
2α+d

)
, WN ∈ Õ

(
N

d
2α+d

)
,

BN ∈ Õ
(
N

2
2α+d

)
, for Class 1,

and LN ∈ Õ(1), PN ∈ Õ
(
N

1∨d
2α+1∨d

)
, WN ∈ Õ

(
N

1∨d
2α+1∨d

)
,

BN ∈ Õ (1) , for Class 2.

(16)

he rates in (15) are statistically minimax optimal for Class 1
(even if X is supported exactly on a d-dimensional manifold) and
minimax optimal for Class 2 if d ≤ 1 (Stone, 1982).

To the best of our knowledge, the literature does not pro-
vide algorithms for estimating f with the rate (15) under the
assumptions imposed in Class 1 or Class 2. Focusing on Class
1, a few special cases have been considered in the literature.
First, if X is supported exactly on M, classical methods such as
k nearest neighbors, piecewise polynomials, or kernel methods
achieve the rate (15) (Bickel & Li, 2007; Kpotufe, 2011; Ye & Zhou,
2008). Second, if M is a linear subspace, methods from suffi-
cient dimension reduction literature combined with traditional
estimators achieve (15) under certain reasonable assumptions (Li,
2018; Ma & Zhu, 2013). Third, if dim(M) = 1 and g is strictly
monotone along the manifold, Kereta, Klock, and Naumova (2020)
achieve near-optimal rates in the case ζ ≡ 0. Still, none of these
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approaches achieves (15) in the generality that is considered
here, which indicates a gap between the performance of ‘tradi-
tional estimators’ and deep neural networks. We add though that
computing the global minimizer (14) within small (polynomial)
runtime is not well-understood, because networks Ψ̂N ∈ NN are
underparametrized by the choice P(Ψ̂N ) ≪ N .

Finally, we note that checking whether a function belongs to
Class 1 or Class 2 is challenging in practice, because the input
{Xi : i ∈ [N]} does not reveal the compositional nature of
x ↦→ f (x) by itself. Instead, the compositional nature is only
visible when jointly using {(Xi, Yi) : i ∈ [N]}, for instance by
inspecting derivative tensors of the function f . As an example,
Hessian matrices of functions that belong to Class 1 have at most
d nontrivial eigenvalues at any point x ∈ A and the nontrivial
eigenspace corresponds to a subspace of the tangent space of M.
For functions of Class 2, derivative tensors also tend to have a
specific shape, whose precise form depends on the distance m
and the parameter M .

5. Preparatory material: a brief primer on ReLU calculus

ReLU calculus refers to a framework for developing ReLU net-
work approximation guarantees based on successively approxi-
mating increasingly complex building blocks. Corresponding re-
sults have been developed in recent years (Bölcskei et al., 2019;
Grohs et al., 2019; Petersen & Voigtlaender, 2018; Yarotsky, 2017,
2018), following the increased popularity of the ReLU activation
in practice. This section gives an overview of some of the results,
which we use in the remainder. Throughout, deep ReLU networks
are defined as stated in Definition 1.1.

The first step towards developing approximation guarantees
with ReLU nets is to endow the space of ReLU nets with two basic
operations, namely compositions and linear combinations.

Lemma 5.1 (Composition Grohs et al., 2019, Lemma 2.5). Let Φ1 :

RN0 → RNL1 and Φ2 : RNL1 → RNL2 be two ReLU nets. There
exists a ReLU net Ψ : RN0 → RNL2 with Ψ (x) = Φ2(Φ1(x))
and L(Ψ ) = L(Φ1) + L(Φ2), W (Ψ ) = max{W (Φ1),W (Φ2), 2NL1},
P(Ψ ) = 2(P(Φ1) + P(Φ2)), and B(Ψ ) ≤ B(Φ1) ∨ B(Φ2).

Lemma 5.2 (Linear combination Grohs et al., 2019, Lemma 2.7).
Let {Φi : i ∈ [N]} be a set of ReLU networks with similar input
dimension N0. There exist ReLU networks Ψ1 and Ψ2 that realize the
maps Ψ1(x) = (α1Φ1(x), . . . , αNΦN (x)) and Ψ2(x) =

∑N
i=1 αiΦi(x).

For j ∈ {1, 2}, they satisfy L(Ψj) = maxi∈[N] L(Φi), W (Ψj) ≤∑N
i=1 (2 ∨ W (Φi)), P(Ψj) =

∑N
i=1(P(Φi)+W (Φi)+2(L−L(Φi))+1),

and B(Ψj) ≤ max{1,maxi∈[N] B(Φi) ∨ αi}.

Using compositions of ReLU nets, the next step is to approx-
imate the square function x ↦→ x2, for instance by using the
so-called ‘saw-tooth function’ approximation (Yarotsky, 2017).
Then, by using the identity

xy =
1
2

(
x2 + y2 − (x − y)2

)
,

ne can establish approximation guarantees for arbitrary multi-
lication and for multivariate polynomials of arbitrary degree. We
xemplarily report the results of Grohs et al. (2019) in the next

lemma.

Lemma 5.3 (Grohs et al., 2019, Proposition 3.2, 3.4 and 3.6). Let
ε ∈ (0, 1/2).
(1) There exists a network with L(Φ) ≲ log(1/ε), W (Φ) = 3, P(Φ) ≲
log(1/ε), and B(Φ) ≤ 1 such that supx∈[0,1]

⏐⏐Φ(x) − x2
⏐⏐ ≤ ε.

(2) Let R ≥ 1. There exists a network Φ with L(Φ) ≲ log(R/ε),
W (Φ) ≤ 5, P(Φ) ≲ log(R/ε) and B(Φ) ≤ 1 so that sup(x,y)∈[−R,R]2
| |
Φ(x, y) − xy ≤ ε.
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Table 2
Basic ReLU calculus results that are relevant to the manuscript. We use x ∈ RD for vectors and t ∈ R for scalars.
The approximation accuracy is ε in the respective metric and O(·) means as ε → 0. L, W , P , and B denote bounds
on depth, width, number of parameters, and coefficient size of the network respectively.
Map Metric L(Φ) W (Φ) P(Φ) B(Φ) Reference

x ↦→ ∥x∥p
p L∞([−R, R]D) O(p2 log(⌈R⌉D/ε)) 9D O(DL(Φ)) 1 Lemma A.2

(x, t) ↦→ tx L∞([−R, R]D+1) O(log(R2/ε)) 5D O(DL(Φ)) 1 Lemma A.3
t ↦→ 1/t L∞([R−1, R]) O(R4 log2(R/ε)) 9 O(L(Φ)) 1 Lemma A.4
x ↦→ x/∥x∥1 L∞({x : R−1

≤ ∥x∥1 ≤ R}) O(R4 log2(R/ε)) O(D) O(DL(Φ)) 1 Lemma A.5
x ↦→ mini xi Exact on RD 2⌈log2(D)⌉ 3⌈D/2⌉ 11D⌈log2(D)⌉ 1 Lemma A.6
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(3) Let m ∈ N, a ∈ Rm+1, R ≥ 1. There exists a network Φ with
L(Φ) ≲ m log(1/ε) + m2 log(R) + m log(⌈∥a∥∞⌉), W (Φ) ≤ 9,
(Φ) ≲ L(Φ), B(Φ) ≤ 1, and supx∈[−R,R]

⏐⏐Φ(x) −
∑m

i=0 aix
i
⏐⏐ ≤ ε.

A natural next step is to study the approximation of functions
ith a certain degree of regularity. This can be done for instance
y using local Taylor expansions and by approximating Taylor
olynomials and indicator functions through deep networks. As
result, ReLU nets are able to uniformly approximate functions
ith a certain degree of regularity with an optimal number of

unction queries and nonzero parameters, see e.g. Schmidt-Hieber
2020) and Yarotsky (2017, 2018). As an example (and since
t suffices for our purposes), we present a simplified version
f Schmidt-Hieber (2020, Theorem 5) for α-Hölder univariate
unctions.

heorem 5.4 (Simplified Version of Schmidt-Hieber, 2020, Theorem
). Let L ≥ 1, α ∈ (0, 1] and consider f : [0, 1] → R with
f (t) − f (s)| ≤ L |t − s|α for all t, s ∈ [0, 1]. For any ε > 0
here exists a ReLU network Φ that uses n ≲ ε−1 point queries of
and has complexity bounded by L(Φ) ≲ log(1/ε), W (Φ) ≲ 1/ε,
(Φ) ≲ log(1/ε)1/ε, B(Φ) ≤ 1 such that

sup
∈[0,1]k

|f (x) − Φ(x)| ≤ Lεα.

roof. With α ∈ (0, 1], Schmidt-Hieber (2020, Theorem 5) gives
using the same notation as in the reference)

sup
∈[0,1]k

|f (x) − Φ(x)| ≲ LN2−m
+ LN−α,

here N and m effectively describe width and depth of the
pproximating network Φ . By choosing N ≍ 1/ε and m ≍

og2(1/ε(1+α))) with suitable universal constants both summands
re bounded by Lεα/2, giving the asserted approximation guar-
ntee. The required network size can be read of from Schmidt-
ieber (2020, Theorem 5) by inserting N and m. For counting
he number of required queries of f , we note that Φ approxi-
ates a piecewise constant approximation of f based on O(ε−1)
ubintervals. □

The aforementioned results present a small subset of existing
pproximation results for ReLU nets and give an idea how we can
radually approximate maps of increasing complexity. To facili-
ate the proofs for our results in the next two sections, we require
ome additional elementary approximations. These are listed in
able 2, with proofs deferred to Appendix A.2 in Appendix.

. Proof of Theorem 2.2

We first give a proof sketch that outlines the strategy and
dditionally highlights the main challenges compared to the pre-
iously studied case A = M and πM = Id. Afterwards we
resent the proof details. Throughout we let Cd, CM and Cq be

he constants defined in Theorem 2.2.

411
.1. Proof sketch and comparison with the case A = M

Our proof strategy shares some similarities with existing proof
trategies for the case A = M, see for instance Nakada and
maizumi (2019), Schmidt-Hieber (2019) and Shaham et al. (2018)
ut also differs in some aspects due to additional complications
rising from the high-dimensional approximation domain. In both
ases, we can start with a maximal separated δ-net {z1, . . . , zK }

f M (see Definition 3.1), which has cardinality bounded by K ≈

Mδ−d according to Lemma 6.1. Then, by defining Ui as geodesic
alls Ui := {z ∈ M : dM(z, zi) ≤ δ}, the subsets U1, . . . ,UK cover
he manifold M and the preimages π−1

M (U1), . . . , π−1
M (UK ) cover

he approximation domain A ⊆ M(q). Hence, for any partition of
nity η1, . . . , ηK subject to π−1

M (U1), . . . , π−1
M (UK ), we can express

by f (x) =
∑

i f (x)ηi(x).
Let us now denote the orthoprojector onto the tangent space

t zi ∈ M by Ai. If we are in the case A = M, we naturally
ave Ui = π−1

M (Ui) ∩ A and the sets Ui are isomorphic to Ai(Ui)
provided δ < τM/2, i.e., the covering of M is sufficiently
ine Schmidt-Hieber, 2019; Shaham et al., 2018). Therefore, ap-
proximating f ηi over Ui is morally like approximating a func-
tion on a compact subset of Rd and we can apply results from
Mhaskar (1993, 1996) and Yarotsky (2017) to achieve approxi-
mation guarantees that depend exponentially on d instead of D.
By linear combination of the resulting CMδ−d approximants, we
then obtain an approximation to f .

In the case M ⊂ A ⊆ M(q) the aforementioned strategy
unfortunately cannot be used, because each ηi in the partition
of unity is supported on a compact subset of RD, which is not
isomorphic to a compact set in Rd. Hence, naively using re-
sults from Mhaskar (1993, 1996) and Yarotsky (2017) to ap-
roximate an arbitrary partition of unity η1, . . . , ηK subject to
−1
M (U1), . . . , π−1

M (UK ) incurs the curse of dimensionality.
Instead, we will use a finer covering of M at the scale δ ≈ ε

as opposed to δ ≈ τM in the case A = M) and employ
he piecewise constant approximation f (x) =

∑
i f (x)ηi(x) ≈

i g(zi)ηi(x). If η1, . . . , ηK form a partition of unity with the
ocalization property

sup
x∈M(q):ηi(x)̸=0

dM(q)(x, zi) ≲ ε, (17)

he piecewise constant approximation f (x) ≈
∑

i g(zi)ηi(x) is ac-
urate up to O(εα) for α-Hölder g . We note however that we have
o approximate K ≈ CMε−d functions η1, . . . , ηK by deep net-
orks, which means that we can allocate at most O(polylog(ε−1))
onzero parameters for each individual approximation to match
he overall result achieved in Theorem 2.2. Thus, ηi’s have to
atisfy (17), while also being approximable by relatively small
etworks.
Designing such ηi’s is main difficulty of the proof. We first

erive an auxiliary result to locally approximate the extended
eodesic metric dM(q)(x, zi) = dM(πM(x), zi) around zi by basic
eatures of the input vector x. Namely, Proposition 6.2 shows that,
for any p ∈ [q, 1), we have the local metric equivalenceA(zi)⊤(x − zi)

 ≲ dM(q)(x, zi) ≲
1 A(zi)⊤(x − zi)

 (18)
2 1 − p 2
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Fig. 2. Schematic ReLU construction used to approximate Class 1. At each node we illustrate the feature of x that is being approximated by the network. Green nodes
an be exactly realized (assuming the previous layer is exact) with finite width layers, whereas blue nodes are approximated to accuracy O(ε) using O(polylog(ε−1))
ayers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(
p

(
t⏐⏐

t
d

or every x contained in BpτM(zi)(zi) and with
A(zi)⊤(x − zi)


2 ≲

1 − p)τM. Intuitively, a point x satisfies x ∈ BpτM(zi)(zi) and
A(zi)⊤(x − zi)


2 ≲ (1 − p)τM if it is contained in an L2-ball

round zi that extends up to pτM(zi) in normal direction and
1 − p)τM in tangential direction. Eq. (18) implies that we can
pproximate dM(q)(x, zi) on such balls using ∥A(zi)⊤(x − zi)∥2.
Crucially, ∥x − zi∥2 and ∥A(zi)⊤(x − zi)∥2 are simple features of

he input x, because (after taking squares) they are composed of
linear transformation followed by a polynomial of degree 2 of

he input x. Hence, we can approximate these features efficiently
sing deep networks and construct a partition of unity function
ccordingly. The precise construction reads

η̃i(x) :=

⎛⎝1 −

(
∥x − zi∥2

pτM(zi)

)2

−

(A(zi)⊤(x − zi)

2

hε

)2
⎞⎠

+

and ηi(x) :=
η̃i(x)

∥η̃(x)∥1
,

here h is a bandwidth parameter that is suitably chosen as a
unction of q and τM. As shown in Proposition 6.3 and Lemma 6.4,
i satisfies (17) and can be approximated to accuracy ε by a ReLU

network Θi with O(polylog(ε−1)) nonzero parameters.
Finally, after recalling that linear combinations of ReLU net-

works are still ReLU networks, we approximate f by

Φ(x) =

K∑
i=1

g(zi)Θi(x). (19)

A schematic illustration of the complete approximating network
is depicted in Fig. 2.

6.2. Proof details

Let us first collect some elementary facts from differential
geometry that are required in the following.

Lemma 6.1. LetM be a d-dimensional compact connected Rieman-
nian manifold embedded in [0, 1]D with reach τM > 0, Lebesgue
volume Vol(M), and endowed with the Riemannian metric induced
by RD. Let v, z ∈ M.
(1) If ∥v − z∥2 ≤ τM/2 then dM(v, z) ≤ τM(1 −
√
1 − 2 ∥v − z∥2 /τM).

(2) For any r ∈ (0, τM/2) we have Vol(BM,r (v)) ≤ Cd(τM/(τM −

r))drd.
412
3) The tangent space orthoprojectors A(v)A(v)⊤ ∈ RD×D satisfy
erturbation boundsA(v)A(v)⊤ − A(z)A(z)⊤


2 ≤

1
τM

dM(v, z). (20)

(4) The local reach as defined in (4) satisfies the perturbation bound

|τM(v) − τM(z)| ≤ ∥v − z∥2 ≤ dM(v, z). (21)

(5) We have P(δ,M, dM) ≤ 3dVol(M)dd/2δ−d for any δ ∈

(0, 1
2τM).

6) Let Z be a maximal δ-separated set of M with respect to
he geodesic metric. For any p with pδ ∈ (0, τM/4) we have
Z ∩ BM,pδ(v)

⏐⏐ ≤ Cd(5p
√
d)d.

Proof. Property (1) can be found in Genovese, Perone-Pacifico,
Verdinelli, and Wasserman (2012, Lemma 3) and (2) is derived
in Chazal (2013, Proposition 1.1). (3) is similar to Boissonnat,
Lieutier, and Wintraecken (2019, Corollary 3), after noticing thatA(v)A(v)⊤ − A(z)A(z)⊤


2 = sin ̸ (A(v), A(z))

≤ 2 sin
(

̸ (A(v), A(z))
2

)
,

where ̸ (A(v), A(z)) denotes the maximum principal angle be-
tween subspaces Im(A(v)) and Im(A(z)). For (4) we assume with-
out loss of generality τM(v) ≥ τM(z). Then the result follows
from

τM(v) − τM(z) = dist(v;Med(M)) − dist(z;Med(M))
≤ ∥v − z∥2 + dist(z;Med(M))

− dist(z;Med(M)) = ∥v − z∥2 ≤ dM(v, z).

Property (5) can be found in Baraniuk and Wakin (2009) and
Niyogi, Smale, and Weinberger (2008). For (6) we first note that
Z∩BM,pδ(v) is still a δ-separated set of the geodesic ball BM,pδ(v),
which implies

⏐⏐Z ∩ BM,pδ(v)
⏐⏐ ≤ P(δ, BM,pδ(v), dM). Since the

reach of the geodesic ball BM,pδ(v) is also bounded by τM, we
can apply Property (2) and Property (5) to get

P(δ, BM,pδ(v), dM) ≤
3dVol(BM,pδ(v))d

d
2

δd
≤

3d2dCdpdδdd
d
2

δd

= Cd(5p
√
d)d.

□

The first step to prove Theorem 2.2 rigorously establishes
he local metric equivalence (18) between the geodesic metric
M(πM(x), z) and

A(z)⊤(x − z)

2.
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roposition 6.2. Let M be a connected compact d-dimensional
iemannian submanifold of RD and let q ∈ [0, 1). For x ∈ M(q)
ith v = πM(x) and arbitrary z ∈ M we haveA(z)⊤(x − z)


2 ≤

(
1 +

dist(x;M)
τM ∨ (τM(v) − dM(v, z))

)
dM(z, v).

(22)

et now p ∈ [q, 1) arbitrary. Then for x ∈ BpτM(z)(z) with
A(z)⊤(x − z)


2 <

1−p
3 τM, we have

dM(z, v) ≤
3

1 − p

A(z)⊤(x − z)

2 . (23)

Proof. Throughout the proof we denote P(z) = A(z)A(z)⊤ as
the orthoprojector onto the tangent space of M at z ∈ M.
For (22) we use P(v)(x − v) = 0 from part (1) of Lemma 2.1,
∥z − v∥2 ≤ dM(z, v), and the tangent perturbation bound (20)
applied to the geodesic path γz→v from z to v with reach bound
τγz→v = infy∈Im(γz→v ) τM(y) to compute

∥P(z)(x − z)∥2 ≤ ∥P(z)(v − z)∥2 + ∥P(z)(x − v)∥2 ≤ dM(v, z)
+ ∥P(z) − P(v)∥2 ∥x − v∥2

≤ dM(v, z) +
dist(x;M)

τγz→v

dM(v, z).

urthermore, by the 1-Lipschitz property of the local reach, see
21), we have

τγz→v = inf
y∈Im(γz→v )

τM(y) ≥ τM(v) − sup
y∈Im(γz→v )

|τM(y) − τM(v)|

≥ τM(v) − dM(v, z).

Since the global bound τγz→v ≥ τM holds due to Im(γz→v) ⊂ M,
e obtain

P(z)(x − z)∥2 ≤

(
1 +

dist(x;M)
τM ∨ (τM(v) − dM(v, z))

)
dM(v, z).

For the opposite direction (23) we let ω := ∥P(z)(x − z)∥2 and
x̃ := z +Q (z)(x− z), where Q (z) := Id− P(z). By construction we
have P(z)(x̃ − z) = 0 andx − x̃


2 = ∥x − z − Q (z)(x − z)∥2 = ∥P(z)(x − z)∥2 = ω.

Furthermore, since x ∈ BpτM(z)(z), ω <
1−p
3 τM, and τM ≤ τM(z),

e can boundx̃ − z

2 ≤ ∥x − z∥2 +

x − x̃

2 ≤ pτM(z) + ω

< pτM(z) +
1 − p
3

τM < p̃τM(z),

for p̃ =
1+2p

3 < 1. We thus have the decomposition x̃ = z+(x̃−z)
or z ∈ M, x̃ − z ⊥ Im(P(z)), and

x̃ − z

2 < p̃τM(z). Part (1) in

emma 2.1 implies z = πM(x̃) and x̃ ∈ M(p̃). Using the Lipschitz
roperty of πM in part (2) of Lemma 2.1 and x ∈ M(q) ⊂ M(p̃),

x̃ ∈ M(p̃), we get

∥v − z∥2 =
πM(x) − πM(x̃)


2 ≤

1
1 − p̃

x − x̃

2 =

3
2(1 − p)

ω.

e further not that 3
2(1−p)ω < 1

2τM, so that we can apply part
1) of Lemma 6.1 to get

dM(v, z) ≤ τM − τM

√
1 −

2 ∥v − z∥2

τM
≤ ∥v − z∥2 +

2 ∥v − z∥2
2

τM
≤ 2 ∥v − z∥2 . □

We now introduce the partition of unity functions η1, . . . , ηK
nd show that they satisfy the desired localization property.
 1
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Proposition 6.3. Consider a connected compact d-dimensional
Riemannian submanifold M ⊆ RD and let q ∈ [0, 1). Let Z =

z1, . . . , z|Z|} ⊂ M be a maximal δ-separated set of M with respect
o dM. Define bandwidth parameters p :=

1
2 (1+q) and h :=

6
1−qp−1

nd functions η̃, η : M(q) → R|Z| componentwise by

η̃i(x) =

⎛⎝1 −

(
∥x − zi∥2

pτM(zi)

)2

−

(A(zi)⊤(x − zi)

2

hδ

)2
⎞⎠

+

and ηi(x) =
η̃i(x)

∥η̃(x)∥1
.

(24)

There exists a universal constant C such that if δ ∈ (0, C(1−q)2τM)
e have

sup
x∈M(q):ηi(x)̸=0

dM(q)(x, zi) ≲
δ

(1 − q)2
, (25)

(1 − q) ≲ ∥η̃(x)∥1 ≲ Cq. (26)

roof. Denote v = πM(x). We will a few times require in the
ollowing the bandwidth ratio

3h
1 − p

=
36(q + 1)
(1 − q)2

∈

[
36

(1 − q)2
,

72
(1 − q)2

)
.

By construction ηi(x) ̸= 0 implies x ∈ BpτM(zi)(zi) and ∥A(zi)⊤(x −

i)∥2 < hδ. Thus, as soon as δ <
1−p
3h τM, which is implied by

δ < 1
36 (1 − q)2τM, we have

A(zi)⊤(x − zi)

2 ≤

1−p
3 τM. Applying

Proposition 6.2 gives (25) by

dM(q)(x, zi) = dM(v, zi) ≤
3h

1 − p
δ ≤

72
(1 − q)2

δ.

We now concentrate on the lower bound in (26). Denote j ∈

argmini∈|Z| dM(q)(x, zi). Since Z is a maximal δ-separated set of
, we have dM(q)(x, zj) ≤ δ. Eq. (22) in Proposition 6.2 impliesA(zj)⊤(x − zj)


2 ≤

(
1 +

dist(x;M)
τM(v) − δ

)
δ ≤

(
1 +

qτM(v)
τM(v) − δ

)
δ

=

(
1 + q

1
1 −

δ
τM(v)

)
δ ≤ (1 + 2q)δ ≤ 3δ,

provided δ <
1
2
τM.

Using the triangle inequality to get
x − zj


2 ≤ δ + ∥x − v∥2

and the 1-Lipschitz continuity of τM(·) in (21) to further bound
x − v∥2 ≤ qτM(v) ≤ q(δ + τM(zj)), it follows thatx − zj


2

pτM(zj)
≤

δ + qδ + qτM(zj)
pτM(zj)

≤
q
p

+
1 + q
pτM

δ ≤
q
p

+
4

τM
δ

Inserting the definition of the bandwidth parameter h, we thus
obtain

1 −

x − zj

2

pτM(zj)
−

A(zj)⊤(x − zj)

2

hδ
≥ 1 −

q
p

−
4

τM
δ −

3
h

≥
1
2

(
1 −

q
p

)
−

4
τM

δ.

(27)

his is bounded from below by 1
4 (1 − qp−1) as soon as

δ <
τM

16

(
1 −

q
p

)
=

τM

16
1 − q
1 + q

, which is implied by

δ <
(1 − q)τM

16
.

ince squaring one of the subtracted terms in (27) reduces their
size, we get the lower bound ∥η̃(x)∥1 ≥ η̃i(x) ≥

1
4 (1 − pq−1) ≥

/8(1 − q).
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For the upper bound on ∥η̃(x)∥1 we notice that ηi(x) ̸= 0
implies by Proposition 6.2

hδ >
A(zi)⊤(x − zi)


2 ≥

1 − p
3

dM(q)(zi, x) provided

δ <
(1 − q)2

36
τM.

Thus, η̃i(x) ̸= 0 implies dM(q)(x, zi) ≤ 3h(1 − p)−1δ, i.e., all zi’s
ontributing to ∥η̃∥1 are contained within a geodesic ball of radius
h(1−p)−1δ around v. As soon as 3h

1−pδ < 1
4τM, which is implied

y δ < 288(1− q)2τM, we can then use part (5) of Lemma 6.1 to
ound⏐⏐⏐Z ∩ BM, 3h

1−p δ
(v)
⏐⏐⏐ ≤ Cd

(
5

3h
1 − p

√
d
)d

≤ Cd

(
5

72
(1 − q)2

√
d
)d

≲ Cq.

Since each η̃i(x) is individually bounded by 1, the upper bound on
∥η̃(x)∥1 in (26) follows. □

We next show that η can be uniformly approximated by a
ReLU net of small complexity.

Lemma 6.4. Assume the setting of Proposition 6.3 with δ < τM/2
and M(q) ⊆ [0, 1]D. For all ε ∈ (0, 1) there exists a ReLU-net Φ

with complexity bounded as in (31) such that

sup
x∈M(q)

∥η(x) − Φ(x)∥1 ≤ ε. (28)

Proof. Recall that Z = {z1, . . . , z|Z|} ⊂ M is a maximal δ-
separated set of M with respect to dM and that we have C−1

q ≲
∥η̃(x)∥1 ≲ Cq (see right hand side in (26)). The proof is split into
two parts. First, we describe how to approximate η̃i for some i ∈

[|Z|], and afterwards we describe how to combine the networks
to approximate η : RD

→ R|Z|.
1. Approximating η̃i: Let Θ be a ReLU net that approximates

∥·∥
2
2 over [−1, 1]D to accuracy ε̃ > 0 (existence is proven in

Lemma A.2). Furthermore, let Ψi realize x ↦→ x− zi, and Γi realize
x ↦→ A(zi)⊤(x − zi). For bandwidth parameters p and h as in
Proposition 6.3, we then define a ReLU network

Φ̃i(x) :=

(
1 −

Θ(Ψi(x))
(pτM(zi))2

−
Θ(Γi(x))
(hδ)2

)
+

.

omparing Φ̃i with η̃i we obtain by 1-Lipschitzness of the ReLU
and the triangle inequality

sup
x∈M(q)

⏐⏐Φ̃i(x) − η̃i(x)
⏐⏐ ≤

⏐⏐⏐⏐Θ(Ψi(x)) − ∥x − zi∥2
2

(pτM(zi))2

⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐Θ(Γi(x)) −
A(zi)⊤(x − zi)

2
2

(hδ)2

⏐⏐⏐⏐⏐
≤

ε̃

(pτM(zi))2
+

ε̃

(hδ)2

≤

(
1

(pτM)2
+

1
(hδ)2

)
≤

5ε̃
(τMδ)2

(29)

here we used x − zi ∈ [−1, 1]D since x, zi ∈ [0, 1]D, p ≥ 1/2,
nd h > 1. To compute the complexity of Φ̃i we apply the rules of

ReLU composition and linear combination in Lemmas 5.1 and 5.2,
and the complexity bounds in Lemma A.2. We have L(Θ ◦ Ψi) ≤

L(Θ) + L(Ψi) ≲ log(D/ε̃), W (Θ ◦ Ψi) ≲ D, P(θ ◦ Ψi) ≲ D log(D/ε̃),
and B(Θ ◦Ψi) ≤ 1, and the same bounds hold for Θ ◦Γi. Thus, by
the rules of ReLU linear combination in Lemma 5.2 (the additional
 u

414
ReLU activation in the last layer does not matter for the absolute
bounds) we have

L(Φ̃i) ≲ log(D/ε−1), W (Φ̃i) ≲ D, P(Φ̃i) ≲ D log(Dε̃−1),

B(Φ̃i) ≤ 1/(pτM)2 ∨ 1/(hδ)2.

2. Approximating η: Define now Φ̃(x) = (Φ̃1(x), . . . , Φ̃|Z|(x)).
Using (29) we note that⏐⏐∥Φ̃(x)∥1 − ∥η̃(x)∥1

⏐⏐ ≤ ∥Φ̃(x) − η̃(x)∥1

≤

|Z|∑
i=1

|Φ̃i(x) − ηi(x)| ≤
5 |Z| ε̃

(τMδ)2
(30)

Thus, with C−1
q ≤ ∥η̃(x)∥1 ≤ Cq we get 1/2C−1

q ≤ ∥Φ̃(x)∥1 ≤ 2Cq

for ε̃ ≤ (τMδ)2/(10Cq |Z|). Now, let Λ be a network that approx-
mates ℓ1-normalization up to ε/2 for inputs u with (2Cq)−1

≤

u∥1 ≤ 2Cq as in Lemma A.5. Setting Φ(x) := Λ(Φ(x)), the
pproximation error be decomposed into

∥Φ(x) − η(x)∥1 =

Λ(Φ̃(x)) −
Φ̃(x)

∥Φ̃(x)∥1


1

+

 Φ̃(x)

∥Φ̃(x)∥1
− η(x)


1

≤
ε

2
+

 Φ̃(x)

∥Φ̃(x)∥1
−

η(x)
∥η̃(x)∥1


1

.

For the second term, by twice applying triangle inequalities and
reusing (30), we obtain Φ̃(x)

∥Φ̃(x)∥1
−

η̃(x)
∥η̃(x)∥1


1

≤
∥Φ̃(x) − η̃(x)∥1

∥η̃(x)∥1

+
|∥Φ̃(x)∥1 − ∥η̃(x)∥1|

∥η̃(x)∥1

≤ Cq
10 |Z| ε̃

(τMδ)2
.

Combining both bounds yields and setting ε̃ = (τMδ)2ε/(20Cq
Z|) yields the result.

Lastly, we bound the complexity of Φ . Following the rules of
eLU compositions and combinations in Lemmas 5.1 and 5.2, and

using the cardinality bound |Z| ≲ CMδ−d as in Lemma 6.1, we
have

L(Φ) = L(Λ) + L(Φ̃1) ≲ C4
q log2(Cq/ε) + log

(
DCq |Z|

(τMδ)2ε

)
≤ C4

q log2
(
Cq

ε

)
+ log

(
DCqCM

τ 2
Mδd+2ε

)
W (Φ) ≲ |Z|W (Φ̃1) ≲ DCMδ−d,

P(Φ) ≲ P(Λ) + |Z| P(Φ̃1) ≲ C4
q |Z| log2

(
Cq

ε

)
+ |Z|D log

(
DCq |Z|

τ 2
Mδ2ε

)
(31)

≲ C4
q CMδ−d log2

(
Cq

ε

)
+ Dδ−d log

(
DCqCM

τ 2
Mδ2+dε

)
,

B(Φ) = B(Φ̃1) ≲ τ−2
M ∨ δ−2. □

Finally we combine Lemma 6.4 with the α-Hölder property of
to conclude the proof.

roof of Theorem 2.2. Let Z := {z1, . . . , zK } be a maximal sepa-
ated ε-net of M with K := |Z| ≲ CMε−d by Lemma 6.1 and let
(Z) = (g(z1), . . . , g(zK )) ∈ RK . By Lemma 6.4, we can construct
network Θ : RD

→ RK , which approximates the partition of
nity function η(x) in (25) over A ⊆ M(q) up to accuracy εα . To
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pproximate the target f we define the net

(x) :=

K∑
i=1

(g(zi)Θi(x))+ − (−g(zi)Θi(x))+ = ⟨g(Z), Θ(x)⟩. (32)

aking arbitrary x ∈ A ⊆ M(q), we can first use triangle and
ölder inequalities to get

f (x) − Φ(x)| = |g(πM(x)) − ⟨g(Z), Θ(x)⟩|
≤ |g(πM(x)) − ⟨g(Z), η(x)⟩|

+ |⟨g(Z), (η(x) − Θ(x))⟩|
≤ |⟨g(πM(x))1K − g(Z), η(x)⟩|

+ ∥g(Z)∥∞ ∥η(x) − Θ(x)∥1

≤ |⟨g(πM(x))1K − g(Z), η(x)⟩| + εα.

here 1K = [1, . . . , 1] ∈ RK and where we used ⟨1K , η(x)⟩ =

, ∥g(Z)∥∞ ≤ 1. The first term can be bounded by Hölder’s
nequality and Proposition 6.3 according to

|⟨g(πM(x))1K − g(Z), η(x)⟩| ≤ sup
i∈[K ]

ηi(x)̸=0

|g(πM(x)) − g(zi)|

≤ L sup
i∈[K ]

ηi(x)̸=0

dα
M(πM(x), zi)

≲ L
(

1
(1 − q)2

ε

)α

,

hich shows the approximation error bound. To bound the com-
lexity of Φ we note that the network is a composition of Θ with
two-layer network that has first layer weights ±g(Z) ∈ [−1, 1]K
nd second layer weights ±1. Therefore, the complexity of Φ

is dominated by the complexity of Θ and can be read off from
Lemma 6.4, respectively, from (31) in the proof. □

roof of Corollary 2.4. For each k ∈ [D] we can approxi-
ate x ↦→ e⊤

k πM(x) via a ReLU net Φk using Theorem 2.2 for
(·) = e⊤

k (·). By stacking these networks, we obtain the ap-
roximating network Φ(x) = (Φ1(x), . . . , ΦD(x)), which achieves
he asserted guarantee. Note that by construction (19) we have
k(x) =

∑K
i=1(zi)kΘi(x). Since Θi is independent of k, correspond-

ng weights can be shared in constructing Φ , so that the network
rchitecture adheres to the bounds in Theorem 2.2. □

. Proof of Theorem 3.2

Theorem 3.2 follows by the ReLU composition rule after ap-
roximating g and x ↦→ minz∈C m(x, z)p. Let us separately prove
he latter result now and then give the proof of Theorem 3.2.

emma 7.1. Let C ⊆ [0, 1]D be nonempty and closed, m :

0, 1]D × [0, 1]D → [0, 1] a metric satisfying (11) for some p ≥ 1,
nd assume there exists δ0 > 0 so that P(δ, C,m) ≲ δ−d for all
∈ (0, δ0). For any ε ∈ (0, 2pδ0) there exists a ReLU network Φ

ith L(Φ) ≲ d log(pε−1) + Lm(ε), W (Φ) ≲ (p/ε)dWm(ε), P(Φ) ≲
p/ε)d

(
d log(pε−1) + Pm(ε)

)
, and B(Φ) ≤ 1 ∨ Bm(ε) satisfying

sup
x∈[0,1]D

⏐⏐⏐min
z∈C

m(x, z)p − Φ(x)
⏐⏐⏐ ≤ 2ε. (33)

roof. Let Z ⊂ C be a maximal separated ε/p-net of C, which
as cardinality bounded according to |Z| ≲ (p/ε)d as soon as
< pδ0. For each z ∈ Z , let Ψzi,ε be a ReLU network that

pproximates m(x, zi)p up to accuracy ε and let Γ : R|Z|
→ R

e a network that realizes Γ (u) = mini∈[|Z|] ui (see Lemma A.6).
e set Φ(x) = Γ (Ψ , . . . , Ψ ). Using the triangle inequality,
z1,ε zK ,ε

415
e decompose

min
z∈C

m(x, z)p − Φ(x)
⏐⏐⏐ ≤

⏐⏐⏐min
z∈Z

m(x, z)p − Φ(x)
⏐⏐⏐

+

⏐⏐⏐min
z∈Z

m(x, z)p − min
z∈C

m(x, z)p
⏐⏐⏐

≤

⏐⏐⏐min
z∈Z

m(x, z)p − min
z∈Z

Ψz,ε(x)
⏐⏐⏐

+

⏐⏐⏐min
z∈Z

m(x, z)p − min
z∈C

m(x, z)p
⏐⏐⏐ (34)

or the first term, we immediately have

min
z∈Z

m(x, z)p − min
z∈Z

Ψz,ε(x)
⏐⏐⏐ ≤ max

z∈Z

⏐⏐m(x, z)p − Ψz,ε(x)
⏐⏐ ≤ ε.

or the second term in (34) we note that there exists v(x) ∈ C
atisfying m(x, v(x)) = minz∈C m(x, z) because C is closed and
nonempty (v(x) does need to be unique). Then, by |ap − bp| ≤

(a ∨ b)(p−1) |a − b|, m(·, ·) ∈ [0, 1], and the inverse triangle
nequality we have⏐⏐⏐min
z∈Z

m(x, z)p − min
z∈C

m(x, z)p
⏐⏐⏐ =

⏐⏐⏐min
z∈Z

m(x, z)p − m(x, v(x))p
⏐⏐⏐

≤ pmin
z∈Z

m(z, v(x)) ≤ ε,

with the last inequality following by the ε/p covering property of
Z . It remains to bound complexity of the network in terms of ε

and Z . Using the rules of compositions and linear combinations
of networks in Lemmas 5.1 and 5.2 we have

L(Φ) = L(Γ ) + L((Ψz1,ε, . . . ΨzK ,ε)) ≲ log(|Z|) + L(Ψz1,ε/2)

≲ d log(pε−1) + Lm(ε)

W (Φ) = max{W (Γ ),W ((Ψz1,ε, . . . ΨzK ,ε)), 2 |Z|} ≲ |Z|W (Ψz1,ε)

≲ (p/ε)dWm(ε),

P(Φ) ≲ P(Γ ) + P((Ψz1,ε, . . . ΨzK ,ε)) ≲ P(Γ ) + |Z| P(Ψz1,ε)

≲ |Z| log(|Z|) + |Z| P(Ψz1,ε)

≲ (p/ε)d
(
d log(pε−1) + Pm(ε)

)
,

B(Φ) ≤ B(Γ ) ∨ B((Ψz1,ε, . . . ΨzK ,ε)) ≤ 1 ∨ Bm(ε). □

To prove Theorem 3.2 we now combine Lemma 7.1 with
Theorem 5.4 in Section 5, which provides approximation bounds
for univariate α-Hölder functions like g1, . . . , gM .

Proof of Theorem 3.2. Consider the case M = 1 first and let
g1 = g , C1 = C. Let Ψ : RD

→ R be the ReLU net approximating
x ↦→ minz∈C m(x, z)p up to accuracy ε according to Lemma 7.1,
with ε < 2pδ0, and let Θ : R → R be a ReLU net that realizes
Θ(t) = 1 ∧ t = 1 − (1 − t)+. Furthermore, by Theorem 5.4
there exists a ReLU network Ω that approximates g to accuracy
Lεα over [0, 1]. We define the overall approximation by Φ(x) :=

Ω(Θ(Ψ (x))) and compute⏐⏐⏐g (min
z∈C

m(x, z)p
)

− Φ(x)
⏐⏐⏐ =

⏐⏐⏐g (min
z∈C

m(x, z)p
)

− Ω(Θ(Ψ (x)))
⏐⏐⏐

≤

⏐⏐⏐g (min
z∈C

m(x, z)p
)

− g(Θ(Ψ (x)))
⏐⏐⏐

+ |g(Θ(Ψ (x))) − Ω(Θ(Ψ (x)))|

≤

⏐⏐⏐g (min
z∈C

m(x, z)p
)

− g(Θ(Ψ (x)))
⏐⏐⏐+ Lεα, (35)

where we used Θ(Ψ (x)) ∈ [0, 1] by construction and the approx-
imation guarantees about Ω in the last step. For the first term in
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35), we use the α-Hölder property of g to get

g
(
min
z∈C

m(x, z)p
)

− g(Θ(Ψ (x)))
⏐⏐⏐ ≤ L

⏐⏐⏐min
z∈C

m(x, z)p − Θ(Ψ (x))
⏐⏐⏐α

= L
⏐⏐⏐min
z∈C

m(x, z)p − 1 ∧ Ψ (x)
⏐⏐⏐α

≤ L
⏐⏐⏐min
z∈C

m(x, z)p − Ψ (x)
⏐⏐⏐α

≤ L(2ε)α ≲ Lεα,

where the second to last inequality is an equality if Ψ (x) < 1, and
follows from m(x, z) ≤ 1 if Ψ (x) ≥ 1. To bound the complexity of
Φ we will use the rules of compositions according to Lemma 5.1.
We have B(Φ) ≤ max{B(Ω), B(Θ), B(Ψ )} ≤ 1 ∨ Bm(ε) and

L(Φ) ≤ L(Ω) + L(Θ) + L(Ψ ) ≲ log(ε−1) + d log(pε−1) + Lm(ε)

≲ d log(pε−1) + Lm(ε),

W (Φ) ≤ max{W (Ω),W (Θ),W (Ψ )} ≲ ε−1
+ pdε−dWm(ε)

≲ pdε−(1∨d)Wm(ε),

P(Φ) ≲ P(Ω) + P(Θ) + P(Ψ ) ≲ log(ε−1)ε−1

+ pdε−d (d log(pε−1) + Pm(ε)
)

≲ pdd log(pε−1)ε−(1∨d)
+ pdε−dPm(ε).

For the case M > 1 we construct networks Φℓ approximating
gℓ(m(x, Cℓ)) to accuracy Lεα each, and then use x ↦→

∑M
i=1 Φℓ(x),

which can be realized by a ReLU net according to Lemma 5.2. The
error follows from the triangle inequality and the dimensions can
be deduced from Lemma 5.2. □

8. Conclusion and future directions

In this work we study the uniform approximation of certain
compositional functions by deep ReLU networks. The consid-
ered function classes are motivated by practical examples and
generalize some frequently studied function classes, including
functions defined on low-dimensional domains. We have proven
uniform approximation guarantees with moderately deep net-
works, a near-optimal dependency on the number of nonzero
network parameters, and optimal dependency on the number of
required function queries. Our results suggest that local invari-
ances encoded in the mapping x ↦→ f (x) drive the approximation
complexity rather than the complexity of the domain of the
target.

We plan to extend our guarantees to projection-based func-
tions f (x) = g(π̃M(x)) using projections π̃M(x) = argminx∈M
d(x, z) based on other metrics d and less regular sets M. This
allows for considering more general nonlinear reduction maps φ
and thus further enhances our knowledge about the adaptivity of
deep networks. Furthermore we plan to study the influence of the
domain of the target (or more practically a given data set) on the
training process of deep networks. While approximability is not
crucially dependent on the data domain according to our results,
training deep networks via backpropagation may still be affected
by the domain of the data.
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Appendix

A.1. Proof of Lemma 2.1

For the proof we recall simplified version of Federer (1959,
Theorem 4.8) tailored to manifolds.

Theorem A.1 (Federer, 1959, (6) and (7) in Theorem 4.8). Let
M ⊂ RD be a compact submanifold of RD.

(1) Let v ∈ M and x ∈ RD so that supt≥0{πM(v + tx) = v} ∈

(0, ∞), then v + rx ̸∈ Int(Med(M)C ).
(2) Let x ∈ Med(M)C and τM(πM(x)) > 0. Then for any z ∈ M

we have

⟨x − πM(x), πM(x) − z⟩ ≥ −
∥πM(x) − z∥2

2 ∥x − πM(x)∥
2τM(πM(x))

.

Proof of Lemma 2.1. Part 1: We first note that dist(x;M) ≤

∥x − v∥2 < qτM(v) ≤ τM(v), which implies x ̸∈ Med(M),
and thus there exists a unique projection πM(x) according to the
construction of Med(M). To show πM(x) = v, we consider a
proof by contradiction. Assume πM(x) ̸= v and denote

l := sup
t≥0

{
πM

(
v + t

u
∥u∥2

)
= v

}
.

We have l > 0, since u ⊥ Im(A(v)) and τM > 0 (see for
instance Niyogi et al., 2008, Section 4), and l < qτM(v), since
πM(x) ̸= v. By part (1) in Theorem A.1 we get w := v + l u

∥u∥2
̸∈

nt(Med(M)C ). Therefore, for any ε > 0 there exists, with Bε(w)
being a Euclidean ball of radius ε around w,

y ∈ Bε(w) ∩
(
Int(Med(M)C )

)C
= Bε(w) ∩ cl(Med(M)).

Using the existence of such a y for every ε > 0, we get

τM(v) ≤ ∥v − y∥2 ≤ ∥v − w∥2 + ∥w − y∥2

≤ ∥v − x∥2 + ∥w − y∥2 < qτM(v) + ε.

etting ε → 0 and recalling q < 1, this is a false statement.
art 2: Using part (2) of Theorem A.1, we have for any x ∈ M(q)
nd v ∈ M

x − πM(x), πM(x) − v⟩ ≥ −
∥πM(x) − v∥

2
2 ∥x − πM(x)∥

2τM(πM(x))
. (36)

aking arbitrary x, x′
∈ M(q) we obtain by the Cauchy–Schwartz

nequality and (36)x − x′

2

πM(x) − πM(x′)

2 ≥ ⟨x − x′, πM(x) − πM(x′)⟩

= ⟨x − πM(x) + πM(x) − πM(x′) + πM(x′) − x′, πM(x)
− πM(x′)⟩

≥
πM(x) − πM(x′)

2
2

×

(
1 −

1
2

∥x − πM(x)∥2

τM(πM(x))
−

1
2

x′
− πM(x′)


2

τM(πM(x′))

)
=
πM(x) − πM(x′)

2
2 (1 − q),

here we used x, x′
∈ M(q) in the last inequality. □

.2. Additional result from ReLU calculus

In this section we prove the approximation guarantees listed
n Table 2.
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emma A.2 (pth Power of Lp-norm). Let p ∈ N, ε, R > 0. There
exists a ReLU network Φ with L(Φ) ≲ p2 log(⌈R⌉D/ε), W (Φ) ≤ 9D,
P(Φ) ≲ Dp2 log(⌈R⌉D/ε) and B(Φ) ≤ 1 such that

sup
x∈[−R,R]D

⏐⏐∥x∥p
p − Φ(x)

⏐⏐ ≤ ε.

Furthermore, ∥x∥1 can be realized exactly with L(Φ) = 2, W (Φ) =

D, P(Φ) = 4D and B(Φ) = 1.

roof. Following part (3) in Lemma 5.3, there exists a ReLU
network Γ that approximates t ↦→ tp to accuracy εD−1 > 0 on
−R, R]. Set Φ(x) :=

∑D
i=1 Γ (xi). For arbitrary x ∈ [−R, R]D we

ave

∥x∥p
p − Φ(x)

⏐⏐ ≤

D∑
i=1

⏐⏐xpi − Θ(xi)
⏐⏐ ≤ ε.

he complexity of Φ is bounded according to the rules in Lem-
mas 5.1, 5.2 and the bounds in Lemma 5.3 for the network Γ . We
obtain B(Φ) ≤ max{1, B(Γ )} = 1, W (Φ) = D(2 ∨ W (Γ )) ≤ 9D,
and

L(Φ) = L(Γ ) ≲ p(log(D/ε) + p log(⌈R⌉)) ≲ p2 log(⌈R⌉D/ε)

P(Φ) = D(P(Γ ) + W (Γ ) + 1) ≲ DL(γ ) ≤ Dp2 log(⌈R⌉D/ε).

For p = 1 we notice ∥x∥1 =
∑D

i=1 |xi| =
∑D

i=1 (xi)+ − (−xi)+,
which defines a shallow network with width 2D and 4D nonzero
parameters. □

Lemma A.3 (Multiplication). Let ε ∈ (0, 1
2 ) and a > 0. There

xists a ReLU network Φ : RD
× R → RD with L(Φ) ≲ log(a2ε−1),

W (Φ) ≤ 5D, P(Φ) ≲ D log(a2ε−1) and B(Φ) ≤ 1 with

sup
∥x∥∞≤a, |y|≤a

∥Φ(x, y) − xy∥∞ ≤ ε.

Proof. By part b) of Lemma 5.3 there exists a ReLU net Ψ :
2

→ R approximating xy up to accuracy ε on [−a, a]2. We
et Φ(x, y) = (Ψ (x1, y), . . . , Ψ (xD, y)), which can be realized by
ReLU net (Lemma 5.2). Furthermore, using dimension bounds

n Lemma 5.3, we get L(Φ) = L(Ψ ) ≲ log(a2ε−1), W (Φ) ≤

W (Ψ ) ≤ 5D, P(Φ) = D (P(Ψ ) + W (Ψ ) + 1) ≲ D log(a2ε−1) and
(Φ) ≤ 1 ∨ B(Ψ ) ≤ 1. □

emma A.4 (Division). Let ε ∈ (0, 1) and a ∈ R≥1. There exists
network Φ : R → R with L(Φ) ≲ a4 log2(a/ε), W (Φ) ≤ 9,
(Φ) ≲ a4 log2(a/ε) and B(Φ) ≤ 1, so that

sup
∈

[
1
a ,a
]
⏐⏐⏐⏐Φ(t) −

1
t

⏐⏐⏐⏐ ≤ ε.

Proof. We follow the proof strategy of Telgarsky (2017, Lemma
.6) but combine it with part c) of Lemma 5.3. Set c =

1
a and

= ⌈a2 ln( 2a
ε
)⌉. First, we notice t−1

= c
∑

∞

i=1(1 − ct)i so cutting
the series at i = r results in the approximation error⏐⏐⏐⏐⏐1t − c

r∑
i=1

(1 − ct)i
⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐c
∞∑

i=r+1

(1 − ct)i
⏐⏐⏐⏐⏐ ≤

ε

2
.

ow let p(t) = c
∑r

i=1 z
i so that p(1 − ct) = c

∑r
i=1(1 − ct)i

nd notice that 0 ≤ 1 − ct ≤ 1 since t ∈ [a−1, a] and c = a−1.
sing part c) of Lemma 5.3, we can approximate p over [0, 1] to
ccuracy ε

2 with a network Ψ adhering to the dimension bounds
L(Ψ ) ≲ r log(1/ε) + r2 + r log(⌈c⌉), W (Ψ ) ≤ 9, P(Ψ ) ≲ L(Ψ ), and
417
B(Ψ ) ≤ 1. Therefore, we get for any t ∈ [a−1, a]⏐⏐⏐⏐1t − Ψ (1 − ct)
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐1t − p(1 − ct)
⏐⏐⏐⏐+ |p(1 − ct) − Ψ (1 − ct)|

≤
ε

2
+

ε

2
≤ ε.

We can simplify the bounds on L(Ψ ) and thus P(Ψ ) by recog-
nizing that r2 ≍ a4 log2(a/ε) dominates the terms r log(1/ε) and
r log(⌈c⌉). □

Lemma A.5 (L1-normalization). Let a ≥ 1, ε ∈ (0, 1
2 ). There exists

a ReLU network Φ : RD
→ RD with L(Φ) ≲ a4 log2

( a
ε

)
, W (Φ) ≲ D,

P(Φ) ≲ a4D log2
( a

ε

)
, and B(Φ) ≤ 1 such that

sup
1
a ≤∥x∥1≤a

Φ(x) −
x

∥x∥1


∞

≤ ε.

Proof. We combine four networks: a network realizing the
identity, a network realizing the 1-norm, a network realizing ap-
proximate division based on Lemma A.4, and a network realizing
approximate multiplication based on Lemma A.3. The identity
map IdD : RD

→ RD can be realized by a two-layer net Ψ (x) =

(x)+−(−x)+ and x ↦→ ∥x∥1 can be realize by a two-layer ReLU net
Θ(x) =

∑D
i=1 (xi)+ + (−xi)+. Furthermore, let Γ denote a ReLU

net approximating univariate division on [a−1, a] up to accuracy
ε
2a , whose existence has been shown in Lemma A.4, and let Ω

denote a ReLU net approximating (x, y) ↦→ yx on [−2a, 2a]D+1

to accuracy ε
2 . Then we set Φ(x) = Ω(Ψ (x), Γ (Θ(x))), which

satisfiesΦ(x) −
x

∥x∥1


∞

≤ ∥Ω(x, Γ (∥x∥1)) − xΓ (∥x∥1)∥∞

+

xΓ (∥x∥1) −
x

∥x∥1


∞

≤
ε

2
+ ∥x∥∞

ε

2a
≤

ε

2
+ ∥x∥1

ε

2a
≤ ε,

where we used ∥x∥1 ≤ a in the last inequality. To compute
the dimensions of Φ , first note that the composition rules in
Lemma 5.1 imply B(Γ ◦ Θ) = B(Γ ) ∨ B(Θ) ≤ 8 ∨ a−1 and

L(Γ ◦ Θ) = L(Θ) + L(Γ ) ≲ 2 + a2 log2
(a

ε

)
≲ a2 log2

(a
ε

)
,

W (Γ ◦ Θ) = max{W (Θ),W (Γ ), 2} ≤ 2D ∨ 16,

P(Γ ◦ Θ) = 2P(Γ ) + 2P(Θ) ≲ a2 log2
(a

ε

)
+ D.

Then, using linear combination and concatenation rules of ReLU
nets in Lemmas 5.1, 5.2 we obtain

L(Φ) = L(Ω) + L((Ψ (x), Γ ◦ Θ)) ≲ log
(
a2/ε

)
+ 2 ∨ a4 log2 (a/ε)

≲ a4 log2 (a/ε) ,

(Φ) = W (Ω) ∨ W ((Ψ (x), Γ ◦ Θ))
≤ 5D ∨ (4 + W (Ψ ) + W (Γ ◦ Θ)) ≲ D,

P(Φ) ≲ P(Ω) + P((Ψ (x), Γ ◦ Θ)) ≲ P(Ω) + P(Ψ ) + P(Γ ◦ Θ)
+ L(Γ ◦ Θ) + W (Ψ ) + W (Γ ◦ Θ)

≲ D log(a2ε−1) + D + a4 log2
(a

ε

)
≲ a4D log2

(a
ε

)
,

B(Φ) = B(Ω) ∨ B((Ψ , Γ ◦ Θ))
≤ max{1, B(Ψ ), B(Γ ), B(Θ)} ≤ 1. □

emma A.6. Let K ≥ 2. There exists a ReLU network ΦK :
K

→ R with L(ΦK ) ≤ 2⌈log2(K )⌉, W (ΦK ) ≤ 3⌈K/2⌉, P(ΦK ) ≤

1K⌈log2(K )⌉ and B(ΦK ) ≤ 1 such that ΦK (x) = mini∈[K ] xi.
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roof. Without loss of generality we assume K is even as we
can otherwise just replace x by repeating one of its arguments
without changing the bounds on the dimension of the network.
We proof the statement by induction. For K = 2 define a network

Φ2(x) = (x1)+ − (−x1)+ − (x1 − x2)+ = x1 − (x1 − x2)+ = x1 ∧x2.

Clearly, L(Φ2) = 2, W (Φ2) = 3, P(Φ2) = 7, and B(Φ2) = 1, which
proves the induction start. For the induction step (K − 1) → K
we assume the statement holds up to K − 1 and we set ΦK =

Φ K
2
(Φ2(x1, x2), . . . , Φ2(xK−1, xK )), which realizes minx∈[K ] xi. To

ompute the network complexity we use composition and par-
llelization rules from Lemmas 5.1, 5.2. This gives B(ΦK ) ≤ 1
nd

L(ΦK ) = L
(
Φ K

2

)
+ L(Φ2) = 2

⌈
log2

(
K
2

)⌉
+ 2

= 2 ⌈log2 (K ) − 1⌉ + 2 = 2 ⌈log2 (K )⌉ ,

(ΦK ) = max
{
W (Φ K

2
,W (Φ2, . . . , Φ2), K )

}
≤

K
2
W (Φ2) ≤ 3

K
2

,

P(ΦK ) = 2P
(
Φ K

2

)
+ 2P(Φ2, . . . , Φ2)

≤ 11K
⌈
log2

(
K
2

)⌉
+ K (P(Φ2) + W (Φ2) + 1)

≤ 11K ⌈log2 (K )⌉ − 11K + 11K . □

Remark A.7. The L∞-norm can be realized by a ReLU net due to
Lemma A.6 and the identity

∥x∥∞ = max
i∈[D]

|xi| = max
i∈[D]

(xi)++(−xi)+ = −min
i∈[D]

−((xi)++(−xi)+).
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