
1.  Introduction
In-situ stress measurements can provide important insights into stress states at global and localized scales, the 
geomechanical state of earthquake-hosting faults, shear traction on faults, and processes of stress accumulation 
and release on plate boundary faults. Such measurements also assist with understanding how crustal stresses 
relate to strain observed geodetically and geologically (e.g., Brodsky et al., 2017; T. B. Byrne et al., 2009; Magee 
& Zoback, 1993; Townend & Zoback, 2006; Warren-Smith et al., 2019; Zoback et al., 1987). Earthquake occur-
rence and many earthquake rupture characteristics are partly dependent on the shear to normal stress ratio, which 
is a function of the relative magnitude of in-situ principal stresses, the orientation of the fault plane with respect 
to the principal stresses, pore fluid pressure, and fault plane friction coefficients (Jaeger et al., 2007; Schellart & 
Rawlinson, 2013; Vavryčuk, 2015). Additionally, earthquakes can redistribute stress, leading to temporal changes 
in both shear and normal stress on adjacent fault planes and surrounding rocks either statically (a shift in the stress 
state from before to after the earthquake) or dynamically (oscillating stress changes that occur with the passage of 
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Plain Language Summary  Movement along faults at tectonic plate boundaries is driven by, and in 
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help to explain tectonic forces that cause faulting and build topography, how earthquakes are generated, and 
the influence of fluids and rock friction on earthquake occurrence. The Hikurangi Subduction Margin (HSM) 
is New Zealand's largest and most hazardous plate boundary fault, and exhibits a variety of deformation and 
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that variability in the stress orientations within the upper plate of HSM corresponds broadly to variations in 
plate boundary slip behavior, and also reflects observed patterns of contemporary surface deformation. We 
suggest that these shallow stress orientations encode information about subduction plate interface behavior.
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seismic waves) (e.g., Brodsky et al., 2017, 2020; Hardebeck, 2004; Hardebeck & Okada, 2018; Ma et al., 2005; 
Seeber & Armbruster, 2000; Stein, 1999).

The Hikurangi Subduction Margin (HSM), where the Pacific Plate subducts offshore the east coast of the North 
Island of New Zealand (Figure 1a; Wallace et al., 2004), experiences strong along-strike variations in megath-
rust slip behavior, ranging from deep interseismic locking (and stress accumulation) beneath the southern North 
Island, to episodic slow slip events (SSEs) and creep at the northern and central HSM (Figure 1b). Creep and 
shallow (<15 km depth) SSEs lasting for 2–3 weeks recur every 18–24 months offshore of the northern and 

Figure 1.  (a) Tectonic setting of East Coast of North Island, New Zealand. Fault traces from Barnes et al. (2010), Langridge et al. (2016), Mountjoy and Barnes (2011), 
and Pedley et al. (2010). Black arrows indicate the long-term motion between Pacific and Australian plate from Beavan et al. (2002). (b) Interseismic coupling based 
on campaign GPS velocities (1995–2008), shown in terms of coupling coefficient (Wallace, Beavan, et al., 2012). Orange and green shaded regions represent the 
cumulative slow slips in 2002 and 2012 (Wallace, Beavan, et al., 2012) and SSEs beneath the Kaimanawa ranges in 2006 and 2008 (Wallace, 2020; Wallace & Eberhart-
Phillips, 2013). (c) Map showing SHmax orientations from focal mechanisms (Townend et al., 2012) and shear wave splitting fast orientations (Illsley-Kemp et al., 2019). 
Boreholes are numbered 1: Makareo-1, 2: Kauhauroa-2, 3: Waitahora-1, 4: Kauhauroa-5, 5: Tuhara-1A, 6: Kereru -1, 7: Whakatu-1, 8: Ngapaeruru-1, 9: Te Mai-2, 10: 
Rauni-2, 11: Orui-1A, 12: Titihaoa-1, 13: Tawatawa-1, 14: U1519A, and 15: U1518B. Abbreviations: NIDFB, North Island Dextral Fault Belt; TVZ, Taupo Volcanic 
Zone.
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central HSM (Wallace, 2020; Wallace & Beavan, 2010, Figure 1b). Deep (>25 km), long-term (>1 year) slow slip 
events occur approximately every ∼5 years at the southern HSM (Wallace & Beavan, 2010), just down-dip of a 
portion of the plate interface that is strongly locked and accumulating stress likely to be released in a future great 
earthquake (Mw > 8.0). Despite the recognized importance of in-situ stress states along active subduction zones 
in understanding strain accumulation and release, few studies have been undertaken to directly measure in-situ 
stresses or their orientations in these settings (e.g., Brodsky et al., 2017; Chang et al., 2010; Hardebeck, 2015; 
Huffman et al., 2016; Huffman & Saffer, 2016; Lin et al., 2013, 2016, 2010; Malinverno et al., 2016; McNamara 
et al., 2021; Saffer et al., 2013; Sibson & Rowland, 2003), particularly where such large along-strike changes in 
slip behavior occur.

Analysis of earthquake focal mechanism solutions reveals that the maximum horizontal stress (SHmax) orientations 
(≤60 km depth) are NE-SW in the northern and central HSM and ENE-WSW orientation in the southern HSM 
(Figure 1c). These stress indicators are largely from earthquakes within the subducting slab, with most located at 
depths >25 km (Townend et al., 2012). In contrast, seismic anisotropy fast orientations (which are often assumed 
to be parallel to SHmax) determined from shear wave splitting methods that sample the upper ∼40 km (Figure 1c) 
suggest a dominant SHmax orientation of NE-SW for most of the HSM forearc, while the northern HSM forearc 
displays variable fast orientations, with a more dominant ENE-WSW inferred SHmax (Illsley-Kemp et al., 2019).

Shallow (<3 km) SHmax orientations have been determined from limited analysis of borehole image logs from 
boreholes drilled onshore and offshore along the HSM (Griffin, 2019; Griffin et al., 2021; Heidbach et al., 2018; 
Lawrence, 2018; McNamara et al., 2021). Analysis of borehole image data from four onshore boreholes show 
NE-SW to ENE-WSW SHmax orientations in the central HSM (Heidbach et al., 2018; Lawrence, 2018), and an 
E-W to NW-SE SHmax orientation is determined from three borehole image logs in the southern HSM (Grif-
fin, 2019; Griffin et al., 2021; Heidbach et al., 2018). Boreholes offshore the northern HSM drilled as part of the 
International Ocean Discovery Program (IODP) Expeditions 372 and 375 show an E-W SHmax orientation close to 
the Hikurangi trench, and an NW-SE SHmax orientation in the offshore forearc (McNamara et al., 2021), indicating 
strong variations in stress orientations across the forearc.

In this study, we provide a detailed analysis of shallow (<3 km) SHmax orientations from stress-induced borehole 
failures, and assess their variability within the upper plate of the HSM. We analyze six borehole image logs 
and oriented four-arm caliper logs (not previously used for stress orientation studies), and provide a reanalysis 
of the seven borehole image logs investigated in previous studies (Griffin, 2019; Griffin et al., 2021; Heidbach 
et al., 2018; Lawrence, 2018), with a focus on acquiring higher resolution measurements (length, width, orien-
tation) of induced borehole failures. We then discuss spatial variations in contemporary SHmax orientations and 
their relationship to far-field stresses and long-term patterns of tectonic deformation, and their potential links to 
along-strike variations in subduction megathrust slip behavior.

2.  Geological Setting
The Hikurangi Subduction Margin (HSM) lies along the Pacific-Australian plate boundary at the southern end 
of the Tonga-Kermadec-Hikurangi Trench, off the east coast of the North Island, New Zealand (Figure 1a). The 
Hikurangi Subduction Margin accommodates westward subduction of the Hikurangi Plateau (a Cretaceous large 
igneous province) beneath the continental crust of North Island at the Hikurangi Trough (B. W. Davy, 1992). The 
Hikurangi Plateau is ∼10–15 km thick and transitions to a more typical 5–7 km thick oceanic plate further north 
at the Kermadec Trench (B. Davy et al., 2008; B. W. Davy, 1992; Ghisetti et al., 2016; Mochizuki et al., 2019). 
The southern termination of the HSM is located somewhere beneath New Zealand's northeastern South Island, 
where oblique convergence is transferred to the Marlborough Fault System and Alpine Fault (Barnes et al., 1998; 
Little & Roberts, 1997).

Neogene to present tectonic deformation across the HSM is complex and includes contributions from shortening 
associated with subduction at the Hikurangi Trough, clockwise rotation of the East Coast forearc, strike-slip 
faulting along the North Island Dextral Fault Belt (NIDFB), and back-arc extension in the Taupo Volcanic Zone 
(TVZ) (Beanland & Haines, 1998; Wallace et al., 2004, Figure 1a). The East Coast forearc has rotated clock-
wise for at least the last few Myr at the rate of 3°–4°/Myr relative to the Australian plate (Nicol et al., 2007). 
This rotation results in back-arc rifting in the central North Island's Taupo Volcanic Zone (TVZ), transpres-
sion in the southern North Island, and creates a large along-strike change in convergence rate at the Hikurangi 
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Trough, from ∼20 mm/year in the south to ∼60 mm/year at the northern Hikurangi Trough (Wallace et al., 2004, 
Figure 1a). Wallace et al. (2004) suggest that an along-strike change from subduction of the large igneous prov-
ince (Hikurangi Plateau) at the Hikurangi Trough to normal oceanic crust along the Kermadec Trench exerts a 
torque on the forearc, producing clockwise rotation of the eastern North Island. Overall, relative motion between 
the Pacific and Australian plates occurs through this region at ∼40  mm/yr, and is oblique to the orientation 
of  the plate boundary. The oblique relative motion is partitioned into a margin-perpendicular component and a 
margin-parallel component. The margin-perpendicular component occurs along the Hikurangi subduction inter-
face and active upper-plate thrust faults within the accretionary wedge and overriding plate (Barnes et al., 1998; 
Nicol & Beavan,  2003). The margin-parallel component of Pacific-Australia relative plate motion is largely 
accommodated by a combination of right-lateral strike-slip in the North Island Dextral Fault Belt (NIDFB) and 
vertical-axis clockwise rotation of the North Island forearc (Beanland & Haines, 1998; Nicol et al., 2007; Wallace 
et al., 2004).

3.  Data and Methodology
We analyze borehole image logs acquired from 11 boreholes using a range of tools including; the Schlumberger 
Fullbore Formation Microimager (FMI™; Figure 2a) and Oil-Based Mud Imaging tool (OBMI™), Baker Atlas 
Simultaneous Acoustic and Resistivity Imager (STAR™), Tiger Energy Services Acoustic Formation Imag-
ing Technology (AFIT; Figure 2b), and two orientated four-arm caliper logs (Figure 2c). The tool types and 
their borehole wall coverage for each borehole are summarized in Table S1 in Supporting Information S1. Data 
processing and quality assessment are performed on all image logs, the details of which are documented in the 
supplementary material (Text S1 and S2 in Supporting Information S1).

From the borehole image logs, we identify stress-induced borehole failures, including borehole breakouts (BOs; 
Figures 2a and 2c), drilling-induced tensile fractures (DITFs), and petal-centerline fractures (PCFs; Figure 2b). 
BOs and DITFs are well-known indicators of horizontal in-situ stress orientations in vertical to semi-vertical 

Figure 2.  (a) Statically and dynamically normalized resistivity image log (Fullbore Formation Microimager) showing borehole breakouts and natural fractures in 
borehole Tuhara-1A, (b) Dynamically normalized travel time and amplitude images from an acoustic image log (Acoustic Formation Imaging Technology) acquired in 
Orui-1A borehole showing petal centerline fractures, natural fractures, and a fault (observable offset of other geological features across a natural fracture). (c) Plot of an 
oriented four-arm caliper log (C1-C3 and C2-C4) from borehole Kereru-1. The 10% tolerance of bit size (black line) is shown as a gray shaded zone, plotted next to pad 
1 azimuth and borehole orientation information showing caliper enlargement indicative of the presence of a borehole breakout.
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boreholes, under the common assumption that one of the principal stresses is vertical stress (Sv). BOs and DITFs 
develop parallel to the contemporary minimum (Shmin) and maximum (SHmax) horizontal stresses, respectively 
(Aadnoy & Bell, 1998; Bell, 2003; Bell & Gough, 1979). BOs and DITFs can also be used to determine SHmax 
orientations in boreholes deviated ≥20°, as long as corrections are applied to address the impact of vertical stress 
(Sv) on their development (Peška & Zoback, 1995).

BOs form as enlargements of the borehole diameter on opposite sides of the borehole wall where the circumfer-
ential hoop stress, induced by non-uniform horizontal principal stress magnitudes, is large enough to exceed the 
rock strength (Bell & Gough, 1979; Zoback, 2007). Borehole breakouts typically appear on resistivity image logs 
as a pair of wide, out-of-focus zones, conductive (in water-based mud; Figure 2a) or resistive (in oil-based mud, 
such as OBMI tool; King et al., 2010) zones. In acoustic televiewer logs, they appear as low amplitude and long 
travel time zones. In both types of logs, BOs are located ∼180° from each other around the circumference of the 
borehole wall. BOs often correlate with borehole enlargement and are associated with large caliper values as the 
result of the borehole failure (Figure 2c; Tingay et al., 2016). In this study we use these criteria to identify BOs 
from available image logs, only identifying features as BOs if there are two present at the same depth interval and 
they are oriented 180° ± 10° from each other around the borehole circumference.

Oriented four-arm caliper data are also used to infer the presence of BOs along boreholes. To reliably distinguish 
BOs from other non-stress related enlargements, such as keyseats and washouts, we apply the criteria presented 
by Reinecker et al. (2016). They recommend that all four-arm caliper data, borehole deviation and azimuth, and 
pad 1 azimuth must be controlled carefully to interpret borehole breakouts. The following criteria are considered: 
(a) one pair of caliper arms reads very close to the bit size while the opposite pair measures a larger diameter; (b) 
caliper differences must exceed the bit size by 10%; (c) rotation of the tool ceases in breakout zones; and (d) the 
enlargement zone must extend more than one meter vertically.

DITFs develop on the borehole wall where there is a significant difference between the two horizontal principal 
stress magnitudes and the local stress concentrations around the borehole wall lead to hoop stresses that overcome 
the tensile strength of the rock (C. Barton et al., 2009; Brudy & Zoback, 1999; Zoback, 2007). DITFs typically 
appear as narrow, conductive (on resistivity image logs) or low amplitude and longer travel time (on acoustic 
image logs) pairs, ∼180° from each other around the circumference of the borehole wall. DITFs are generally 
parallel or slightly inclined to the borehole axis in vertical to semi-vertical boreholes (C. A. Barton et al., 1998; 
Bell, 2003; Rajabi et al., 2016a, 2016b; Tingay et al., 2016). In this study, DITF selection criteria follows these 
considerations and only accepts pairs of DITFs located within the same depth interval that are 180° ± 10° from 
each other around the borehole circumference.

Here, all BOs and DITFs are reported as individual feature lengths and widths, such that a single BO or DITF 
measurement does not span a number of separate individual BOs or DITFs, similar to what has been done in 
previously analyzed image logs along the HSM (Griffin, 2019; Lawrence, 2018). This is an important aspect of 
quantifying induced features from borehole image logs because geological properties, such as varying strength 
associated with variably bedded lithologies, impact the development and growth (both width and length) of bore-
hole breakouts (Fellgett et al., 2019; Kingdon et al., 2016). It is also important to capture each induced feature 
individually for accurate statistical considerations of borehole stress orientations.

PCFs are induced fractures that form within the bedrock ahead of the drill bit in response to stress concentra-
tions at the bottom of the borehole during drilling and propagate inward toward the borehole (Davatzes & Hick-
man, 2010; Y. Li & Schmitt, 1998; Wenning et al., 2017). PCFs appear as conductive (resistivity image logs) 
or low amplitude (acoustic image logs) partial sinusoids that merge into discontinuous borehole axial centerline 
fractures (Figure 2b, Kulander et al., 1990). The average of the centerline fracture orientations or dip orientation 
of the partial sinusoids of a PCF is parallel to the orientation of Shmin (Davatzes & Hickman, 2010). In contrast 
to the DITFs, the centerline portions of PCFs are often less than 180° from each other around the circumference 
of the borehole wall. We identify PCFs when the entire structure (petal fracture and both centerline fractures) 
are visible on the image log, and where the centerline fractures do not fall into the criteria used for identifying 
DITFs (180° ± 10°).

The quantitative World Stress Map (WSM) quality ranking system (where A-quality data is a reliable indicator of 
regional stress orientations and E-quality is more likely representative of localized stress orientation) and circular 
statistical analysis is used here to provide quantified uncertainty for all reported stress orientations from borehole 



Journal of Geophysical Research: Solid Earth

BEHBOUDI ET AL.

10.1029/2021JB023641

6 of 19

image and oriented four-arm caliper logs (e.g., Heidbach et al., 2016). A detailed explanation of these calcula-
tions can be found in the supplementary material (Text S3 in Supporting Information S1). Borehole locations, 
image log intervals, mean SHmax orientation, standard deviation, and WSM quality classification based on the 
length-weighted method (Heidbach et al., 2016) for individual boreholes are summarized in Table 1 and Table 2.

4.  Results
4.1.  Central HSM (Hawke's Bay Region)

A total of 810 BOs with a combined length of 454 m are identified from borehole image and oriented four-
arm caliper logs acquired in Kauhauroa-2, Kauhauroa-5, Makareao-1, Tuhara-1A, Kereru-1, and Whakatu-1 
boreholes in the Central HSM region (Table 1; see Figure 1 for the borehole locations and names). Using only 
BOs from boreholes with B-C quality rankings (following the WSM criteria), and so more likely to represent 
far-field stress orientations, a dominant 155°/335° ± 10° orientation is observed, indicating a 155°/335° ± 10° 
(NW-SE) Shmin orientation, from which we infer an SHmax orientation of 065°/245° ± 10° (ENE-WSW) (Figure 3). 
The only exception is borehole Whakatu-1 (WSM D quality ranking), in the southeast area of the central HSM, 
which shows a dominant BO orientation of 054°/234° ± 13° (NE-SW), from which we infer a 144°/324° ± 13° 
(NW-SE) SHmax orientation (Table 1; Figure 3). One DITF pair is observed in borehole Kauhauroa-5 with a mean 

Borehole ID
Latitude 

(DD)
Longitude 

(DD)
Max borehole 
deviation (°)

Total depth 
(m MD)

Image interval 
(m MD)

Feature 
type Number

Mean SHmax 
(°)

S.D. 
(°)

Total 
length 

(m) Quality

Kauhauroa-2 −38.962592 177.407183 1.78 2138.5 1824.2–2138.5 BO 52 069°/249° 15 24 C

Kauhauroa-5 −38.936292 177.463518 2.57 1754.4 1277.1–1754.4 BO 260 052°/232° 16 75 B

DITF 1 020°/195° – 3.1 D

Makareo-1 −38.953047 177.348347 2.65 942.4 484.7–942.4 BO 140 058°/238° 20 60 B

Tuhara-1A −39.035152 177.544434 7.64 2276.9 1708–2151.2 BO 334 071°/251° 15 239 B

Kereru-1 −39.659492 176.43688 1 1938 1622–1920 BO 16 079°/259° 14 43 C

Whakatu-1 −39.620447 176.896152 1.53 1455 525–1400 BO 8 144°/324° 11 13 D

Note. Mean SHmax azimuths, standard deviations (S.D.), and data quality ranking are calculated according to World Stress Map conventions (Heidbach et al., 2016). 
Latitude and longitude are reported in decimal degrees (DD).

Table 1 
Stress Indicators From Analysis of Borehole Image Logs and Oriented Four-Arm Caliper Data in the Central HSM, New Zealand

Borehole ID
Latitude 

(DD)
Longitude 

(DD)
Max borehole 
deviation (°)

Total depth 
(m MD)

Image interval 
(m MD)

Feature 
type Number

Mean 
SHmax

S.D. 
(°)

Total 
length (m) Quality

Ngapaeruru-1 −40.24199 176.2999 11.2–17.78 1418.5 941.8–1418.5 BO 282 112°/292° 12 62 B

Ranui-2 a −40.942317 175.917819 8.1–25.4 1440.7 839–1130 BO 390 94°/274° 17 51 B

1130–1422.5 BO 145°/325° 16 49 B

Te Mai-2 −40.765984 176.194344 2.4 193.1 35–147.5 BO 2 109°/289° 8 0.5 D

Orui-1A −41.065181 176.087846 1.6 117.3 6.7–114.5 BO 4 155°/335° 11 0.4 D

PCF 1 125° – 0.8 C

DITF 1 133/295° – 0.2 D

Titihaoa-1 −40.799708 176.430936 2.3 2745.6 1983–2745.6 BO 14 152°/332° 10 7 D

Tawatawa-1 −40.659736 176.698303 2.9 1560 749–1539.2 BO 825 103°/283° 14 350 B

Note. Mean SHmax azimuths, standard deviations (S.D.), and data quality ranking are calculated according to World Stress Map conventions (Heidbach et al., 2016). 
Latitude and longitude are reported in decimal degrees (DD).
 aMeasured stress feature orientations are not corrected for borehole deviations ≥20°.

Table 2 
Stress Indicators From Analysis of Borehole Image Logs in the Southern HSM, New Zealand
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Figure 3.  Graph of breakout (BO) azimuths (red dots), drilling-induced tensile fractures azimuths (blue dots), and stratigraphy column against measured depth (m MD) 
for boreholes at the central Hikurangi Subduction Margin. Mean BO azimuths and the standard deviation for individual borehole are plotted in black and dashed gray 
lines respectively. Bi-directional rose diagram of breakout and SHmax orientations for each borehole is shown below BO panels.
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SHmax orientation of 020°/195° (NNE-SSW) (Figure 3). No BOs, DITFs, or PCFs are observed in Waitahora-1 
borehole from OBMI image log (this image log only provided ∼37% coverage of borehole wall) or from oriented 
four-arm caliper data.

4.2.  Southern HSM

A total of 1517 BOs with a combined length of 520 m are identified from borehole image logs in boreholes 
Ngapaeruru-1, Rauni-2, Titihaoa-1, Tawatawa-1, Te Mai-2, and Orui-1A (Table 2; see Figure 1 for the borehole 
locations and names). For borehole stress data with a WSM quality ranking of B (Ngapaeruru-1, Tawatawa-1, 
and Ranui-2) we observe an Shmin orientation of 022°/202° ± 20° from which we infer an SHmax orientation of 
112°/292° ± 20° (WNW- ESE) (Figure 4). An SHmax orientation of 140°/320° ± 22° (NW- SE) is observed from 
D-quality data (Table 2; Figure 4). Our reanalysis of BOs from borehole Ranui-2 suggests a 51° clockwise SHmax 
orientation rotation from E-W (094°/274° ± 17°) in the shallower imaged depth interval (842–1130 m MD) to 
NW-SE (145°/325° ± 16°) in the deeper imaged interval (1130–1422 m MD) (Table 2; Figure 4) that was first 
reported by Griffin (2019).

5.  Discussion
5.1.  Spatial Variation of Shallow SHmax Orientations

Our results show that contemporary SHmax orientations in the HSM upper plate change from 065°/245° ± 10° 
(ENE-WSW) along the central HSM to 112°/292° ± 20° (WNW- ESE) in the southern HSM (with a local SHmax 
orientation of 140°/320° ± 22° (NW-SE) from D-quality data) (Figure 5). The 065°/245° ± 10° borehole-derived 
SHmax orientation in the central HSM is rotated modestly (∼17°) anticlockwise with respect to the Pacific-Aus-
tralian plate motion (82°; Beavan et al., 2002). This implies that far-field plate boundary forces exerted at the 
HSM may be the primary control on the contemporary stress orientations within the upper plate in this region. In 
contrast, the 112°/292° ± 20° borehole-derived SHmax orientation in the southern HSM is rotated ∼30° clockwise 
(bearing ∼58° rotation from localized D-quality 140°/320° ± 22° SHmax orientations) relative to the Pacific-Aus-
tralian plate motion (Figure 5). This observed 47°–75° along-strike rotation in SHmax orientation may result from 
a number of possible influences, including (a) along-strike variations in subduction interface coupling behavior, 
(b) HSM forearc kinematics and long-term tectonic deformation, (c) lateral variations in basement topography 
along strike, or (d) regional changes in recent slips on local active faults, surface topography, and geomechanical 
stratigraphy along strike.

The spatial pattern of rotation in borehole-derived SHmax orientations along the HSM is consistent with the loca-
tion of changes in subduction interface coupling from north to south (Figures 1b and 5). In the northern and 
central HSM, the subduction interface is largely creeping and experiences shallow (<15  km), episodic slow 
slip events that extend offshore and possibly to the trench. At the southern HSM the plate interface is strongly 
interseismically coupled to ∼30 km depth, and is currently accumulating elastic strain in the surrounding crust 
(e.g., Wallace, 2020, Figure 1b). Accrual of elastic compressional strain and stress resulted from interseismic 
coupling in the southern HSM could impose a NW-SE component (parallel to the convergence direction between 
the Hikurangi forearc and subducting plate) to the approximately E-W Pacific-Australian plate motion. This may 
result in the observed WNW-ESE SHmax orientation (112°/292°–140°/320°) in the shallow upper plate.

The HSM experiences a dominantly compressional tectonic regime due to subduction; however rapid clockwise 
rotation of the forearc, which accommodates the margin-parallel component of oblique Pacific-Australian plate 
motion, results in significant tectonic transitions along strike (Nicol et al., 2007; Wallace et al., 2004). Deforma-
tion resulting from clockwise rotation of the Hikurangi forearc drives strike-slip and/or normal faulting within 
the onshore portion of the northern and central HSM, and transpressional faulting in the southern HSM (Figure 5, 
Fagereng & Ellis, 2009; Nicol et al., 2007; Wallace et al., 2004; Wallace, Fagereng, & Ellis, 2012). This variation 
in upper plate tectonic deformation along the HSM strike may explain our observed along-strike variation in 
SHmax orientations. If the NE-SW and/or ENE-WSW striking faults in the central HSM are strike-slip to normal 
faults, then the NE-SW SHmax orientation in the central HSM may reflect margin-normal extension. Similarly, 
WNW-ESE/NW-SE SHmax orientations are consistent with reverse to transpressional NE-SW/ENE-WSW striking 
faults in the southern HSM. Variation in tectonic deformation due to oblique plate convergence has been suggested 



Journal of Geophysical Research: Solid Earth

BEHBOUDI ET AL.

10.1029/2021JB023641

9 of 19

to explain SHmax orientation variations in the Nankai subduction zone (Chang et al., 2010; Lin et al., 2010; Tobin 
et al., 2009; Wu et al., 2012) and the Costa Rica margin (Malinverno et al., 2016).

Basement topographic variation, such as uplifted basement blocks or seamounts, can introduce gravity and density 
changes within the crust creating geomechanical inhomogeneities (e.g., Bassett et al., 2022; Chow et al., 2022). 
Such geomechanical inhomogeneities can add horizontal compressional stress around the uplifted basement 
margins and extensional stress above them, changing the stress orientations (Artyushkov,  1973; Bott,  1991; 

Figure 4.  Graph of breakout (BO) azimuths (red dots), drilling-induced tensile fractures azimuths (blue dots), and stratigraphy column against measured depth (m MD) 
for boreholes at the southern Hikurangi Subduction Margin . Mean BO azimuths and the standard deviation for individual borehole are plotted in black and dashed gray 
lines respectively. Bi-directional rose diagram of breakout and SHmax orientations for each borehole is shown below BO panels.
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Figure 5.  Map of SHmax at the East Coast of North Island determined from borehole breakouts in (green bowties). International Ocean Discovery Program borehole-
derived SHmax orientations are from McNamara et al. (2021). Active faults traces from Barnes et al. (2010), Langridge et al. (2016), Litchfield et al. (2014), Mountjoy 
and Barnes (2011), and Pedley et al. (2010). The bold black line shows the Hikurangi Trough. Black arrows indicate the relative convergence vector between the Pacific 
and Australian Plates from Beavan et al. (2002). Abbreviations: NIDFB, North Island Dextral Fault Belt; TVZ, Taupo Volcanic Zone.
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Enever et al., 1999; Gale et al., 1984; Rajabi et al., 2016a; Ruh et al., 2016; Sun et al., 2020). This may partly 
produce our observed SHmax rotation. For example, the SEEBASE™ depth to basement model of New Zealand 
(Figure 6a; FROGTECH, 2013) shows that the central HSM basement is deeper (∼9–15 km) than the southern 
HSM basement (<5  km) (Figure  6a). Most southern HSM borehole-derived SHmax orientation measurements 
are located on basement topographic highs while the central HSM measurements are located in areas where the 
basement is deep. Furthermore, localized basement highs can be observed within the central HSM (Figure 6a). 
Two of the central HSM borehole-derived SHmax measurements (boreholes 4 and 5 in Figure 6a) are located close 
to the margins of these basement highs and as such their orientation may be influenced by them. However, as 
these SHmax orientations align with other measurements made away from these basement topographic features, we 
consider this to be unlikely.

Linked to the central to southern change in basement topography are surface topography (Figure 6b) and geome-
chanical heterogeneities introduced by variations in rock and sediment physical properties, both of which can 
influence SHmax orientations. The variable basement topography means surface topography is more pronounced 
in the southern HSM than the central HSM (Figure  6b). This may influence SHmax orientations in shallow 
depth  intervals (<500  m below sea level) such as boreholes Te Mai-2 and Orui-1A (boreholes 8 and 10 in 
Figure 6b). However, given that the borehole breakouts used to measure SHmax orientations from this region are 
mostly located at depths 600–2700 m below sea level, we infer that surface topography is not a primary factor 
controlling the observed SHmax rotation. Finally, due to basement uplift in the southern HSM, borehole breakouts 
are measured in a wider variety of lithologies (Miocene to Cretaceous sediments) than in the northern HSM 
(dominantly Miocene sediments). If the wider ranges of lithologies in the southern HSM are geomechanically 

Figure 6.  (a) Map showing depth to basement of North Island adapted from FROGTECH (2013), and borehole-derived SHmax orientations (yellow bowties). SHmax 
orientation is rotated in front of the basement uplift in the central Hikurangi Subduction Margin. Black arrows indicate the long-term motion between Pacific and 
Australian Plates from Beavan et al. (2002). (b) Map showing digital elevation model (FROGTECH, 2013) which indicates the elevation of neotectonic and active 
geological structures.
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different from those in the central HSM, this lateral heterogeneity in mechanical rock properties could in part be 
responsible for the SHmax rotation.

Recent slips on active faults are also known to reorient stress, creating variations in SHmax orientations both 
along the region and with depth (e.g., D. Li et al., 2018; Provost & Houston, 2001; Rice, 1992). However, it 
cannot feasibly explain the large-scale SHmax orientation rotation observed along the HSM strike, beyond what has 
already been discussed with respect to deformation style changing from strike-slip/normal faulting in the central 
HSM, to the dominantly reverse and transpressional faulting in the southern HSM. However, recent faulting 
may explain some of the localized SHmax rotations observed within the central and southern HSM regions. For 
instance, at borehole Whakatu-1 (boreholes 6 in Figure 5) a 144°/324° ± 11° (NW-SE) SHmax orientation is noted, 
which is rotated 𝐴𝐴 ∼ 80° from the dominant 065°/245° ± 10° SHmax orientation in the central HSM (Figure 5). The 
NW-SE SHmax orientation in Whakatu-1 is perpendicular to the HSM margin and to observed active, NNE-SSW 
striking reverse faults in this region (Figure 5, Hull, 1987; Langridge et al., 2016; Litchfield et al., 2014). Simi-
larly, Griffin (2019) suggests the activity of nearby faults as the cause of the observed SHmax rotation along depth 
in borehole Ranui-2.

5.2.  Shallow SHmax Orientations and Maximum Contraction Directions

Geodetic measurements over the last 25 years have been used to determine New Zealand's contemporary surface 
strain field (Dimitrova et  al.,  2016; Haines & Wallace,  2020). Maximum contraction directions change from 
dominantly E-W in the northern central HSM (Hawke's Bay region), to a mix of both NE-SW and WNW-ESE 
in the southern central HSM, to WNW-ESE and NW-SE directions in the southern HSM (Figure 7a, Haines 
& Wallace, 2020). The majority of SHmax orientations are within 40° of GPS maximum contraction directions 
(Figure 7b), indicating that the two datasets are broadly compatible, although there is one outlier with a misalign-
ment of ∼57° (borehole 6 in Figure 7b). The broad agreement between shallow SHmax orientations and geodetic 
maximum contraction directions may suggest that stress orientations in the upper plate are influenced by elastic 
strain arising from interseismic coupling on the Hikurangi subduction interface.

The observed variable misalignment of maximum contraction directions and SHmax orientations (Figure 7b) may 
reflect variations in the shallow SHmax orientations (as explained in 5.1) or temporal changes in stress orientation 
at the HSM. This is unlikely for the HSM as the borehole data and GPS measurements were collected within the 
same time period, 1994–2013 and 1995–2013, respectively. Similar widespread stress-strain direction misalign-
ment is also noted at the Nankai and Cascadia subduction zones (e.g., Townend & Zoback, 2006; Wang, 2000; 
Wang et  al., 1995). Wang  (2000) explains the misalignment of maximum contraction directions with respect 
to SHmax as a result of geodetic strain signals reflecting temporal changes in the stress state associated with the 
subduction earthquake cycle. Townend and Zoback (2006) explained this mismatch in SW Japan by showing that 
the stress orientations determined from focal mechanisms within the upper plate are more strongly influenced by 
long-term tectonic processes (convergence between northeastern Honshu and Amuria plate), while the geodetic 
strain orientations are dominated by interseismic strain accumulation between large earthquakes. This could 
certainly be the case at HSM, although observed differences between stress orientations and maximum contrac-
tion directions are not as dissimilar as those reported for the SW Japan case, making it difficult to disentangle 
the influence of long-term plate motion versus earthquake cycle processes on the HSM upper plate stress field.

5.3.  Variation of SHmax Orientations With Depth

Townend et al. (2012) derived SHmax orientations from earthquake focal mechanisms (≤60 km depth) between 
2004 and 2011, and observed an average SHmax orientation of 060°/240° 𝐴𝐴 ± 17° for the central HSM, and 066°/246° 

𝐴𝐴 ± 22° for the southern HSM (Figure 8a; calculation of average SHmax orientation is explained in supplementary 
material (Text S3 in Supporting Information S1)). Comparing focal mechanism-derived to borehole-derived SHmax 
orientations shows that in the central HSM they are closely aligned (borehole: 065°/245° ± 10°; focal mechanism: 
60°/240° 𝐴𝐴 ±  17°). In contrast, the southern HSM shows an apparent stress field rotation of 46°–74° with depth 
(borehole SHmax: 112°/292° ± 20°–140°/320° ± 22°; focal mechanism SHmax 66°/246° 𝐴𝐴 ±  22°) (Figure 8b). Only 
one compressional focal mechanism SHmax orientation (149°/329° ± 33°) in the southern HSM (latitude 40.5°S), 
located at ∼25 km depth (near the subduction interface), aligns with the borehole-derived SHmax orientations for 
the southern HSM (112°/292° ± 20°–140°/320° ± 22°) (Figures 8a and 8b).
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Stress rotations with depth can be generated by a number of mechanisms, including (a) topography, (b) shallow 
fault activity, and (c) mechanical anisotropy or heterogeneity. Topography is ruled out as the majority of bore-
hole breakouts come from depths deeper than the amplitude of local topography. Active faulting in the shallow 
crust has been used to explain SHmax orientation rotation with depth at the borehole scale in the southern HSM 

Figure 7.  (a) Map of maximum contraction directions from GPS data (Haines & Wallace, 2020) and borehole-derived SHmax orientations. International Ocean 
Discovery Program borehole-derived SHmax orientations are from McNamara et al. (2021). (b) Absolute azimuthal difference between maximum contraction directions 
and borehole-derived SHmax orientations at borehole locations.
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Figure 8.  (a) Map of SHmax orientations from focal mechanisms (0–60 km; Townend et al., 2012), seismic anisotropy measurements from shear wave splitting 
(0–40 km; Illsley-Kemp et al., 2019), and borehole-derived SHmax orientations (green bowties). International Ocean Discovery Program borehole-derived SHmax 
orientations are from McNamara et al. (2021). Dashed blue lines show depth of subduction interface from sea level (Williams et al., 2013). (b) The graph showing 
variation of borehole-derived SHmax orientations with respect to Pacific-Australian plate (PP-AP) motion along Hikurangi Subduction Margin (HSM) strike and with 
depth in the southern HSM.
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(Ranui-2; Griffin, 2019). Faults in the region are both reverse and strike-slip, and predominantly striking NE-SW 
to ENE-WSW (Langridge et al., 2016; Litchfield et al., 2014). Slip on these shallow reverse faults may rotate the 
SHmax into the observed NW-SE orientations recorded from borehole data here, while the overall subduction SHmax 
at depth remains in a NE-SW orientation driven by relative plate motion. High fluid pressure can also encourage 
slip on deeper faults, although in the southern HSM, magnetotelluric data (Heise et al., 2019), seismic tomogra-
phy studies (Bassett et al., 2014; Eberhart-Phillips et al., 2017), and borehole analysis (except for offshore bore-
holes Titiahoa-1 and Tawatawa-1; Burgreen-Chan et al., 2016; Darby & Funnell, 2001) do not provide evidence 
for elevated fluid content or pressure.

Considering borehole-derived WNW-ESE/NW-SE SHmax orientations and focal-mechanism derived NW-SE 
SHmax orientation, located at ∼25 km depth, the rotation in the SHmax orientation may occur across the plate inter-
face. In this case, the hanging wall would be mechanically decoupled from the subducting plate, generating the 
observed rotation in SHmax above (from borehole data) and below it (from focal mechanism data). Such decou-
pling may imply a low shear stress on the plate interface. Mechanical decoupling has been suggested to occur on 
subduction plate interfaces elsewhere, though these findings often show principal stresses changing from vertical 
to horizontal, not a rotation in the horizontal stress orientation as observed here (T. Byrne & Fisher, 1990; Flem-
ings & Saffer, 2018). Further information on the likely strength of the plate interface is required to investigate this 
theory. Linking the idea of weak faults creating geomechanical heterogeneities and the activity of shallow faults 
together may provide a further explanation for the shallow SHmax in the southern HSM.

More recently, Illsley-Kemp et al. (2019) measured seismic anisotropy using shear wave splitting fast orientations 
from earthquake data based on the assumption that they align to SHmax orientation if other significant crustal aniso-
tropies are not present (e.g., fracturing, faulting, grain, and crustal preferred orientations) (Araragi et al., 2015; 
Boness & Zoback, 2006; Johnson et al., 2011; Pastori et al., 2019; Yang et al., 2011; Zinke & Zoback, 2000). 
Illsley-Kemp et al. (2019) report a dominant NE-SW (030°–060°) SHmax orientation for the Hikurangi forearc, 
with some areas showing a more ENE-WSW orientation (060°–090°), such as the Hawke's Bay area. In compar-
ison to borehole-derived SHmax orientations presented here (Figure 8a), the two datasets agree in the central HSM 
shallow crust but not in the southern HSM, with a NE-SW shear-wave splitting and a borehole-derived SHmax 
of NW-SE. Illsley-Kemp et al. (2019) report that their data is generated from a depth range of 0–40 km which 
at the Hikurangi forearc captures the upper plate, the plate interface, and the subducting plate. The discrepancy 
between the two SHmax orientations is thus likely due to (a) the shear wave splitting-derived data are sampling the 
subducting plate stress field, which seems likely as those directions broadly match focal-mechanisms subducting 
plate SHmax orientation (Figure 8a), (b) the borehole-derived SHmax orientations are only consistent for the upper 
few km of the upper plate crust, or (c) the fast directions are controlled by NE-SW striking faulting in the region, 
which is suggested to be the case by Illsley-Kemp et al. (2019) or other crustal anisotropies.

6.  Conclusions
This paper presents a comprehensive analysis of contemporary SHmax orientations from borehole data along the 
HSM, and discusses stress field orientation variability within the context of variable tectonics and slip behavior 
of this subduction margin. SHmax orientations in the central HSM are predominately 065°/245°, which rotates to 
a dominantly 112°/292° ± 20° SHmax orientation in the southern HSM. Our borehole-derived SHmax orientations 
vary along the HSM suggesting that the observed stress orientations are likely caused by along-strike variation in 
interseismic coupling behavior of the Hikurangi subduction interface. The long-term tectonic deformation arising 
from rapid rotation of the Hikurangi forearc, causing reverse faulting and strike-slip in the southern part of the 
margin and a combination of extension and strike-slip in the northern and central margin, may in part cause the 
along-strike variations in observed stress orientations. The basement uplifts may also be at play in influencing 
the  along-strike variations in observed stress orientations by imposing a horizontal compressional stress compo-
nent near the uplifted margin, introducing surface topography and geomechanical heterogeneities. However, the 
extent to which basement topography may change SHmax orientation along the HSM requires further data and 
modeling. SHmax orientations measured from boreholes are mostly within 40° of maximum contraction directions, 
suggesting that the observed stress orientations could be influenced by elastic strain arising from interseismic 
coupling on the subduction interface. In the southern HSM, borehole-derived SHmax orientations are 46°–74° to 
SHmax orientations derived from focal mechanism solutions in the subducting plate, implying that the shallow 
upper plate is mechanically decoupled from the slab, potentially reflecting low shear strength along the plate 
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interface. Further interpretation of HSM stress state could be achieved by constraining stress magnitudes, which 
will be the focus of future studies.

Data Availability Statement
This research used data provided by the New Zealand Petroleum and Minerals group (NZPM) within the Ministry 
for Business, Innovation and Employment (MBIE). The borehole image logs and oriented four-arm caliper data 
used in this paper can accessed through MBIE's online free database (https://data.nzpam.govt.nz/GOLD/system/
mainframe.asp). All additional data used in this article were collected from published sources referenced in the 
text. Borehole breakout measurements presented in this study can be accessed at https://github.com/Behboud-
iEffatGeo/StressCharacterization_HSM.git and https://doi.org/10.5281/zenodo.6402741 (Behboudi et al., 2022).
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