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Subduction zone earthquakes and their cascading con-
sequences result in some of the most devastating natu-
ral hazards on Earth. In particular, earthquakes larger 
than a moment magnitude, M (Box 1), of 8.0 (termed 
‘great earthquakes’) produce such a vast energy release 
that they can cause severe damage in areas several hun-
dreds of kilometres across. For example, the catastrophic 
earthquakes in Japan (2011) and Indonesia (2004) col-
lectively caused more than 250,000 fatalities and more 
than US$210 billion in economic damage, combined1–3. 
Mitigating this risk in the future requires improved 
infrastructure and emergency response, which in turn 
necessitates a better understanding of the geohazards 
posed by great earthquakes.

Great earthquakes most commonly occur at conver-
gent plate boundaries, where two tectonic plates con-
verge and one is subducted beneath the other along a 
megathrust fault boundary. During the interseismic 
period between earthquakes the tectonic plates can 
become frictionally locked together, resulting in an accu-
mulation of stress owing to tectonic loading4. Over time, 
sufficient stress accumulates along the subduction inter-
face, until it eventually exceeds the strength of the fault 
and is released as seismic energy during an earthquake.

Numerous hazards are associated with the remarkable 
size of M ≥ 8 events. Great megathrust earthquakes can 
produce violent ground motions and cascading hazards 

such as landslides, coastal land-level change and lique-
faction, as witnessed in the 2010 M8.8 Maule and 2011 
M9.1 Tohoku earthquakes5–7. Tsunamis are typically gen-
erated by earthquakes that rupture the shallow, offshore 
portion of the megathrust fault. Greater displacement of 
the seafloor contributes to larger tsunamis resulting in 
considerable loss of life and infrastructure damage, such 
as the more than 200,000 fatalities during the 2004 M9.1 
Sumatra–Andaman earthquake and tsunami8,9.

Knowledge of subduction zone earthquake pro-
cesses is currently observation-limited. Although most 
global subduction zones host large earthquakes, the 
largest events are fortunately rare on human timescales. 
However, their rarity limits statistically significant obser-
vations of great earthquake occurrence and associated 
hazards. Despite these observational limitations, there 
have been substantial advances in understanding great 
megathrust earthquakes since the early twenty-first 
century, owing to increases in data density and quality. 
Notably, the 2011 M9.1 Tohoku, Japan event occurred 
in a densely instrumented region and was exceptionally 
well recorded both onshore and offshore in the near field 
(<500 km). These observations improved our ability to 
image and understand the potential for large (>60 m) 
amounts of shallow slip, and its relationship to cata-
strophic tsunamis10. The 2004 M9.1 Sumatra–Andaman 
earthquake was not as well-instrumented locally, yet is 
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another example of a big event with modern recordings. 
It ruptured an unprecedented length (1,300 km) of the 
megathrust fault zone.

The development of seafloor geodetic methods and 
the integration of geological, seismological and geo-
detic observations have brought a wave of new infer-
ences regarding large earthquake source processes. For 
example, integration of studies before and after the 2011 
Tohoku earthquake elucidated relationships between 
megathrust frictional properties, seismicity and slip11. As 
a result of such synergistic works, the spectrum of defor-
mation styles occurring throughout the seismic cycle has 
been further illuminated. Together, these advances have 
underscored the complexity of properties along the  
plate interface and their relationship to megathrust 
earthquake behaviour.

In this Review, we discuss the conditions required 
to generate great megathrust earthquakes and the char-
acteristics of subduction systems that have previously 
hosted these earthquakes. In particular, we focus on 
advances since the 2010 M8.8 Maule, Chile and 2011 
M9.1 Tohoku, Japan earthquakes. We also discuss the 
earthquake rupture parameters (for example, downdip 
extent, rupture speed, strong motion-generating areas, 
tsunami generation) that most heavily impact hazard, 
and how they might be related to subduction system 
characteristics. Finally, we highlight some of the key 

uncertainties currently limiting probabilistic seismic and 
tsunami hazard models in subduction zones and suggest 
priorities for future research.

The occurrence of great earthquakes
Based on both short instrumental and longer geo-
logic records, great earthquakes (M ≥ 8.0) seem to be 
observed with regularity only at certain subduction 
zones, such as in Japan, Alaska, Cascadia, South America 
and Indonesia (Fig. 1). Since 1960, only four giant earth-
quakes (M ≥ 9.0) have occurred globally12, posing scien-
tific challenges in relating their occurrence and rupture 
characteristics to subduction zone parameters. These 
great and giant earthquakes often generate sizable tsu-
namis, with the maximum tsunami water height dictated 
by the extent to which the seafloor deforms, the local 
bathymetry and the presence of submarine ground fail-
ures. In the case of some giant earthquakes, maximum 
tsunami wave heights have exceeded 30 m (ref.13).

The seismic cycle
During the time between large subduction thrust earth-
quakes, the subducting and overriding tectonic plates can 
be partially locked or fully locked together, accumulating 
stresses that will ultimately be released in future seismic 
events. Geodetic techniques can be used to measure the 
accumulation of elastic strain in Earth’s crust, and to 
resolve the location and extent to which plates are locked 
together and accumulating stress14. In some large subduc-
tion earthquakes, the ruptured portions of the megathrust 
generally coincided with regions where the interface was 
locked prior to the earthquake15–18, suggesting that the 
distribution of interseismic locking might provide a use-
ful guide to anticipate the locations of future ruptures15. 
However, geodetic measurements of contemporary inter-
seismic locking largely only date back to approximately the 
1990s, and therefore do not allow assessment of possible 
spatio-temporal variability over multiple seismic cycles.

Although the relationship between locations of 
interseismic locking and slip during great earthquakes 
is generally accurate for some megathrust earthquakes, 
this conceptualized model does not capture the complex 
spatio-temporal patterns observed in great earthquake 
behaviour over multiple seismic cycles. Global instru-
mental and geologic observations suggest that some 
subduction zones exhibit a seismic cycle with simple 
quasi-periodic behaviour19,20. Others demonstrate substan-
tial variability in earthquake magnitude, rupture area and 
recurrence interval between events in the same region21,22.

Megathrust sections that are known or thought  
to have previously produced great earthquakes, but 
which have not done so for a considerable period, are 
also observed. These ‘seismic gaps’ might delineate por-
tions of the megathrust that are likely to rupture as great 
earthquakes in the future12,23. As an example, the 2010 
M8.8 Maule, Chile event occurred in a known seismic 
gap, where a similar earthquake last occurred in 1835 
(Fig. 1). The Maule event ruptured a seismic gap between 
the 1960 M9.5 Valdivia earthquake to the south and a 
1928 M8.0 earthquake to the north, while also partially 
or fully overlapping with the rupture areas of both the 
1960 and 1928 events, respectively24–26.

Key points

•	Numerous hazards are associated with the remarkable size of moment magnitude 
M ≥ 8 megathrust earthquakes, such as landslides, coastal land-level change, 
liquefaction and tsunamis.

•	Understanding the likelihood of subduction zone earthquake occurrence and their 
rupture physics is crucial to creating probabilistic hazard assessments and to mitigating 
future risks.

•	Seismic and geodetic instrumentation combined with advanced modelling 
techniques have brought about notable advances in understanding great subduction 
zone earthquakes, unveiling more about the source processes of great earthquakes, 
and the structure and state of stress in subduction zones.

•	Improved data sets and additional observations of great earthquakes have refocused 
attention on a more diverse range of subduction zone properties and processes 
required for great earthquakes to occur, but still lack the statistical significance required 
to make broad claims about where and when great subduction zone earthquakes are 
likely to occur.

•	Great earthquakes occur infrequently; improving characterizations of great megathrust 
earthquake occurrence for probabilistic seismic hazard assessments will require 
additional geologic and geophysical observations and constraints, as well as numerical 
models.

Box 1 | Seismic moment

Earthquake moment magnitude M is a logarithmic 
representation of an earthquake’s seismic moment, or 
total energy release of an earthquake. The seismic 
moment of an earthquake (M0) is defined as M0 = µ × A × D. 
Assuming that the average shear modulus (µ) is relatively 
similar across global subduction zones, seismic moment 
is primarily a function of rupture area (A), controlled by 
fault width and length, and the amount of slip (D). Note 
that some scaling relationships suggest the fault width 
saturates for very large-magnitude events190,191.

Seismic cycle
A repetitive process during 
which tectonic stress on a  
fault builds up over time  
and then is rapidly released 
during (coseismic) and after 
(post-seismic) an earthquake.

Partially locked
When a fault is slipping at 
some rate between zero and 
the long-term relative plate 
motion rate.

Fully locked
When a fault releases zero slip 
during the interseismic period.

Quasi-periodic behaviour
Earthquake recurrence that 
exhibits simple, nearly periodic 
recurrence intervals between 
earthquakes.

www.nature.com/natrevearthenviron

Rev iews

126 | February 2022 | volume 3	



0123456789();: 

The seismic gap model is, however, sometimes 
contested on the basis of insufficient observations for 
statistically significant tests27,28. As with many of the 
descriptive models reviewed here, exceptions might be 
present, and fully utilizing seismic gap theory requires 
knowledge of historical ruptures and spatio-temporal 
variability in locking29, which is often not available.

Depth-varying frictional properties
In addition to exhibiting spatio-temporal variability, great 
earthquakes demonstrate a large range of behaviours in 
their rupture physics. Great earthquakes nucleate within 

the seismogenic zone, the portion of the megathrust 
where fault rocks exhibit velocity-weakening behaviour, 
thus promoting earthquake nucleation and rupture30,31. 
Conditionally stable regions can exist both updip and down-
dip of the seismogenic zone, as well as within distributed 
patches throughout the seismogenic zone itself, and are 
typically the site of slow slip events (SSEs)32. Generally, such 
conditionally stable regions straddle the frictional tran-
sition from velocity-weakening to velocity-strengthening. 
However, dynamic rupture can induce stress changes that 
allow slip to occur in these conditionally stable regions 
during an earthquake33. As temperatures increase with 

a

d e

c
b

Tsunami maximum
water height (m)

b

d e

c

0 10 20 30

140° E

90° E 100° E

160° W

60° N

50° N

40° N

30° N

20° N

10° N

10° S

20° S

30° S

40° S

50° S

0°

180° 140° W 120° W 100° W

70° W80° W90° W100° W

50° N

40° N

30° N

20° N

10° N

10° S

0°

160° E

1952 M9.0
Kamchatka

1737 M9.0

1963 M8.5
Kuril Islands

2011 M9.1
Tohoku

1762 M8.8
Arakan

2004 M9.1
Sumatra–
Andaman

2005 M8.6 Nias
1861 M8.5

1797 M8.6

1833 M8.8

1707 M8.7 Hoei

1787 M8.6 Mexico

1906 M8.8
Ecuador–Colombia

1746 M9.0

1730 M9.0

1751 M8.5

2010 M8.8 Maule

1575 M9.0

1960 M9.5 Valdivia

1687 M8.7

1604 M8.7
1868 M8.8

1877 M8.8

1922 M8.5 Atacama

1700 M9
Cascadia

1964
M9.2
Alaska

1946 M8.6
Unimak
Island

1957 M8.6
Andreanof

Islands

1965 M8.7
Rat Islands

110° E

Fig. 1 | Map of recorded and historical M ≥ 8.5 megathrust earthquakes. 
a | Global map showing locations of panels b–e. b | Japan–Kuril–Kamchatka 
subduction margin. c | Aleutian–Cascadia and Mexican subduction zones. 
d | Andaman–Sumatra–Java margin. e | South American margin. Historical 
earthquakes (pre 1906) were required to be robustly constrained by 
published historical and/or geological evidence. Associated rupture areas 
and moment magnitudes (M) should be considered approximate. Historical 
earthquakes with rupture areas similar to instrumentally well-constrained 
earthquakes are shown as dashed outlines. Earthquakes are colour-coded 
based on the maximum water height of their associated tsunami from the 

NOAA Global Historical Tsunami Database (https://www.ngdc.noaa.gov/
hazard/tsu_db.shtml). Tsunami heights are influenced by the earthquake 
source, and also by local bathymetry and ground failures. Earthquakes that 
generated local tsunamis of unknown height are shaded grey. Rupture areas 
are from refs96,174–182 and references therein. Additional information 
regarding these earthquakes is provided in Supplementary Note 1. This 
representation of recorded and historical ruptures illustrates the locations 
where great earthquakes are either absent or there is a lack of sufficient 
evidence for past ruptures, and underscores the prolificness of other 
subduction zones in generating great earthquakes.

Seismogenic zone
The region of the megathrust 
fault capable of generating 
earthquakes.

Velocity-weakening
When a fault exhibits a 
decrease in frictional strength 
with increased sliding velocity, 
promoting earthquake rupture. 
Velocity weakening friction is a 
prerequisite for the nucleation 
of unstable (seismic) slip.
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depth along the megathrust, ductile behaviour eventu-
ally dominates the system, leading to steady, aseismic slip 
(creep) below the seismogenic and slow slip zones32. The 
location of the seismogenic zone is governed, in part, by 
frictional and thermal properties, so each subduction 
zone’s seismogenic region is expected to vary based on its 
geometry, age, kinematics and composition.

Depth-varying slip behaviour
The megathrust has previously been conceptu-
ally divided into depth-varying slip domains that 
broadly explain earthquake and seismogenic zone 
characteristics32,34,35.

The shallowest, updip domain is thought to extend 
from approximately the trench to <15 km depth and is cap
able of either aseismic or coseismic deformation (Fig. 2).  

This updip region is characterized by weak, low-rigidity 
materials and fluid-rich rocks with primarily velocity- 
strengthening and/or conditionally stable frictional 
properties36,37, and is rarely the site of great earthquake 
nucleation. Large coseismic slip in the updip domain 
is usually (but not always) a consequence of energetic 
events originating in the seismogenic zone below. The 
physical properties of updip regions result in inefficient 
seismic radiation that produces low levels of ground 
shaking onshore, such as during the 2010 M7.8 Mentawai 
earthquake38,39 (Fig. 2). When coseismic slip in this updip 
region vertically displaces the seafloor, it can perturb the 
overriding water column and lead to tsunami generation. 
Tsunami earthquakes are earthquakes occurring in the 
updip region that produce tsunamis substantially larger 
than expected based on their magnitude40,41; for example, 
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Fig. 2 | Subduction zone structures, behaviour and their relationship to 
hazard. a | Geometry, roughness and sediment thickness on the incoming 
plate can impact earthquake occurrence. Rupture of the shallowest (less 
than ~15 km), updip portion of the megathrust and splay faults is important 
for tsunamigenesis. Events occurring solely in this region (tsunami 
earthquakes) can rupture with high amounts of slip, yet are depleted in 
high-frequency energy (Mentawai event). Seismogenic zone events at 
intermediate depths (~15–35 km) tend to produce earthquakes with 
higher-frequency energy (for example, the Iquique aftershock), with deeper 
events and asperities producing higher stress drops and high-frequency 
radiation (for example, the Miyagi event). These relatively higher frequencies 
can be seen in example normalized event waveforms and spectra in  

panels b and c. Seismogenic zone event acceleration waveforms (panel b) 
and spectra (panel c) from the 2010 moment magnitude M7.8 Mentawai 
(yellow), 2014 M7.6 Iquique aftershock (pink) and 2005 M7.2 Miyagi (purple) 
events. d | Displacement waveform from a 2012 downdip slow slip event 
(SSE) in Cascadia (blue). Vertical dashed line on the spectra in panel c 
indicates the location where the Iquique aftershock becomes depleted in 
higher-frequency energy, whereas the Miyagi event remains enriched. At a 
range of depths, subduction zones can exhibit transitional domains that host 
episodic SSEs. Waveforms and their acceleration spectra are normalized 
from stations at approximately the same hypocentral distance and, except 
for the SSE, are from ref.39. Shaking and seismic hazards are intimately linked 
to subduction zone architecture and slip behaviour.

Conditionally stable
When a fault exhibits frictional 
stability under static loading 
conditions but could become 
unstable (seismic) under 
sufficiently strong dynamic 
loading.

Slow slip events
(SSEs). Episodic aseismic slip 
events lasting days to years 
that result in a few to tens of 
centimetres of slip along a fault.
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an earthquake of ~M7.8 is expected to produce ~2–5 m 
run-up, but the 2010 M7.8 Mentawai tsunami earthquake 
produced up to 16 m of run-up41.

The main portion of the seismogenic zone (typ-
ically between ~15 km and 35 km depths) is gener-
ally thought to be characterized by broad, frictionally 
unstable regions (asperities) that are capable of nucle-
ating earthquakes and producing large coseismic 
displacements39,42. At greater depths (~35–55 km), these 
velocity-weakening patches become smaller and tend to 
produce only moderate amounts of coseismic slip. They 
are, however, capable of radiating substantial amounts 
of high-frequency energy compared with the shallower 
portion of the seismogenic zone, such as observed  
during the 2005 M7.2 Miyagi earthquake43–46 (Fig. 2).

At depths above and below the seismogenic zone, 
many subduction systems exhibit a transitional domain 
that hosts SSEs47,48. SSEs are typically detected using 
a range of geodetic methods and are often linked 
to seismic phenomena including tectonic tremor 
and low-frequency earthquakes49–51. SSEs have been 
observed at virtually all subduction zones that are well 
instrumented with continuously operating geodetic net-
works, suggesting that they are a phenomenon common 
to most, if not all, subduction zones. Episodic SSEs are 
thought to occur on faults in conditionally stable regions 
that occupy the transition between seismic and aseismic 
behaviour. Thus, these SSEs often occur adjacent to the 
locked seismogenic zone, potentially providing further 
insight into which portions of the plate boundary might 
be prone to rupture in large earthquakes (Fig. 2).

SSEs have been observed at a range of depths on 
subduction megathrusts, including deep (>25 km 
depth)49,51–53 and shallow events, some of which have 
propagated all the way to the trench (<15 km)54–56. In a 
few cases, SSEs have been observed in the lead up to 
great subduction zone earthquakes, potentially playing 
a role in triggering these events (2011 M9.1 Tohoku57; 
2014 M8.2 Iquique58). Although distinct from episodic 
SSEs, transient aseismic slip is also typically observed for 
years to decades following great megathrust earthquakes 
(referred to as afterslip)59.

Overall, the characteristics of earthquake rupture 
exert strong controls on the amplitude, frequency and 
duration of ground motions, which, together with 
earthquake magnitude and recurrence intervals, control 
seismic hazard. Seismic imaging, modelling, laboratory 
and observational studies have made strides in under-
standing the physical processes that might play a role in 
defining the observed spatio-temporal patterns and elu-
cidating the possible relationships between subduction 
zone structure and earthquake rupture characteristics. 
In the ensuing sections, the most promising efforts to 
ascribe specific subduction zone parameters to mega
thrust earthquake occurrence are discussed. However, 
there are likely complex feedbacks between these  
parameters that are not yet fully understood.

Influence of subduction zone properties
Developing a physical model for the relationship 
between subduction zone characteristics and earth-
quake magnitude and location has been of interest since 

the broader acceptance of plate tectonics. Such a model 
would be key in developing improved seismic hazard 
estimates in subduction zone settings. Here, we discuss 
some of the subduction characteristics that seem most 
likely to allow an initiated earthquake to propagate 
across an extensive area and produce large amounts of 
slip, resulting in a large earthquake.

Earthquake size
There is a distinction between the conditions neces-
sary to promote the nucleation of a megathrust earth-
quake versus those that are required for it to grow into 
a truly great earthquake (M ≥ 8.0). Earthquakes initiate 
in regions where the accumulated stress exceeds the 
local fault strength. In some cases, the nucleation of 
great earthquakes has been attributed to concentrated 
stresses owing to adjacent locked and creeping sections 
on the fault60 or in areas where there are perturbations 
to the regional stress field because of rough subducting 
topography (for example, subducting seamounts)61,62. 
However, once nucleated, subduction zones with charac-
teristics that promote rupture over a large spatial extent 
and/or host large seismic slip are more likely to produce 
the largest megathrust earthquakes, and are directly 
related to the parameters that define seismic moment 
and magnitude (Box 1). In the subsequent sections, the 
parameters that seem demonstrably favourable for pro-
moting rupture propagation over a large region and large 
coseismic slip in subduction zones are considered.

Subduction parameters
Numerous attempts have been made to draw correla-
tions between a range of subduction parameters and 
earthquake occurrence, with mixed success (Fig. 3). Early 
work hypothesized that the plate age and convergence 
rate dictated the maximum magnitude of subduction 
zone earthquakes, with young, more rapidly subducting 
plates resulting in the largest events because of increased 
coupling63 (Fig. 3a,b). However, this view has been over-
turned by subsequent large events, including the 2004 
M9.1 Sumatra–Andaman and 2011 M9.1 Tohoku earth-
quakes, which occurred in subduction systems with 
relatively slow convergence (the Andaman trench) or 
old, cold subducting oceanic lithosphere (Tohoku). For  
M ≥ 8.5 earthquakes, the plate age and convergence rate 
do not appear to correlate with earthquake magnitude 
with meaningful statistical significance (Fig. 3).

Numerical models show a negligible effect of the 
convergence rate on the generation of great earthquakes 
and it has been suggested that subduction zones with 
fast convergence rates might simply experience more 
frequent earthquakes, thus increasing the chance of 
observing a large megathrust event in the historical 
record64. However, the convergence rate might influ-
ence the width of the seismogenic zone to some degree, 
as slabs subducting at a faster rate will stay colder to 
deeper depths, thus elongating the along-dip length 
of the seismogenic zone65. Subsequent studies have 
suggested that stronger correlations exist between the 
maximum magnitude of megathrust earthquakes and 
parameters related to subduction zone geometry, sub-
ducting sediment thickness, incoming plate roughness 

Velocity-strengthening
When a fault exhibits frictional 
strength that increases with 
sliding, promoting aseismic  
slip or creep.

Tsunami earthquakes
Slow earthquakes that rupture 
the shallow (typically <15 km) 
megathrust and produce 
anomalously large tsunamis  
for their magnitude. Tsunami 
earthquakes also exhibit a 
depletion of high-frequency 
seismic energy.

Afterslip
Aseismic slip that typically 
occurs on a fault following 
seismic rupture and can last for 
months to years and is often 
associated spatio-temporally 
with aftershocks.

Seismic hazard
In general, any physical 
phenomenon caused by  
an earthquake that could 
produce adverse effects 
(ground shaking, landslides, 
liquefaction, land-level change 
and so on). More specifically, 
seismic hazard refers to the 
likelihood of exceeding a 
threshold level of shaking or 
ground motion in a particular 
region and time frame.

NaTure RevIewS | EaRTh & EnviRonMenT

R e v i e w s

	  volume 3 | February 2022 | 129



0123456789();: 

and properties of the overlying plate, which can vary 
widely between subduction systems (Table 1).

Caution must be taken in drawing sweeping conclu-
sions regarding the control of specific parameters on 
subduction zone earthquake occurrence. The relatively 

short observational record (since the early twentieth 
century) is dwarfed by the length of the earthquake cycle 
(often hundreds to thousands of years between great 
events), and thus does not sample the full range of pos-
sible megathrust earthquake behaviour. Surprises such 
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as the 2004 M9.1 Sumatra–Andaman and 2011 M9.1 
Tohoku earthquakes will continue to occur. Moreover, 
we have yet to fully understand the complex feedback 
between the many possible subduction parameters that 
contribute to the observed seismic behaviour.

Subduction zone geometry. Data compilations show 
that parameters related to subduction zone geometry 
— namely, the dip and curvature of the seismogenic 
zone — might influence rupture propagation and, 
therefore, the ability of a particular subduction zone to 
host large earthquakes (Fig. 3c,d). In general, a shallow 
slab dip angle tends to push the thermally controlled 
brittle-to-ductile transition to distances farther away 
from the trench, thus widening the seismogenic zone. 
Global correlations between subduction zone parame-
ters and the size of megathrust earthquakes show that 
recorded earthquakes with M ≥ 8.5 have only occurred 
in subduction zones dipping <35° and with seismo-
genic zone widths >75 km. Similarly, recorded earth-
quakes with M ≥ 9.2 have only occurred in subduction 
zones dipping <20° and with seismogenic zone widths 
>150 km (refs66,67). In aggregate, observational data sug-
gest a relatively high correlation coefficient and statis-
tical significance between seismogenic zone width and 
earthquake magnitude compared with other subduc-
tion zone parameters (Fig. 3e). Numerical models have 
also supported the observation that large earthquakes 
might be more likely to occur in the widest seismogenic 
zones64,68.

The along-dip curvature of the subduction zone 
interface has also been noted as a possible control on 
the spatial extent of rupture, with the largest mega
thrust earthquakes associated with broadly planar fault 
interfaces69,70 (Fig. 3d). Better correlations have been 
noted between maximum earthquake magnitude and 
downdip curvature than with slab dip angle69. Compared 
with other subduction zone parameters (Fig. 3), the aver-
age downdip curvature tends to show one of the highest 
correlation coefficients and statistical significance, with 

increased downdip curvature resulting in lower-event 
magnitudes. This correlation between average downdip 
curvature and maximum magnitude might be because 
small changes in the curvature of the slab produce only 
small gradients in shear strength, and that the critical 
shear stress is more likely to be exceeded over a broad 
area of the fault if the shear strength is relatively low 
and homogeneously distributed. However, it has also 
been noted that multiple subduction zones with a high 
degree of planarity are not known to have hosted a great 
earthquake, implying that the historical records in these 
regions are too short for such an event to have been 
observed, or that other subduction parameters might 
be exerting controls on megathrust rupture70.

Similarly, the along-strike curvature of the sub-
duction zone has also been suggested to influence the 
maximum magnitude of megathrust earthquakes. Large 
earthquakes have not been recorded in subduction zones 
with dramatic along-strike curvature (for example,  
Scotia, Marianas), which is thought to limit the rupture 
length66,69. Along the Chilean megathrust, the distri
bution of coseismic slip during both the 2010 M8.8 
Maule and 2014 M8.2 Iquique earthquakes appears to 
be influenced by changes in curvature along the Andean  
subduction zone26,71.

Sediments and plate roughness. The thickness of sed-
iments entering the subduction zone on the incom-
ing plate might also influence megathrust earthquake 
rupture72,73 (Figs 2,4). Thick sediments (>1 km) at the 
trench have been correlated with observations of 
large-magnitude earthquakes in subduction zones72,73 
(Fig. 3g). It is thought that the presence of subducted 
sediments, often inferred from the thickness of sed-
iments at the trench, will smooth and lubricate the 
interface, promoting more homogeneous stress condi-
tions and a low coefficient of friction on the fault, thus 
increasing the likelihood of rupturing a wide area of 
the megathrust67,74,75. However, it should be noted that 
trench-fill thickness does not necessarily represent sed-
iment thickness along the plate boundary itself, as not all 
of this sediment is subducted76.

In addition, it is expected that a relatively smooth, 
thickly sedimented subducting seafloor can result in 
a large zone of interseismic coupling, compared with a 
megathrust with a more heterogeneous coupling dis-
tribution owing to rough subducting topography77,78 
(Fig. 3f). A notable exception to the potential relation-
ship between sediment thickness and great earthquakes 
is the M9.1 Tohoku earthquake at the northern Japan 
Trench, where the incoming plate is sediment-starved. 
However, the incoming seafloor in this region is sug-
gested by some to be relatively smooth despite the lack 
of overlying sediment72,76,79.

Somewhat related to the presence of subducting 
sediments, numerous studies have focused on the 
impact of incoming plate roughness on megathrust 
slip behaviour (Figs 2,3h). Observations indicate a cor-
relation between high interseismic coupling and low 
incoming plate roughness76,77,80. This correlation is 
in contrast to earlier studies assuming that geometric 
roughness provided an asperity for the generation of 

Fig. 3 | Correlation between subduction zone parameters and the magnitude of 
great earthquakes. Subduction zone parameters at individual segments identified as 
having hosted moment magnitude M ≥ 8.5 earthquakes in the instrumental (red circles) 
or historical (pink triangles) record, as well as the global distribution of those parameters 
(grey bars). Plots compare plate age (panel a), convergence rate (in the HS3-NUVEL1A 
absolute reference frame)183 (panel b), dip of the seismogenic zone (panel c), downdip 
slab curvature (panel d), width of the seismogenic zone (panel e), coupling coefficients 
(panel f), sediment thickness (panel g) and long wavelength (80–100 km) roughness 
(panel h) with the historical and instrumental records of M ≥ 8.5 earthquakes. Data in 
panels a–c,e,g and h are from a continually updated subduction database100 (http://
submap.gm.univ-montp2.fr/). Parameters of global distributions are sampled at an 
interval of 2° along each subduction zone100. Downdip slab curvature values in panel d 
are from ref.69, averaged over the rupture areas of events presented herein. Coupling 
coefficients in panel f are based on ref.184 and averaged over subduction zone segments 
that share similar properties but are of differing megathrust lengths184. Correlation 
coefficient (r) and statistical power (the probability of a true positive result assuming a 
significance level of 0.05) between the individual parameter values and estimated 
earthquake magnitudes are given in the upper-right corner. In general, the statistical 
power values are low (well below the desired level of 0.8 or 80%), because of the weak 
correlation coefficients and/or small sample sizes. Data emphasize the need for 
continued study of earthquakes and their associated physical processes to draw any 
strong conclusions about links between earthquake occurrence and subduction 
zone structure.

◀

Coupling
A quantitative value that can 
be determined geodetically, 
indicating the fraction of plate 
motion that is accommodated 
seismically.

Interseismic coupling
When a fault is locked or 
coupled due to friction along 
the plate boundary, leading  
to the accumulation of elastic 
strain that is ultimately 
released during an earthquake. 
Faults can be either fully locked 
or partially locked, or can 
creep aseismically with no 
interseismic coupling.
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large earthquakes81,82. As a more localized form of plate 
roughness, subducting topographic relief (for example, 
subducting seamounts) (Fig. 2) are expected to result in 
complex forearc structure83 and heterogeneous stresses 
that might be favourable to aseismic creep and small 
earthquakes, but unfavourable for the propagation of 
large earthquakes77,84.

Seismic imaging and ocean drilling from the slow slip 
and creep-dominated northern Hikurangi subduction 
zone suggest that rough subducting crust can promote 
a lithologically and rheologically heterogeneous plate 
boundary fault85. Numerical modelling suggests that 
such heterogeneity will promote transient SSEs, rather 
than large, seismic slip86–88. However, a counterexample 
to the concept of geometric heterogeneities acting as 
a barrier to rupture is the 2007 M8.1 Solomon Islands 
earthquake that ruptured across a spreading centre with 
abundant adjacent seamounts, demonstrating that com-
plex geometrical barriers can be bridged during a seis-
mic event89. The 1730 ~M9 earthquake in Central Chile, 
which ruptured across a seamount ridge90 and involved 
slip on both accretionary (>1 km of trench sediments) 
and erosive (<300 m of trench sediments) segments  
of the margin91, is another example that emphasizes 
the secondary role of seamounts and other features as  
potential barriers to rupture.

Upper-plate characteristics. The upper plates of sub-
duction zones are commonly associated with complex 
geological structures resulting from changes in boundary 
conditions over millions of years of plate convergence. 
By using gravity anomalies as a proxy for rock density, 
subduction zone forearc structure is suggested to exhibit 
a certain degree of correlation with areas of large coseis-
mic slip during megathrust earthquakes92–94. Of the  
M ≥ 9 earthquakes (Fig. 5; Table 1) that occurred in the 
twenty-first century, the 2011 Tohoku event had the larg-
est average slip and smallest rupture area. By correlating 
offshore gravity anomalies with onshore geology in this 
region of the Japan Trench, it has been proposed that a 
sharp along-strike gradient in the density of upper-plate 
rocks across a major continental fault zone resulted in 
the localization of interseismic plate locking, and thus 
coseismic slip, to a relatively small area94. Such a variabil-
ity in forearc geology might have also controlled the slip 
distribution of other giant earthquakes, which are associ-
ated with distinct forearc terranes (for example, the 1700 
Cascadia95, 1960 Chile96 and 2004 Sumatra–Andaman97 
earthquakes).

The strain regime across upper plates of subduction 
zones has long been suggested to correlate with the seis-
mic behaviour on the megathrust98–100 and the distribu-
tion of interseismic locking101. Margins with extensional 

Table 1 | Subduction zone parameters at selected margin segments

Margin Year Magni­
tude

Event 
name

Curvature 
(downdip)a

Dip 
(°)

Seismogenic 
zone width 
(km)

Plate 
age 
(Myr)

Sediment 
thickness 
(km)

Long wave­
length plate 
roughness 
(km)

Trench- 
perpendicular 
convergence  
rate (mm year–1)b

Coupling 
coefficientc

Japan 
(Honshu)

2011 9.1 Tohoku 1.39 18 161 132 <0.5 139 (smooth) 96 0.7

Cascadia 1700 9 Cascadia 0.94 11 127 7 4 76 (smooth) 32 0.8

Chile 2010 8.8 Maule 2.04 22 105 34 2 138 (smooth) 62 0.8

1960 9.5 Valdivia 1.86 14 190 23 1 215 (smooth) 75 0.8

1922 8.5 Atacama 1.77 22 105 45 <0.5 188 (smooth) 75 0.8

Alaska–
Aleutians

1965 8.7 Rat Islands 3.63 31 72 49 – 536 
(intermediate)

36 0.5

1964 9.2 Alaska 0.6 15 180 43 2 223 (smooth) 52 0.8

1957 8.6 Alaska 2.5 35 75 55 2 214 (smooth) 61 0.5

1946 8.6 Unimak 
Island

2.41 33 72 57 – 145 (smooth) 62 0.5

Sumatra–
Java

2005 8.6 Nias–
Simeulue

2.01 11 174 43 4 391 
(intermediate)

28 0.8

2004 9.1 Sumatra–
Andaman

2.26 9 243 73 3 307 
(intermediate)

3 0.7

Kuril–
Kamchatka

1963 8.5 Kuril 
Islands

3.31 22 102 117 <0.5 224 (smooth) 71 0.8

1952 9 Kamchatka 2.45 27 110 105 <0.5 234 (smooth) 77 0.8

Ecuador–
Colombia

1906 8.8 Ecuador–
Colombia

2.78 20 101 12 3 538 
(intermediate)

55 0.8

Subduction zone parameters for margin segments that have hosted observationally recorded megathrust earthquakes with moment magnitude M ≥ 8.5, as well  
as the Cascadia subduction zone which has robust historical records of tsunami inundation in Japan and palaeoseismic evidence for an M8.7–9.2 megathrust 
earthquake in 1700 AD170,188,189. An expanded version of this table that includes historical earthquakes and additional parameters is provided in Supplementary Data 
(additional information on the parameters and data sources is provided in Supplementary Note 1). Most of the parameters were obtained from the continually 
updated subduction database100 (http://submap.gm.univ-montp2.fr/). aDowndip curvature values are from ref.69. bTrench-perpendicular convergence rate is in the 
HS3-NUVEL1A absolute reference frame183. cAverage coupling coefficients are from ref.184.
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upper plates appear to have fewer great earthquakes, and 
in some cases host aseismic creep102. Various mecha-
nisms have been suggested to explain this apparent cor-
relation, including the possible influence of slab rollback 
on the interface stress state99, and possible upper-plate 
tectonic stress state controls on permeability, fluid pres-
sure and depth to the brittle-to-ductile transition103. 
However, the M9.1 Sumatra–Andaman earthquake was 
a notable counterexample to these correlations, as a sub-
stantial portion of its rupture area was adjacent to the 
Andaman back-arc rift104.

In general, forearc strain has been correlated with 
subduction mode (that is, erosive or accretionary), as 
erosive margins are mostly associated with extension 
across the marine forearc (or portions of the forearc that 
overlie the megathrust seismogenic zone)105. Whereas 
contraction and development of fold-and-thrust belts 
are common across accretionary margins105.

The strain regime across marine forearcs has 
been correlated with spatial patterns of slip during 
great earthquakes and is therefore relevant to seismic 
hazard106. Upper-plate strain is mostly accounted for 
by faults and folds, which are ubiquitous across sub-
duction zone forearcs, and whose kinematics might 
reflect spatial variations in the frictional structure and 
seismogenic behaviour of the underlying megathrust107. 
For example, the large slip gradients during the 2011 
M9.1 Tohoku earthquake were accommodated by 
anelastic extension across a mid-slope terrace evi-
denced by normal faults rupturing to the seafloor, and 
by anelastic contraction across thrusts rupturing the 

trench floor10,108. Therefore, mapping the distribution 
and characteristics of upper-plate faults is important, 
as they might reveal changes in the frictional struc-
ture of the underlying megathrust. In addition, sev-
eral upper-plate faults have slipped during or shortly 
after great earthquakes109,110, and therefore can pose a 
secondary shaking and tsunami hazard at the local to 
regional scale.

Taken together, it appears that the stronger controls 
on great megathrust earthquake occurrence are linked 
to the potential for rupture continuation: greater seis-
mogenic zone width, less downdip curvature and, to 
some degree, smaller along-strike curvature. A wider, 
more uniform along-strike and downdip geometry 
seems to create more preferable conditions to achieve 
large spatial extents of high slip, increasing the chances 
of producing a great event. Numerous other charac-
teristics such as the plate convergence rate, incoming 
sediment thickness, plate roughness and upper-plate 
structure likely exert secondary (but still significant) 
controls on large earthquake occurrence. Nonetheless, 
all of the above should still be considered with caution, 
given the lack of a statistically significant data set cap-
turing the possible range of great earthquake occurrence 
during instrumental times.

Great earthquake hazards
In this section, the factors that influence seismic haz-
ard (rupture characteristics and earthquake recur-
rence) and the earthquake source parameters that 
impact tsunami hazard are discussed. The earthquake 
rupture characteristics that control ground shaking 
and tsunamigenesis are distinct. In general, the shak-
ing that impacts the built environment stems from 
higher-frequency ground motions (>0.1 Hz), and 
often originates in the downdip portions of the rupture 
zone. By contrast, tsunamigenesis is largely controlled 
by coseismic displacements of the seafloor above the 
shallow, offshore portion of the megathrust, as well 
as by the shape of local near-shore bathymetry and 
coastal morphology. Although cascading hazards such 
as landslides and liquefaction will also be impacted by 
the severity and duration of ground shaking, they also 
heavily depend on local site conditions (topography, 
lithology and shallow soil properties), which will vary 
locally and regionally6,111,112.

Seismic hazard
Seismic hazard estimates require knowledge of how fre-
quently earthquakes are expected to occur (recurrence 
intervals) and the anticipated ground shaking associ-
ated with those earthquakes. In addition to earthquake 
magnitude, numerous other rupture characteristics are 
known to influence the intensity of ground shaking and 
resulting seismic hazard113. These include the direc-
tion of rupture (because of rupture directivity effects),  
the downdip limit of rupture (which often controls the 
proximity of the rupture to inland cities and the polar-
ity of coastal land-level changes), the earthquake rup-
ture velocity, the location of strong motion-generating 
areas on the fault and, to some degree, earthquake stress 
drop114,115.
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Fig. 4 | Representative cross sections of global seismogenic zone geometries. 
Transects185 coloured according to a segment’s average long wavelength (80–100 km) 
roughness on the incoming plate76 and line width corresponding to estimates of sedi-
ment thickness at the trench (where thicker lines indicate sediment-rich systems and  
thin lines represent sediment-poor margins). The Japan, Kamchatka, Tonga and Marianas 
subduction systems are sediment-starved102. For subduction zones with a robustly con-
strained moment magnitude ~M ≥ 9.0 earthquake in the instrumental or historical record, 
the estimated magnitude of the largest event is given in parentheses. This figure demon-
strates that there are various subduction zone geometries and characteristics capable of 
hosting great megathrust earthquakes.
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Rupture directivity. The rupture extent and location 
of the hypocentre will control rupture directivity effects, 
which result in stronger-intensity ground shaking in 
the direction of fault rupture116. Earthquakes that rup-
ture unilaterally and/or over a long along-strike rupture  
extent will likely induce stronger rupture directiv
ity effects. Unilateral, along-strike rupture can also 
increase the duration of shaking compared with bilat-
eral rupture (assuming roughly similar fault lengths). 
Longer-duration shaking is known to increase hazard 
and risk via building performance and, in some cases, 
increases structure collapse probabilities by nearly 
30%117. Given that the majority of the seismogenic por-
tion of the megathrust is typically located offshore, most 
populated regions tend to be located downdip of the 
megathrust (with some exceptions). Hypocentres that 
originate in the updip portion of the fault can there-
fore produce a substantial portion of rupture directed  
downdip towards sites on land.

Understanding patterns in hypocentre location 
for subduction zone earthquakes is thus important for 
constraining hazard estimates. Analyses of hypocentre 
location produce various hypotheses, including possi-
ble preferences for the along-strike and along-dip loca-
tion of hypocentres118–120. Finite fault models for M ≥ 7 
earthquakes in varying tectonic regimes revealed a slight 

preference for hypocentres to originate in the bottom half 
of the seismogenic zone, and a tendency for along-strike 
bilateral ruptures120. However, when examining only 
the largest (M ≳ 9) subduction zone megathrust earth-
quakes, there appears to be some tendency towards 
unilateral ruptures121, which may increase rupture  
directivity effects and shaking duration (Fig. 5).

Stress drop and short-period radiation. The spatial dis-
tribution of high-frequency radiation is critical to hazard 
analyses, as the fundamental periods of many structures 
in the built environment are fairly short. Single-storey to 
20-storey structures are expected to have fundamental 
periods of ~0.05–2.0 s, and therefore ground shaking 
at these short periods can result in increased structural 
damage. Earthquake stress drop controls the amount of 
radiated seismic energy, and thus the amplitude and fre-
quency content of ground shaking114,122,123. Stress drop is 
considered to be independent of earthquake magnitude, 
but can vary regionally124,125 and with depth12,126. Great 
earthquakes in the twenty-first century (for example, 
the 2010 Maule and 2011 Tohoku events) have also been 
characterized by higher than average stress drops, possi-
bly suggesting higher friction coefficients and/or higher 
effective normal stresses compared with smaller events66. 
In well-imaged large megathrust earthquakes, it appears 
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that the most substantial short-period radiation origi-
nates from distinct patches in the downdip region of the 
fault, potentially because of the higher stresses at depth32.

During the 2011 M9.1 Tohoku earthquake, the 
strongest ground motions appeared to originate from 
individual patches on the deeper portion of the mega
thrust, resulting in distinct wave packets or pulses in the 
recorded waveforms. These were termed ‘strong motion 
generating areas’44,45 and ‘high stress drop subevents’46. 
These strong motion-generating areas were located 
separate from and downdip of the largest slip asperity, 
and were roughly equivalent to ~M8–8.5 earthquakes46. 
Their location on the megathrust is similar to that of 
smaller magnitude (~M3–5) repeating earthquakes 
(that is, events that repeatedly rupture the same fault 
patch), which have been well documented in northeast 
Japan126,127. Additionally, the portions of the 2011 Tohoku 
rupture that radiated more high-frequency energy 
tended to correspond to areas of higher stress drop in 
small seismicity, with an overall increase in stress drop 
with depth between 30 and 60 km depth in the Japan 
Trench126.

Rupture velocity. Rupture speed describes how fast 
the rupture expands, but it can be difficult to deter-
mine. Numerical modelling suggests that higher 
rupture velocities result in stronger ground shaking, 
and thus increased seismic hazard, by concentrating 
energy towards the rupture front128. In addition, some 
works have shown that supershear ruptures produced 
higher-observed ground motions129. Observations sug-
gest that large dip-slip earthquakes appear to rupture 
more slowly (~1–3 km s–1) than large strike-slip events, 
staying well below the shear wave speed130. Tsunami 
earthquakes tend to have the lowest rupture velocities, 
typically <1 km s–1 (ref.131).

Of the twenty-first-century large megathrust earth-
quakes, the 2004 Sumatra–Andaman earthquake had 
an estimated rupture velocity of 2–3 km s–1 (ref.132), 
the 2010 Maule earthquake ruptured at speeds around 
2.0–2.6 km s–1 (refs133,134) and the 2011 Tohoku earth-
quake initially ruptured slowly (~1 km s–1), acceler-
ating to 2–3 km s–1 as the rupture progressed135,136. In 
general, faster ruptures tend to occur on long, straight 
segments of the fault, with low friction and no barriers 
to rupture129,137. Two-dimensional dynamic simulations 
suggest that whereas supershear ruptures are more likely 
to occur on rough faults (because of the variety of rup-
ture styles they can induce), sustained fast rupture tends 
to favour smoother fault segments138.

Downdip rupture limit. The location of the downdip 
extent of the seismogenic zone (approximately shal-
lower than the location of the SSE in Fig. 2) often dic-
tates the proximity of a megathrust earthquake rupture 
to populated inland regions. Ground motions are heavily 
dependent on the distance between the earthquake and 
site of interest, with shaking decreasing as a function 
of distance. Therefore, the downdip extent of rupture 
exerts a first-order control on shaking intensity, because 
a rupture extent that is further inland will be closer to 
onshore population centres. In many subduction zones, 

the downdip extent of rupture also controls the polarity 
of coastal land-level change (the regions that experience 
coseismic uplift versus subsidence)139. The downdip 
extent of rupture, in turn, has important implications for 
coastal morphology and tsunami inundation, by either 
decreasing or increasing the potential tsunami run-up, 
respectively.

Global compilations have found a potential corre-
lation between the downdip width of the seismogenic 
zone and the occurrence of M ≥ 8.5 earthquakes140. 
Many recorded great earthquakes have occurred on the 
flattest and widest subduction zones140, with the narrow 
and fairly steep (dip angle ~30–35°) Aleutian arc as an 
important exception (Supplementary Data). However, 
because seismic moment is directly related to the rupture 
area, subduction zones with a shallow slab dip (and thus 
a possibly wider seismogenic zone) might have greater 
potential for large earthquake moment release, which in 
general will increase ground motions.

Earthquake recurrence. In addition to the earthquake 
source characteristics that influence the strength of 
ground shaking, a critical component impacting seismic 
hazard is where and how often great subduction zone 
earthquakes occur. Megathrust earthquake palaeoseis-
mology is inherently different from crustal earthquake 
palaeoseismology, because it relies on off-fault proxies 
for regional deformation and shaking, as opposed to 
directly sampling the fault zone. These proxies include 
estimates of coastal land-level change, tsunami inun-
dation and/or ground shaking (such as turbidites and 
lacustrine deposits), and their spatial and temporal 
information is used to define past rupture limits and 
recurrence intervals141–144.

Advances in subduction zone palaeoseismology 
have led to long and detailed records of past seismic 
cycles at some subduction zones, with the longest 
archives extending back several millennia20. These 
records have associated uncertainties spanning sev-
eral decades to a century, which propagate into haz-
ard estimates. Higher temporal resolution has been 
provided by the analysis of growth patterns in coral 
microatolls along the Sumatran subduction zone, pro-
viding detailed histories of land-level changes between 
and during earthquakes spanning multiple seismic 
cycles22. This work revealed clustered earthquakes 
of different magnitudes separated by long periods of 
strain accumulation, termed supercycles. Subsequent 
studies integrating both palaeoseismic archives and 
historical records suggest that supercycle behaviour or 
superimposed cycles might be a hallmark of many sub-
duction zones20,145. Long palaeoseismic archives span-
ning several thousand years, but that record only the 
largest events at a single segment of a subduction zone, 
show more periodic behaviour143.

Numerical models have related supercycle behav-
iour to changes in the width of the seismogenic zone68 
or to spatial changes in frictional properties of the 
megathrust146. The latter has also been proposed by ana-
logue modelling experiments147. For hazard estimates, 
supercycle behaviour is more important than the choice 
of probability density function used to characterize 

Supershear ruptures
Earthquakes in which the 
rupture velocity is faster than 
the shear wave (S wave) speeds 
of the host rock.

Supercycles
Broad periods of strain 
accumulation followed by a 
temporal cluster of differently 
sized megathrust earthquakes, 
ultimately leading to the 
complete failure of a 
subduction zone segment.

Superimposed cycles
Long-term cycles of strain 
accumulation and release, 
overlapping in both space and 
time with a short-term cycle of 
strain accumulation and 
release on the same fault.
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recurrence times148, because the knowledge of whether 
a region is in or outside a long-term cluster can change 
probabilistic hazard estimates in comparison with 
assuming simply periodic behaviour. However, mod-
elling supercycle behaviour requires the use of hazard 
models that consider time-dependent hazard in terms of 
strain accumulation over longer periods of time, rather 
than simply considering the time elapsed since the last 
earthquake.

Despite the wealth of information provided by palaeo-
seismic studies, the record remains less complete than the 
modern instrumental record. Some regions are not con-
ducive to recording or preserving all geologic proxies of 
earthquakes149,150, whereas in other regions palaeoseismic 
archives have provided evidence for larger earthquakes 
than historical catalogues151. This disparity in geologic 
proxy formation or preservation presents a challenge in 
capturing the full range of where great earthquakes have 
occurred, as well as their size and timing.

Tsunami hazard
Great subduction zone earthquakes also represent a 
substantial tsunami hazard. Several main characteristics 
control the occurrence and amplitude of tsunamis: the 
magnitude of seafloor deformation, the heterogeneity 
of slip and resulting seafloor deformation, the velocity 
with which the seafloor moves during the event and, to 
some degree, the mechanical properties of the seafloor 
sediments.

Shallow (less than ~15 km) coseismic slip is argu-
ably the greatest factor impacting tsunamigenesis; 
greater amounts of shallow slip produce larger seafloor 
displacements and larger tsunami amplitudes152,153. In 
addition to vertical seafloor deformation, some model-
ling and observational work has demonstrated that hori-
zontal displacement of steep bathymetry can enhance 
tsunamigenesis154,155 and, thus, oblique and/or strike-slip 
dominated ruptures can also produce tsunamis. Finally, 
strong ground motions produced in large earthquakes 
can trigger submarine landslides on continental slopes, 
resulting in greater tsunami amplitudes. This mecha-
nism has been proposed for the large tsunami ampli-
tudes observed during the 2011 Tohoku event156, but is 
not strictly required11.

Although larger amounts of shallow slip tend to cre-
ate higher tsunami amplitudes, it has also been shown 
that heterogeneous rupture with large amounts of peak 
slip over a smaller area can have a substantial impact 
on increasing local tsunami amplitudes and run-up157.  
In addition to the amount of slip, the rupture and geo
metry of shallow splay faults in the outer forearc (Fig. 2) 
could also play an important role in generating larger 
tsunami amplitudes than the megathrust alone. Splay 
faults that branch off from the megathrust typically have 
steep dip angles that result in increased vertical deforma-
tion and larger tsunamis158,159. Although splay faults are 
proposed as a mechanism for numerous tsunamigenic 
events160–162, models of slip on the megathrust alone can 
often explain the observed tsunami amplitudes. The sig-
nificance of splay faulting in increasing tsunami ampli-
tudes remains unresolved and should be improved with 
future observations.

Slow earthquake rupture velocities, which are of the 
order of hundreds of metres per second and similar 
to the tsunami wave propagation velocity, have been 
postulated to enhance tsunami generation163,164. Such 
slow rupture velocities are highly uncommon for most 
megathrust ruptures, but are characteristic of some 
tsunami earthquakes163. Average rupture velocities 
appear to have little to no impact on tsunami ampli-
tudes and run-up in the near field, but unilateral rup-
ture and variability in earthquake rupture velocity can 
rotate tsunami energy and the direction of propagation 
across ocean basins, thus influencing far-field tsunami 
impacts165.

Lastly, although most models suggest that elastic 
deformation of the seafloor during the earthquake rup-
ture exerts the primary control on tsunami generation, 
dynamic analyses have shown that efficient tsunami gen-
eration can be enhanced by inelastic deformation of the 
accretionary wedge166. In this scenario, shallow slip cou-
ples with inelastic wedge failure to produce large seafloor 
deformation, indicating that shallow sedimentary wedge 
properties can influence tsunamigenesis.

The earthquake source properties that impact seismic 
hazard do not necessarily impact tsunamigenesis, and 
thus tsunami hazard, in the same way. Tsunamigenesis 
is typically unaffected by the characteristics of the down-
dip portion of the rupture, and instead is controlled by 
the updip portion of the rupture, which creates greater 
seafloor deformation167. Therefore, shallow subduc-
tion zone characteristics such as the presence of splay 
faults, and shallow rupture characteristics such as large 
amounts of near-trench slip, are typically the more 
important parameters for tsunami hazard.

Summary and future perspectives
Given the sparse (and inherently short) instrumental 
earthquake records available to underpin probabilis-
tic seismic and tsunami hazard analyses in subduction 
zones, establishing the primary physical characteris-
tics that control the occurrence of great earthquakes is 
clearly desirable.

Numerous parameters have been suggested to 
influence the ability of a subduction zone to host great 
megathrust earthquakes, including the convergence 
rate; plate age and thermal state; large-scale geometry 
(along-strike and downdip); geometric and/or lith-
ological heterogeneity on the megathrust; sediment 
thickness; and upper-plate characteristics. Yet major 
twenty-first-century subduction zone earthquakes 
have called into question long-standing assumptions 
about whether some of these parameters dictate the 
likelihood of subduction zones to host such devas-
tating events. Given the complexity and diversity of 
subduction systems, it seems unlikely that a single 
physical parameter can satisfactorily explain global 
subduction zone earthquake occurrence and variabil-
ity, and that multiple factors and the feedback between 
them must be considered. Developing a framework 
to evaluate the interplay between these factors, and 
harnessing this framework to inform knowledge  
of seismic and tsunami hazard, represents a major  
outstanding challenge.
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Although determining the ability of a particular 
subduction zone segment to host great earthquakes is 
critically important, there are numerous other factors 
that contribute to the resulting seismic and tsunami 
hazard estimates. For example, knowing the extent 
(updip and downdip limits) and spatial distribution of 
slip is critical to estimating the intensity and frequency 
content of strong ground motions, as well as the tsu-
namigenic potential of an event. Yet predicting poten-
tial future spatial distributions of slip is fraught with 
uncertainties. Estimates of earthquake slip distributions 
can be based on the interseismic coupling determined 
from geodetic methods. However, such coupling will 
not account for the possibility that some of the inter-
seismic strain accumulation can be released heteroge-
neously and/or aseismically. It also cannot account for 
the possibility that ‘stress shadows’, or areas adjacent to 
a locked region where the degree of stress accumulation 
is low (or uncertain), might still be capable of being 
pushed to failure during adjacent seismic rupture168. 
Similarly, the distribution of interseismic locking might 
change over time, and not be adequately represented in 
coupling models169. In addition, locking on the shallow 
(<20 km depth) megathrust is typically poorly con-
strained due to the absence of offshore geodetic data at 
most subduction zones, which exacerbates the uncer-
tainties in estimating future coseismic slip. Improved 
knowledge of offshore megathrust slip behaviour, and 
the seaward extent and shallow geometry of possible 
rupture, is critically needed to reduce uncertainties in 
tsunami hazard models.

Addressing the earthquake potential of the shallow, 
tsunamigenic portions of megathrusts is one of the most 
challenging frontiers and requires widespread applica-
tion of multi-proxy techniques to undertake perma-
nent offshore monitoring. This infrastructure could 
include seafloor geodetic measurements, and cabled 
networks of offshore geophysical sensors to resolve crus-
tal deformation and seismicity at many of the world’s 
subduction zones. For probabilistic hazard estimates, 
another outstanding issue is the definition of appro-
priate magnitude-frequency distributions (Gutenberg–
Richter versus characteristic models), which appear 
to vary greatly among subduction zones70. Parameters 
such as the maximum magnitude and b-value (which 
determines the relative proportion of small versus large 
earthquakes) are also necessary to define, but difficult 
to establish given the deficiencies in global earthquake 
catalogues.

Overall, the most robust way of improving incom-
plete understanding of the earthquake and tsunami 
potential of global subduction zones is through refined 
palaeoseismic studies in tandem with modern technol-
ogies. These approaches include sustained seismologi-
cal and geodetic monitoring across the entirety of the 
seismogenic zone — both onshore and offshore — over 
multiple earthquake cycles. Although comprehensive 
palaeoseismic archives have extended the subduction 
earthquake record in some locations142,143,170, there are 
still large uncertainties in the interpretation of these 
data sets with regards to earthquake magnitude, timing 
and rupture characteristics. Modern high-resolution 

geochronological techniques will allow further exploita-
tion of the palaeoseismic record, and the linking of 
observations at multiple sites to a single earthquake 
event171. Additionally, where available, spatially linking 
geologic proxies for shaking with geotechnical studies 
can be used to constrain both the palaeoseismic record 
as well as shaking estimates149. Although high in uncer-
tainty, estimating shaking from proxies might help to 
tease apart megathrust sources from intra-slab and crus-
tal sources in subduction zones172, which is critical for 
seismic hazard modelling.

Shoreline-crossing continuous geophysical moni-
toring will provide much-needed constraints on basic 
earthquake processes that will improve the under-
standing of subduction zone hazards. Offshore instru-
mentation will lower the magnitude of completeness 
in earthquake catalogues and resolve additional small 
earthquakes, enabling analogue studies for large 
earthquake source processes using smaller seismicity. 
Simultaneously, this instrumentation can improve the 
imaging resolution of large earthquake sources when 
they occur. Improved resolution of earthquake sources 
will allow further constraints on the characteristics of 
spatially variable rupture parameters, such as strong 
motion-generating areas and shallow tsunamigenic slip 
during future large earthquakes. In addition, sustained 
geophysical monitoring will improve the understanding 
of magnitude-frequency distributions, potentially pro-
vide observations of precursory signals and migrating 
foreshock sequences, and identify interactions between 
seismic and aseismic slip.

Geophysical and palaeoseismic observations of earth-
quake sources will be most powerful when integrated 
with data elucidating the physical properties, structure 
and hydrogeology of the plate boundary. For example, 
seismic, electromagnetic and magnetotelluric imaging, 
scientific ocean drilling and rock deformation experi-
ments help reveal the physical processes underlying 
subduction zone earthquake occurrence. Furthermore, 
these observations should be used to both underpin 
and validate numerical models. Numerical models 
spanning multiple seismic cycles — from interseismic 
deformation through to dynamic rupture — can fill in 
data gaps to investigate how the variety of subduction 
slip behaviours interact in space in time, and the impact 
of spatio-temporal slip behaviour on seismic hazard. 
Large, concerted community exercises to validate mod-
elling codes and methods are important to vet and port 
model findings to hazard applications173. Ultimately, the 
large uncertainties surrounding megathrust earthquakes 
and tsunami hazard are likely to be addressed many cen-
turies into the future with sustained seismological and 
geodetic monitoring at subduction zones, coupled with 
multidisciplinary investigations of the physical proper-
ties controlling earthquake occurrence on these major 
fault systems.

Data availability
Raw data behind all data synthesis can be found within 
Supplementary Data.
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