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Abstract

Many applications such as election forecasting, environmental monitoring, health pol-
icy, and graph based machine learning require taking expectation of functions defined
on the vertices of a graph. We describe a construction of a sampling scheme analogous
to the so called Leja points in complex potential theory that can be proved to give low
discrepancy estimates for the approximation of the expected value by the impirical
expected value based on these points. In contrast to classical potential theory where
the kernel is fixed and the equilibrium distribution depends upon the kernel, we fix
a probability distribution and construct a kernel (which represents the graph struc-
ture) for which the equilibrium distribution is the given probability distribution. Our
estimates do not depend upon the size of the graph.

Keywords Equal weight quadrature on graphs - Potential theory on graphs - Density
approximation on graphs - Leja points on graphs

1 Introduction

In many applications, the data is not represented by points in a high dimensional
Euclidean space, but instead as vertices of networks with pairwise relations. A common
problem that arises is estimating the mean or some integral of a function on those
vertices, under the assumption that the function is smooth in an appropriate sense
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with respect to the network. For example, prior to elections, polls are used to estimate
the opinions of a networked population about the candidates in expectation [17]. In
environmental monitoring, estimating average temperature or water quality from a
network of sensors allows governments to take preventative action [22]. In health
policy, monitoring the average level of health and happiness in various populations
requires extensive random polling [10,40], which could be vastly downsampled with
knowledge of the social networks of the population. Finally, in semi-supervised and
active learning using Graph Neural Networks, the generalization error is specified as
the average of the loss function associated with all vertices in a graph [20,49].

In real world networks, evaluating the function at every vertex, or even at a large
number of vertices, is very impractical. Therefore, an important question is how to
choose a smaller subset of the vertices at which to evaluate the function and estimate
the desired integral. Approaches such as Monte-Carlo integration are independent of
the network, and do not exploit the assumption that the function is smooth with respect
to the network. Methods that exploit the geometry of the domain, including potential
theory estimates [1,4,14] and quasi-Monte-Carlo sampling [12], are only defined for
intervals and compact vector spaces, and only for particular measures.

The purpose of this paper is to investigate deterministic constructions of low dis-
crepancy sequences on undirected graphs, where the integration is taken with respect
to an arbitrary measure, supported on the entire vertex set of the graph. We will use
potential theory ideas, in particular, study a construction analogous to the so called
Leja points. In contrast to classical potential theory, we start with a given measure
and a graph, and modify the weights on the graph so that the given measure is the
equilibrium measure.

1.1 Related Work

Let 2 be any measure space, p be a probability measure on €2, f be a random variable
on  with |f(x)] < R for almost all x € €, EM(|f|2) = V. Thenif § € (0,1),
M is sufficiently large, and x1, - - - , xp; are random samples from €2, then it is well
known (for example, using Bernstein concentration inequality) that with p-probability
>1-4,

- \/Z(V +R) 10g(2/8). 0y

M

1 M
‘MZf(xk)— / F)dpu(x)
k=1 Q

Of course, deterministic variants of this inequality can be obtained using different
kinds of deterministic assumptions on f. For example, an equivalent formulation of
a theorem of Erdds and Turdn [14] is the following. Let { Py (z) = ]_[,1(‘/1:1 (z — xk.m)}
be a sequence of monic polynomials, and Ay, = 2¥ max;e[—1,1] | Pm(2)|. Then for
any function f : [—1, 1] — R having a bounded total variation || f|ry on [—1, 1],
we have

M 1
: E ! Sx) 8 log Ay
‘M k=1 S (k) = e /_1 mdx‘ = log3 M I fllv. (1.2)
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Theorems of this kind are known as discrepancy theorems. Although this estimate
cannot be improved in general, it was improved by Blatt [4] with additional assump-
tions as follows. Let the points {x »} C [—1, 1], and 2M|P1’VI (XK, m)| = B;,Il. Then
there exists a contant ¢ > 0 such that

1 & I ES)
‘M;f(xk,M)—;/_ —zdx

log M
< clogmax(Ay, By, M)——| fllrv.
141 —x M

(1.3)

Both of these estimates depend heavily on potential theory estimates; in particular,
the fact that 1/2 is the logarithmic capacity of [—1, 1], and the measure of integration
above is the equilibrium distribution for [—1, 1]. There a is large amount of research
devoted to generalization of this work including those involving potential theory in
higher dimensions. In particular, an analogue of (1.3) in the case of arbitrary measures
rather than equilibrium measures is given in [5]. A survey can be found in the book
[1] of Andrievskii and Blatt.

The problem is of interest also in the theory of information based complexity where
one seeks to approximate an integral over high dimensional spaces with averages of
samples of the integrand. These have a different flavor, where instead of thinking in
terms of zeros of polynomials and potential theory arguments, the interest is in devising
quasi-Monte-Carlo systems with low discrepancys; i.e., system of points for which an
estimate analogous to (1.3) holds, especially where the dependence of the constants
on dimension are desired to have a polynomial growth with respect to the dimension.
Most of these estimates are in the context of integration of 1-periodic functions on
[0, 1]¢ with respect to the Lebesgue measure and the total variation is taken in the
sense of the so called Hardy-Kraus variation. A survey can be found in the book
[12] of Dick and Pillichshammer. Methods have also been proposed to create a low
discrepancy sequence through an accept/reject model for uniform random variables
[13]. Existence theorems in the context of general measures and domains are also
known in the literature, based mostly on probability theory ideas [31,32]. We note
finally that the emphasis here is on approximation of an integral by an unweighted
average of the samples of the integrand, not on quadrature formulas where a suitably
weighted average of the samples can yield substantially better estimates under various
smoothness assumptions on the integrand.

The question of function approximation based on samples of the target function
on a graph are well studied, especially in the context of band-limited functions. For
example, the papers [2,8] discuss algorithms for obtaining points on a graph with
the property that it is possible to reconstruct band-limited functions on the graph
exactly using samples at these points. The question is studied from the point of view
of compressive sensing in [38]. The paper [36] presents a detailed study of the space
of band-limited functions on a graph and the sets of uniqueness for such functions.
A key fact that characterizes such sets is that a Marcinkiewicz-Zygmund inequality
holds for the space of band-limited functions involved. In turn, this leads to quadrature
formulas exact to for integration of these spaces. In this paper, we deal with signals
that are not necessarily band-limited; indeed, the notion of spectral decomposition of
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the graph Laplacian plays no role in our theory. On the other hand, our interest is in
approximating integrals of functions rather than the functions themselves.

A standard reference on potential theory is the book [25] by Landkof. We are not
aware of any prior work specifically for potential theory on graphs. However, there
are a number of papers dealing with potential theory on locally compact spaces, e.g.,
[16,30,34]. The notion of a sequence of Leja points was introduced in [26] in the context
of approximation of the equilibrium measure of a compact subset of the complex plane.
A detailed analysis of the rate of convergence of the sequence of measures o, that
associates the mass 1/n with the first n points in this sequence to the equilibrium
measure is given most recently by Pritsker [37]. This notion of discrepancy theorems
can be generalized in other, more general contexts. A survey can be found in [11] by
De Marche, where computational issues are discussed. Discrepancy theorems for Leja
points in the context of hyper-spheres is analyzed by Gotz in [18].

After the submission of our paper, we came across a paper by Brown [6], where the
author has given a construction of a sequence of good discrepancy points on a graph
based on the Green function of a power of the graph Laplacian, where the discrepancy
is measured in terms of the Wasserstein metric. Naturally, the error in integration is
estimated analogously to the Hlawka-Koksma inequality [23] in terms of the Lipschitz
constant of the function. In the current paper, we propose a construction independently
of the eigen-decomposition of the graph Laplacian, and estimate the discrepancy using
the matrix involved in our construction.

There has been recent interest in coreset selection on general domains, including
graphs. A general selection of points that are well distributed on graphs has been found
through randomized QR decompositions [3], and through random walk sampling
[19,33], however these results do not provide estimates on the error in approxima-
tion of an integral. There has also been significant work on sample selection for
full reconstruction of the underlying signal (see [45] for a review of methods). In
[44], Steinerberger provided bounds to guarantee the existence of quadrature formu-
las (known in the paper as graphical designs), which find exactly the averages of
eigenfunctions of the graph Laplacian corresponding to large eigenvalues. In [27],
Linderman and Steinerberger provide bounds for the quadrature error in computing
the average of function values based on the values of the function at arbitrary points
and quadrature weights. These bounds apply only for spectrally band limited func-
tions. The bounds depend upon the spectral band, the L? norm of the target function,
and certain powers of the graph Laplacian applied to the vector of the quadrature
weights involved. Algorithms to choose these points and weights can be found in [28]
for manifolds and [46] for a greedy algorithm of point and weight selection on graphs.

1.2 Motivating Example

As an example, in Fig. 1 we display a quasi-Monte-Carlo sampling scheme on the unit
square and compare it to the various proposed sampling schemes from this paper. For
the quasi-Monte-Carlo sampling, we use a Halton sequence on the unit square, skipping
the first 1000 samples and with a leap of 100 [47]. For our proposed methods, we
begin with 10,000 points uniformly sampled on the unit square [0, 1]?, and build a 50-
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Original graph

Halton QMC sequence Leja Points, Potential, Unif. measure Leja Points, Potential, radial measure

Fig. 1 Examples of various sampling schemes on the unit square. We select 1000 points for sampling.
For Leja points, this is a chosen subset of 10,000 iid uniform distribuiton points. See Sect. 1.2 for a full
description. Note, original graph image was computed on smaller number of points/edges for visualization
purposes only

nearest-neighbor graph. The weighted edges are computed using: a Gaussian weight
Axi, xj) = e Xi=%) I7/0.01% o1 alog potential weight A (x;, xj) = log(1/(llx; —x; |1+
¢)) with ¢ = 107, We select 1000 Leja points using the algorithm and construction
proposed in Sects. 2.3 and 4.1. For each graph adjacency type, this is done for two
different measures that we wish to integrate against: a uniform distribution on [0, 1],
or a nonuniform radial measure v*(x) o e_”)‘_CHZ/O'252 where ¢ = (0.5, 0.5).

It is clear from this example that the proposed graph Leja points with a uniform
distribution recover a similar low discrepancy layout to quasi-Monte-Carlo sampled
points. And beyond this, the graph Leja points are able to generalize to a non-uniform
distribution with the same framework. But the true benefit of this proposed Leja point
construction is that the algorithm applies in the case of an arbitrary graph, and will
still result in well-spaced points.

1.3 Outline of the Paper

We describe our main theorem in Sect. 2 after reviewing some basic facts from potential
theory in the abstract. As mentioned earlier, our approach is not to start with a matrix
and work with whatever equilibrium measure is associated with it, but rather to start
with a graph adjacency matrix and a given probability distribution on the vertices of
the graph, and construct another matrix with the same properties as the graph for which
this distribution is the equilibrium distribution. We describe three such constructions
in Sect. 3. The theory is illustrated with various synthetic and real world examples in
Sect. 4. The proof of the results in Sect. 2 are given in Sect. 5.

) Birkhduser
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2 Main Theorem

We develop some basic notation in Sect. 2.1, and review a fundamental theorem in
potential theory in Sect. 2.2. The notion of Leja points is defined in Sect. 2.3. Our main
theorem, Theorem 2.1 shows that the sequence of Leja points is a low discrepancy
sequence for integration with respect to the given measure v*.

2.1 Notation

Let G be a N x N symmetric matrix, X be a finite set with |X| = N. We prefer to
index G with X x X.

We consider any function v : X — R to be a measure on X as well as a function
on X, as well as a vector. So, for any function f : X — R,

/fdv =Y fww) :/vdf. 2.1)

xeX

For measures v, u on X, we use the notation

G(x,v) =/G(x,y)dV(y), G(M,V)=/G(x,y)du(X)dV(X)~ (2.2)

Inparticular, G (x, v) is the x-th component of Gv. The class of all probability measures
on X is denoted by P. The class of all measures v € P for which v(x) > 0 for all
x € Xis denoted by P4..

We denote the vector (1,---, )T by 1.

A matrix G is conditionally positive semi-definite (c.p.s.d.) if vTGv > 0 for all v
with vT1 = 0, and conditionally positive definite (c.p.d.) if itis c.p.s.d. and vTGv = 0,
vT1 = 0 together imply that v = 0.

For a symmetric matrix A, we denote

M(A) = A All = A
(4) = max |ACe, 0], Al =max ) A, ),
yeX
Al = A . 2.
AN = max 3 |ACx, ) (23)
yeX
y#x

For a vector v, we denote the £” norm of v by |v|,, and write x(v) =
lvlloo/ minyex [v(x)].

2.2 Potential Theory

A measure v* € P is the equilibrium measure (vector) if

I'(G) = GOv*, v¥) = min G(v, v). (2.4)

Birkhauser
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In the context of complex potential theory, the quantity I"(G) is often called Robin’s
constant. In our context, we refer to the quantity I'(G) as the capacity of G.

An important characterization of the equilibrium measure is given by the following
lemma, known generically as Frostman theorem. A proof can be found in almost any
book on classical potential theory (e.g., [25, pp. 136—137] in the context of potentials
on Euclidean spaces and [34, Theorem 2.1] in the context of locally compact spaces).
We will reproduce a proof for the sake of completion in Sect. 5.

Lemma 2.1 (a) If v* is any equilibrium measure, and S* is the support of v*, then
Gx, v >T(G), xeX, (2.5)
and
Gx, v =T(G), xeS* (2.6)

(b) Let G be conditionally positive semi-definite. If c € R, and any measure pu € P
with support S satisfies both

Gx,pu)>c, xeX| 2.7
and
G(x,n) =c, x €S, 2.8)

then ¢ = T'(G), and  is an equilibrium measure. If v* is any equilibrium measure,
then G(u — v*, u —v*) = 0.

2.3 Leja Points

In this section, we will assume a symmetric, conditionally positive semi-definite matrix
G, which has v* € P, as an equilibrium measure. In particular,

G(x,v)=GW*,v*)=min G(v,v)=min max G(y,v) =T(G). x e X.
vePy vePy yesupp(v)

2.9

Definition 2.1 A sequence {ax};2, of points in X will be called a Leja sequence (with
respect to a matrix G) if for every k > 1,

k—1
a; = argmin »  G(x, a;). (2.10)
xeX =0

The points a; will be referred to as Leja points.

Birkhauser
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Remark 2.1 The points aj are in general not distinct. In fact, in order for Theorem 2.1
to hold, the points will need to be repeated to be commensurate with the measure v*.
Second, a Leja sequence is not uniquely determined by the initial point ag, since the
definition does not require the arg min to be unique.

We will denote the Dirac delta at ax by v¢. For k > 1, let o, = (1/k) Z = 0 Vk.
Then

G (vi, ox) = min G(x, oy), keZ,. (2.11)
xeX

If f is the range of G, we write
Dg(f) = argmin{[lw]; : Gw = f}. (2.12)

Example 2.1 Let G be any positive definite, N x N matrix, F be the class of all convex
combinations of columns of G. If f € F, then |Dg(f)|1 = 1. m]

Example 2.2 Let A be the weighted adjacency matrix of a connected graph that does not
have non-trivial, bipartite connected subgraph, £ be the graph Laplacian, {A; } be the set
of eigenvalues of G, and {¢y } be the corresponding orthonormalized eigenvectors. Then
([9, Lemma 1.7]) {Ax} C [0,2). Welet G = I — (1/2)L. Then G is positive definite
with non-negative entries, and positive diagonal, so that Theorem 2.1 is applicable,
and the equilibrium measure for G is defined uniquely. In particular, G is invertible.

Iff:V—R, f=Y, f(k), then

Dg(f) =

Let A < 2 and IT; be the Aclass of all A-band-limited functions; i.e., the class of all
f + X — R for which f(k) = 0if Ay > X. For f € II,, a crude estimate for
DG ()1 is given by

2 N
ID6 ()l = 5= max llgxly D 1@l

2—Ak ki <A

Our main theorem is the following.

Theorem 2.1 Let G(x,y) > 0 forall x,y € X, {ax} be a Leja sequence with respect
to G, v* € P, be an equilibrium measure for G, and f be in the range of G. Then

3G
‘f fav* ——Zf( )| < W 1oy 2.13)
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Remark 2.2 In contrast to the estimates given in [27,46], our estimates do not require
the function f to be band-limited. O

Remark 2.3 We note that the rate of convergence of the equal weight quadrature formu-
las is much faster than what is expected for quasi-Monte Carlo methods, demonstrating
that the sequence of Leja points is a low discrepancy sequence in the sense of [12].
It is not clear what conditions on the matrix G will ensure an equilibrium measure
in Py. In Sect. 3, we will give a variety of possible constructions to modify either
an arbitrary matrix or a matrix with certain properties to ensure that any given vector
v* € P4 is an equilibrium measure of the resulting matrix. Thus, rather than taking
the viewpoint that G is given and v* is its equilibrium measure, we will start with v*
and construct G with v* as the equilibrium measure. Then the Leja sequence depends
upon v* via G. O

The proof of Theorem 2.1 mimics the standard proof of the convergence of the
measures v, in classical potential theory. Thus, we note that the mapping (u, v) —
G(u, v) is a semi-inner product on the space of all measures on X. We prove first
that the sequence v, converges to v* in the sense of the semi-norm defined by this
semi-inner product. This implies in turn that the Cesaro means (C, 2) of the sequence
v, converges to v*. A tauberian argument then completes the proof. Of course, we
need to keep track of the rates of convergence at each stage.

3 Constructions

Let B be any symmetric matrix, and v € P,. We want to construct a matrix G such
that G is conditionally positive semi-definite, and Gv = c1, so that v is the equilibrium
vector for G. We describe three constructions.

3.1 Diagonal Modification

This construction gives a modified graph Laplacian, and works with any symmetric
matrix B with no further assumptions. First, we construct a symmetric matrix B; so
that Bjv = 0.

We define the v-Laplacian L,(B) by

w(x) = M, W = diag(w(x)), L,(B) =W — B. 3.1

v(x)

Then with By = L,(B),
IB1ll = (x(v) + DIIBII (3.2)

Let V = diag(v(x)/]|v]ls), and

G =2|BIV"' - B. (3.3)

Birkhauser
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Then

G(x,x) = Y 1G(x, y)| = 2[vlloollBill /v(x) — I1Bill = lIBill > O.
y#X

So, G is diagonal dominant, hence, positive definite, and

Gv =2|vllell By 1T, (3.4)
so that v is the unique equilibrium measure of G and

I'(G) = 2|vlleoll Bill- (3.5)
Moreover,

nGi/z = xH;ggIG(x, W= NG = @k () + DI Byl (3.6)

Remark 3.1 The construction of the v-Laplacian works for a/l symmetric matrices B
with no further assumptions. In the case when B is the (weighted) adjacency matrix
with non-negative weights, then with V = diag(v(x)), VBV is another adjacency
matrix for the same graph so that B(x, y) = 0 if and only if (VBV)(x,y) = 0. The
matrix L(VBV) = VL,(B)V isthe non-normalized graph Laplacian for V BV . Thus,
the eigenvalues of L, are the same as those of L(V BV), and if ¢ is an eigenvector
of L(V BV), then the eigenvector for L, for the same eigenvalue is V ¢. In particular,
L,(B) is positive semi-definite, and the graph is connected if and only if v is the
unique null vector for W — B.

If B is the weighted adjacency matrix of a connected graph (with positive weights)
and By is the v-Laplacian defined in (3.1), the matrix G, defined by (3.3), has the same
graph structure as B except for self-loops, and G(x, y) > Oforall x, y € X. O

3.2 Householder Transform

In the case when B is not invertible, there is another way to construct By, which
essentially preserves the eigenstructure of B itself (rather than a graph Laplacian for
B). This construction is also applicable for every non-invertible B which may have
negative entries. If # and w are unit vectors, the Householder transform is defined by

(w—u)(w—u)T

Hlw,ul=1-2
lw—ull3

3.7

Clearly, H[w, u] is a symmetric unitary matrix, H[w, u](w) = u, and H[w, u] =
Hlu, w], so that H[w, u](u) = w. We have

lw — ulloollw — ully

INH [w, u]ll <1+2 <14 2k(w —u). (3.8)

2
llw —ull3
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Since B is not invertible, there is a unit vector u such that Bu = 0. Writing v for
the unit vector along v, we set

B, = H[u,v|BH]|u, v]. (3.9
Clearly, Bjv = 0,
Bl < 1 H u, SIZNBII. (3.10)

The matrix B; has the same eigenvalues as B, and if B = UAUT is the spectral
decomposition of B, then the eigenvectors of B are obtained simply by replacing every
eigenvector u; of B by Hu ;. However, this construction depends upon B having a
null vector u and our ability of compute H [u, v], and the norms will depend upon the
norms of this Householder transform.

With the matrix B defined in (3.9), we construct G as in (3.3).

3.3 Symmetric Scaling

This construction applies only to symmetric, non-negative matrices B, and results
in a matrix with the same eigenvalues as those of B. For a matrix B, and subsets
S1, 82 € X, we denote by B[S, S2] the sub-matrix of B obtained by extracting rows
of A indexed by S; and columns of B indexed by S>.
Let B be a non-negative, symmetric matrix, v € P satisfy the Brualdi condition
For all partitions S1, S2, S3 of X such that B[S U S3, S3] = 0, we have

v =Y v, (3.11)

xXeS y€S3
with equality holding if and only if A[S1, S1U $2] = 0.

Then a theorem of Brualdi [7] states that there exists a diagonal matrix D with
positive entries such that

DBD1 = v. (3.12)
Let V be the diagonal matrix (v(x)). Then G = V-IDBDV ! satisfies
Gv =1 (3.13)

Clearly, G represents a graph with the same vertices and edges as B, except for different
edge weights. We note that when B has a positive diagonal, then the Brualdi condition
is satisfied vacuously for every v € P,. The full algorithmic steps for finding such a
bistochastic normalization of symmetric matrices can be found in [24,29].

Birkhauser
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4 Experiments
4.1 Set Up

One matrix B that is trivially row-scalable as in (3.12) is the matrix of all positive
entries; i.e., the graph is complete with self-loops at each vertex. Considering a com-
plete matrix prevents a possible blow-up of D on singleton vertices, where otherwise
a singleton vertex x would have D(x, x) = (B(x, x)v(x))~ 2. On the other hand,
it is more expensive to apply the Sinkhorn algorithm [42] to a dense matrix B than
applying the algorithm to a sparse matrix B, since the most expensive part of the
algorithm is the matrix vector multiplications.

A sparse matrix B can be augmented to have all positive entries in a style similar
to Pagerank [35] by adding a small weighted edge between any pair of vertices,

§=(l—a)B+%11T. @.1)

Then B trivially satisfies the assumptions in Sect. 3.3 since it has a positive diagonal.
Moreover, because of the particular structure of B,itis possible to compute a matrix
vector multiplication in a time that depends only on the sparsity of B. This is done
using the trivial observation that

: ZX U(.X) 1

Bv=(—-a)Bv+ 1(1Tv) = (1 — a)Bv + = (4.2)
N N '

This observation of the Pagerank modification was originally made in [21].
Similarly, the matrix G used in (2.10) can be constructed from the sparse matrix B
by observing that

G=V 'DBDV'=(10-a)V 'DBDV ! + %(Dv*_l)(Dv*_l)T, 4.3)

where V = diag(v*(x)).

The entire algorithm for constructing the Leja points {a;} of the Pagerank graph in
Eq. (4.1) is shown in Algorithm 1 for completeness. The computational complexity
of the algorithm is mostly rooted in the Sinkhorn iterations for computing G. Let B
be an N x N matrix with k edges per node (the number of edges need not be fixed,
but simplifies the complexity calculation). Then each matvec operation Bv requires
O (Nk) flops, so computation of Bv also requires O (Nk) flops. Exact bounds on the
numberL of Sinkhorn iterationsis not known, but we can still denote the computational
complexity as O (NkL). Computing G similarly requires O (Nk) flops and can be held
in memory using sparse storage using (4.3). Finally, computing the Leja points requires
summing up to n columns of G, which has computational complexity O (nk). This
gives a total complexity of O(NkL) + O (nk).

In all the experiments below, we compare three quantities:
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Algorithm 1 Graph Leja Point Selection

Input: Sparse matrix B, Pagerank factor «, Base measure v, Number Leja points n, Queryable function

~

Output: Integral estimate IE;[ fl
:B= (1—a)B+ % 11T > Notational only, the full ones matrix need not be stored in memory (see (4.2))
- Sinkhorn iterations to find D such that DED1 = v
G=v-'DBDV~!
: ag = random vertex x € X
: for k from 1ton — 1do
a = arg min Y-X2} G(x,a;)

xeX

: end for

Ef]1= 1 ) fla

e the average % ZZ;& f(xx), where xj is sampled randomly (with replacement)
according to a weighted probability v*(x;). This is denoted “Random” and with
blue curves in the experiments.

e the average % ZZ;& f (ax), where ay are the Leja points of the graph with equilib-
rium measure v*. This is denoted “Leja” and with red curves in the experiments.

e the average ﬁ Y i—o(n—k) f(ag) (cf. (5.7)), where the ay are the Leja points
of the graph with equilibrium measure v*. This quantity is considered as a natural
weighting of the Leja points that respects the order in which they are drawn. This
is denoted “Summability” and with orange curves in the experiments.

We also note for all examples to follow in this section, that because both the Leja
point selection algorithm and the Monte Carlo sampling are with replacement, it is
possible to compute n > N iterations without selecting all N vertices. This additional
sampling can be seen as establishing weights, as a point sampled twice is given twice
the weight as a point sampled once. Additionally, we will use the Pagerank kernel G
as in (4.1) with « = 0.05.

Finally, unless otherwise noted,we set v* to be the inverse of the kernel density
estimate for the graph,

V*(x) & 4.4)

1
> A Y)

normalized so that ||v*||; = 1. This is an arbitrary choice of v*, as the only required
condition is for v*(x) > 0, and is meant to demonstrate that the results apply to
more than v* = %1. This equilibrium measure is of particular interest because, in the
point cloud kNN graph setting, it approximately cancels out the sampling density of
the points themselves. More specifically, if the points are sampled from the density
p: R? — R, that has comptact supp(p), then

Ev<[f] =/ f ) p)dv*(x) %cp/ Sf)dx, 4.5)
supp(p) supp(p)

Birkhauser



76 Page 14 of 27 Journal of Fourier Analysis and Applications (2021) 27:76

10°

Random

- —_—leia
Summability

<Q

S

S
&

Relative error in estimating [ f dv’

T T - -
. : [‘\"'\,\,‘““‘ ‘M"‘"’» l'.m/\p\l«,,...;:,P»‘;,l'l,\“ul

2 1

0 500 1000 1500 2000 2500 3000
Number of Leja Points Selected

(b)

Leja
12 Summability

0 'i'\\ PRGN o et
Wy

Relative error in estimating [ f dv’

[ 500 1000 1500 2000 2500 3000
Number of Leja Points Selected

(0 (d)

Fig. 2 Watts-Stogatz models for a-b § = 0.05, and c—d g = 0.25. We display both an example of the
graph/function, and the quadrature error results over 1000 instantiations of the random graph. The dotted
lines correspond to the confidence intervals around each mean curve of the same color

which would be independent of the relative heights of the sampling density. However,
any positive density v* satisfies the necessary assumptions for the proven approxima-
tion rates.

4.2 Synthetic Graphs with Smooth Functions

A common model for social networks is a so-called small world network [48]. Small
world networks are graphs with a small number of edges per vertex, but where any
pair of vertices is likely to have a small graph distance. Mathematically, if the average
graph distance between two vertices is d, a small-world graph with N vertices roughly
satisfies d o< log(N). These networks are antithetical to nearest neighbor graphs that
are generated from a point cloud in some metric space, and have a large network
diameter.

In the first set of experiments, we examine the quadrature approximation for a
smooth function on a Watts-Strogatz model [48]. This is a model of random graph
generation that exhibits small-world properties, including low path distances between
vertices while still exhibiting a high degree of clustering. The model takes inputs of

9 Birkhauser
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Fig. 3 Two cluster metric graph example with non-uniform density. We display both an example of the
graph/function, and the quadrature error results over 1000 instantiations of the random graph. The dotted
lines correspond to the confidence intervals around each mean curve of the same color

number of vertices, average number of edges per vertex, and a parameter 8 € [0, 1]
that models the fraction of random connections. When 8 = 0 the generated graphs
will exhibit lattice structure, and when B = 1 the graph will resemble an Erd&s-Rényi
random graph.

In this experiment, we take f to be the x —coordinate of the vertex locations after
applying a force layout [15]. This results in a smooth function in the nodes, since a
force layout is a heuristic algorithm that repels unconnected nodes away from one
another. The functions are displayed in Fig. 2, and the graphs are constructed for
various values of the parameter 8, which measures the level of structure in the graph.
Also, because the graph can be regenerated, we run the experiment for 1000 graphs
with the same parameters. We display the mean and standard deviation across these
1000 instantiations of the graph. For each graph, we take N = 1500 vertices, and an
average of 25 edges per node.

In a second set of experiments, we construct a nearest neighbor graph from the
point cloud in Fig. 3. The graph weights are determined with a Gaussian kernel with
bandwidth o = 0.1. The interesting aspect of this data set is that the points from the
two clusters are sampled in a highly non-uniform manner. Because v* is constructed by
approximating the inverse of the local density, this results in a similar number of points
sampled from both clusters, see Fig. 4. The function is taken to be the x-coordinate
of the points. Again, because the graph can be regenerated, we run the experiment for
1000 graphs with the same parameters. We display the mean and standard deviation
across these 1000 instantiations of the graph. For each graph, we take N = 1500
nodes.

We also demonstrate that the location of the Leja points for each of these data sets,
using v* to be an inverse density estimate, in Fig. 4.

4.3 Synthetic Graphs with Non-band-Limited Functions

A novelty of the results in Theorem 2.1 is that it applies to fuctions that are not required
to be band limited.

N . .
20 Birkhauser
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WS graph 5 = .05 WS graph g = .25 Two Cluster metric graph

Fig.4 Layout of 50 Leja points for various Watts-Stogatz data sets, with v* being the inverse of the kernel
density estimate

We demonsrate the strengths of the bound in Eq. (2.13), namely that the function
is not required to be band limited in order for the estimation bounds to apply. To
characterize this, we generate a series of experiments on the two cluster data from Fig.
3, but with a significantly more complicated function f. To construct f, we consider
a spectral decomposition of the matrix G = ® A ®*. Then we construct the function
spectrally via

5> (8eee™™) o, (46)

k=1

where & ~ Unif([0, 1]), and 7 controls the rate of spectral decay with respect to the
eigenvalue A. In Fig. 5, we demonstrate the quadrature approximation error averaged
across 1000 instantiations of the random graph and random function. We also consider
these experiments across varying 7, demonstrating empirically the effect of the spectral
decay rate on the overall quadrature approximation rate.

Figure 5 shows a reduction in the gap between the Monte Carlo quadrature approx-
imation rate and the Leja point approximation rate as the spectral decay tail increases.
This is to be expected, as a larger spectral tail reduces the smoothness of the func-
tion with respect to the graph. But this experiment shows that Leja point quadrature
approximation rate does have a benefit over random sampling without the requirement
that the target function be spectrally band-limited.

4.4 Real-World Graphs

Next, we illustrate our theory using a couple of real world graphs and functions. Since
the graph is fixed in these examples and cannot be regenerated, we compute the Leja
sequence for 1000 different random choices of ag, and average the errors. Similarly
for the Monte Carlo comparison, we generate 1000 different sequences of sampled
points.

In this first set of experiments, we examine the quadrature error for labels from the
CORA data set [41]. The standard form of the data set comprises a digraph with 2708
publications as vertices, and edge from i to j means that paper i cited paper j. These
publications are from seven areas of computer science and information theory, which

) Birkhiuser
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Fig. 5 Two cluster metric graph example with non-bandlimited function as in Eq. (4.6). We display the
quadrature error results over 1000 instantiations of the random graph/function, and for varying 7. The dotted
lines correspond to the confidence intervals around each mean curve of the same color

corresponds to the seven different classes in the data set. There are a large number
of weakly connected components, many of which are singletons. The largest weakly
connected component has 2485 nodes. We treat the citation links as undircted edges
and construct a binary, symmetric adjacency matrix A, and take the largest connected
component as the graph. This is equivalent to the largest weakly connected component,
which results in an undirected graph with 2485 vertices.

Due to the sparsity of the number of edges in this graph, using the matrix G con-
structed directly from the graph results in a slow rate at which ), G (-, ax) changes
as the number of Leja points increases. The process is expedited if we extend the con-
nections between documents to two steps away by taking B = A2. In this experiment
in Fig. 6, we take the function f to be the indicator function of classi fori = 1,...,7.
These labels represent the field of the given document, and are related to the network
due to the obvious fact that papers in the same field are more likely to cite one another.

In the second set of experiments, we examine the exepcted value approximation
for positive association with various propositions in the Proposition dataset [43,50].
The November 2012 California ballot contained 11 initiatives, or propositions, on
a variety of issues, including state taxation, corrections, and food labelling among
others. The data consist of Twitter posts related to initiatives, grouped according to

) Birkhduser
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Data and Labels

Label 4 Label 5 Label 6 Label 7

Fig. 6 Cora data set quadrature error for indicator function of various labels. The Leja and summability
curves are averaged across 1000 different initializations. The dotted lines around the Monte Carlo curve
are the confidence intervals

different propositions. For each proposition, the data is a directed graph with edge
from i to j if the tweet originated from user i to user j. The authors of [43] have
assigned an evaluation of the emotion of the sender with each tweet. We treat the
edges as undirected and construct a binary, symmetric adjacency matrix A. We take
the largest connected component of the graph for these experiments. Each proposition
has its own graph, with a positive or negative label of sentiment on each node. The
mean binary sentiment estimate could be used as a proxy for the number of people
that would vote for/against the proposition.

Due to the sparsity of the number of edges in this graph, we extend the connections
between documents to two steps away by taking B = AZ.

In this experiment, we take the function to be a binary indicator function (0 or 1) of
whether the sentiment is positive. We examine two different graphs in Fig. 7, those for
Proposition 30 and those for Proposition 37, as those are the graphs with the largest
number of vertices, with 4436 vertices for Prop 30 and 8039 vertices for Prop 37.

As we can see in both the Cora experiments and the Proposition experiments, the
Leja quadrature error performs better than the average Monte Carlo performance even
for a small number of sampled points. We also wish to address the relative lack of
smoothness of the quadrature approximations relative to the synthetic experiments
and the Monte Carlo trials. First, recall that the labels here are incredibly non-smooth
as they are binary. Second, we note that the Leja point sampling can be thought of as a
distance sampling scheme, choosing consecutive points far apart from one another and
points likely to have different labels. Because of these points, the approximation error
will have a larger local variability than random sampling, even when averaged across
multiple initializations. This is also a motivation for using the summability approxi-
mation, which applies a decaying weight to added points and does not demonstrate
the same local fluctuations as the unweighted Leja point averages.

We also demonstrate that the location of the Leja points for each of these data sets,
using v* to be an inverse density estimate, in Fig. 8.
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Fig.7 Proposition data set quadrature error. a—b Proposition 30, ¢—d Proposition 37. The Leja and summa-
bility curves are averaged across 1000 different initializations. The dotted lines around the Monte Carlo
curve are the confidence intervals

Prop 30 Prop 37 Cora

Fig. 8 Layout of 50 Leja points for various real-world data sets, with v* being the inverse of the kernel
density estimate

4.5 Additional Comparisons

In this section, we compare our method to a natural alternative: computing a function
interpolation from the sampled subset W C V to the entire set of vertices V, and then
integrating that estimate against v*. A recent method for this function interpolation is
graph sampling set selection (GSSS) [39], which is built on taking a weighted linear
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Fig.9 a-b Adjacency of communities, c—d Adjacency matrix squared. We display both an example of the
graph/function, and the quadrature error results over 1000 instantiations of the random graph. The dotted
lines correspond to the confidence intervals around each mean curve of the same color

combination of columns of the spectrally filtered graph Laplacian. We compare to
this method in Fig. 9 on the community graph data set proposed in [39]. We compare
using both the original adjacency matrix A, and using the two-hop adjacency matrix
A?, as the starting set of edges. We take v* to be the inverse density of each community,
normalized. Again, we compare across 1000 instantiations of the graph with N = 1000
points, and report the mean and standard deviation of the error at each fraction of points
kept. The function being regressed in each instantiation is chosen to be constant on
each community, with the value randomly choosen from a uniform distribution.
Finally, we demonstrate that the bound (2.13) on the quadrature error is independent
of the number of data points for problems of fixed complexity. In this experiment, we
return to the two cluster example from Fig. 3 while varying the number of data points.
The graph created from this point cloud remains fixed, constructed with a Gaussian
kernel of bandwidth o = 0.1. In Fig. 10, we vary the number of data points and plot
the quadrature error for a fixed number of Leja iterations. After an initial level-off as
the number of points grows, the error is more or less constant. This shows that the
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Fig. 10 Two cluster dataset with a fixed number of Leja points and a fixed Gaussian kernel bandwidth
o = 0.1. The quadrature error results are over 1000 instantiations of the random graph. The dotted lines
correspond to the confidence intervals around each mean curve of the same color

error does not have a strong dependence on N for neighbor graphs built from a fixed
sampling distribution.

5 Proofs

Proof of Lemma 2.1. Let v* be an equilibrium measure. If v € P, then forall ¢t € [0, 1],
(1 — )v* + tv € P, and therefore, r = 0 is a minimum for

@) =G =  +1v, (1= +1v) =1 —1)>’GO*, v¥)
+2G(v,v) +2t(1 — )G (v, v™).

So, f/(0) = =2G(v*, v*) +2G (v, v*) > 0. This implies (2.5). Let € > 0 and, in this
proof only, L = {x € X: G(x,v*) > I'(G) + €}. Then

I'G)=GOw*v" = / G(x,vdv* +/ G(x,v"dv*(x)
L X\L

VI(L)(T(G) + €) + T(GW*(X\ L) =T'(G) + v*(L)e.

v

Therefore, v*(L) = 0. Since X is a finite set, this implies (2.6).
Next, let G be conditionally positive semi-definite, and p satisfy the conditions of
part (b). Then (2.8) shows that G (i, ) = ¢, and (2.7) shows that G(v*, u) > c. So,

0<GOW" —u, v —p) =GO* v + G, n) —2G(v*, nw) < GOW*,v* —c.
Thus, ¢ = G(u, ) < G(v*, v*). Since v* is an equilibrium measure, it follows that
c=G(u, n) = GWw*, v*) =T'(G), so that u is also an equilibrium measure. Also,

G(W* — u, v* — u) = 0, so that & — v* is in the null space of G. O
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The next theorem shows in a standard manner than the sequence o, associated
with the Leja points converge to the equilibrium measure. In the sequel, we write
M = max,cx G(x, x).

Theorem 5.1 We have
1
G(o, —v*, 0, —V*) < = (M — G(v*, v*)) , neZly. 5.1
n

Any weak-star limit of a subsequence of {0} is also an equilibrium measure.

Proof We have forn > 2,

1 n—1 1 n—1 2
Glow o) =— 3, Gujv)=—3 Gpv)+—= 3, Gjw
j k=0 j=0 0<j<k<n—1
1 n—1 2 n—1 k—1
:n—ZZG(v./,vj)—{—n—zZG > i (5.2)
j=0 k=1 j=0

1 n—1 ) n—1
= > G v+ = > kG (o, wp).
j=0 k=1

In view of the definition (2.11) of Leja points,
G(or, vp) = G(vg, or) < G(x, op), x e X, (5.3)
Integrating both sides with respect to v* and using (2.9), we get for all k € Z,
G (o, vp) < G(og, v™) = G(v*, v™).

Therefore, (5.2) leads to

n—1
Glon o) < M/n+ SGO v 3 k= GO™v7) + (M = GO, ) /n(5.4)
n
k=1

In view of (2.9),

G(op — v, Op — V*) = G(oy,04) + G(V*a V*) —2G(oy, V*)
= G(Una Un) - G(U*, V*)'
Therefore, (5.4) implies (5.1). In turn, if {0, },ca be any subsequence of {0, } converg-

ing weak-star to a probability measure o, then (5.1) shows that G (o —v*, o —v*) = 0.
Therefore, o is also an equilibrium measure. O

We note a couple of corollaries of the proof of Theorem 5.1.
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Corollary 5.1 Forn > 2,

n—1

Gt~ M — 1) < ——— 3 kGO, 0) < GOS0, (5.5)
P v,V /(n _”(”—l)kzl Vi, 0x) < G(v",v7). .

We formulate the next corollary as a theorem in its own right.

Theorem 5.2 Let G(v*, v*) > 0. Then forallx € X, n > 2,

2 G 201G
GO v*) = M/(n—1) < 1) ZkG( ||| ||| GOW* v + |||n Il
(5.6)
In particular,
n—1
2 . . 2|IGI|
max m/Ezo(n—])G(X,Vj)—G(LV )| =< - (5.7

Proof The first estimate in (5.6) follows from the first estimate in (5.5) and (5.3). The
second estimate in (5.6) follows from the fact that

18 2|||G|||
Gx.op) = — ZG(x vp) = ZG(x ak><—Z|G< Lap)) < ——

] =0
(5.8)

The final inequality in (5.6) following from the fact that G (v*, v*) > 0. We observe
now that

n—1 n—1 n—1n-—1 n—1
> kG0 =) kGx.o) =Y Y Gx,vj) =Y (n— HG(x.v)). (5.9)
k=1 k=0 k=0 j=0 j=0

Therefore, (5.7) follows from (5.6) and the fact that G(x, v*) = G(*, v*) for all
x e X, O

Theorem 5.3 If G(x,y) > 0 forall x,y € X, we have forn > 2,

3G
G(x,v") — G(x, < —. 5.10
ng' (x,v™) (x G,,)I_n_|_1 ( )
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Proof For £ > 2, we have

-1 -2
€G(ve,00) = Y Glag, a)) = Glag,ar-1) + )_ Glag, a))
j=0 j=0

= G(ag,ae—1) + (L — 1DG(vg, 0¢-1)
-2
1
> (U —=1DGe-1,0¢-1) 2 LG(vg-1,0¢-1) — 7—1 ZG(aé—lyaj)
=0
NGl

> LG (ve—1,00-1) — —1

ie.,
1 1
Gve-1,00-) = G 00 < NG 7= = 7 )
Therefore, for any k with 2 < k < n, a summation in the above inequality leads to

n—=k
G (i, 0x) — G(vy, o) < |||GIIIW-

Since G (v*, v*) > 0, Corollary 5.1 now shows that

n(n;‘ D (G(\;*,v ) — n) ZkG(Vk,ok) =< n(n2+ 1)G(Vm(fn)

~|—G(V1,01)+ Gl Z(

_ @G(vn,an)
— -2
4 Gl op 4 1N @ )2(n 3

Rearranging,

G v*) — G(uy. o) < M 2G(v,01) NGl (n = D(n —2)
nn+1) n nn+1)

Forn >2,2n+ (n — 1)(n — 2) < n?, and we deduce that

M ANIGH _ 3Gl

GO*,v*) — G(v,, < )
", v (Vi 0n) < P R
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Forany x € X, wehave G(x, v*) = G(v*, v*)and G (v,, 0,,) < G(x, 0,,). Therefore,

3Gl

G(x,v") — G(x, < .
(x,v%) (xan)_n+1

In the reverse direction, we recall (5.8). Together with (5.6), this leads to (5.10). O

Proof of Theorem 2.1. The estimate (2.13) follows easily from (5.10) and the observa-
tion that

/dev —r—lkgf(ak)zfxfdv —/dean

=/ {/ G(x,y)dV*(y)—f G(x,y)dan(y)}dDG(f)(x)~
X X X

O
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