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This paper introduces kdiff, a novel kernel-based measure for estimating distances
between instances of time series, random fields and other forms of structured data.
This measure is based on the idea of matching distributions that only overlap over a portion of
their region of support. Our proposed measure is inspired by MPdist which has been previously
proposed for such datasets and is constructed using Euclidean metrics, whereas kdiff is
constructed using non-linear kerel distances. Also, kdiff accounts for both self and cross
similarities across the instances and is defined using a lower quantile of the distance distribution.
Comparing the cross similarity to self similarity allows for measures of similarity that are more
robust to noise and partial occlusions of the relevant signals. Our proposed measure kdiff is a
more general form of the well known kernel-based Maximum Mean Discrepancy distance
estimated over the embeddings. Some theoretical results are provided for separability conditions
using kdiff as a distance measure for clustering and classification problems where the
embedding distributions can be modeled as two component mixtures. Applications are
demonstrated for clustering of synthetic and real-life time series and image data, and the
performance of kdiff is compared to competing distance measures for clustering.

Keywords: Kernels, time series, statistical distances, random fields, Motif detection

1 INTRODUCTION AND MOTIVATION

Clustering and classification tasks in applications such as time series and image processing are
critically dependent on the distance measure used to identify similarities in the available data.
Distance measures are named as such because they may not satisfy all assumptions of a metric (e.g.,
they may induce equivalence classes of time series that are distance zero from one another, they may
not satisfy the triangle inequality). In such contexts, several distance measures have been proposed in
the literature:

Point-to-point matching e.g. Euclidean distance or Dynamic Time Warping distance [1, 2]
Matching features of the series e.g. autocorrelation coefficients [3], Pearson correlation
coefficients [4], periodograms [5], extreme value behavior [6]

Number of matching subsequences in the series [7]

Similarity of embedding distributions of the series [8]

In this paper we consider distance measures for applications involving clustering, classification
and related data mining tasks in time series, random fields and other forms of possibly non i. i.d data.
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In particular, we focus on problems where membership in a
specific class is characterized by instances matching only over a
portion of their region of support. In addition, the regions where
such feature matching occurs may not be overlapping in time, or
on the underlying grid of the random field. Distance measures
must take these data characteristics into consideration when
determining similarity in such applications. Previously MPdist
has been proposed as a distance measure for such time series
datasets [7] which match only over part of their region of support
and is constructed using Euclidean metrics. Inspired by MPdist,
we propose a new kernel-based distance measure kdiff for
estimating distances between instances of such univariate and
multivariate time series, random field and other types of
structured data.

For constructing kdiff, we first create sliding window based
embeddings over the given time series or random fields. We then
estimate a distance distribution by using a kernel-based distance
measure between such embeddings over given pairs of data
instances. Finally the distance measure used in clustering,
classification and related tasks is defined by a pre-specified
lower quantile of this distance distribution. This kernel-based
distance measure based on such embeddings can also be
constructed using the Reproducing Kernel Hilbert Space
(RKHS) based Maximum Mean Discrepancy (MMD)
previously discussed in [9]. Our kernel based measure kdiff
can be considered as a more general distance compared to
RKHS MMD for applications where class instances match
only over a part of the region of support. More details about
the connections between kdiff and RKHS MMD are provided
later in the paper. We also note that the kernel construction in
kdiff allows for data-dependent kernel construction similar to
MMD [10-12], though we focus on isotropic localized kernels in
this work and compare to standard MMD.

The rest of the paper is organized as follows. Section 2 outlines
the main idea and motivation behind the construction of our
distance measure kdiff. Section 2 also outlines some theoretical
results for separability of data using kdiff as a distance measure
for clustering, classification and related tasks by modeling the
embedding distributions derived from the original data as two
component mixtures. Section 3 outlines some practical
considerations and data-driven strategies to determine optimal
parameters for the algorithm to estimate kdiff. Section 4 presents
simulation results using kdiff on both synthetic and real-life
datasets and compares them with existing methods. Finally
Section 5 outlines some conclusions and directions for
future work.

2 MAIN IDEA

2.1 Overview

Consider two real-valued datasets {X;, Y;: t € 7F} defined over a
k-dimensional index set. These may in general be vector-valued
random variables, and therefore X; and Y; can be considered as
either univariate or multivariate time series, random fields or
other types of structured data. Our problem of interest is where
instances of X; and Y, match with certain localized motifs

Kernel Distance Measure

X;:teS={Y;:teS§} for small localized index sets
S,S' ¢ ZF. For both the univariate and multivariate cases, we
can embed these data sets into some corresponding point clouds
X,Y ¢ R via windowing with a size L window, where L can be
determined from training or some other appropriate technique
[8, 13]. Once we have a window embedding of these data sets, we
can define various distance measures on the resulting point
clouds to define similarity between X; and Y.

A distance measure that has been proposed previously to
determine similarity between two such time series embedded
point clouds constructed over RE is MPdist [7]. In this case, a
cross-data distance measure, denoted D?, can be constructed by
using 1-nearest neighbor Euclidean distances between point
clouds X and Y as below:

d(x) = infer”x - )’”, Vx € X
d(y) =infixllx - yll, VyeY
D? ={d2(z): zeXUY} (1)

In [7], the distance measure MPdist was estimated for
univariate time series by choosing the kth smallest element in
the set D”. In general, MPdist can be constructed using a lower
quantile of the distance distribution D*.

Our proposed distance measure kdiff generalizes MPdist using
a kernel-based construction, and by considering both cross-
similarity and self-similarity. Similar to MPdist, we first
construct sliding window based embeddings over the original
data instances X;, Y; and obtain corresponding point clouds X
and Y. For MPdist the final distance is estimated based on cross-
similarity between the embeddings X, Y as shown in Eq. 1. Our
distance measure kdiff differs from this in two ways:

e We use a kernel based similarity measure over the obtained
sliding window based embeddings X and Y for kdiff instead
of the Euclidean metric used in MPdist.

e For kdiff the final distance is estimated based on both self
and cross-similarities between the embeddings X, Y
respectively. The inclusion of self-similarity in the
construction of kdiff as compared to only cross-similarity
for MPdist leads to better clustering performance for data
with reduced signal-to-noise ratio of the matching region
versus the background. This is demonstrated empirically for
both synthetic and real-life data in Section 4.

2.2 The Construction of kdiff

To define our kdff statistic, we will begin with a discussion of
general distributions defined on R”. For the purposes of this
paper, these can be assumed to be the distributions that the
finite samples X are drawn from (in a non-iid fashion) and
stitched together to form the time series X, (respectively for Y
and Y;).

In general, we can define the distributions on X, which is a
locally compact metric measure space with the metric p and a
distinguished probability measure v*. The term measure will
denote a signed Borel measure. We introduce a fixed, positive
definite kernel K: X x X — (0,00), K € C(X x X). Since the
kernel is fixed, the mention of this kernel will be omitted from
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notations, although the kernel plays a crucial role in our theory.
Given any signed measure (or positive measure having bounded
variation) 7 on X, we define the witness function of 7 by

U(r)(z) = JXK(Z, x)d7t (x), z € X, 2)

and similarly the magnitude of the witness function
T =U@ @), zeX 3)

In the context of defining a distance between p, y,, we take 7 =
U1 — po, which results in a witness function

U, =) (2) = By [K (2,0)] = By [K (2, 7).

To quantify where T (y; — yp) is small, we define the
cumulative distribution function (CDF) of a Borel measurable
function f: X — R by

AF)®) = A0 1) @) =v ({z: |f (2)| <t}), € [0, 00),
(4)
and its “inverse” CDF by
£* () = sup{t € [0,00): A(f)(t) <ul, € [0,00). (5)

Both A(f) and f* are non-decreasing functions, and f*(u)
defines the u-th quartile of f.

Finally, we are prepared to define our kdiff distance between
probability measures y;, y,. Having defined T (¢, — ) (2), we
now define kdiff to be the & quantile of T (y; — y»),

Kdiff (45 0) = (T (g, - ) (@, ae(0,1). (6)

The intuition of (6) is that, if y; = p,, the resulting kdiff statistic
will be zero. But beyond this, if T (4; — y») (2) = 0 for a set
z € A ¢ Xsuch that v*(A) > 0, then for a localized enough kernel,
there exists a quantile « for which we can still have the resulting
kdiff statistic be close to zero. This allows us to match
distributions that agree over partial support. This will be
discussed more precisely in Section 2.3.

2.3 Separability Theorems for kdiff

For the purposes of analyzing the kdiff statistic, we will focus on
the setting of resolving mixture models of probabilities on X
when only one of the components agree. Accordingly, for any § €
(0, 1), we define Ps to be the class of all probability measures y on
X which can be expressed as y = Spr + (1 — 0)up, where yrand g
are probability measures on X. With the applications in the paper
in mind, we will refer to yr as the foreground and up as the
background probabilities. Our interest is in developing a test to
see whether given two measures y; and p, in Ps, the
corresponding foreground components agree. Clearly, the
same discussion could also apply to the case when we wish to
focus on the background components with obvious changes. We
also note that in general, Ps is simply the space of probability
measures, but it should be thought of as the space of mixtures of
almost-disjoint measures. We will add the necessary assumptions
on §, g, pp in the main results below.

Kernel Distance Measure

We first present some preparatory material before reaching
our desired statements. For any subset A € X and x € X, we
define

dist (A, x) = inf ,eap (3, x). (7)

The support of a finite positive measure p, denoted by
supp (y) is the set of all x € X such that y(U) > 0 for all open
subsets U containing x. Clearly, supp (y) is a closed set. If 0 is a
non-zero signed measure and 0 = o' - ¢ is the Jordan
decomposition of 15 then we define
supp (o) = supp(c*) Usupp (o). If f: X — R, we define

[flloo = sup,ex|f ()1.

The following lemma summarizes some important but easy
properties of quantities A(f) and f* defined in Eqs. 4, 5
respectively.

Lemma 1. (a) For t, u € [0, 00),

Af)O<u=t<fFw), usA()O=fFw<t ©®)

(b) Ife >0, f,9: X >R, and || f - glleo < € then sup,ejo,o0)
ffw) - gw) <e

Our goal is to investigate sufficient conditions on two
measures in Py so that kdiff can distinguish if the foreground
components of the measures are the same. For this purpose, we
introduce some further notation, where we suppress the mention
of certain quantities for brevity. Let y; = 8y p + (1 = 8)p; g € P,
j = 1,2, and Sg=supp(y, ) Usupp(y,r), and we define
S =X/S. We define for #, 6 > 0,

Sp (i) = {2 € Xe T(py 5 — py5) (2) <1},

¢s (1) = v (S (up>12:1))

Sk (pp i) = {Z eX T(!"l,F _P‘z,F) (2) < ’7}’

¢ (1) = v (S (p> 12 1))

Gy 53 6:1) = (S7.(8) N S (1)) U (S5(6) N Sk (),
y(0,1) = v (G (w1123 0,1)) ©9)

Theorem 2. Let § ¢ (O,l),yj =Oup+ (1= Ou;p €Ps (j=1,2).

a) If n > 0 and py r = o r then for any a < ¢g(n), we have kdiff
(U1, s @) < (1 = .
b) If # > 0 such that ¢ (3(1T—5)’1) <1 and 1//(3(1T_'5)11, n) >0, then
ULr # por and for any a with
3(1-9)
l-y(—5—nmns=e

we have kdiff (4, po; @) =2 (1 - ).

Proof. To prove part (a), we observe that since pyy p = pip p, T(41 —
Y2) (2) =(1 = 8) - T(uy 5 — Ua,8) (2) for all z € X. By definition (9),

Sp (i) = {2 € Xe Ty — 1) (2) <1}
={zeX: T(y, —p,)(2)<(1-0)y}
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Therefore, ¢5(1) < A(T (41 — p2)) ((1 = 8)n). In view of (8), this
proves part (a).

To prove part (b), we will write
3(1-0)

s "

Our hypothesis that ¢ (0) < 1 means that y; p # y, rand S, (6)
is nonempty. For all z € S;(6) N Sg (),

T (4, —1,)(2)2 8|U(ﬂ1,F - P‘z,F) (@) -(1- 6)|U(#1,B - .“2,3) (2)|
>80-(1-0)n=2(1-0)n.

0=

Moreover, for z € 85 (0) N Sk (#), we also know that

T (p, — ) (2) 2 (1 - 5)|U(.‘"1,B - !‘2,3) (@) - 5|U(!‘1,F - P‘z,F) (2)l

_ 2_ 2
2(1—6)6—5112Wn.

2 2
Note that because 8 < %, we have W >2(1-96). So, this
means that

{zeX: Ty, —p,)(2)<2(1-8n} c{zeX: z ¢ G(6,n)};

This means that A(T (4; — u2)) (2 (1 - 8)n) <1 —y(6, ). Since
a > 1 — y(6, 1), this estimate together with (8) leads to the
conclusion in part (b).

We wish to comment on the practicality of the constants
Sr (s y3 1)s Se (U s 1) and G(uy, 14,3 0,1). We consider this
with the simple setting where K is a compactly supported
localized kernel (e.g., indicator function of an e-ball) in order
to avoid the discussion of tails. We define the well-separated
setting as the setting where dist (supp (¢, 3), SUpPpP (¢, 3)) > € and
dist(supp (¢4, p), supp (y; z)) > €. For part (b), we'll also use
dist(supp (¢4, z),Supp (4, r)) >€ and all four measures are
sufficiently concentrated, i.e.,

wellz € X T(up) (2)26)) 21-¢
and ‘ui)B({z e X: T(yi)B) (z) = 9}) >1-¢&

We consider the results of Theorem 2 in the well-separated
setting with v =1 (4, +p,):

a) Sg (4;, 4,; n7) measures how much the backgrounds overlap with
one another. In this setting, ¢5(17) > & for any # > 0. This is
because T (41,5~ pa,8) (2) = 0 for all z € supp (y; ), and thus
z € Sy, phy; 1)- Since v (SUPP (i ;) U SUPP (4, £)) = &, this
lower bounds ¢5(#). This means for any « < §, kdift (y;, p;
a) = 0.

b) Because of the well-separated assumption, S; (6) ¢ Sg (7). This
means that everywhere the foregrounds are sufficiently
concentrated, the backgrounds must be sufficiently small.
Similarly, — S3(0) c Sp().  Furthermore, the  sets
S%(0) N Sp(n) and S; () N Sk (y) by definition are disjoint
when 6 > #. Thus we have

Kernel Distance Measure

L=y(0,n) = 1= ((Sz(6) N Sy (1)) U (S5(0) N Sr ()
=1-7(S(0) N Sy (1)) = v (S5(8) N S (1))
=1-7(5:(0)) - v (55(6))
<1-8(1-8)-(1-8)(1-8)
=¢

Thus we can choose #, 0 as large as possible to satisfy the
assumptions, and even then for very small quantiles o > & we kdiff
(> ps @) > 2 (1 = O)n.

These above descriptions clarify the theorem in the simplest
setting. When the foreground distributions are small but
concentrated, and7far from the separate backgrounds, then the
hypothesis of y; z=,  can be easily distinguished with kdiff for
almost all o < 6.

In practice, of course, we need to estimate kidff (1, p»; &) from
samples taken from p; and p,. In turn, this necessitates an
estimation of the witness function of probability measure from
samples from this probability. We need to do this separately for y;
and p,, but it is convenient to formulate the result for a generic
probability measure y. To estimate the error in the resulting
approximation, we need to stipulate some further conditions
enumerated below. We will denote by S = supp (x).

Essential compact support For any ¢ > 0, there exists R(t) > 0
such that

K(x,y)<t, xy€eX, p(x,y)=R(1). (10)

Covering property For t > 0, let
B(S',t) = {z € X: dist(S’,z) <R(t)}. There exist A, B >0
such that for any ¢t > 0, the set B(S,t) is contained in the
union of at most At * balls of radius < .

Lipschitz condition We have

K (x, y) - K(x', y)l
m K (x, y) + max, ., <1
AX (x,y)exxx (x )’) +max, ., X{ (%, %) +P(}’) y,) <

(11)
Then Hoffding’s inequality leads to the following theorem.

Theorem 3. Let € > 0, M > 2 be an integer, and u be any
probability measure on X and {y,, . . ., ys} bei.i.d. samples from .
Then with y-probability > 1 — €, we have

ﬂ"‘l 1/2
< z{W} . (12)

U(#)(°)-%ZK(°%)

j=1

(o]

The proof of Theorem 3 mirrors the results for the witness
function in [14].

2.4 Conclusions From Separability

Theorems

To illustrate the benefit of the above theory, we recall the MMD
distance measure between two probability measures y; and p,
defined by
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MMD? (i) = [ [ K (09) it () =ty ()
XJX

(dp, () = du, (¥))- (13)

When y,, 4, € Ps and the foreground components y; p = pio
then py — p, = (1 = 0) (p1,5— p2,8) and

MMD* (), p,) = (1 - 6)2MMD2(/41,B’#2,3)' (14)

Since K is a positive definite kernel, it is thus impossible for
MMD? (41, 42) = 0 unless y; g = y, 5. One of the motivations for
our construction is to devise a test statistic that can be arbitrarily
small even if y; g # p, 5.

The results derived above provide certain insights regarding
when it is possible to perform tasks such as clustering and
classification of data using distance measures such as kdiff and
MMD based on the characteristics of their foreground and
background distributions. The results in Theorem 2 show that,
provided the backgrounds are sufficiently separated, the kdiff
statistic will be significantly smaller when y; = y,  than when
p1r and p, p are separated.

This enables kdiff to perform accurate discrimination i.e. data
belonging to the same class will be clustered correctly in this
case. On the other hand, it is clear that even if y; r = po
MMD? (u;, u,) will still be highly dependent on the
backgrounds. In this paper we consider the case where
data instances belonging to the same class have the same
foreground but different background distributions. In such
situations using synthetic and real life examples we
demonstrate  the  comparative  performance  and
effectiveness of kdiff for clustering tasks versus other
distance measures including MMD.

As a final note, we wish to mention the relationship between
MMD and kdiff. It can be shown that MMD? is the mean of the
witness  function ~ with  respect to v =1 (u +p,),
MMD? (U 4y) = Epyr (IU (g —yz)(z)lz) [11, 15]. This is
compared to our results for kdiff, or in particular kdiff>. Note
that computing kdiff (u,, 4,; ®)* is equivalent to computing kdiff
on the square of the witness function T (¢1 — ) (2) = |U (41 — p2)
(2)|°, since quantiles depend only on the ordering of the
underlying function. This means the statistic kdiff* is simply
taking the quantile of the square of the witness function, rather
than the mean as in MMD?,

3 ESTIMATION OF ALGORITHM
PARAMETERS

The following parameters are required for estimation of the
distance measure kdift:

e Length of sliding window SL used to generate subsequences
over given data (embedding dimension)

e Kernel bandwidth (o) of the
kernel k(x, y) = e =yIPr20?

e Lower quantile « of the
distribution T(z)

Gaussian

kernel-based  distance

Kernel Distance Measure

Determining SL:

In this paper we demonstrate the application of kdiff for
clustering time series and random fields. The sliding window
length SL is used to create subsequences (i.e. sliding window
based embeddings) over such time series or random fields over
which kdiff is estimated. The number of subsequences formed
depend on SL, the number of points in the time series or random
field and the dimensionality of the data under consideration.
Some examples are given as below:

e In case of a univariate time series of length n if each
subsequence is of length L = SL then there are m = n —
SL + 1 embeddings

e For a two dimensional n x »n random field if each
subsequence has dimension L = SL * SL then there are
m=(n-SL+1)? embeddings

e For a p-variate time series if each subsequence is of length
L = p * SL then there are m = n — L + 1 embeddings

The distance measure kdiff is estimated over these m points in
the L dimensional embedding space. It is necessary to determine
an optimal value of SL to obtain accurate values of kdiff. Very
small values of SL may result in erroneous identification of the
region where the time series or random field under consideration
match. For example embeddings obtained in this manner may
result in two dissimilar time series containing noise related
fluctuations over a small region identified as “matching”. On
the other hand very high values of SL can lead to erroneous
estimation of the distance distribution owing to less number of
subsequences or sub-regions which results in incorrect estimates
for kdiff. As an optimal tradeoff between these competing
considerations we determine the value of SL based on the best
clustering performance over a training set selected from the
original data.

Determining o: Since kdiff is a kernel-based similarity measure
determination of the kernel bandwidth o is critical to the accuracy
of estimation. In this case very small bandwidths for sliding
window based embeddings X and Y derived from two
corresponding time series or random fields can lead to
incorrect estimates since only points in the immediate
neighborhood of embeddings X and Y are considered in the
estimation of the kdiff statistic. On the other hand very large
bandwidths are also problematic since in this case any point Z
becomes nearly equidistant from X and Y (here all points are
considered in the embedding space), thereby causing the distance
measure to lose sensitivity. To achieve a suitable tradeoff between
these extremes we select o over a range of values of order equal to
the k nearest neighbor distance over all points in the embedding
space of Z = X U Y for a suitably chosen value of k. The optimal
value of o is selected from this range based on the best clustering
performance over a training set selected from the original data.

Determining a: The distance measure kdiff is based on a lower
quantile & of the estimated distance distribution over the
embedding spaces of two time series or random fields. This
quantile can be specified as a fraction of the total number of
points in the distance distribution using either of the following
methods below:
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e Based on exploratory data analysis, visual inspection or other
methods if the extent of the matching portions of the time
series, random fields or other data under investigation can be
determined then « can be set as a fraction of the length or
area of this matching region versus the overall span of
the data.

e For high dimensional time series or random fields « can be
determined from a range of values based on the best
clustering performance over a training set selected from
the original data.

4 NUMERICAL WORK: SIMULATIONS AND
REAL DATA

The effectiveness of the our novel distance measure kdiff for
comparing two sets of data which match only partially over their
region of support is estimated using kmedoids clustering [16].
The kmedoids algorithm is a similar partitional clustering
algorithm as kmeans which works by minimizing the distance
between the points belonging to a cluster and the center of the
cluster. However kmeans can work only with Euclidean
distances or a distance measure which can be directly
expressed in terms of Euclidean for example the cosine
distance. In contrast the kmedoids algorithm can work
with non Euclidean distance measures such as kdiff and is
also advantageous because the obtained cluster centers
belong to one of the input data points thereby leading to
greater interpretability of the results. For these reasons in this
paper we consider kmedoids clustering with k = 2 classes and
measure the accuracy of clustering for distance measures
kdiff, MMD [9], MPdist [7] and dtw [1, 2] over synthetic
and real time series and random field datasets as described in
the following sections. Suitably chosen combinations of the
parameters can be specified as described in Section 3 and the
derived optimal values can then be used for measuring clustering
performance with the test data using kdiff. Similar to kdiff,
distances measures using Maximum Mean Discrepancy (MMD)
and MPdist are computed by first creating subsequences over the
original time series or random fields. In both these cases the length
of the sliding window SL is determined based on the best clustering
performance over a training set selected from the original data.
Additionally for MMD which is also a kernel-based measure we
determine the optimal kernel bandwidth (o) based on training.
In this work we consider two synthetic and one real-life
datasets for measuring clustering performance with four
distance measures kdiff, MMD, MPdist and dtwd (Dynamic
Time Warping distance). For the synthetic datasets we
generate the foregrounds and backgrounds as described in
Section 2.3 using autoregressive models of order p, denoted as
AR(p). These are models for a time series W, generated by

P
We=) ¢W.+e,

i=1

t=p+1,....

where ¢y, ..., ¢, are the p coefficients of the AR(p) model and ¢,
can be i. i.d. Gaussian errors. We perform 50 Monte Carlo runs

Kernel Distance Measure

over each dataset and in each run we randomly divide the data
into training and test sets. For each set of training data we
determine the optimal values of the algorithm parameters
based on the best clustering performance. Following this we
use these parameter values on the test data in each of the 50
runs. The final performance metric for a given distance measure
is given by the total number of clustering errors for the test data
over all 50 runs. The dtwclust package [17] of R 3.6.2 has been
used for implementation of the kmedoids clustering algorithm
and to evaluate the results of clustering.

As a techincal note, as MPdist and MMD are generally
computed as squared distances, we similarly work with
kdiff (4, 4,; «)* as the distance between distributions. This
is solely to ensure that the distances are based of Euclidean or
kernel distances squares, and to ensure a fair comparison
being fed into the kmedoids clustering algorithm. Also as
mentioned previously, computing kdiff (4, u,; @) s
equivalent to computing kdiff on the square of the witness
function |U (u; — ) (2)|?, since quantiles depend only on the
ordering of the underlying function.

4.1 Simulation: Matching Sub-regions in
Univariate Time Series

Data Y;fori=1,2,..., 1,000 are simulated using the model (15).
To generate this the series W; are constructed via an AR (5) model
driven by i.i.derrors ~ N (0, 1). The AR (5) coefficients are set to
0.5, 0.1, 0.1, 0.1, 0.1.

Y,‘ :y+W,~ (15)

Following this we form a background dataset Xp, by
generating j = 1, 2, ..., 21 realizations of this data where the
mean y; for realization j is set as below:

100 * j if j>1and j<10
u;=1100% (10-7)  ifj>11and j<20
0 if j =21

Next we generate a dataset Xy consisting of 2 foregrounds
Xpsa and Xpp which enable forming the 2 classes to be
considered for k-medoids clustering as follows. For
foreground Xg, data Y; for i = 1, 2, ..., 50 are simulated
using the model (15). The series W; is constructed via an AR
(1) model driven by i. i.d errors ~ N(0,1). The AR (1)
coefficient is set to 0.1 and y = 10. For foreground Xgp
data Y; for i = 1, 2, ..., 25 are simulated using the model
(15). The series W; is constructed via an AR (1) model driven
by i. i.d errors ~ N(0,1). The AR (1) coefficient is set to 0.1
and y = - 10. We then form the foreground dataset Xp; by

generating j =1, 2, ..., 21 realizations of this data as follows:
X, = XFA lf] m0d2 =1
7] Xpp if jmod2 =0

Finally the dataset used for clustering Z;; where i = 1, 2, ...,
1,000 andj=1,2,...,21is formed by mixing backgrounds Xp and
foregrounds X as follows:
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TABLE 1 | Clustering Performance for Univariate Time Series dataset with 7 = 1

Total
number of errors

Distance measure Percent error

kdiff 0 0
MMD 219 39.8
MPdist 0 0
Dtwd 227 41.2
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FIGURE 1 | Foreground Time Series Realization with mean =10, — 10 for
T=1

50 1000
Y Xe,+ ) Xg,  if jmod2 =1
zo- ) = i=51
ij 25 1000
Y Xe,+ Y Xg,  ifjmod2 =0
i=1 i=26

The dataset Z;; formed in this manner consists of two types of
subregions (foregrounds) which define the two classes used for
k-medoids clustering. We perform 50 random splits of the dataset
Z;; where each split consists of a training set of size 10 and a test
set of size 11. The results for clustering are shown for the 4
distance measures in Table 1.

From the results it can be seen that both kdiff and MPdist
produce the best clustering performance with 0 errors for this
dataset. This is attributed to the fact that the subregions of
interest are well defined for both classes and using suitable
values of parameters determined from training it is possible
to accurately cluster all the time series data into two separate
groups. On the other hand the performance of MMD is
inferior to both kdiff and MPdist because the backgrounds

Kernel Distance Measure
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FIGURE 2 | Foreground Time Series Realizations with mean = 10, — 10
for r =10.

TABLE 2 | Clustering Performance for Univariate Time Series dataset with = = 10

Total
number of errors

Distance measure Percent error

kdiff 20 3.6
MMD 219 39.8
MPdist 64 1.6
Dtwd 220 40.0

are well separated with different mean values for time series
within and across the two classes. This results in time series
even belonging to the same class to be placed in separate
clusters when MMD is used as a distance measure. Similarly
dtwd suffers from poor performance as this distance measure
tends to place time series with smaller separation between the
mean background values in the same cluster. However these
may have distinct values for the foregrounds i.e., they can in
general belong to different classes and as a result this causes
errors during clustering.

Noise robustness We explore the performance of the
distance measures by considering noisy foregrounds. For
foreground Xp, data Y; for i =1, 2, ..., 50 are simulated
using the model (15). The series W, is constructed via an AR
(1) model driven by i. i.d errors ~ N(0,100). The AR (1)
coefficient is set to 0.1 and y = 10. For foreground Xpp data Y;
fori=1,2,...,25 are simulated using the model (15). The
series W; is constructed via an AR (1) model driven by i. i.d
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FIGURE 3 | lllustration of data consisting of 5 backgrounds and 2
foregrounds on a spherical surface, similar colors indicate association of
foregrounds with respective backgrounds.

TABLE 3 | Clustering Performance for 3d Multivariate Time Series dataset.

Total Percent error

number of errors

Distance measure

kdiff 0 0

MMD 225 40.9
MPdist 141 25.6
Dtwd 227 41.3

errors ~ N (0,1). The AR (1) coefficient is set to 0.1 and y = -
10. Following this the foreground datasets XF, and the dataset
used for clustering Z;; wherei=1,2,...,1,000andj=1,2,...
, 21 are formed in the same manner as described earlier. We
show example time series realizations for 7 = 1 and 10 in
Figures 1, 2 respectively. Each figure contains plots of two
time series with mean = — 10, 10 as per the construction of
foreground Xpp for the original and noisy case and show the
relative separation between the realizations.

The results for clustering using these noisy foregrounds
are shown in Table 2. The data shows empirically that as the
noise level of the foreground increases kdiff is more resilient
and performs better than MPdist. This is because after
constructing sliding window based embeddings over the
original data, MPdist is computed using Euclidean metric
based cross-similarities between the embeddings whereas
kdiff is estimated using kernel based self and cross
similarities over the embeddings.

Kernel Distance Measure

4.2 Simulation: Matching Sub-regions in
3-Dimensional Time Series in Spherical
Coordinates

We generate a 3d multivariate background dataset sg as follows.
DataY,, fori=1,2,...,1,000 are simulated using the model (15).
To generate this the series W; is constructed via an AR (1) model
driven by i. i.d errors ~ N (0,1). The AR (1) coefficient is set to
0.1. Similarly data Yy, fori =1, 2, ..., 1,000 are simulated using
the model (15). To generate this the series W; is constructed via an
AR (1) model driven by i. i.d errors ~ N(0,1). The AR (1)
coefficient is set to 0.1.

Following the generation of W; values for the data Y = (Y, Y})
we form a background dataset X3, in this 2d space by generating
j=1,2,...,21 realizations of this data Y where the mean y for
realization j of each pair is set as below:

100 if j>1and j<10
p=14100%(10-j) if j=11 and j<20
0 j=21

Our next step involves transforming these 21 instances of the
2d backgrounds into a 3d spherical surface of radius 1 as
described in the following steps. We first map each series Y,
and Y, linearly into the region [0, n/2]. The corresponding
mapped series are denoted as Y, and Y, respectively. To
ensure that the backgrounds are clearly separated we divide
the region [0, 77/2] into 21 nonoverlapping partitions for this
linear mapping. The final background dataset sz = {s,, sp» .} is
derived using :

s, = sin(Y},) * cos(Y,,)
sp = sin(Yy,) * sin(Y,,) (16)
sc = cos(Yy,)

Next we generate a 3d foreground dataset sy consisting of
2 foregrounds sp, and spp which will enable forming the 2 classes
to be considered for k-medoids clustering as follows. Data Y,,, for
i=1,2,...,50 are simulated using the model (15). To generate
this the series W; is constructed via an AR (1) model driven by i.
iderrors ~ N(0,1). The AR (1) coefficient is set to 0.1 and y =
10. Similarly data Yy, for i = 1, 2, ..., 50 are simulated using the
model (15). To generate this the series W; is constructed via an
AR (1) model driven by i. i.d errors ~ N (0,1). The AR (1)
coefficient is set to 0.1 and ¢ = 10. we linearly map the original 2d
data (Y,, Y,) into the region [n/2, 57/8] as (Y,,Y} ) and then
perform the mapping as given in Eq. 16 to form the foreground
sea- The foreground sgp is generated in a similar manner except
that 4 = — 10 and the 2d series is linearly mapped to the region
[37/4, 7/8]. We form the foreground dataset sg, by generating j =

1, 2, ..., 21 realizations of this data as follows:
so = SFA lf] mod2 =1
Fi— SFB lf] mod2 =0

Finally the dataset used for clustering Z;; where i = 1, 2, ...,
1,000 andj=1,2,...,21 is formed by mixing backgrounds sg and
foregrounds sg as follows:
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FIGURE 4 | Example 1 of MNIST-M-1 digit zero.

50 1000
Dose,t Y sp,  if jmod2 =1
_ ) = i=51
Zij - 25 1000
ZSFU. + Z SB;; if j mod2 =0
i=1 i=26

The dataset Z; formed in this manner consists of two types of
subregions (foregrounds) which define the two classes used for
k-medoids clustering. An illustration of the data on such a
spherical surface with 5 backgrounds and 2 foregrounds is
shown in Figure 3.

We perform 50 random splits of the dataset Z;; where each
split consists of a training set of size 10 and a test set of size 11.
The results for clustering are shown for the 4 distance measures in
Table 3.

From the results it can be seen that kdiff produces the best
clustering performance with 0 errors for this dataset. This is
attributed to the fact that the subregions of interest are well
defined for both classes and using suitable values of parameters
determined from training it is possible to accurately cluster all the
time series data into two separate groups. On the other hand the
performance of MMD is inferior to kdiff because the backgrounds
are well separated with different mean values for time series
within and across the two classes. This results in time series even
belonging to the same class to be placed in separate clusters when
MMD is used as a distance measure. Similarly dtwd suffers from
poor performance as this distance measure tends to put time
series with smaller separation between the mean background
values in the same cluster. However these may have distinct
values for the foregrounds i.e. they can in general belong to
different classes and as a result this causes errors during
clustering. For this dataset the performance of MPdist is
inferior to kdiff even though the former can find matching
sub-regions with zero errors in the case of univariate time
series. This difference is attributed to the nature of the
spherical region over which the sub-region matching is done
where the 1-nearest neighbor strategy employed by MPdist using
Euclidean metrics to construct the distance distribution. In case

Kernel Distance Measure
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FIGURE 5 | Example 2 of MNIST-M-1 digit zero.
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FIGURE 6 | Example 1 of MNIST-M-1 digit one.
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FIGURE 7 | Example 2 of MNIST-M-1 digit one.
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TABLE 4 | Clustering performance for MNIST-M-1.

Distance measure Total Percent error
number of errors

kdiff 91 18.2
MMD 131 26.2
MPdist 68 13.6
Dtwd 149 29.8

0 5 10 15 20 25

FIGURE 8 | Example 1 of MNIST-M-2 digit zero.

of spherical surfaces it is necessary to use appropriate geodesic
distances for nearest neighbor search as discussed in ([18]). This
issue is resolved in kdiff which can find the matching subregion
over a non Euclidean region which in this case is a spherical
surface thereby giving the most accurate clustering results for this
dataset.

4.3 Real Life Example: MNIST-M Dataset
The MNIST-M dataset used in [19, 20] was selected as a real-life
example to demonstrate the differences in clustering performance
using the four distance measures kdiff, MMD, MPdist and dtwd.
The MNIST-M dataset consists of MNIST digits [21] which are
difference blended over patches selected from the BSDS500
database of color photos [22]. In our experiments where we
consider k-medoid clustering over k = 2 classes we select 10
instances each of the MNIST digits 0 and 1 to be blended with a
selection of background images to form our dataset MNIST-M-1.
Since BSDS500 is a dataset of color images the components of this
dataset are random fields whose dimensions are 28 x 28 x 3. We
form our final dataset for clustering consisting of random fields
with dimensions 28 x 28 by averaging over all three channels.
Examples of individual zero and one digits on different
backgrounds for all three channels of MNIST-M-1 are shown
in Figures 4-7.

We perform 50 random splits of the dataset where each split
consists of a training set of size 10 and a test set of size 10. The results
for clustering are shown for the distance measures in Table 4.

0 5 10 15 20 25

FIGURE 9 | Example 2 of MNIST-M-2 digit zero.
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FIGURE 10 | Example 1 of MNIST-M-2 digit one.
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FIGURE 11 | Example 2 of MNIST-M-2 digit one.
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TABLE 5 | KS statistic for MNIST-M foregrounds and backgrounds.

Dataset KS-bg-fg-0 KS-bg-fg-1 KS-bg
MNIST-M-1 0.998 0.991 0.358
MNIST-M-2 0.889 0.754 0.202

TABLE 6 | Clustering performance for MNIST-M

Total Percent error

number of errors

Distance measure

kdiff 183 36.6
MMD 186 37.2
MPdist 197 39.4
Dtwd 197 39.4

From the results it can be seen that for MNIST-M-1 MPdist
somewhat outperforms our proposed distance measure kdiff
however the latter is superior to both MMD and dtwd. Since in
general the background statistics of the MNIST-M images are
different, two images belonging to the same class can be placed in
separate clusters when MMD is used as a distance measure and this
causes MMD to underperform versus kdiff. Similarly dtwd suffers
from poor performance as this distance measure tends to put
images with smaller separation between the mean background
values in the same cluster. However these may have distinct values
for the foregrounds i.e. they can in general belong to different
classes and as a result this causes errors during clustering.

Noise robustness Following the discussion in Section 4.1 we
explore the performance of the distance measures by considering a
selection of noisy backgrounds from the BSDS500 database over
which the same 10 instances of the MNIST digits 0 and 1 are
blended to form a second version of our dataset called MNIST-M-
2. Similar to the earlier case we form our final dataset for clustering
consisting of random fields with dimensions 28 x 28 by averaging
over all three channels of the color image. Examples of individual
zero and one digits on different backgrounds for a single channel
are shown in Figures 8-11. Note that these correspond to the same
MNIST digits shown in Figures 4-7 however are blended with
different backgrounds which have been chosen such that the
distinguishability of the two classes is reduced.

We use the Kolmogorov-Smirnov (KS) test statistic to
characterize the differences between the backgrounds (BSDS500
images) and the foregrounds (MNIST digits 0 and 1) as below:

¢ The mean KS statistic between the distribution of the pixels
where a digit 0 is present and the distribution of the pixel
values which make up the background (KS-bg-fg-0)

e The mean KS statistic between the distribution of the pixels
where a digit 1 is present and the distribution of the pixel
values which make up the background (KS-bg-fg-1)

e The mean KS statistic between pairs of distributions which
make up the corresponding backgrounds (KS-bg)

The KS values shown in Table 5 confirm our visual intuition
that the distinguishability of the foreground (MNIST 0 and 1

Kernel Distance Measure

digits) and the background is less for MNIST-M-2 as compared to
MNIST-M-1. Additionally it can be seen that for the noisier
dataset MNIST-M-2 the separation between the background
distribution of pixels is less than that of MNIST-M-1.

We perform 50 random splits of the dataset Z where each split
consists of a training set of size 10 and a test set of size 10. The results
for clustering are shown for the distance measures in Table 6.

From the results it can be seen that for this noisy dataset the
clustering accuracy results for all four distance measures are lower as
expected, however kdiff slightly outperforms MPdist. As discussed in
Section 4.1 this can be attributed to the fact that in such cases with a
lower signal to noise ratio between the foreground and the
background kdiff which is estimated using kernel based self and
cross similarities over the embeddings can outperform MPdist which
is computed using only Euclidean metric based cross-similarities
over the embeddings. The expected noise characterizaion is
confirmed by our KS statistic values of KS-bg-fg-0 and KS-bg-fg-
1 in Table 6. Moreover the lower values of the KS statistic value KS-
bg for MNIST-M-2 compared to MNIST-M-1 manifest in similar
clustering performances of MMD and kdiff for MNIST-M-2 in
contrast with the trends for MNIST-M-1.

Additional comments: For kdiff we used L = SL * SL windows for
capturing the image sub-regions leading to (1 — SL + 1)* embeddings
which were subsequently “flattened” to form subsequences of size
L = SL? over which kdiff was estimated using a one dimensional
Gaussian kernel. This process can be augmented by estimating kdiff
with two dimensional anisotropic Gaussian kernels to improve
performance. However this augmented method of kdiff
estimation using a higher dimensional kernel with more
parameters will significantly increase the computation time and
implementation complexity. Note that in the case of MPdist
flattening the subregion is not as much of an issue since it does
not use kernel based estimations which need accurate bandwidths.

5 CONCLUSIONS AND FUTURE WORK

In this work we have proposed a kernel-based measure kdiff for
estimating distances between time series, random fields and similar
univariate or multivariate and possibly non-iid data. Such a distance
measure can be used for clustering and classification in applications
where data belonging to a given class match only partially over their
region of support. In such cases kdiff is shown to outperform both
Maximum Mean Discrepancy and Dynamic Time Warping based
distance measures for both synthetic and real-life datasets. We also
compare the performance of kdiff which is constructed using kernel-
based embeddings over the given data versus MPdist which uses
Euclidean distance based embeddings. In this case we empirically
demonstrate that for data with high signal-to-noise ratio between the
matching region and the background both kdiff and MPdist perform
equally well for synthetic datasets and MPdist somewhat
outperforms kdiff for real life MNIST-M data. For data where
the foreground is less distinguishable versus the background kdiff
outperforms MPdist for both synthetic and real-life datasets.
Additionally for multivariate time series on a spherical manifold
we show that kdiff outperforms MPdist because of its kernel-based
construction which leads to superior performance in non Euclidean
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spaces. Our future work will focus on application of kdiff for
applications on spherical manifolds such as text embedding [23]
and hyperspectral imagery [18, 24] as well as clustering and
classification applications for time series and random fields with
noisy motifs and foregrounds.
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