
GRNUlar:

A Deep Learning Framework for Recovering Single-Cell

Gene Regulatory Networks

HARSH SHRIVASTAVA,i XIUWEI ZHANG, LE SONG, and SRINIVAS ALURU

ABSTRACT

We propose GRNUlar, a novel deep learning framework for supervised learning of gene
regulatory networks (GRNs) from single-cell RNA-Sequencing (scRNA-Seq) data. Our frame-
work incorporates two intertwined models. First, we leverage the expressive ability of neural
networks to capture complex dependencies between transcription factors and the corre-
sponding genes they regulate, by developing a multitask learning framework. Second, to
capture sparsity of GRNs observed in the real world, we design an unrolled algorithm tech-
nique for our framework. Our deep architecture requires supervision for training, for which
we repurpose existing synthetic data simulators that generate scRNA-Seq data guided by an
underlying GRN. Experimental results demonstrate that GRNUlar outperforms state-of-
the-art methods on both synthetic and real data sets. Our study also demonstrates the novel
and successful use of expression data simulators for supervised learning of GRN inference.

Keywords: deep learning, gene regulatory networks, unrolled algorithms, single-cell RNA-Seq.

1. INTRODUCTION

Inferring gene regulatory networks (GRNs) from microarray or single-cell RNA-Sequencing

(RNA-Seq) gene expression data sets has been an active area of research for more than two decades. This

topic is receiving renewed attention in the context of single-cell transcriptomic data (Chen and Mar, 2018;

Kiselev et al., 2019; Pratapa et al., 2020). In contrast to bulk transcriptome data of prior years, scRNA-Seq

data provide cellular level activity, although with higher levels of noise and more data sparsity (Vallejos

et al., 2017).

Several GRN reconstruction methods that were originally developed for bulk transcriptional data have

been applied (Irrthum et al., 2010; Huynh-Thu and Sanguinetti, 2015; Kim, 2015; Moerman et al., 2019) or

adapted (Chen et al., 2015; Lim et al., 2016; Hamey et al., 2017; Woodhouse et al., 2018) to single-cell

data, and new methods have been developed specifically for it (Aibar et al., 2017; Chan et al., 2017;

Matsumoto et al., 2017; Specht and Li, 2017; Papili Gao et al., 2018; Sanchez-Castillo et al., 2018). For

a recent review on the performance and comparative evaluation of various GRN methods for single-cell

transcriptomic data, see Pratapa et al. (2020).

Department of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
iORCID ID (https://orcid.org/0000-0002-8366-6355).
An earlier draft of this article was posted as a preprint at bioRxiv (DOI: 10.1101/2020.04.23.058149).

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 1, 2022

Mary Ann Liebert, Inc.

Pp. 27–44

DOI: 10.1089/cmb.2021.0437

27

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://orcid.org/0000-0002-8366-6355

An important class of methods developed for GRN inference is based on unsupervised learning.

GRNBoost2 (Moerman et al., 2019) and GENIE3 (Vân Anh Huynh-Thu et al., 2010), among the top per-

forming methods (Chen and Mar, 2018; Pratapa et al., 2020), operate by fitting regression functions be-

tween the expression values of the transcription factors (TFs) and other genes. An alternative approach is to

pose GRN inference as a graphical lasso problem with l1 regularization (Friedman et al., 2008).

All these approaches are primarily unsupervised in nature. Recently, simulators that generate synthetic

scRNA-Seq data guided by GRNs have progressed significantly (Dibaeinia and Sinha, 2019; Pratapa et al.,

2020). They can generate realistic data by modeling sources of variation in scRNA-Seq data such as noise

intrinsic to the process of transcription, extrinsic variation indicative of different cell states, technical

variation, and measurement noise and bias. These simulators have been primarily developed and applied to

systematically benchmark GRN inference methods.

In this study, we propose to leverage GRN-guided simulators in a novel way to enable supervised

learning of GRNs from scRNA-Seq data. Motivated by the recent successes in supervised neural network

(NN)-based algorithms in learning graphical models (Belilovsky et al., 2017; Shrivastava et al., 2020), we

propose a deep learning (DL) framework that takes expression data as input and outputs the corresponding

GRN. For the purpose of supervised training of our framework, we use the SERGIO by Dibaeinia and Sinha

(2019) simulator to generate a corpus of training examples containing gene expression data sets and the

corresponding GRNs.

Our DL framework consists of two novel modeling choices. First, we leverage the expressive ability of

NNs to capture the dependencies between TFs and the corresponding genes they regulate, by aptly using an

NN in a multitask learning framework. Second, to capture sparsity of the GRNs observed in the real world,

we design an unrolled algorithm for our framework. Unrolled algorithm is an emerging paradigm in

machine learning that is gaining prominence in discovering sparse graphical models. Key advantages

include (1) fewer parameters to be learned, (2) less supervised data points required for training, (3) com-

parable or better performance than state-of-the-art methods, and (4) more interpretability.

Unrolled algorithms have been successfully designed in recent studies, for example, RNA secondary

structure prediction method E2EFold by Chen et al. (2020) and sparse graph recovery technique GLAD by

(Shrivastava et al., 2020). Both the multitask learning NN and sparsity-related parameters are optimized

jointly in our DL framework using supervision.

Our unrolled DL model, termed GRNUlar (pronounced ‘‘granular’’) for Gene Regulatory Network

Unrolled algorithm, outperforms state-of-the-art methods on both simulated data and real data including

from human and mouse. Our learned neural model is comparably more robust to high levels of noise often

observed in single-cell expression data. We demonstrate that our methods benefit from the supervision

obtained through synthetic data simulators. To the best of our knowledge, this study constitutes the first

unrolled DL framework for GRN inference, and the first application of simulators for training neural

algorithms for doing GRN inference for scRNA-Seq data.

2. PROBLEM SETTING AND CHALLENGES

We consider the input gene expression data to have D genes andM samples, X 2 RM ·D. Let G = [1‚D] be
the set of genes and T � G be those that are TFs. We aim to identify directed interactions of the form (t‚ g),

where t 2 T and g 2 G. Note that there can be interactions between TFs themselves. For our method, we

assign directed edges between the TFs and other genes and the interactions between TFs are represented by

undirected edges. We thus output completed partially directed acyclic graphs, which represent equivalence

classes of directed acrylic graphs (DAGs) (Chickering, 2002).

2.1. Existing approaches

The common approach followed by many state-of-the-art methods for GRN inference is based on fitting

regression functions between the expression values of TFs and each of the genes. Usually, a sparsity

constraint is also associated with the regression function to identify the top influencing TFs for every gene.

In general, the objective function used for GRN recovery in various methods is a variant of the equation

given hereunder. For all g 2 G,

Xg = fg(XT) + 2 : (1)

28 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Equation (1) can be viewed as fitting a regression between the expression value of each gene as a

function of the TFs and some random noise. The simplest model will be to assume that the function fg is

linear. One of the widely used methods, TIGRESS by Haury et al. (2012), assumes a linear function of the

following form for every gene: fg(XT) =
P

t2T bt‚ gXt. Another top performing method, GENIE3 (Vân Anh

Huynh-Thu et al., 2010), assumes each fg to be a random forest.

GRNBoost2 (Moerman et al., 2019) further uses gradient boosting techniques over the GENIE3 archi-

tecture to do efficient GRN reconstruction. Supervised learning methods for recovering the GRN by

inferring the gene–gene interactions for all the possible gene pairs have also been recently explored (Yuan

and Bar-Joseph, 2019; Razaghi-Moghadam and Nikoloski, 2020). Our approach differs from them as we

formulate our framework to jointly optimize for all the interactions.

2.2. Drawbacks

There are two major drawbacks in current approaches that optimize for Equation (1). The first is in

choosing the function fg, which can be improved further to better capture nonlinear relations and make the

method more robust to noise in data. The second is tuning the sparsity-related hyperparameter for the GRN

that usually requires an additional post hoc scoring step. Such scoring process to obtain the desired sparsity

of GRN is suboptimal. A better approach would be to jointly optimize the sparsity along with discovering

the underlying GRN.

3. THE PROPOSED GRNULAR FRAMEWORK

To overcome the aforementioned drawbacks, we propose a DL framework with the following three key

components:

1. Choice of fg: We model fg using NNs that are able to learn expressive class of highly nonlinear func-

tions (Goodfellow et al., 2016). Instead of the traditional viewpoint of considering a NN as a black

box, we view the NN itself as a multitask learning framework. The path connections between the

input neurons and the output neurons of the NN can be easily interpreted as the underlying GRN,

where the multiple tasks correspond to the inference of TFs for multiple genes.

2. Use supervision: We develop a DL model that leverages simulators to generate training examples for

supervised learning. The training data consist of multiple input gene expression data sets and the cor-

responding GRNs. We hypothesize that tuning GRN recovery models under this supervision will lead us

to better capture intricacies of real data, and potentially improve upon the unsupervised methods.

3. Capture sparsity: We use the recently developed unrolled algorithm paradigm to design the deep ar-

chitecture that can model the underlying sparsity as a parameter that can be learned under supervision.

3.1. NN modeling of regression functions

NNs are capable of representing rich classes of highly nonlinear functions. We combine the regression

formulation in Equation (1) with NNs in a multitask learning framework (Ruder, 2017; Fig. 1) to learn

multiple nonlinear regression functions estimating dependencies between each gene and the set of TFs. If

there is a path in the NN from an input TF to the output gene, then the output gene is dependent on the

corresponding TF. We thus want sparse NN weights W = fW1‚W2‚ � � � ‚WCg to obtain a sparse graph.

We can easily obtain the dependency matrix between input TFs and output genes as a matrix multi-

plication, where Yp =PijWij = jW1j · jW2j · � � � · jWCj represents the matrix product of the NN weights.

This dependency matrix can be directly interpreted as the underlying GRN. Nonzero values in the matrix

Yp correspond to edges between the corresponding pairs of genes.

This multitask NN architecture is superior to boosted decision tree-based formulations as it is more

expressive, and does not need the additional post hoc scoring step. It is also more expressive than a simple

nonlinear model with additive noise because the NN is jointly optimizing the regression for all the output

genes (multitask learning) and this helps it capture the common dependencies between the TFs and output

genes. This also makes the NN model more robust toward external noises as jointly optimizing for all

the gene expression values will mitigate the effect of any expression value anomalies that seeped in during

the experiments.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 29

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

3.1.1. Designing the unrolled algorithm. Many NN representations can satisfy Equation (1), which

leads to multiple possible GRNs. These GRNs will vary mostly in terms of the sparsity obtained and it is

hard to tune for the desired sparsity of the GRN manually. Unrolled algorithms help resolve this problem as

the sparsity-related hyperparameters (e.g., the weight of the l1 norm term) can be learned from supervision.

Our aim is to get a deep model that optimizes the multitask learning NN along with learning the optimal

sparsity pattern using the supervision provided from simulator data. We follow a similar procedure as the

unrolled algorithm designed for sparse graph recovery by using the alternative minimization (AM) algo-

rithm (Shrivastava et al., 2020).

3.1.1.1. Identifying the inductive bias. We wish to simultaneously fit the regression formulations

in Equation (1) as well as learn the desired sparsity of the underlying GRN. One way to achieve this is to

jointly optimize the regression error with an l1 penalty term over the dependency matrix. Thus, we consider

the following nonlinear optimization objective function for the regression with l1 penalty

arg min

w

XM
k = 1

Xk
G - fW(Xk

T)
�� ��2 +q��Pi

��Wi

����
1
‚ (2)

where fW(Xk
T) is a NN. Note, Xk

T represents the expression values for all the T TFs and Xk
G represents the

expression values for all the G genes for the kth sample or experiment. For example, we can define a two-

layer NN with ‘‘ReLU’’ nonlinearity as fW1‚W2
(Xk

T) =W2 � ReLU(W1 � Xk
T + b1) + b2. We learn the weights

fWig and the biases fbig while optimizing for Equation (2). The dimensions of the weights and biases are

chosen such that the NN input units are equal to ‘‘T ’’ TFs and the output units are equal to ‘‘G’’ genes.

3.1.1.2. Using optimization algorithm as design template. We now identify the iterative updates

of a suitable optimization algorithm. Since the mentioned objective is nonlinear, we will need an iterative

approach to minimize it w.r.t. W. We apply the AM approach to the optimization given in Equation (2).

Our problem becomes easier by using AM as we can get closed form solution of the l1 penalty term. We

introduce an additional Lagrange variable Z, such that Z =PijWij (product of NN weight matrices) and then

including the Lagrangian as a square penalty term, we have arg minW‚Z

PM
k = 1 Xk

G - fW(Xk
T)

�� ��2 +q��Z��
1
+

1
2
k
��Pi

��Wi

�� - Z��2
F
. Now, alternatively minimize Z and Y for l 2 [0‚ L] iterations as

W(l + 1))
arg min

w

XM
k = 1

Xk
G - fW(Xk

T)
�� ��2 + 1

2
k Pi

��Wi

�� -Zl
�� ��2

F
: (3)

Zl + 1)gq=k PijW (l + 1)
i j

� �
: (4)

The update of Z is of the form f (Z) + q Zk k1, where f (Z) is a convex function. Akin to Shrivastava et al.

(2020), the minimizer of this function is the proximal operator given by gq=k(h) = sign(h) max (jhj - q=k‚ 0).

FIG. 1. Using NNs as a multitask learning framework: We start

with a fully connected NN indicating all genes are dependent on

all the input TFs (dotted black lines). Assume that in the process

of discovering the underlying sparse GRN, our algorithm zeroes

out all the edge weights except the blue ones. Now, if there is a

path from an input TF to an output gene, we then conclude

that the output gene is dependent on the corresponding input

TF. GRN, gene regulatory network; NN, neural network; TFs,

transcription factors.

30 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

3.1.1.3. Unrolling the iterations to get deep model. We now unroll the iterative updates to certain

iterations, identify key learnable components, and treat the entire unrolled iterations as a single highly

recurrent deep model. We identify the proximal operator gq=k and k as the hyperparameters that control the

sparsity of the final graph. We now parameterize them using problem-dependent NNs as qnn‚ knn, re-
spectively. These NNs are minimalist in design and take the solution of the previous update to predict the

next value, and are learned using supervision. As for Equation (3), we optimize for Wl
i (8i) by using

standard DL optimizers. The corresponding values of Zl can be obtained by plugging in the Wl
i (8i) in its

closed form update, Equation (4). We unroll these updates for L iterations and treat it as a highly structured

deep model (Fig. 2).

Algorithm 1, GRNUlar-basic, provides a supervised learning framework for the unrolled model directly

based on the updates of the AM algorithm, Equations (3) and (4). We typically require E1*[200‚ 400]

FIG. 2. Visualizing the GRNUlar algorithm’s architecture. It is a single deep model that is highly structured and

recurrent. It takes gene expression data as input and outputs the corresponding GRN. GRNUlar, gene regulatory

network unrolled algorithm.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 31

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

epochs to minimize Equation (3). This slows down the algorithm significantly. To circumvent this issue, we

propose a modification to GRNUlar-basic algorithm by using a ‘‘good’’ initialization technique.

We posit that, if we optimize for the first term of Equation (3) beforehand and obtain good initial values

of W0, we then just need to do minor adjustments to the W as we update Z and k. We then just need to

unroll the optimization (the new fitDNN-fast function) for only few iterations P*f2‚ 5‚ 10g. This is a

significant reduction in the number of unrolled iterations required over the fitDNN function. The GRNUlar-

cell in Algorithm 2 also does not require large number of unrolled iterations L. The NN qnn is learning the

entry-wise thresholding operation and knn learns to update its value from norm difference and its previ-

ous value. We observe that in every iteration of Algorithm 2, we optimize the unrolled parameters qnn‚ knn
(tiny NNs) to learn the underlying graph sparsity from the supervision provided. Thus, we want to high-

light that the overall training does not require much training data as well as the number of unrolled

iterations.

A note on backpropagation of gradients: While taking the arg min in the fitDNN function given in

Algorithm 1, we consider the k and Zl as constants. In our PyTorch implementation, we ‘‘detach’’ these

variables from the computational graphs while optimizing for W. Ideally we can retain the computational

graph while optimizing, but then the memory consumption increases considerably. Another important

concern is related to the runtime of Algorithm 1. The fitDNN function is called L times and it initializes a

new NN each time and minimizes it for the optimization function to a very low error based on the

regularization provided by the k and Z values.

We typically require E1*[200‚ 400] epochs to fit the NN. This slows down the algorithm signifi-

cantly. To circumvent this issue, we propose a simple modification to GRNUlar-basic algorithm by using

a ‘‘good’’ initialization technique as done for the GRNUlar Algorithm 2. We also empirically verify

that GRNUlar algorithm performs equivalent to GRNUlar-basic algorithm with significant runtime

improvement.

Algorithm 1: GRNUlar-basic

Function covTF (X‚ TFs):bST)
1
M
(X - l)T (X -l)

Select bST � bST an T ·G submatrix using the TFs

return bST

Function fitDNN (X‚ Z‚ k, TFs):
Fit W based on updated regularization terms k‚ Z
XT ‚XG)X (using the TFs)

fw0) initialize neural networks

W)arg minW
PM

k = 1 Xk
G - fW(Xk

T)
�� ��2 + 1

2
k Pi

��Wi

��- Zl
�� ��2

F

(Using standard DL optimizers for ‘‘E1’’ epochs)

Y)PijWij
return Y

Function GRNUlar-cell (X‚ bST ‚Y‚ Z‚ k):
k)Lnn(Z -Yk k2F‚ k)
Y) fitDNN (X‚ Z‚ k)
For all i j do

qij =qnn(Yij‚ bSTij ‚ Zij)

Zij)gqij (Yij)

return Y‚ Z‚ k
Function GRNUlar ðXÞ :
k0)1bST) covTF ðXÞ
Z0 = zerosðT;GÞ
Wi0s) fitDNN (X‚ Z0‚ k0)
Y0 =PijW0

i j
For l = 0 to L - 1 do

Yl + 1‚ Zl + 1‚ kl + 1

)GRNUlar-cell (X‚ bST ‚Y
l‚ Zl‚ kl)

return YL‚ ZL

32 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Algorithm 2: GRNUlar

Function covTF (X‚ TFs):bST)
1
M
(X - l)T (X - l)

Select bST � bS an T ·G submatrix using the TFs

return bST

Function fitDNN-fast (X‚ Z‚W‚ k‚ TFs):
XT ‚XG)X (using the TFs)

For P= 0 to P - 1 do

Jp =
P

M
k = 1 k Xk

G - fw(Xk
T)k2 + k

2
k Pi Wij j - Z k2F

wp+ 1) opt-update (W
p
i0s0=J

p)

Y)PijWij
return Y‚w

Function GRNUlar-cell (X‚ bST ‚w‚Y‚ Z‚ k):
k)Lnn(Z -Yk k2F‚ k)
Y‚w) fitDNN-fast (X‚ Z‚w‚ k)
For all i, i do

qij = qnn(Yij‚ bSTij ‚ Zij)

Zij)gqij (Yij)

return w‚Y‚ Z‚ k
Function goodINIT (X‚ TFs):

W)arg minW
PM

k = 1 Xk
G - fW(Xk

T)
�� ��2

(Using standard DL optimizers for ‘‘E1’’epochs)

Y)PijWij
return Y‚w

Function GRNUlar ðXÞ:
Y0‚w0) goodINIT ðXÞ
k0)1bST) covTF ðXÞ
Z0 = zerosðT;GÞ
For l = 0 to L - 1 do

wl+ 1‚Yl + 1‚ Zl+ 1‚ kl + 1

)GRNUlar-cell (X‚ bST ‚w
l‚Yl‚ Zl‚ kl)

return YL‚ ZL

The GRNUlar model can be thought of as having two stages, namely (refer Fig. 2 and Algorithm 2).

Stage I. We first optimize for the first term in Equation (3) beforehand and obtain ‘‘good’’ initial values

of W0. Thereafter, only minor adjustments are needed to W as Z and k are updated. We then just need to

unroll the optimization in the fitDNN-fast function for only few iterations P*f2‚ 5‚ 10g during Stage II.

Stage II. After getting the ‘‘good’’ initialization from Stage I, the data and parameters are passed through

the GRNUlar-cell. It also does not require large number of unrolled iterations L. The NN qnn is learning the

entry-wise thresholding operation and knn learns to update its value from norm difference and its previous

value (see Section 3.2). For every iteration of GRNUlar-cell, we optimize the unrolled parameters qnn‚ knn
(tiny NNs) to learn the underlying graph sparsity from the supervision provided. We highlight here that the

overall training does not require much data as well as the number of unrolled iterations.

3.2. A note on parameterizing the NNs of unrolled algorithms

The general idea of NN-based parameterization: For the GRNUlar algorithm, we can further parame-

terize the optimizer update given in ‘‘fitDNN-fast’’ function of Algorithm 2 and learn it from the super-

vision provided, similar to Lnn. In our current implementation, we use the ‘‘adam’’ optimizer. We want to

highlight that our technique of parameterization in an unrolled manner is very generic and can be used for

any off-the-shelf optimizer.

For instance, consider the example of parameterizing gradient descent optimizer that is realized using the

Lnn update. We just need to define the NN-based parameterization in a way that is more generic than the

optimizer’s update equation. The NN-based update kt + 1)Lnn(Z -Yk k2F‚ kt) subsumes the standard gra-

dient descent update given by kt + 1)kt - a Z -Yk k2F .

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 33

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

4. TRAINING THE GRNULAR FRAMEWORK

GRNs are typically sparse and so we want our loss function to be robust enough to recover sparse edges.

There are many techniques developed to train in a cost-sensitive setting where in the data we have very few

positive data points (edges present) versus large number of negative data points (edges absent) (Chawla

et al., 2002; Thai-Nghe et al., 2010; Shrivastava et al., 2015; Bhattacharya et al., 2017). Since there are

multiple metrics such as precision, recall, and F1 score that are commonly used for evaluation of the

recovered GRNs, it will be useful to define a loss function that can find a desirable balance between them.

To address the mentioned concerns, we develop a differentiable version of the Fb score. LetY
p represent

our predicted graph (adjacency matrix) and let Y� be the true underlying graph. We assume that all the

entries of Y 2 [0‚ 1]. We can write the true positives (TPs), true negatives (TNs), false positives (FPs), and

false negatives (FNs) as follows:

TP =< Yp‚Y� >; FP=< Yp‚ 1 -Y� >;
FN =< 1 -Yp‚Y� >; TN =< 1 -Yp‚ 1 -Y� >;

(5)

where < �‚ � > represents matrix inner product, which is the summation of entry-wise products. Based on

the mentioned differentiable representations, we define differentiable Fb score and the corresponding loss

function as

Fb = (1 +b2) � TP= (1 + b2) � TP +b2 � FN +FP
� �

; LFb = 1 - Fb : (6)

A value of b > 1 weighs recall higher than precision as it emphasizes the FNs. Similarly, having b < 1

attenuates the influence of FNs and thus weigh recall lower than precision.

We define a loss function between the predicted and true adjacency matrix as the combination of the

mean square error (MSE) (or Frobenius norm) loss and the LFb loss. It is often tricky to jointly optimize and

balance between multiple loss functions. Following the loss balancing technique described in Rajbhandari

et al. (2019), we introduce a balancing ratio r =LFb=Lmse that adjusts the scales of both the losses. Note that

‘‘r’’ is detached from computational graph to facilitate backpropagation of gradients.

Loss = r: Pi

��W (L)
i

�� -W��� ��2
F
+LFb (tanhfPi

��W (L)
i

��g‚W�): (7)

The matrix W� 2 f0‚ 1g(G · T)
represents the ground truth network, where 1 indicates presence of an edge

between (t‚ g). To ensure that the entries of Yp 2 [0‚ 1], we pass it through the tanhfjYpjg operation. We

optimize the loss function over the average of data pairs from simulator so that the learned architecture is

able to perform well over a family of problem instances.

5. EXPERIMENTAL RESULTS

5.1. Methods compared and evaluation measures

We use the area under the receiver operating characteristics (AUROC) and the area under the precision

recall curve (AUPRC) values for evaluation (Chen and Mar, 2018; Dibaeinia and Sinha, 2019) and com-

parison of various methods. We compared GRNUlar with GRNBoost2 (Moerman et al., 2019, GENIE3

(Vân Anh Huynh-Thu et al., 2010), and GLAD (Shrivastava et al., 2020).

GRNBoost2 and GENIE3 are representative of regression-based methods, and are among the top per-

formers for single-cell expression data (Pratapa et al., 2020). We used the Arboreto package to run these

algorithms (Moerman et al., 2019). We did extensive fine tuning of the hyperparameters for both the

methods using the training/valid data and reported results on the test data. ‘‘Method+TF’’ indicates that TF
information was utilized for GRN recovery.

GLAD by Shrivastava et al. (2020) is an unrolled algorithm designed for sparse graph recovery. It is

based on unrolling the iterations of an alternate minimization algorithm for the graphical lasso problem. It

fits a multivariate Gaussian distribution on the input gene expression data with an l1 normalization term.

We modified the GLAD algorithm to take into account TF information, called GLAD+TF, by using a post

hoc masking operation that only retains the edges having at least one node as a TF. We used the standard

initialization as recommended by the authors.

We chose the number of unrolled iterations L= {15, 30}. For the GRNUlar model, we used the same

initialization of the thresholding parameters qnn‚ knn as proposed for the GLAD model. Now, we need to

34 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

decide the dimensions of NN that fits the regression in the fitDNN-fast function. Our general strategy is to

have number of hidden layers, depth � 2, of the NN. We roughly choose the number of hidden units in

layer ‘‘j’’ as Hj � 4 � Hj - 1 and we also satisfy TFs � H1. We empirically observed that we need around

[200, 500] iterations to fit the NN in the goodINIT function. We chose the unroll parameters L = 15 and the

values of P = {5, 10, 20} with NN having two or three layers.

For both the unrolled methods, we chose two models based on AUPRC and AUROC results on the

validation data. We use the scaled loss function [Eq. (7)] to jointly optimize for MSE and Fb loss. The

values of b used in our experiments were chosen from the set {0.5, 1, 2, 5}. We implemented the unrolled

algorithms using PyTorch and ran on Nvidia P100 GPUs. We observed that for these unrolled algorithm-

based approaches, GRNUlar in general outperforms GLAD+TF. This is probably due to the difference in

the choice of inductive bias for designing their architectures as former is based on the regression-based

formulation, whereas the architecture of the latter is based on the graphical lasso-based formulation.

5.2. Details of SERGIO simulator for clean and noisy settings

SERGIO provides a list of parameters to simulate cells from different types of biological processes and

gene-expression levels with various amounts of intrinsic and technical noise. We simulated cells from

multiple steady states. When simulating data with no technical noise (what we refer to as clean data), we set

the following parameters: sampling-state = 15 (determines the number of steps of simulations for each

steady state); noise-param*U[0:1‚ 0:3] (controls the amount of intrinsic noise); noise-type = ‘‘dpd’’ (the
type of intrinsic noise is dual production decay noise, which is the most complex out of all types provided);

we set genes’ decay parameter to 1.

The parameters required to decide the master regulators’ basal production cell rate for all cell types—low

expression range of production cell rate *U[0:2‚ 0:5] and high expression range of cell rate *U[0:7‚ 1].
We chose K*U[1‚ 5], where ‘‘K’’ denotes the maximum interaction strength between master regulators

and target genes. Positive strength values indicate activating interactions and negative strength values in-

dicate repressive interactions and –1 signs are randomly assigned. We added the dropout events that are

considered to be a major source of technical noise in real data. Parameters that control the amount of drop-

outs include shape (which was set to 20) and percentile, which we varied among the values q = f25‚ 50‚ 75g.
Larger q corresponds to higher technical noise. All other parameters were set to default values.

5.3. Evaluating GRN inference methods on synthetic data

We conducted an exploratory study to gauge the generalization ability of GRNUlar for the GRN infer-

ence task. To provide supervision, we used the SERGIO simulator. To create random directed graphs

(GRNs), we first decided on the number of TFs or master regulators. Then, we randomly added edges be-

tween the TFs and the other genes based on sparsity requirements. Also, we randomly added some edges

between the TFs themselves but excluded any self-regulation edges and maintained connectivity of the graph.

The graph is then provided as input to the SERGIO simulator to generate corresponding gene expression

data. For the experiments in this subsection, we took train/valid/test= 20=20=50 graphs, respectively, with the

number of genes D= 100. All these graphs were sampled from similar settings. We usually choose the ratio of

TFs to the total number of genes as 0.1 (*10 TFs for D= 100) and sparsity of training graphs to be 0.1. We

wish to highlight that many graphs are not needed to train the unrolled models as we are primarily learning the

sparsity pattern from supervision and need small NNs for the same (refer fig. 3 in Shrivastava et al., 2020).

From the literature on sample complexity theory of sparse graph recovery (e.g., see, Ravikumar et al.,

2011), we know that recovery of the underlying graph improves with increasing number of samples. Hence,

we ran our experiments with varying number of the total single cells, M = {100, 500, 1K, 5K, 10K}.
We also observed that varying the number of cell types (corresponding to the number of clusters of the

cells) of the SERGIO simulator considerably affects GRN inference results, so we also evaluated the

methods by varying the number of cell types of the simulator C = {2, 5, 10}. We adjusted the number of

cells per cell type to maintain the same total number of cells. Section 5.2 contains detailed description of

SERGIO settings. For experiments in this subsection, each data point in the plots represents its value along

with standard deviation over the test graphs.

5.3.1. Clean: simulated data with no technical noise. The ‘‘clean’’ gene expression data from

SERGIO follow all the underlying kinetic equations but exclude all the external technical noises. These

data can be considered as being recorded with no technical errors. Figure 3 compares different methods on

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 35

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

their AUPRC performance on varying number of cells and number of cell types. For GRNUlar model we

chose two-layer NN with p = 5, Hd = {40, 60, 100}, L = 15, and vary b= f2‚ 5g in the loss function. The best

model was chosen based on the validation results. We observe that GRNUlar consistently outperforms

other methods.

5.3.2. Noisy: simulated data with technical noise. We evaluate on the more challenging and re-

alistic noisy settings. We limit varying the technical noise to dropouts while keeping the default settings for

other SERGIO parameters. For higher levels of dropouts, researchers sometimes resort to data imputation

techniques (which attempt to recover the number of molecules being dropped) as a preprocessing step that

marginally improves results. For these experiments, we report results without the imputation preprocessing

step and compare all methods directly on the noisy data obtained from the simulator.

While training the models, we train on data with low dropout rates q = f0‚ 25g and use the same models

to predict networks on data with higher dropout rates. In Figure 4, as we move toward the right, dropout

FIG. 3. Clean data setting of the SERGIO simulator with D = 100 genes. As the number of cell types increases from

C = 2 to C = 10, we see that the AUPRC values increase in general. The unrolled algorithms in general outperform the

traditional methods. AUPRC, area under the precision recall curve.

FIG. 4. Noisy data setting of the SERGIO simulator with dropout shape = 20, D = 100, and C = 5. We vary the dropout

percentile values as [25, 50, 75] in both the upper panels (AUPRC values) and the lower panel (AUROC values). Larger

q corresponds to higher technical noise. GRNUlar has a clear advantage in noisy settings. AUROC, area under the

receiver operating characteristics.

36 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

percentile increases and we can observe deterioration in AUPRC values, although the GRNUlar model’s

AUROC performance is quite robust with increasing dropouts. Even in the case of 75% dropout value,

where the other algorithms almost give output equivalent to random prediction, GRNUlar is able to handle

this high percentage of missing information.

5.4. Realistic data from SERGIO: Escherichia coli and yeast

The challenge for data-driven models is to be able to generalize to real data sets. Thus, it is important to

test the ability of the unrolled algorithms to generalize over different settings from that of the training. To

perform this study, we make use of the realistic data sets provided by the SERGIO simulator. They provide

three scRNA-Seq data sets DS1, DS2, and DS3 that are generated from input GRNs with 100, 400, and

1200 genes, respectively. These networks were sampled from real regulatory networks of Escherichia coli

and Saccharomyces cerevisiae.

For each data set, the settings are number of cell types C= 9, total number of single cells M = 2700, and
there are 300 cells per cell type. Each data set was synthesized in 15 replicates by re-executing SERGIO

with identical parameters multiple times. The parameters were configured such that the statistical properties

of these synthetic data set are comparable with the mouse brain, given in Zeisel et al. (2015).

We defined our training and testing settings such that there were considerable differences between them.

We used all of the DS1, DS2, and DS3 data sets for testing. We train on data with settings similar to DS1,

specifically the parameters such as production cell rates, decays, noise parameter, and interaction strength.

We trained with no dropouts as opposed to 82% dropout percentile in the case of the DS data sets. The data

sets DS2 and DS3 are completely different from training data (and DS1) in terms of the underlying GRN, as

well as the corresponding SERGIO parameters are sampled from different range of values. For details, refer

to table 1 and appendix tables S1, S3 in Dibaeinia and Sinha (2019) for more insight into the differences in

SERGIO parameter settings.

FIG. 5. Realistic data from SERGIO of Escherichia coli and yeast—(noisy settings, dropout percentile = 82%). We

report the average results over 15 test graphs in the noisy settings. GRNUlar gives notable AUPRC values and it

outperforms other methods.

Table 1. Details of Expression Data from the BEELINE Framework

Data No. of TFs No. of Expts

mDC 42 383

mESCs 100 421

mHSCs-E 69 1071

mHSCs-GM 74 889

mHSCs-L 83 847

hESCs 86 758

hHep 56 425

Total number of genes for each data is 500 (highest varying genes).

Experiments: hESCs, human embryonic stem cells; hHep, human mature hepatocytes; mDCs, mouse

dendritic cells; mESCs, mouse embryonic stem cells; mHSCs-E, mouse hematopoietic stem cells-

erythroid; mHSCs-GM, mouse hematopoietic stem cells-granulocyte-macrophage; mHSCs-L, mouse

hematopoietic stem cells-lymphoid; TFs, transcription factors.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 37

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5.4.1. GRNUlar settings

We used a two-layer NN in the fitDNN-fast function for these experiments with a single hidden layer H1.

Following our strategy to choose the dimensions, H1*4 ·TFs. The number of TFs in DS1/DS2/DS3 is 10/

37/127, respectively. So, we chose H1 = 40=200=500, respectively, as the hidden layer dimensions. The

other parameter settings remain similar to those mentioned in the previous subsections. Figure 5 shows that

GRNUlar performs better on these realistic data sets.

FIG. 6. Heatmap of AUPRC and AUROC values of the real data from the BEELINE framework by Pratapa et al.

(2020). We ran all the methods including the TF information. [S]/[N]/[C] represent the ground truth networks [String-

network]/[nonspecific-ChIP-seq-network]/[cell-type-specific-ChIP-seq] respectively. Data of the species [m] mouse

and [h] human were used. GRNUlar performs better than the other algorithms in both the metrics. hESCs, human

embryonic stem cells; hHep, human mature hepatocytes; mDCs, mouse dendritic cells; mESCs, mouse embryonic stem

cells; mHSCs-E, mouse hematopoietic stem cells-erythroid; mHSCs-GM, mouse hematopoietic stem cells-granulocyte-

macrophage; mHSCs-L, mouse hematopoietic stem cells-lymphoid.

38 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5.5. Real scRNA-Seq data sets

We evaluated 21 gene expression data sets from the human and mouse species and their corresponding

ground truth networks (Pratapa et al., 2020).

We evaluated different methods on seven data sets from five experiments that include human mature

hepatocytes (Camp et al., 2017), human embryonic stem cells (hESCs) (Chu et al., 2016), mouse embryonic

stem cells (mESCs) (Hayashi et al., 2018), mouse dendritic cells (Shalek et al., 2014), and three lineages of

mouse hematopoietic stem cells (Nestorowa et al., 2016): erythroid lineage, granulocyte–macrophage

lineage, and lymphoid lineage.

These are the same data sets used in Pratapa et al. (2020) and we use their corresponding ground truth

networks for our experiments as well. For each data set, there are three versions of ground truth networks:

cell-type-specific ChIP-Seq, nonspecific ChIP-Seq, and functional interaction networks collected from

STRING. We then have in all 21 different data pairs, 7 different types of expression data evaluated against

3 different types of ground truth.

5.5.1. Preprocessing the real data

For each gene expression data and its corresponding network, we first sorted all the genes according to

their variance and select the top 500 varying genes. From the list of known TFs, we only considered all the

TFs whose variance had p-value at most 0.01. We then found the intersection between the top 500 varying

genes and all the TFs to get a subset of genes that act as the TFs (Table 1). Then, we selected the subgraph

of top 500 varying genes from the underlying GRN as our ground truth for evaluation.

FIG. 7. Violin plot comparing the scores of all interactions in

the 500 genes (left) and interaction scores between the 32 genes

(right). Wilcoxon p-value is 1.3e-14.

FIG. 8. Comparison of gene expression patterns over the pseudotime for CFC1 and the SOX family TFs.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 39

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

5.5.2. Training details

We train on the expression data that is similar to the SERGIO settings for the DS2 data set as it has

similar number of genes as the real data. We chose the underlying GRNs for supervision as the random

graphs described in Section 5.3. We fixed the number of genes D = 400, the number of cell types C= 9, and
total number of single cells M = 2700. The GRNUlar settings were P = f2‚ 5‚ 10g‚ L = 15‚Hd = f200g with

two-layer NN.

In general for real data, we observed very low AUPRC values (refer Fig. 6); this is primarily due to the

highly skewed ratio between true edges and total possible edges (Davis and Goadrich, 2006; Chen and Mar,

2018). The GRNUlar algorithm clearly outperformed other methods in all test settings. We can further

improve the results by tuning the SERGIO simulator settings closer to the real data under consideration.

Section 6.1 compares the inference runtimes for various methods.

6. ANALYZING THE MESC NETWORK PREDICTED BY GRNULAR

We analyzed the network predicted by GRNUlar from the mESC data set (Hayashi et al., 2018). We

chose TFs and genes corresponding to gene ontology terms related to ESC differentiation and cell fate

FIG. 9. A subnetwork [completed partially directed acrylic graph (CPDAG)] with genes related to stem cell dif-

ferentiation from GRNUlar predicted network. TFs are the nodes with yellow background. Darker edges mean higher

predicted score for the interaction.

Table 2. Inference Runtimes for the GRNUlar Model with Two-Layer Neural Network,

As We Vary the Hidden Layer Dimensions Hd

Time (seconds) Hd = 200 Hd= 500 Hd = 1000

GRNUlar [gpu] 0.89 1.33 2.10

The time is reported for one complete forward call (goodINIT and fitDNN-fast) for D= 1200 genes graph. Other relevant parameters

settings were p= 5, L= 15, DNN epochs E1 = 400.
GRNUlar, Gene Regulatory Network Unrolled algorithm.

40 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

toward endodermal cells as in this data set the ESCs are induced to differentiate into primitive endoderm

cells (Hayashi et al., 2018). From BioMart (Kinsella et al., 2011) we obtained 286 genes. We took the

intersection between these genes with our predicted GRN (with 500 genes) and found 32 genes.

We first compared the interaction scores predicted by GRNUlar among all 500 genes and the scores

among the 32 genes, without applying any threshold. We found that the latter set of scores is significantly

higher than the former set of scores (Fig. 7). This means there are more regulatory activities among the

genes related to the expected biological processes compared with all the genes selected by variation. We

then set the threshold for interaction score as 0.22, and obtained the network shown in Figure 9. In this

network, the TFs SOX7, SOX17, MTF2, GATA6, and CITED2 are known TFs in either stem cell differ-

entiation or embryo development; NOTCH1 and RBPJ are TFs in the NOTCH pathway that controls cell

fate specification (www.genecards.org). The TFs with highest interaction scores are highly relevant TFs for

the cells under study.

We now show how our predicted interactions may bring new biological insights. For instance, we

noticed that one of the target genes of SOX7 with strong interaction is CFC1. From ChIP-Seq experiments

(the [cell-type-specific-ChIP-Seq] ground truth network mentioned previously), SOX2 is a TF for CFC1.

However, we predicted SOX7 and SOX17 as the TFs for CFC1 in our results. We note that the data set

consists of ESCs differentiating into primitive endoderm cells, and SOX2 is a key TF in mESCs governing

the pluripotency of the cells (Masui et al., 2007). As the cells differentiate, the pluripotency goes down, so

the SOX2 function may also decrease. To verify this, we use the pseudotime of the cells obtained from

Pratapa et al. (2020), which was inferred with Slingshot (Street et al., 2018), and visualize the gene

expression levels of CFC1, SOX2, SOX7, and SOX17 (Fig. 8). For readability, we plot the actual gene

expression levels cell by cell only for CFC1, and for the SOX TFs we plot the fitted lines of their expression

levels obtained using LOESS regression. The dashed lines represent the standard deviation.

We see that indeed the SOX2 expression decreases along the pseudotime, and the expression levels of

CFC1, SOX7, and SOX17 increase. The fitted lines of SOX7 and SOX17 show that they are much better

predictors for the expression of CFC1 than SOX2. Indeed, it is discussed that SOX7 and SOX17 are highly

related members of the SOX family and their high expression in ESCs are correlated with a downregu-

lation of the pluripotency and an upregulation of the primitive endoderm-associated program (Sarkar and

Hochedlinger, 2013).

This example showcases how we can use predicted regulatory networks to find regulatory pathways for

a specific biological program. Some of these may already have evidence in the literature but some may be

new and our prediction can be used to provide hypothesis for further experimental validation.

6.1. Runtimes of different methods

Tables 2 and 3 show the inference time required for different methods with the TF information included.

We run different methods on different platforms and hence comparing them directly is not fair. Although

we include them to give an idea of the runtimes to the reader.

7. CONCLUSIONS AND DISCUSSIONS

We present a deep unrolled supervised learning framework GRNUlar for GRN inference from scRNA-

Seq data. The GRNUlar model combines the expressive ability of NNs to capture complex regulation

dependencies that manifest in expression data with unrolled learning of sparse graphical models to ef-

fectively emulate sparsity of the regulatory networks observed in the real world. We demonstrate that

GRNUlar consistently outperforms the representative best-in-class methods on both simulated and real data

Table 3. Inference Times for Different Methods on D = 1200 Genes Graph

Methods GLASSO [cpu] GRNB2 [cpu] GENIE3 [cpu] GLAD [gpu] GRNUlar [gpu]

Time (secs) 180 612 1020 0.79 1.33

The unrolled algorithms were run on GPUs (NVIDIA P100s), whereas the traditional methods were run on CPU having a single

node with 28 cores.

GENIE3; GLAD; GLASSO; GRNB2.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 41

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.genecards.org

sets, especially in the more realistic case of added technical noise. Our DL framework accommodates

nonlinearity of the regulatory relationships between TFs and genes, and demonstrates high tolerance to

technical noise in data.

The unrolled algorithm we proposed is the first supervised DL method for GRN inference from scRNA-

Seq data. Our model learns the characteristics of the underlying network through simulated data from

GRN-guided simulators such as SERGIO, and demonstrates the novel and effective use of these simulators

in training DL models, apart from their traditional use in benchmarking computational methods. Similar

techniques can be investigated for other analysis tasks on single-cell data such as clustering and trajectory

inference (Luecken and Theis, 2019), by using available realistic simulators for scRNA-Seq data (Dibaeinia

and Sinha, 2019; Zhang et al., 2019).

ACKNOWLEDGMENTS

We thank Aditya Pratapa and T.M. Murali for sharing the gold standard networks for real data used in

their article (Pratapa et al., 2020).

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

FUNDING INFORMATION

This study is supported, in part, by the National Science Foundation under IIS-1841351 and OAC-

1828187.

REFERENCES

Aibar, S., González-Blas, C.B., Moerman, T., et al. 2017. Scenic: Single-cell regulatory network inference and clus-

tering. Nat. Methods. 14, 1083–1086.

Belilovsky, E., Kastner, K., Varoquaux, G., et al. 2017. Learning to discover sparse graphical models, 440–448.

Proceedings of the 34th International Conference on Machine Learning, Volume 70.

Bhattacharya, S., Rajan, V., and Shrivastava, H. 2017. ICU mortality prediction: A classification algorithm for

imbalanced datasets. Proceedings of the AAAI Conference on Artificial Intelligence, Volume 31.

Camp, J.G., Sekine, K., Gerber, T., et al. 2017. Multilineage communication regulates human liver bud development

from pluripotency. Nature. 546, 533–538.

Chan, T.E., Stumpf, M.P., and Babtie, A.C. 2017. Gene regulatory network inference from single-cell data using

multivariate information measures. Cell Systems. 5, 251–267.

Chawla, N.V., Bowyer, K.W., Hall, L.O., et al. 2002. Smote: Synthetic minority over-sampling technique. J. Artif.

Intell. Res. 16, 321–357.

Chen, H., Guo, J., Mishra, S.K., et al. 2015. Single-cell transcriptional analysis to uncover regulatory circuits driving

cell fate decisions in early mouse development. Bioinformatics. 31, 1060–1066.

Chen, S., and Mar, J.C. 2018. Evaluating methods of inferring gene regulatory networks highlights their lack of

performance for single cell gene expression data. BMC Bioinformatics. 19, 232.

Chen, X., Li, Y., Umarov, R., et al. 2020. RNA secondary structure prediction by learning unrolled algorithms. arXiv

preprint arXiv:2002.05810.

Chickering, D.M. 2002. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498.

Chu, L.-F., Leng, N., Zhang, J., et al. 2016. Single-cell RNA-Seq reveals novel regulators of human embryonic stem

cell differentiation to definitive endoderm. Genome Biol. 17, 173.

Davis, J., and Goadrich, M. 2006. The relationship between precision-recall and ROC curves, 233–240. Proceedings of

the 23rd International Conference on Machine Learning.

Dibaeinia, P., and Sinha, S. 2019. A single-cell expression simulator guided by gene regulatory networks. bioRxiv.

716811.

Friedman, J., Hastie, T., and Tibshirani, R. 2008. Sparse inverse covariance estimation with the graphical lasso.

Biostatistics. 9, 432–441.

42 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Goodfellow, I., Bengio, Y., Courville, A., et al. 2016. Deep Learning, Volume 1. MIT Press, Cambridge, MA.

Hamey, F.K., Nestorowa, S., Kinston, S.J., et al. 2017. Reconstructing blood stem cell regulatory network models from

single-cell molecular profiles. Proc. Natl. Acad. Sci. USA. 114, 5822–5829.

Haury, A.-C., Mordelet, F., Vera-Licona, P., et al. 2012. Tigress: Trustful inference of gene regulation using stability

selection. BMC Syst. Biol. 6, 145.

Hayashi, T., Ozaki, H., Sasagawa, Y., et al. 2018. Single-cell full-length total RNA sequencing uncovers dynamics of

recursive splicing and enhancer RNAs. Nat. Commun. 9, 619.

Huynh-Thu, V.A. and Sanguinetti, G. 2015. Combining tree-based and dynamical systems for the inference of gene

regulatory networks. Bioinformatics. 31, 1614–1622.

Irrthum, A., Wehenkel, L., Geurts, P., et al. 2010. Inferring regulatory networks from expression data using tree-based

methods. PLoS One. 5, e12776.

Kim, S. 2015. PPCOR: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl.

Methods. 22, 665.

Kinsella, R.J., Kähäri, A., Haider, S., et al. 2011. Ensembl biomarts: A hub for data retrieval across taxonomic space.

Database. 2011.

Kiselev, V.Y., Andrews, T.S., and Hemberg, M. 2019. Challenges in unsupervised clustering of single-cell RNA-Seq

data. Nat. Rev. Genet. 20, 273–282.

Lim, C.Y., Wang, H., Woodhouse, S., et al. 2016. Btr: Training asynchronous boolean models using single-cell

expression data. BMC Bioinformatics. 17, 355.

Luecken, M.D. and Theis, F.J. 2019. Current best practices in single-cell RNA-Seq analysis: A tutorial. Mol. Syst. Biol.

15, e8746.

Masui, S., Nakatake, Y., Toyooka, Y., et al. 2007. Pluripotency governed by SOX2 via regulation of OCT3/4

expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.

Matsumoto, H., Kiryu, H., Furusawa, C., et al. 2017. SCODE: An efficient regulatory network inference algorithm from

single-cell RNA-Seq during differentiation. Bioinformatics. 33, 2314–2321.

Moerman, T., Aibar Santos, S., Bravo González-Blas, C., et al. 2019. GRNBOOST2 and ARBORETO: Efficient and

scalable inference of gene regulatory networks. Bioinformatics. 35, 2159–2161.

Nestorowa, S., Hamey, F.K., Pijuan Sala, B., et al. 2016. A single-cell resolution map of mouse hematopoietic stem and

progenitor cell differentiation. Blood J. Am. Soc. Hematol. 128, e20–e31.

Papili Gao, N., Ud-Dean, S.M., Gandrillon, O., et al. 2018. Sincerities: Inferring gene regulatory networks from time-

stamped single cell transcriptional expression profiles. Bioinformatics 34, 258–266.

Pratapa, A., Jalihal, A.P., Law, J.N., et al. 2020. Benchmarking algorithms for gene regulatory network inference from

single-cell transcriptomic data. Nat. Methods. 17, 147–154.

Rajbhandari, S., Shrivastava, H., and He, Y. 2019. ANTMAN: Sparse low-rank compression to accelerate RNN

inference. arXiv preprint arXiv:1910.01740.

Ravikumar, P., Wainwright, M.J., Raskutti, G., et al. 2011. High-dimensional covariance estimation by minimizing

l1-penalized log-determinant divergence. Electr. J. Stat. 5, 935–980.

Razaghi-Moghadam, Z. and Nikoloski, Z. 2020. Supervised learning of gene-regulatory networks based on graph

distance profiles of transcriptomics data. NPJ Syst. Biol. Appl. 6, 1–8.

Ruder, S. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.

Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I.M., et al. 2018. A Bayesian framework for the inference of gene

regulatory networks from time and pseudo-time series data. Bioinformatics. 34, 964–970.

Sarkar, A., and Hochedlinger, K. 2013. The SOX family of transcription factors: Versatile regulators of stem and

progenitor cell fate. Cell Stem Cell. 12, 15–30.

Shalek, A.K., Satija, R., Shuga, J., et al. 2014. Single-cell RNA-Seq reveals dynamic paracrine control of cellular

variation. Nature. 510, 363–369.

Shrivastava,H.,Huddar,V.,Bhattacharya,S., et al. 2015.Classificationwith imbalance:Asimilarity-basedmethod for predicting

respiratory failure, 707–714. 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE.

Shrivastava, H., Chen, X., Chen, B., et al. 2020. {GLAD}: Learning sparse graph recovery. International Conference on

Learning Representations. Available at: https://openreview.net/forum?id=BkxpMTEtPB. Last viewed on December

30, 2021.

Specht, A.T., and Li, J. 2017. Leap: Constructing gene co-expression networks for single-cell RNA-Sequencing data

using pseudotime ordering. Bioinformatics. 33, 764–766.

Street, K., Risso, D., Fletcher, R.B., et al. 2018. Slingshot: Cell lineage and pseudotime inference for single-cell

transcriptomics. BMC Genomics, 19, 477.

Thai-Nghe, N., Gantner, Z., and Schmidt-Thieme, L. 2010. Cost-sensitive learning methods for imbalanced data, 1–8.

The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE.

Vallejos, C.A., Risso, D., Scialdone, A., et al. 2017. Normalizing single-cell RNA sequencing data: Challenges and

opportunities. Nat. Methods. 14, 565–571.

AN UNROLLED DL FRAMEWORK FOR SINGLE-CELL GRNS 43

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://openreview.net/forum?id=BkxpMTEtPB

Vân Anh Huynh-Thu, A.I., Wehenkel, L., and Geurts, P. 2010. Inferring regulatory networks from expression data

using tree-based methods. PLoS One. 5.

Woodhouse, S., Piterman, N., Wintersteiger, C.M., et al. 2018. SCNS: A graphical tool for reconstructing executable

regulatory networks from single-cell genomic data. BMC Syst. Biol. 12, 1–7.

Yuan, Y., and Bar-Joseph, Z. 2019. Deep learning for inferring gene relationships from single-cell expression data.

Proc. Natl. Acad. Sci. USA. 116, 27151–27158.

Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., et al. 2015. Brain structure. cell types in the mouse cortex and

hippocampus revealed by single-cell RNA-Seq. Science. 347, 1138–1142.

Zhang, X., Xu, C., and Yosef, N. 2019. Simulating multiple faceted variability in single cell RNA sequencing. Nat.

Commun. 10, 2611.

Address correspondence to:

Dr. Harsh Shrivastava

Department of Computational Science and Engineering

Georgia Institute of Technology

Atlanta, GA 30332

USA

E-mail: hshrivastava3@gatech.edu

44 SHRIVASTAVA ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
20

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

