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a b s t r a c t 

Kernel ridge regression (KRR) is a popular scheme for non-linear non-parametric learning. 

However, existing implementations of KRR require that all the data is stored in the main 

memory, which severely limits the use of KRR in contexts where data size far exceeds 

the memory size. Such applications are increasingly common in data mining, bioinformat- 

ics, and control. A powerful paradigm for computing on data sets that are too large for 

memory is the streaming model of computation , where we process one data sample at a 

time, discarding each sample before moving on to the next one. In this paper, we pro- 

pose StreaMRAK - a streaming version of KRR. StreaMRAK improves on existing KRR 

schemes by dividing the problem into several levels of resolution, which allows continual 

refinement to the predictions. The algorithm reduces the memory requirement by con- 

tinuously and efficiently integrating new samples into the training model. With a novel 

sub-sampling scheme, StreaMRAK reduces memory and computational complexities by 

creating a sketch of the original data, where the sub-sampling density is adapted to the 

bandwidth of the kernel and the local dimensionality of the data. We present a showcase 

study on two synthetic problems and the prediction of the trajectory of a double pendu- 

lum. The results show that the proposed algorithm is fast and accurate. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

Machine learning algorithms based on kernel ridge regression (KRR) [1] is an active field of research [2–6] , with applica-

tions ranging from time series prediction in finance [7] , parameter inference in dynamical systems [8] , to pairwise learning
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[9] , face recognition [10] and drug estimation and gene analysis in biomedicine [11,12] . This paper develops a streaming vari-

ation of KRR using a radial kernel, a new sub-sampling scheme, and a multi-resolution formulation of the learning model. 

Many popular data analysis software packages, such as Matlab TM require loading the entire dataset into memory. While 

computer memory is growing fast, the size of available data sets is growing much faster, limiting the applicability of in-

memory methods. 1 

Streaming [13] is a computational model where the input size is much larger than the memory size. Streaming algorithms 

read one item at a time, update their memory, and discard the item. The computer memory is used to store a model or

a sketch of the overall data distribution, which is orders of magnitude smaller than the data itself. The development of

streaming algorithms is experiencing increased popularity in the face of big data applications such as data mining [14] and

bioinformatics [15] , where data sets are typically too large to be kept in-memory . Many big data applications call for non-

linear and involved models, and thus, the development of non-parametric and non-linear models is critical for successful 

learning. 

Among the most popular non-parametric learning algorithms are kernel methods, which include well-known learning 

schemes such as the support vector machine (SVM) and KRR, to name a few. The appeal of kernel methods lies in their

strong theoretical foundation [1,16] , as well as their ability to map complex problems to a linear space without requiring an

explicit mapping. A common class of kernels are radial kernels k ( x , ̃  x ) = �(‖ x − ˜ x ‖ /r) for x , ̃  x ∈ X ⊆ R 
D and bandwidth r > 0

[17] . These kernels are universal (with a few exceptions [18] ), meaning that they can approximate any bounded continuous

function on X arbitrarily well. However, in high dimensions, kernel methods suffer from the ”curse of dimensionality” and 

require large amounts of training data to converge. Furthermore, the computational complexity, memory requirement, and 

the number of parameters to learn grow unbounded with the number of training samples, a drawback known as the ”curse

of kernelization” [19] . In the context of streaming, the prospect of unbounded data streams makes this shortcoming even 

more detrimental. 

Although kernel-based learning schemes are typically formulated as convex optimization problems, which do not require 

tuning hyper-parameters such as learning rate etc., there is still a need to determine the optimal kernel. For the Gaussian

kernel, this amounts to selecting the bandwidth. Classically, an optimal kernel is chosen through batch techniques such as 

leave-one-out and k-fold cross-validation [20–22] . However, these approaches are inefficient as they spend significant time 

evaluating bad kernel hypotheses and often use multiple runs over the data, which is impossible in a streaming setting. 

To meet a need for non-linear non-parametric algorithms for streaming data, we propose the streaming multi-resolution 

adaptive kernel algorithm ( StreaMRAK ) - a computationally and memory-efficient streaming variation of KRR. StreaMRAK 

address the kernel selection problem with a multi-resolution kernel selection strategy that adapts the sub-sample density 

to the kernel bandwidth over several levels of resolution. Furthermore, StreaMRAK addresses the curse of dimensionality 

and kernelization in a novel way, through the sub-sampling scheme. 

1.1. Setting 

We consider a finite sample data-cloud X , |X | = n , that is sampled i.i.d. according to a fixed but unknown distribution

P over R 
D . The target is a bounded and continuous function f : R 

D → R . We assume that the points in X are placed in a

sequence and that their order is random. 2 Each instance x i ∈ X , for i ∈ [ n ] , paired with a label y i where y i = f ( x i ) + ε i and
ε i ∼ N (0 , σ ) represents noise. The task of learning is to train a model ̂ f that is a good approximation of the target function

f . 

In this work, we think about the intrinsic dimension of X as a local quantity, meaning it depends on the region A ⊆
X and the radius r at which we consider the point cloud. To estimate the local intrinsic dimension in a ”location and

resolution sensitive” manner, we use the concept of the doubling dimension of a set, defined in Def. 1.2 . See [23,24] for 

related definitions. 

Definition 1.1 (Covering number) . Consider a set A and a ball B( x , r) , with r > 0 and x ∈ A . We say that a finite set S ⊂
B( x , r) is a covering of B( x , r) in A if A ∩ B( x , r) ⊂ ∪ x i ∈S B( x i , r/ 2) . We define the covering number κ(A , x , r) as the minimum

cardinality of any covering of B( x , r) in A . 

Definition 1.2 (Doubling dimension) . The doubling dimension ddim (A , r) of a set A is defined as ddim (A , r) =
� log κ(A , x , r) � . For an interval I ⊂ R > 0 we define the doubling dimension as the least upper bound over r ∈ I , that is

ddim (A , I) = max r∈I ddim (A , r) . 

We say that the intrinsic dimension of X changes with the location if there exist A 1 , A 2 ⊂ X such that ddim (A 1 , r) 
 =
ddim (A 2 , r) for r > 0 . Similarly, we say that the intrinsic dimensionality of X changes with the resolution, if there exist

r 1 
 = r 2 such that the doubling dimension ddim (A , r 1 ) 
 = ddim (A , r 2 ) for A ⊂ X . 

In Fig. 1 we consider three examples to provide further insight on the doubling dimension. In Fig. 1 a we see a do-

main shaped like a dumbbell, where the spheres are high dimensional, and the bar connecting them is lower-dimensional, 
1 Simulink 
TM 

, a companion software to Matlab 
TM 

supports streaming but has a much more limited computational model, targeted at signal processing 

applications. 
2 The assumption that the sequence is randomly ordered allows us to draw statistical conclusions from prefixes. 

2 
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Fig. 1. Three examples of variation in the intrinsic dimension. The coloring of the point clouds illustrates depth. 

Fig. 2. (a) Illustration of a double pendulum. Here l and m are the length and mass of the pendulum rods, and θ1 , θ2 are the angles. Furthermore, (x 1 , y 1 ) 

and (x 2 , y 2 ) are the positions of the point masses of the two pendulums. (b) Phase diagram of four double pendulums P 0 , P 1 , P 2 , P 3 , iterated for T = 500 

time steps. The bifurcation point at step T = 300 is indicated with a black solid circle. (c) and (d) includes the ω 1 axis and zoom in on respectively the 

blue and red circles in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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showing how the dimension can change with the location. Meanwhile, Fig. 1 b illustrates a lower-dimensional manifold, em- 

bedded in R 
3 , with manifold noise ζm . We see that when the resolution is sufficiently small, so that r ≈ ζm , the doubling

dimensionality increases towards the dimension of the ambient space R 
D . Furthermore, Fig. 1 c shows a point cloud that is

locally 2-dimensional, but is embedded in a 3-dimensional space. By reducing r we can resolve this lower dimensionality, 

but if it is reduced further, we would eventually resolve the noise level, and the doubling dimension increases again. 

As an example of how the intrinsic dimension might change with respect to regions and resolutions, we consider a dou-

ble pendulum system, a well-known chaotic system that depends heavily on its initial conditions [25] . Systems with multiple

pendulum elements are well known in engineering applications such as mechanical and robotic systems with several joints 

and are studied for their chaotic properties [26] . 

In Fig. 2 b we visualize the trajectory of four pendulums P 0 , P 1 , P 2 , P 3 , for which the trajectories are indistinguishable until

a bifurcation occurs around T = 300 time steps, and the trajectories start to diverge. In Fig. 2 c and Fig. 2 d we zoom in on

the trajectory of all 500 pendulums in regions before and after the bifurcation. These two regions, A 1 and A 2 , are indicated

by a blue and red circle, respectively, in Fig. 2 b. From the figures, it is clear that learning the trajectory in A 1 is significantly

easier than in A 2 , where learning the trajectory is more affected by the curse of dimensionality. 

1.2. Contribution and comparison to related work 

Contributions of this work can be divided into three components. 

1) A multi-resolution variation of the state-of-the-art KRR solver FALKON [2] , using the LP, which refines the predictions 

at each level of resolution by regressing on the errors from the previous level. 

2) A novel sub-sampling scheme for kernel methods, tailored for use in combination with the LP, that can handle the curse

of dimensionality and does not require the data to be in-memory . 

3) Development of a streaming variation of FALKON , where the time and memory requirements depend on the doubling 

dimensionality and the level of resolution, instead of the number of training points. see Props. 5.3 –5.5 . 

In the following, we give further details on these contributions and compare them to related work. The computational 

backbone of StreaMRAK is based on the state-of-the-art KRR solver FALKON [2] , which among other things combines 

sub-sampling and preconditioning to process large data sets efficiently. However, FALKON relies on selecting an optimal 

kernel bandwidth, which can be inefficient in streaming. 

Our first contribution (C1) addresses the issue of selecting an optimal bandwidth by introducing a multi-resolution re- 

formulation of FALKON using a changing bandwidth variation of the LP [27–29] . This strategy is inspired by the success of

existing multi-resolution approaches [4,30–36] and, for online learning, adaptive bandwidth approaches [37–39] . Our scheme 

combines the LP with a localized kernel, which gives a frequency and location-based discretization, similar to wavelet anal- 
3
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ysis that have shown great success in numerous applications. However, typical wavelet architectures [40–46] require upfront 

construction of a wavelet basis, which is not compatible with a data-adaptive kernel. 

In this work, we aim to show that the LP is a viable multi-resolution scheme and can be modified to the streaming

setting. Furthermore, we provide convergence bounds for the LP in the context of radial kernels and KRR, and show experi-

mentally that it improves the estimation accuracy. 

Let us now discuss our second contribution (C2). FALKON addresses the curse of kernelization by combining Nyström 

sub-sampling, conjugate gradient, and preconditioning, and achieves time and memory requirements of O(n 
√ 

n ) and O(n ) 

respectively, where n is the number of samples. In recent years there have been several effort s to address the curse of

kernelization in similar ways through sub-sampling techniques such as sketching [3,5] , randomized features [47–50] and 

Nyström sub-sampling [51–55] . However, despite their successes, these techniques are in principle in-memory type algo- 

rithms since they require access to the training data in advance of the training and are not optimized for streaming. 

Furthermore, FALKON selects the sub-samples uniformly over the input domain X . However, when learning with a 

radial kernel, the density of samples should be related to the bandwidth of the kernel. Otherwise, a too-small bandwidth 

will lead to bad interpolation properties, while a too-large bandwidth gives an ill-conditioned system [34] . Since the LP

scheme reduces the kernel bandwidth at each level of resolution, it would be problematic to use the same sub-sample

density. Furthermore, due to the curse of dimensionality, the covering number increases exponentially with the doubling 

dimension. Therefore, if doubling dimensionality varies across different regions of the domain X , as illustrated by Fig. 1 a,

then the number of sub-samples necessary to maintain the density for a given bandwidth will also vary. 

Our second contribution (C2) provides an alternative sub-sampling strategy, adapting the sub-sampling density to the 

kernel bandwidth. This strategy is based on a damped cover-tree (DCT), which is a modified version of the cover-tree (CT)

[24] , a tree-based data structure with O(n ) memory and O(c 6 n log n ) time. 

A problem with an adaptive sub-sampling strategy is its vulnerability to the curse of dimensionality. In regions of high 

doubling dimensions, the number of samples to achieve a certain density increases exponentially, as quantified by Def. 1.2 .

This means that the number of sub-samples from the CT will quickly grow too large for efficient computing. The danger is

to waste resources on samples from subsets and levels where the doubling dimension is so large that good interpolation 

cannot be achieved for any viable sample sizes. This would only serve to slow down the computation and not increase the

precision. 

Due to this, the DCT introduces a damping property, which gradually suppresses the selection of sub-samples where 

the doubling dimensionality is large. This has the additional advantage of allowing to choose more sub-samples from re- 

gions where the doubling dimensionality is small. Thus, the DCT can diminish the impact of the curse of dimensionality.

Furthermore, the DCT can be built continuously as new samples come in, making it ideal for a streaming computational 

model. 

Our third contribution (C3), is the streaming capabilities of StreaMRAK . In particular, the sub-sampling and kernel con- 

struction allows for continuous integration of new training points. Furthermore, the DCT, the multi-resolution construction, 

and the KRR solver can all be multi-threaded and parallelized. 

1.3. Organization of the paper 

The paper is organized as follows. Section 2 introduces kernel methods and the FALKON algorithm, as well as the LP.

Section 3 introduces the adaptive sub-sampling scheme and the DCT. StreaMRAK is described in Section 4 and an analysis

of the algorithm is given in Section 5 . Finally, Section 6 presents several numerical experiments and Section 7 gives an

outlook for further work. The Appendix includes further mathematical background and the proofs. 

1.4. Notation 

We denote vectors a ∈ R 
D with boldface and matrices A ∈ R 

n ×m with bold uppercase, and A 
� denotes the matrix trans-

pose. We use K nm for kernel matrices, where the dimensionality is indicated by the subscripts. We reserve n for the number

of training samples and m for the number of sub-samples. The i j-th element of a kernel matrix is denoted [ K nm ] i j , while

for other matrices we use A i j . The notation a i indicates i -th element of a vector a . Furthermore, we use f ([ x n ]) to denote

( f ( x 1 ) , . . . , f ( x n )) 
� ∈ R 

n , and [ m ] to denote { i } m 

i =1 
. The notation x i indicates the i -th training example. We use a (l) and A 

(l) ,

where l refers to a specific level in the LP and the DCT. We take ‖ · ‖ to be the L 2 norm and ‖ · ‖ H to be the RKHS norm.

We denote the intrinsic dimension of a manifold with d and the dimension of the embedding with D . By 1 S ( x ) we denote

the indicator function, which evaluates to 1 if x ∈ S and 0 otherwise, of a set S ⊂ R 
D . 

2. Kernel methods 

Consider a positive definite kernel k : X × X → R , defined on an input space X ⊂ R 
D . Given data { ( x i , y i ) : i ∈ [ n ] } of

samples from X × R 
D , kernel ridge regression computes an estimator by minimising 

̂ f n,λ = argmin 
f∈ ̃  H 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ f ‖ 

2 
H 
, 
4 
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where H is the Hilbert space induced by the kernel. This allows to reduce the problem to a linear system 

(K nn + λn I n ) α = y , for [ K nn ] i j = k ( x i , x j ) , and y = (y 1 , . . . , y n ) 
� . (2.1) 

Coefficients α = (α1 , . . . , αn ) � define the estimator by f ( x ) = 

∑ n 
i =1 αi k ( x , x i ) . However, solving (2.1) using traditional meth-

ods has a time complexity of O(n 2 ) , which can be costly for large n [2] . 

FALKON [2] addresses this issue by sub-sampling the columns of K nn , which reduces the effective com plexity while

maintaining accuracy. Namely, denote �n = { x 1 , . . . , x n } and for m � n let ˜ �m = { ̃ x 1 , . . . , ̃  x m } be Nyström centers (i.e. a ran-

domly selected subset of �n ). Minimizing 

̂ f n,m,λ = argmin 
f∈ ̃  H M 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ f ‖ 

2 
H 
, (2.2) 

where ˜ H m = span 
{
k (·, ̃  x j ) : j ∈ [ m ] 

}
, leads to a linear system 

H ̃  α = z , for H = K 
� 
nm 

K nm + λn K mm , and z = K nm y . 

Here [ K nm ] i j = k ( x i , ̃  x j ) ∈ R 
n ×m is the column-subsampled matrix and the estimator is given by ̂ f n,m,λ( x ) = 

∑ m 

j=1 ̃
 α j k ( x , ̃  x j ) .

To further reduce the time complexity FALKON uses a suitable preconditioner to reduce the condition number. The pre- 

conditioner is defined as BB � = (n/m K 
2 
mm 

+ λn K mm ) −1 , which is a natural (lower complexity) approximation of the ideal

preconditioner AA 
� = (K 

� 
nm 

K nm + λn K mm ) 
−1 . We now solve for ˜ α from the system of equations 

B 
� HB β = B 

� z , for H = K 
� 
nm 

K nm + λn K mm , z = K nm y , and ˜ α = B β. (2.3) 

This is solved iteratively, using the conjugate gradients with early stopping. Choosing m = O( 
√ 

n ) still ensures optimal gen-

eralisation (i.e. same as KRR), while reducing the computational complexity to O(n 
√ 

n ) . 

2.1. Streaming adaptation of FALKON 

Matrices and vectors involved in the linear system in (2.3) can be separated into two classes: those that depend only

on sub-samples in ˜ �m ; and those ( K 
� 
nm 

K nm and z ) that also depend on all the training points �n . Critically, terms in both

groups are all of size m , which allows to reduce the complexity. Consider now the set of sub-samples ˜ �m to be fixed, and

assume new training points, in the form { ( x q , y q ) : q = n + 1 , . . . , n + t) } , are coming in a stream. We can then update the

second class of terms according to 

[
(K (n + t) m 

) � K (n + t) m 

]
i j = 

[
(K nm ) 

� K nm 

]
i j + 

n + t ∑ 

q = n +1 

k ( x q , ̃  x i ) k ( x q , ̃  x j ) , (2.4) 

[
(K (n + t) m 

) � y 
]
i = z i + 

n + t ∑ 

q = n +1 

k ( x q , ̃  x i ) y q . (2.5) 

Thus, only sub-samples ˜ �m , matrices 
(
K nm 

)� K nm , K mm and z , need to be stored. However, in order to continuously incor-

porate new training points into Eqs. (2.4) and (2.5) , sub-samples ˜ �m must be determined in advance. Whereas this works if

all the data is provided beforehand, it cannot be done if the data arrives sequentially. In this work, we address this through

a multi-resolution framework. The overall estimator is composed of a sequence of estimators defined at different resolution 

levels of the domain. Correspondingly, the set of sub-samples ˜ �m consists of smaller sets ˜ �(l) 

m 
(l) 

that correspond to individual 

levels of resolution. The sets ˜ �(l) 

m 
(l) 

are filled as the data streams in, and once a set for a given level is deemed complete, we

proceed with updating (2.4) and (2.5) . 

Further details of how the sets ˜ �(l) 

m 
(l) 

are constructed, and the corresponding criteria, are provided in Sections 3 and 4 .

We begin by describing the multi-resolution framework of estimators. 

2.2. The laplacian pyramid 

The LP [27,29] is a multi-resolution regression method for extending a model ̂ f to out-of-sample data points x ∈ X / �n .

The LP can be formulated for radial kernels in the form 

k ( x i , x j ) = �
(‖ x i − x j ‖ 

r 

)
, (2.6) 

where r > 0 is a shape parameter that determines the decay of � with respect to ‖ x i − x j ‖ , see [17] . The idea underpinning
the LP is to approximate the target function sequentially, where at each stage we regress on the errors from the previous

stage. In other words, we begin with a rough approximation using a large shape parameter for which � decays slowly and
5 
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then improve the approximation by fitting the resulting error and reducing the shape parameter. In the LP, the estimator at

level L ∈ N is defined recursively as 

̂ f (L ) ( x ) = 

L ∑ 

l=0 

s (l) ( x ) = s (L ) ( x ) + ̂
 f (L −1) ( x ) , (2.7) 

where ˆ f (0) = s (0) , and s (l) ( x ) is a correction term defined by 

s (l) ( x ) = 

n ∑ 

i =1 

α(l) 
i 
k (l) ( x , x i ) . (2.8) 

The coefficients α(l) = (α(l) 
1 

, . . . , α(l) 
n ) � are computed by conducting KRR on the residuals, i.e. errors, from the estimator at

the previous level. Namely, α(l) = (K 
(l) 
nn + λn I ) −1 d (l) , where 

d (l) = 

{
y , if l = 0 

y − ̂ f (l−1) ([ x n ]) , otherwise 
. (2.9) 

For a FALKON adaption of this scheme, we only need to modify how per-level coefficients are computed. Following 

(2.3) we iteratively solve 

(B 
(l) ) � H 

(l) B 
(l) β(l) = (B 

(l) ) � 
(
K 

(l) 
nm 

)� d (l) , (2.10) 

where B (l) is the corresponding preconditioner, and H 
(l) = (K 

(l) 
nm 

) � K 
(l) 
nm 

+ λn K 
(l) 
mm 

, and set ˜ α(l) = B (l) β(l) . 

Remark 2.1. In this paper, we construct the kernel matrices K 
(l) on a particular class of radial kernels, namely the Gaussian

kernel 

k (l) ( x , ̃  x i ) = exp 

(
− ‖ x − ˜ x i ‖ 

2 

2 r 2 
l 

)
, 

where r l > 0 is the shape parameter (the kernel bandwidth) at level l. 

3. The damped cover tree 

This work introduces a data-driven sub-sampling method that we call the damped cover-tree (DCT). The DCT is a mod- 

ification of the cover-tree (CT) [24] , a data structure based on partitioning a metric space, initially designed to facilitate

nearest neighbor search. The goal of the DCT is to modify and simplify the CT to allow a viable sub-sampling scheme. 

Let (X , ‖ · ‖ ) be a normed space where the input domain X ⊂ R 
D is bounded, such that the diameter r 0 = diam (X ) is

finite. The DCT is a tree structure where each node p of the tree is associated with a point x p ∈ X , and which is built

sequentially as data points arrive. Furthermore, let Q l be a set (herein called a cover-set) containing all the nodes at a level

l ≥ 0 in the given tree. A level is associated with an integer l and a radius r l = 2 −l r 0 , where l = 0 denotes the root level

containing only one node and l increases as we descend deeper into the tree. DCT has three invariants, of which the first

two are also invariants of the CT. 

1) ( Covering invariant ) For all p ∈ Q l+1 there exists q ∈ Q l such that ‖ x q − x p ‖ < r l . 

2) ( Separation invariant ) For all q, p ∈ Q l where x q 
 = x p , we have ‖ x q − x p ‖ > r l . 

We add that the standard CT includes a third invariant, the so-called nesting invariant, which requires Q l ⊆ Q l+1 , but this

is not desired for our purpose. 

To introduce the last invariant of the DCT, we first need the following definition. 

Definition 3.1 (The covering fraction) . Let p ∈ Q l be a node, and x p the associated point in X . Furthermore, let ˜ C p = { c i } k i =1 
be the children of p, and x c i the corresponding points in X . The covering fraction of a node p is defined as 

cf (p) = 

Vol 

(
X ∩ B( x p , r l ) ∩ 

⋃ 

c i ∈ ̃  C p 

B( x c i , r l+1 ) 
)

Vol 
(
X ∩ B( x p , r l ) 

) . 

The covering fraction is the proportion of the volume of B( x p , r l ) that is covered by balls around its children of half the

radius. This quantity is directly related to (I2), which enforces the radius r l to reduce by a factor of 2 for each new level,

starting from an initial radius r 0 > 0 . The covering fraction allows us to capture the vulnerability of the standard CT to the

curse of dimensionality. 

For example, consider two regions A 1 , A 2 ⊆ X , for which the doubling dimension at radius r l is ddim (A 1 , r l ) >

ddim (A 2 , r l ) . A node p ∈ A 1 at level l will then need exponentially more children to be covered, than a node q ∈ A 2 at

the same level l. This exacerbates the deeper we go into the tree. Therefore, the CT would have significantly more nodes

from regions where the doubling dimension is large. 
6
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We recall now that sub-sampling is in kernel methods intended to reduce the computational complexity. For this pur- 

pose, it is desirable to keep the number of sub-samples from each level within a budget of reasonable size. On the other

hand, a too low sub-sample density will lead to poor interpolation performance. Due to the exponential growth of the num-

ber of nodes with respect to the doubling dimension, it would be desirable to avoid wasting our budget on sub-samples

from regions and radii with a large doubling dimension, as this would require dedicating an (exponentially) large number 

of points to achieve good interpolation, which is not feasible. Moreover, in high dimensional regions, we likely cannot learn 

anything more than a simple function, for which a lower sampling density would suffice. 

To reduce the number of sub-samples from regions of large doubling dimensionality, we introduce the following damping 

invariant as the third invariant of the DCT. 

3) ( Damping invariant ) Let D cf ∈ (0 , 1) be some threshold and let ˜ C p and cf (p) be as in Def. 3.1 . Then any node q whose

parent node p does not satisfy cf (p) ≥ D cf does not have children of its own. 

The damping invariant forces the tree to devote more resources to regions of lower doubling dimension by making it 

harder for nodes in regions with higher doubling dimensions to have children. In other words, the practical effect of the

damping invariant is to stop the vertical growth of the DCT if the doubling dimension becomes large. This is because the

covering number grows exponentially with the dimensionality, ensuring cf (p) ≥ D cf gets correspondingly harder to achieve. 

Remark 3.2. In Section 5.1 , we analyze the damping invariant in more detail and show how the damping suppresses vertical

growth of the DCT more for regions of high doubling dimension than for regions of lower doubling dimensionality. 

3.1. Construction of the DCT 

We now discuss how the DCT is constructed and updated as the data streams in. First, it is important to restate that we

use the DCT to replace the Nyström sampling, which was in FALKON used to reduce the complexity of the ridge regressor.

Consequently, not all of the streamed data (that is, not every training point) will be added to the tree, but only those whose

inclusion into the tree would not violate the invariants (I1)-(I3). In other words, the tree consists of only those training

points that help resolve the data space at the relevant resolution level. Thus, each node p in the DCT is associated with a

unique training sample x p , but not every training sample will be represented by a node in the tree. Note that this is different

from the standard CT, which aims to organize all of the training data into a geometrical leveled data structure. 

The construction of the DCT consists of a series of checks which examine whether adding a given data point to the DCT

would, or would not, violate invariants (I1)- (I3). When a new point x q arrives from the data stream the goal is to identify

the deepest level l for which there exists a node p such that ‖ x q − x p ‖ ≤ r l . This corresponds to finding the nearest node in

the tree that could serve as a parent. 

We achieve this in the following way. The first training point is identified as the root node to which we associate the

radius r 0 . For each new point, we proceed in a top-down manner, starting from the root node 3 . We then check whether x q 
would violate the separation invariant at the next level. In other words, if there exists a node p such that ‖ x q − x p ‖ < r l . If

such a node does not exist, then x q is added to the set of children of the root node, and we update the covering fraction

estimate for the root node. Otherwise, if such a node does exist, we repeat the process, checking the separation invariant

among the children of the corresponding node, and proceed further down the tree. 

Assume we arrived to a node p at level l ≥ 1 , and we have ‖ x q − x p ‖ ≤ r l . We then check if p is allowed to have children,

that is if the damping invariant is satisfied. If it is not satisfied, the point x q is dismissed (it is not added to the tree). On the

other hand, if p is allowed to have children, we check whether the separation invariant holds, i.e., if there exists a child c of

the node p such that ‖ x q − x c ‖ < r l+1 . If that were the case, the separation invariant would be violated, and the recursion is

applied again by considering c as the potential parent node. However, if such a child does not exist, that is, if the separation

invariant is not violated, then x q is added to the set of children of the node p. More details are given in Alg. A.1 . 

Some comments are needed to elucidate how are the steps described above applied in practice. First, note that the 

covering fraction from Def. 3.1 cannot be calculated explicitly, since the volume terms require knowing the intrinsic dimen- 

sionality. Therefore, it is necessary to use an estimator instead. For this purpose, we interpret cf (p) as the probability that a

sample x ∼ Uni (B( x p , r)) will be within B c := 

⋃ 

c i ∈ ̃  C p 
B( x c i , r/ 2) , where ˜ C p are the children of p. This probability can be esti-

mated by considering the checks of the separation invariant (I2), conducted on the last N points that were inside B( x p , r) ,

as a series of independent random trials. We use the following running average as an estimator of the covering fraction 

(cf (p)) t = (1 − α)(cf (p)) t−1 + α1 B c ( x t ) , (3.1) 

where 1 B c ( x t ) is the indicator function, and α > 0 is a weighting parameter. This approximates a weighted average of the

outcome of the N last draws (cf. Appendix B ). Note that this reduces the memory requirements, since instead of storing N

trial outcomes for each node in the tree, as required had we used an average of the last N trials, we store only a single

value for each node in the tree. 

Second, the separation invariant is in practice too strict since it results in too few points added to the tree, and thus a

worse kernel estimator. Moreover, checking the separation invariant adds to the computational complexity. Therefore, we 
3 We assume that all new points x q are within a ball of radius r 0 around this node, which holds for a large enough r 0 

7 
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introduce the following relaxation. Assume we have a new point x q and arrived at a node p at level l. We then first conduct

a random Bernoulli trial, with the failure probability 

q x = 

1 

1 + exp 
[
h tan 

(
π(‖ x q − x p ‖ /r l − 1 

2 
) 
)] , (3.2) 

where h is the hardness of the threshold. In other words, the probability of failure is proportional to the distance between

x q and x p - the larger the distance, the more likely the failure. If the trial’s outcome is a failure, then the check for the

separation invariant is ignored, and the algorithm continues. If it is a success, we proceed by first checking the separation

invariant. This means that the probability to ignore the separation invariant increases as x q gets farther from x p . 

3.2. Sub-sampling from the DCT 

We now discuss how the DCT is used for sub-sampling the training points. By organizing the training points into cover-

sets Q l the DCT allows a hierarchical sub-sampling. Even though cover-sets Q l significantly reduce the number of training 

points, they are for practical purposes still too large for efficient sub-sampling. Due to this, we restrict ourselves to a subset˜ �(l) ⊆ Q l of candidate sub-samples called landmarks. 

Definition 3.3 (Landmarks) . Let Q l be the cover-set at level l in a DCT. We define the set of candidate landmarks at level l

as ˜ �(l) = { x p | p ∈ Q l and cf (p) ≥ D cf } , and the set of landmarks (of size m ) as any subset ˜ �(l) 
m 

= { ̃ x (l) 
1 

, . . . , ̃  x (l) m 
} ⊂ ˜ �(l) of size

m . 

Some remarks are in order. First, by Def. 3.3 , candidates for landmarks at level l are only those nodes allowed to have

children (according to the damping invariant (I3)). This design choice implies that the set of candidate landmarks will con- 

tain more points from regions with a lower doubling dimension than points from regions with a higher doubling dimension. 

This is because the larger the doubling dimension is, the more children nodes are needed to cover a given parent node. 

Second, Def. 3.3 suggests using only a subset of candidate landmarks as sub-samples. We refer to a result from [2] which

states that good statistical accuracy of the estimator is achieved if the number of sub-samples is proportional to the square

root of the number of samples. At level l we therefore use a set of landmarks which is of size m 
(l) = δ0 

√ | Q l | , where δ0 > 0

is a constant. 

The third point that requires attention concerns the question of when the landmarks should be selected. To that end, 

we use the covering fraction of a level, which, with a slight abuse of notation, we denote as cf (Q l ) . Moreover, we compute

cf (Q l ) as 

(cf (Q l )) t = (1 − α)(cf (Q l )) t−1 + α1 B level ( x t ) , (3.3) 

where B le v el = 

⋃ 

p∈ Q l 
B( x (l) p , r l ) . Moreover, analogously to the damping invariant, let D le v el ∈ (0 , 1) be some threshold. We then

say that a level l is sufficiently covered when cf (Q l ) ≥ D le v el . 

Remark 3.4. We note that as the level increases, our estimate of cf (Q l ) through Eq. (3.3) will be increasingly more sensitive

to subsets A ⊂ X of low doubling dimension than to subsets of large doubling dimension. This is because the damping

invariant (I3) makes it harder for nodes in high dimensions to have children. Consequently, we will have fewer points in

deeper levels that belong to high dimensional regions. Because of this, the estimator in Eq. (3.3) is biased towards using

more sub-samples from lower dimensional regions. 

Sub-sampling from a level l goes as follows. As training points arrive, we build the tree and continuously update the cov-

ering fraction of a level. Once that level is sufficiently covered, that is, once cf (Q l ) ≥ D le v el , we extract the set of landmarks

by sub-sampling m 
(l) points from the pool of candidate landmarks ˜ �(l) . 

4. StreaMRAK 

In this section, we present StreaMRAK and clarify how it synthesizes concepts from Sections 2 and 3 , and utilizes them

in a streaming context. The workflow of StreaMRAK can be divided into three threads that can run in parallel, subject to

some inter-dependencies. These are the sub-sampling thread, the training thread, and the prediction thread. Overviews of 

these threads are given next, and the reader is referred to Algorithm A.2 in the Appendix for further details. 

4.1. Sub-sampling thread 

In the sub-sampling thread StreaMRAK collects and organizes the training data into a DCT. Namely, as new training 

pairs are collected, the covering (I1) and separation (I2) are checked, and the covering fraction is updated as described in

Section 3.1 . Moreover, the set of landmarks for each level is updated, as described in Section 3.2 . Once the set of landmarks

for a given level ̃  �(l) 
m 

is completed, the landmarks and the estimator for the corresponding level can be used in the remaining

two threads. 
8 
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4.2. Training thread 

The model is trained at level l when two conditions are met. First, coefficients of the previous level l − 1 in the LP must

have been calculated, i.e. previous training thread must finish. Second, landmarks ˜ �(l) 

m 
(l) 

at level l must be ready. 

In the first step, we define the kernel matrix on the landmarks by 

[ K 

(l) 
mm 

] i j = k (l) ( ̃ x i , ̃  x j ) , for ˜ x i ∈ ̃
 �(l) . (4.1) 

In the second step we consider 
(
K 

(l) 
nm 

)� K 
(l) 
nm 

∈ R 
m 

(l) ×m 
(l) 

and 
(
K 

(l) 
nm 

)� d (l) n ∈ R 
m 

(l) 
which in addition to landmarks depend on

the training points. They are updated continuously as new training points come in, according to Eq. (2.4) and Eq. (2.5) .

However, they are not updated indefinitely, but only until new training points do not significantly alter the matrices accord- 

ing to the following criterion. 

Definition 4.1. (Sufficient training points) Let A n := (K 
(l) 
nm 

) � K 
(l) 
nm 

, and b n := 

(
K 

(l) 
nm 

)� d (l) n . Let δ1 , δ2 , δ3 > 0 be three constants.

We consider the number of training points at a level l sufficient when either n ≥ δ3 or ∥∥∥A n 

n 
− A n +1 

n + 1 

∥∥∥
∞ 

≤ δ1 and 
∥∥∥b n 

n 
− b n +1 

n + 1 

∥∥∥ ≤ δ2 . 

After enough training samples are collected according to Def. 4.1 , the correction term s (l) is obtained by solving for the

coefficients ˜ α(l) 
1 

, . . . , ̃  α(l) 

m 
(l) 

using Eq. (2.10) . The new prediction model ̂ f (L ) is obtained by adding s (l) to the previous model,

according to Eq. (2.7) . 

4.3. Prediction thread 

In this thread StreaMRAK makes provides the latest version of the trained LP model in Eq. (2.7) . This means that if L

is currently the highest level that has been trained, the prediction for new points x is made using the model ̂ f (L ) ( x ) . 

5. Analysis 

In this section, we first analyze the damping invariant of the DCT. We then offer theoretical results on the convergence

properties of the LP in the context of KRR. Finally, we offer estimates of the time and memory requirements of StreaMRAK .

We introduce two auxiliary results. 

Lemma 5.1. Consider a ball B( x , r) ∈ R 
D and let δ > 0 . The number of points in any (discrete) set of points within B( x , r) that

are at least δ apart, S = { x i ∈ B( x , r) | d( x i , x j ) ≥ δ for i 
 = j} , is bounded by | S| ≤ (
2 r 
δ

+ 1 
)
D . 

Proof. Since the points in S are at least δ apart, it follows that the balls B( x i , δ/ 2) are disjoint. Consider now the ball

B( x , r + δ/ 2) . All of the balls B( x i , δ/ 2) are entirely contained within B( x , r + δ/ 2) . Since the balls B( x i , δ/ 2) are disjoint, it

follows that 

| S| ≤ Vol 

(
B( x , r + δ/ 2) 

)
/ Vol 

(
B( x i , δ/ 2) 

)
= 

(
2 r 

δ
+ 1 

)
D . 

�

Lemma 5.2. Consider a domain X ∈ R 
D , a ball B( x p , r) ⊂ X and let S = { x i , x j ∈ B( x p , r) |‖ x i − x j ‖ ≥ δ for i 
 = j} . Furthermore,

let the doubling dimension of the set S be ddim := ddim (S, r) . We let c d := | S| when cf (p) = 1 . We then have 2 ddim −1 ≤ c d ≤ 5 ddim .

Proof. The upper bound on c d follows from Lemma 5.1 with r = r 0 and δ = r 0 / 2 . The lower bound follows from the defini-

tion of the doubling dimension 1.2 . �

5.1. Analysis of the DCT 

As discussed in Section 3 , the DCT adds a given training point to the set of nodes of the tree if conditions (I2) and (I3)

are satisfied, and the points are otherwise discarded. In particular, the damping invariant (I3) makes it harder for a node to

have children. The guiding idea is that damping should reduce the impact of the curse of dimensionality by making it harder

for nodes in regions of higher doubling dimension to have children, and in doing so it should effectively stop the vertical

growth of the tree in corresponding regions. Therefore, it is critical to understand how and to what degree the damping

affects high dimensional regions more than low dimensional ones. 

In a statistical sense, the damping should treat all nodes in regions of the same doubling dimension equally. Therefore,

to gain insight into the damping, it suffices to analyze its effects concerning the doubling dimension on a single node p. In

this case, the effect of damping can be measured by analyzing how many training points must pass through p, in the sense

of Alg. A.1 , before children of p are allowed to have children of their own. This can be modeled by considering the expected

number of training points x i ∼ Uni 
(
B( x p , r) 

)
necessary to cover B( x p , r) with balls of radius r/ 2 around points x i . 
9 
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Consider x i ∼ Uni 
(
B( x p , r) 

)
, and let a set S p be built in a succession of trials i = 1 , . . . , N t so that 

x i ∈ S p if ‖ x i − x ‖ ≥ r 

2 
for all x ∈ S p . 

In other words, a newly sampled point x i will only be added to the set S p if it its pairwise distances from all the points that

are already in S p are at least r/ 2 . 

Problem 1. Let ˜ C p denote the set of children of the node p, constructed from the above-described trials. What is the ex-

pected number of trials N t needed to ensure cf (p) = 1 ? 

Since there is no unique set S p such that the corresponding set of children ˜ C p ensures cf (p) = 1 , the sample space for

Problem 1 corresponds to all admissible sets S p , which vary in both the number and the location of points they contain.

Characterizing all such sets corresponds to a disordered sphere packing problem [56] , which is an NP-hard combinatorial 

problem [57] . For a theoretical analysis of this problem, defining a probability measure over the sample space is necessary.

However, in this level of generality, neither the sample space nor the probability measure admit a workable definition, with 

currently available mathematical tools [56] . Although some theoretical insights are possible under simplifications on the 

sample space, this analysis is restrained to a limited number of spheres and configurations. 

Due to these difficulties, we consider a simplified setting where we instead consider an average case. If the set S p is such
that B( x i , r) ⊂

⋃ 

x i ∈S p B( x i , r/ 2) , which corresponds to cf (p) = 1 , then each of the balls B( x i , r/ 2) occupies on average 1 
|S p | of

the total volume of B( x p , r) , assuming none of the balls are covered by a union of other balls. Therefore, as S p is being built,
adding a point to S p will, on average, reduce the unoccupied volume of B( x p , r) by 

1 
|S p | . Moreover, it can be shown that the

number of elements in such a set satisfies 2 ddim −1 ≤ |S p | ≤ 5 ddim , see Lemma 5.2 , where ddim := ddim (S p , r) is the doubling
dimension of S p . Based on these considerations we introduce a simplified setting for the average case of Problem 1 . 

Assumption 1. Problem 1 can be approximated by dividing the ball B( x p , r) into a union of c d fixed (and known) disjoint

bins B i of size (1 /c d ) Vol 
(
B( x p , r) 

)
. 

Note that the bins referred to in Assumption 1 correspond to regions around the children of the node p. Assumption

1 reduces the average case of Problem 1 to a form of the classical coupons collector’s problem [58] , which considers n 

coupons with the same probability of being drawn. Through a series of randomized trials with replacement, the goal is to

obtain a copy of each coupon. Relevant for Problem 1 is estimating the stopping time T , which counts the number of trials

before all coupons are collected, and which satisfies E [ T ] = nH n , where n denotes the number of coupons and H n is the n -th

harmonic number [58] . 

In terms of Problem 1 , and under Assumption 1 , we can therefore identify T = N t , n = |S p | and E [ N t | Node p] = |S p | H |S p | .
Combining the bound ln (n ) + 

1 
2 ≤ H n ≤ ln (n ) + 1 (from [59] ), with the bound on |S p | from Lemma 5.2 we have 

2 ddim −1 (( ddim − 1) ln 2 + 1 / 2) ≤ E [ N t | Node p] ≤ 5 ddim ( ddim ln 5 + 1) . (5.1) 

With the same strategy, we can bound the number of trials until the cover-fraction of a level reaches 1, as 

2 l( ddim −1) ( l( ddim − 1) ln 2 + 1 / 2) ≤ E [ N t | Level l] ≤ 5 l ddim (l ddim ln 5 + 1) . (5.2) 

From Eq. (5.1) we see that the number of training points E [ N t | node p] grows exponentially with the doubling dimen-

sionallity d. In other words, significantly more trials are needed to achieve cf (p) = D cf for nodes in regions with a large

doubling dimension than it is for nodes in regions with a lower doubling dimension. Consequently, through the damping 

invariant, the DCT restricts the vertical growth of the tree comparatively more the higher the doubling dimension of the 

local region. 

5.2. Time and memory requirements 

This section analyzes the memory requirements of StreaMRAK , which involve storing the DCT and the linear system 

components used to update the coefficients. Furthermore, we consider the computational requirements, which consist in 

solving the coefficient equations. Both the memory and computational requirements need to be analyzed per level l of the 

tree due to the multi-resolution nature of the estimator and the tree organization of the data. 

For the analysis, we consider a simplified setting where we assume that the doubling dimension is constant for all levels

and all subsets of X , and that the number of children c d is the same for all nodes. At the end of the section we describe a

more general setting. 

In the following, we assume that the growth of the DCT stops at a level L . In other words, level L is the last level at

which there are nodes. In practice, the growth of the DCT slows down exponentially fast with the product of the doubling

dimension ddim := ddim (X , r L ) and the level l. This can be seen from Eq. (5.2) , which shows that the number of training

points necessary to fill up a level grows exponentially with l ddim . Therefore, in practice, no new levels will be added to

the DCT when l ddim is large enough, which effectively makes the last level L independent of the number of training points.
10 
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Furthermore, from Lemma 5.2 we know that c d is bounded by 2 
ddim −1 ≤ c d ≤ 5 ddim , which shows that also c d is independent

of the number of training points. 

Proposition 5.3. The memory requirement of StreaMRAK is O 

(∑ L 
l=0 c 

l 
d 

)
. 

Proof. The memory requirement of the DCT is determined by the number of nodes in the tree. Given that the number of

children is the same for all nodes. If the number of children per node is c d , then the total number of nodes at level l is c l 
d 
.

Thus, the memory needed to store the DCT with L levels is O( 
∑ L 

l=0 c 
l 
d 
) . 

To store the linear system on level l we need the matrices 
(
K nm 

(l) 

)� K nm 
(l) , K m 

(l) m 
(l) ∈ R 

m 
(l) ×m 

(l) 
and the vector z ∈ R 

m 
(l) 
.

The number of landmarks m 
(l) at level l is chosen as m 

(l) = δ0 
√ | Q l | , where | Q l | is the number of nodes at level l. Since | Q l |

is O(c l 
d 
) , it follows that m 

(l) × m 
(l) is also O(c l 

d 
) per level, and the desired conclusion follows. �

Note that with a fixed L and n larger than O 

(∑ L 
l=0 c 

l 
d 

)
, then the memory requirement is independent of n . We also note

that if the deepest level satisfies L → ∞ , then the number of nodes is determined by the number of training points, and the

memory requirement would thus, in the worst case, become O(n ) , the same as for the standard cover-tree. 

Next, we discuss the construction of the DCT, where adding a new point to the set of nodes requires a search through

the tree. 

Proposition 5.4. Inserting a new point into the DCT, cf. Algorithm A.1 , requires O(c d L ) operations. 

Proof. For a point x q ∈ X to be analyzed at level L , we need to have analyzed it at the previous l < L levels. At each level, we

must, in the worst case, check the separation invariant with all children of the current potential parent p (l) , before finding

a node c such that ‖ x q − x c ‖ ≤ 2 −l r 0 , that would serve as the next potential parent. This requires at most c d operations per

level, giving Lc d total operations over the L levels. The same number of operations is necessary if a node is discarded at

level L . �

Lastly, we analyze the computational requirements for solving the linear system. 

Proposition 5.5. The time requirement for solving the linear system in Eq. (2.3) is O 

(
δ3 m 

(l) + 

(
m 

(l) 
)
3 
)
per level, where δ3 is

given in Def. 4.1 , 

Proof. The time requirement of FALKON is O(nmt + m 
3 ) where n is the number of training points, m the number of

landmarks and t the number of iterations of the conjugate gradient (which has an upper bound). By Def. 4.1 , StreaMRAK

uses at most δ3 training samples at each level. Since m 
(l) is the number of landmarks at level l, the result follows. �

Assume that the domain X can be divided into disjoint subsets A 1 , . . . , A t ⊂ X for which the doubling dimension

ddim (A i , r l ) differs based on A i and radius r l . Let the number of children of a node x p ∈ A i at level l be c d,i,l . In this scenario,

the growth of the DCT will stop at different levels L i for different subsets A i . The final time and memory requirements would

therefore be the sum of the contribution from each subset A i . In other words, the memory would be O( 
∑ t 

i =1 

∑ L i 
l=0 

c l 
d,i,l 

) ,

and similarly the time requirement per point insertion would be O( 
∑ t 

i =1 

∑ L i 
l=0 

c d,i,l ) . We note that c d,i,l and L i depend on

the dimensionality of the data, but are independent of n . Therefore, so are the time and memory requirements. 

5.3. Convergence of the LP formulation of the KRR 

This section analyzes the conditions for which the LP approximates the training data y i = f ( x i ) , with respect to the

number of levels. A similar analysis was previously done for the LP in the context of kernel smoothers [28] . However, to the

best of our knowledge, this is the first time the LP formulation of KRR has been analyzed in this way. 

Theorem 5.6. Let ̂ f (l) be the LP estimator defined in Eq. (2.7) and let λ be a regularization parameter. Furthermore, let 0 <

σl,n ≤ · · · ≤ σl, 1 be the eigenvalues of K 
(l) 
nn . For L > 0 we then have 

‖ ̂
 f (L +1) ([ x n ]) − f ([ x n ]) ‖ ≤

L ∏ 

l=0 

(1 − ε(l)) ‖ ̂
 f (0) ([ x n ]) − f ([ x n ]) ‖ , where ε(l) = 

σl,n 

nλ + σl,n 

. 

Proof. From the recurrence relationship for the residuals d (l) in Eq. (2.9) it follows by induction that 

̂ f (l+1) ([ x n ]) − f ([ x n ]) = (I − P 

(l) 
nn )( ̂

 f (l) ([ x n ]) − f ([ x n ]) , (5.3) 

where P (l) nn := K 
(l) 
nn (K 

(l) 
nn + λn I ) −1 , cf. Lemma C.1 . It follows that 

‖ ̂
 f (l+1) ([ x n ]) − f ([ x n ]) ‖ ≤ ‖ I − P 

(l) 
nn ‖‖ ̂

 f (l) ([ x n ]) − f ([ x n ]) ‖ . (5.4) 
11 
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Consider the SVD K 
(l) 
nn = U�U 

� where � = diag (σl,i ) and σl,n ≤ · · · ≤ σl, 1 . We then have 

‖ I − P 

(l) 
nn ‖ = 

∥∥∥U diag 

(
nλ

nλ + σl,i 

)
U 

� 
∥∥∥ = 

∥∥∥diag 

(
nλ

nλ + σl,i 

)∥∥∥ = 

nλ

nλ + σl,n 

:= 1 − ε(l) , (5.5) 

and Thm. 5.6 follows recursively from Eq. (5.4) and Eq. (5.5) . �

From Thm. 5.6 it follows that the LP estimator will converge as l → ∞ , since σl,n > 0 and therefore 1 − ε(l) ∈ (0 , 1) for

all l. In Thm. 5.7 we characterise how ε(l) depends on the level l to give insight on the nature of this convergence. 

Theorem 5.7. The LP estimator ̂ f (l) from Eq. (2.7) converges with increasing level L to the training data f ( x i ) , cf. Thm. 5.6 , with

the rate 
∏ L 

l=0 (1 − ε(l)) , where 

1 − ε(l) ≤
(
1 + C 1 ,D 2 

−Dl exp 
(

−C 2 ,D 4 
−l 

)
/nλ

)−1 , (5.6) 

for 

C 1 ,D = 

1 

2 
(6 

√ 

2 ) D �(D/ 2 + 1) 
D −1 
D +1 

(
π

9 

)
D 

D +1 

(
r 0 
δ

)
D and C 2 ,D = 1152 

(
π�2 (D/ 2 + 1) 

9 

)
2 

D +1 

(
r 0 
δ

)
2 , 

where � is the gamma function. 

Furthermore, for l > log 2 ( 
√ 

D/ 2 (r 0 /δ)) we have the tighter bound 

1 − ε(l) < 

(
1 + 

(
1 − 2 1+ 1 

ln 2 
(C 3 D −g(l)) 

)
/nλ

)
−1 , (5.7) 

where g(l) = 4 l−log 2 r 0 /δ and C 3 = ( ln (1 + 1 / 4) + 2 ln 2) . 

Proof. ( Eq. (5.6) ) We bound 1 − ε(l) := nλ/ (nλ + σl,n ) by bounding the smallest eigenvalue of the kernel matrix [ K 
(l) 
nn ] i j =

�(‖ x i − x j ‖ ) , namely σl,n . To do so we assume that there exists a lower bound on the minimal distance between any two

points x i , x j ∈ X , defined as δ := min 
i 
 = j∈X 

‖ x i − x j ‖ > 0 . 

Consider the Gaussian �( x ) = exp (−β‖ x ‖ 2 
2 
) , β > 0 , with the Fourier transform 

̂ �(ω) = (π/β) D/ 2 exp (−‖ ω‖ 2 
2 
/ 4 β) . From

[60, Corollary 12.4] we have the bound 

σl,n ≥ C D 2 
D (2 β) −D/ 2 δ−D exp (−4 M 

2 
D / (δ

2 β)) , 

where 

M D = 12 

(
π�2 (D/ 2 + 1) 

9 

)
1 / (D +1) and C D = 

1 

2�(D/ 2 + 1) 

(
M D 

2 3 / 2 

)
D . 

With β = ( 
√ 

2 2 −l r 0 ) 
−2 and inserting for M D and C D we then have 

σl,n ≥ C D 2 
D 2 −Dl 

(
r 0 
δ

)
D exp 

(
− (2 

√ 

2 M D ) 
2 (r 0 /δ) 2 4 −l 

)
= 

1 
2 
(6 

√ 

2 ) D �(D/ 2 + 1) 
D −1 
D +1 

(
π
9 

)
D 

D +1 

(
r 0 
δ

)
D 2 −Dl 

· exp 
(

− 1152 

(
π�2 (D/ 2+1) 

9 

)
2 

D +1 

(
r 0 
δ

)
2 4 −l 

)
:= B (l) , 

(5.8) 

The bound in Eq. (5.6) follows from this result. �

Proof. ( Eq. (5.7) ) When the level l becomes sufficiently large, the kernel matrix K 
(l) 
nn becomes diagonally dominant, and we

can therefore bound the eigenvalues using Garschgorins Theorem [ 61 , Thm. 1.1], which gives 

| σl,i − [ K 

(l) 
nn ] j j | = | σl,i − 1 | < 

n ∑ 

q =1 , 
q 
 = j 

| [ K 

(l) 
nn ] jq | for i, j ∈ [ n ] . (5.9) 

To find a more explicit bound, we analyze the sum on the right-hand side. Consider a family of annuli { R t } ∞ 

t=0 
where

R t = B ( x j , 2 
t+1 δ) \B ( x j , 2 

t δ) . Inspired by [28] , we can interpret the right hand side of Eq. (5.9) as a sum over { R t } ∞ 

t=0 . The

entries of K 
(l) 
nn are defined as 

[ K 

(l) 
nn ] i j = exp 

(
−

∥∥x i − x j 
∥∥2 

2 r 2 
l 

)
, ∀ i, j ∈ [ n ] , 

where r l = 2 −l r 0 for r 0 > 0 . It follows 

n ∑ 

q =1 , 
q 
 = j 

| [ K 

(l) 
nn ] jq | = 

∞ ∑ 

t=0 

∑ 

x q ∈ R t 
k (l) ( x j , x q ) ≤

∞ ∑ 

t=0 

(
2 t+2 δ

δ
+ 1 

)
D exp 

(
− (2 t δ2 −1 / 2 r −1 

l 
) 2 

)
, 
12 
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where in the first term on the right-hand side we bound the number of summands using Lemma 5.1 , and in the second

we use ‖ x q − x j ‖ ≥ 2 t δ for x q ∈ R t . Note now that for all T ≥ 1 there exists C T > 0 such that exp (−r 2 ) ≤ C T r 
−T holds for

all r > 0 . Such a constant is given by the Lambert W function and satisfies C T = 

(
T 
2e 

)T / 2 
. Moreover, 2 t+2 + 1 ≤ 2 t+2+ α , for

α ≥ ln (1 + 1 / 4) / ln (2) . Thus, 

n ∑ 

q =1 , 
q 
 = j 

| [ K 

(l) 
nn ] jq | ≤ C T 

(
r l 
δ

)T 

2 (2+ α) D + T/ 2 
∞ ∑ 

t=0 

2 t(D −T ) ≤ 2 · 2 D (2+ α) −T/ 2(1+1 / ln (2)) T T/ 2 
(
r l 
δ

)T 

, 

where in the last step we have used exp (1) ≥ 2 1+1 / ln (2) along with 
∑ ∞ 

t=0 2 
t(D −T ) ≤ 2 , which holds for D − T < 0 . We let

r l = r 0 2 
−l and define F (T ) := 2 −T / 2(1+1 / ln (2)) T T / 2 2 −lT 

(
r 0 
δ

)T 
. From Lemma C.4 we have the minimum of F (T ) , which together

with the choice α = ln (1 + 1 / 4) / ln 2 , gives 

σl,n > 1 −
n ∑ 

q = 1 , 
q 
 = j 

∣∣∣∣[ K 

( l ) 
nn 

] 
jq 

∣∣∣∣ ≥ 1 − 2 1+ 1 
ln 2 ( ( ln ( 1+1 / 4 ) +2 ln 2 ) D −g ( l ) ) , g ( l ) = 4 l−log 2 r 0 /δ. 

By defining C 3 = ( ln (1 + 1 / 4) + 2 ln 2) and using that 1 − ε(l) := nλ/ (nλ + σl,n ) this leads to the bound in Eq. (5.7) . We

note that this bound holds for T ∗ > D which means that l > log 2 ( 
√ 

D/ 2 r 0 /δ) . �

We note that the bound in Eq. (5.6) underestimates the rate of convergence for lower levels but improves as the

levels increase. Furthermore, Thm. 5.7 shows that the convergence rate increases with the level l. In fact, the bound

in Eq. (5.6) can be simplified with an a fortiori bound of the same form, where C 1 ,D = 
1 
2 

(
12 . 76 
2 3 / 2 

)
D 
(

D D 

�(D/ 2+1) 

)(
r 0 
δ

)
D and

 2 ,D = (12 . 76 
√ 

2 D ) 2 (r 0 /δ) 2 , which ensures that 1 − ε(l) decreases monotonically for l < log 2 ( 
√ 

D/ 2 (r 0 /δ)) + log 2 (25 . 52 
√ 

2 ) .

see Remark C.2 and Corollary C.3 . 

On the other hand, when l > log 2 ( 
√ 

D/ 2 (r 0 /δ)) the tighter bound from Eq. (5.7) ensures that 1 − ε(l) continues to de-

creases monotonically. Moreover, as l → ∞ each new level reduces the residual error by (1 + 1 /nλ) −1 . We can also observe

that the convergence rate is reduced by the number of training points n , but this effect can be mitigated by reducing the

regularization parameter λ. We also note that Thm. 5.6 and Thm. 5.7 are derived for a vector of numbers on the training

data �n ⊂ X , without assumptions on the target function. In other words, the LP estimator can approximate the training

data for any function f : �n → R , to arbitrary precision, by including sufficiently many levels. 

Corollary 5.8. If the residual d (l) = ( ̂  f (l) ([ x n ]) − f ([ x n ])) at level l only projects non-trivially onto the eigenvectors with eigen-

value σl,n ≥ σcut-off, then we say the residual is spectrally band-limited with respect to the kernel. If the residual d (l) is spectrally

band-limited, then 1 − ε(l) < nλ/ (nλ + σcut-off) . 

Proof. Follows from Eq. (5.3) - (5.5) with P (l) nn = P (l) 
nn,k 

+ 

(
P (l) 
nn,k 

)⊥ , where P (l) 
nn,k 

is the projection on the eigenvectors associated

with the k largest eigenvalues and 
(
P (l) 
nn,k 

)⊥ ( ̂  f (l) ([ x n ]) − f ([ x n ])) = 0 . �

6. Experiments 

This section presents comparative numerical experiments of the proposed estimator on three problems. In Section 6.1 we 

consider a one-dimensional regression problem, and in Section 6.2 we consider a dumbbell-shaped domain that consists of 

two 5-dimensional spheres connected by a 2-dimensional plane. Lastly, in Section 6.3 , we forecast the trajectory of a double

pendulum, which is a well-known chaotic system [25] . 

We compare StreaMRAK with FALKON [2] and an LP modification of KRR ( LP-KRR ). Both FALKON and LP-KRR rely

on the standard Nyström sub-sampling [51,52] . Furthermore, FALKON does not rely on a multi-resolution scheme but uses 

instead a single bandwidth, found by cross-validation. 

Throughout the experiments, we set the threshold for the number of sub-samples (landmarks) in StreaMRAK to be 

10 
√ | Q l | , where Q l is the set of nodes at level l in the DCT. We note that to choose the sub-sample size, FALKON and

LP-KRR require n to be known beforehand. For FALKON we let the number of Nyström landmarks be 10 
√ 

n , where n is

the number of training samples. Meanwhile, for LP-KRR we sub-sample 
√ 

n Nyström landmarks, which are then used for 

all levels. 

We also need to pre-select the number of training points for LP-KRR and FALKON . For FALKON we use the entire

training set, as in [2] . Similarly, it is also common for the LP to use the entire training set at each level [27,28] . However, for

large data sets, it might be better to include fewer data points. Therefore, we also use a version of the LP-KRR where we

divide the total training data equally between the levels. 

Throughout the experiments, we measure the performance of StreaMRAK , FALKON , and LP-KRR by estimating the 

mean square error 

MSE(y, y pred ) = 

1 

ϒ�

ϒ∑ 

k =1 

1 

n k 
|| y k − y 

pred 

k 
|| 2 , with � = max 

k ∈ [ϒ] 
i ∈ [ n k ] 

[ y k ] i − min 
k ∈ [ϒ] 
i ∈ [ n k ] 

[ y k ] i , (6.1) 
13 
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Table 1 

Comparison of StreaMRAK , LP-KRR and FALKON for the target in Eq. (6.2) . For each level l we 

show the number of landmarks, the mean square error (MSE), and the accumulated time to train 

the prediction model (Time). In parenthesis, in the time column of the FALKON row, is the time 

to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE Time 

StreaMRAK 

5 47 2.55 ×10 −1 77 s 

10 392 3.69 ×10 −2 116 s 

15 1525 8.63 ×10 −6 497 s 

16 2302 6.18 ×10 −6 1194 s 

LP-KRR (1) n l = 1 . 1 × 10 5 
5 1483 2.56 ×10 −1 143 s 

10 1483 3.65 ×10 −2 413 s 

15 1483 8.72 ×10 −6 825 s 

16 1483 6.85 ×10 −6 922 s 

18 1483 6.55 ×10 −6 1136 s 

LP-KRR (2) n l = 2 . 2 × 10 6 
5 1483 2.56 ×10 −1 2963 s 

10 1483 3.64 ×10 −2 8704 s 

18 1483 8.91 ×10 −6 23113 s 

StreaMRAK – 14830 5.7 ×10 −3 4642 s + (27930 s) 

Fig. 3. (a)-(d) shows the target function f (x ) from Eq. (6.2) as a grey dotted line. The light-blue circles indicates the predicted values made by StreaM- 

RAK . Similarly the red triangles indicates the predictions made by LP-KRR and the dark blue squares the predictions made by FALKON . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

where ϒ is the number of test runs we average over, n k is the number of test points at test run k , and y k , y 
pred 

k 
∈ R 

n t are

the target values and predictions respectively, and � is the normalisation factor. 

6.1. Multi-resolution benchmark 

We consider the function, 

f (x ) = sin 

(
1 

x + 0 . 01 

)
, for x ∈ 

[ 
0 , 

π

4 

] 
. (6.2) 

In the experiment we use a training set of n = 2 . 2 × 10 6 samples and a test set of 1 . 3 × 10 5 samples. We use the non-

uniform gamma distribution �(α, β) with α = 1 , β = 2 to sample the training data. 

The number of training points used at each level in StreaMRAK is determined by setting δ1 and δ2 from Def. 4.1 to 10 −3 .

With this choice, StreaMRAK selects between 30244 and 40100 training points for each level. For comparison, FALKON 

uses all the 2 . 2 × 10 6 training points. Furthermore, for LP-KRR we run two experiments: LP-KRR (1) using 1 . 1 × 10 5 training 

points at each level and LP-KRR (2) using 2 . 2 × 10 6 training points at each level. 

Results are presented in Table 1 , and the prediction results are illustrated in Fig. 3 a- 3 d. The results show that StreaM-

RAK and both LP-KRR schemes perform much better than FALKON . The reason is that FALKON uses only one bandwidth

r, while the multi-resolution schemes StreaMRAK and LP-KRR , utilize a bandwidth regime r l = 2 −l r 0 that varies with the

level l. The consequence is that StreaMRAK and LP-KRR approximate the low-frequency components of f when the band- 

width is large, and then target the high-frequency components of f (x ) gradually as the bandwidth decreases. These results

illustrate the benefits of a multi-resolution scheme over a single bandwidth scheme. 

From Table 1 , we also observe that LP-KRR (2) is significantly slower than StreaMRAK and LP-KRR (1). This is because

it uses the entire training set at each level. Therefore, since LP-KRR (1) and LP-KRR (2) achieve comparable precision, we

see that including all training points at each level is not always necessary. 

A closer comparison of StreaMRAK and LP-KRR is given in Fig. 4 . In particular, in Fig. 4 a we see that the two algorithms

achieve very similar precision. However, comparing the training times in Fig. 4 b, we see that StreaMRAK trains each level

faster and therefore achieves better precision earlier than LP-KRR (1). 
14 
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Fig. 4. Comparison of StreaMRAK and LP-KRR . (a) shows the mean square error calculated according to Eq. (6.1) with the target function from Eq. (6.2) . 

Along the x-axis is the number of levels included in the model. (b) The x-axis shows the accumulated training time until a level in the LP is completed. 

The y-axis shows the MSE of the prediction using the currently available model. The blue circles indicate the prediction error of StreaMRAK and the red 

triangles indicate the prediction error of LP-KRR (1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 5. (a)-(c) shows the landmarks with their position along the x 1 axis and the average distance to their 2 nearest neighbors along the y-axis. Here the 

red triangles are the Nyström landmarks of LP-KRR and the light-blue circles the landmarks of StreaMRAK . The grey dotted line is the bandwidth at the 

given level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

In Fig. 5 we show the average distance of each landmark to their 2 nearest neighbors (2-NN distance). Two aspects

of the selection require attention. As opposed to LP-KRR , StreaMRAK selects landmarks such that the 2-NN distance is 

comparable to the bandwidth used at a specific level. In addition, StreaMRAK saves computational power by not choosing 

landmarks in regions where the 2-NN distance is too low compared to the bandwidth. In Fig. 5 c this can be observed for

level l = 16 for landmarks with x ≥ 0 . 2 . Due to the non-uniform sample distribution with a higher density around x = 0 , the

adaptive sub-sampling is able to select more landmarks in the region close to x = 0 , where f oscillates with high frequency.

Furthermore, StreaMRAK stops predicting at level 16 because level 17 is not yet covered with a high enough density of

landmarks. Meanwhile, LP-KRR continues, but as seen from Fig. 4 a the improvements after level 15 are not significant

because the density of Nyström samples is too low compared to the bandwidth. 

6.2. Adaptive sub-sampling benchmark 

We consider a dumbbell-shaped domain embedded in R 
5 , consisting of two 5-dimensional spheres connected by a 2- 

dimensional plane. A projection of the input domain in R 
3 is shown in Fig. 7 (a)-(c). Furthermore, as target we consider the

following function, 

f ( x ) = 

{
A sin (Bx 1 + φ) + (x 1 + 2) , 1 < x 1 < 3 
1 , otherwise 

, for x ∈ [ −1 , 5] × [ −1 , 1] 4 , (6.3) 

where A, B and φ are chosen so that f ∈ C 1 ([ −1 , 5] × [ −1 , 1] 4 , R 
5 ) . For the experiments, we consider a training set of

1 . 9 × 10 6 samples and a test set of 6 × 10 5 samples, all sampled uniformly at random from the input domain. We note that 
15 
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Table 2 

Comparison of StreaMRAK , LP-KRR , and FALKON predictions of the target function in Eq. (6.3) . 

For each level l we show the number of landmarks, the mean square error (MSE), and the ac- 

cumulated time to train the prediction model (Time). In parenthesis, in the time column of the 

FALKON row, is the time to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE Time 

StreaMRAK 

4 352 1.29 ×10 −3 64 s 

5 2667 1.27 ×10 −3 1398 s 

6 1858 8.31 ×10 −4 1462 s 

8 1329 2.75 ×10 −5 2307 s 

LP-KRR (1) n l = 1 . 8 × 10 5 
4 1375 1.28 ×10 −3 386 s 

5 1375 1.26 ×10 −3 520 s 

6 1375 9.10 ×10 −4 671 s 

8 1375 3.30 ×10 −4 1064 s 

9 1375 3.10 ×10 −4 1287 s 

LP-KRR (2) n l = 1 . 9 × 10 6 
4 1375 1.34 ×10 −3 4160 s 

5 1375 1.30 ×10 −3 5570 s 

6 1375 9.44 ×10 −4 7168 s 

8 1375 3.16 ×10 −4 11125 s 

9 1375 3.01 ×10 −4 13334 s 

FALKON – 14830 6.8 ×10 −4 6590 s + (37561 s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we purposefully chose a simple function in the high dimensional regions because complicated functions in high dimensions 

require far too many points to be satisfactorily learned. 

To determine the number of training points for StreaMRAK , we let δ1 = 1 × 10 −3 and δ2 = 1 × 10 −4 , cf. Def. 4.1 . With

this choice StreaMRAK selects between 30100 and 40100 training points for each level. FALKON again uses all the 

1 . 9 × 10 6 training points and for LP-KRR we consider two settings: LP-KRR (1) using 1 . 8 × 10 5 training points at each 

level, and LP-KRR (2) using 1 . 9 × 10 6 training points at each level. 

The results for StreaMRAK , LP-KRR , and FALKON are presented in Table 2 . We observe that StreaMRAK achieves a

better prediction than both FALKON and LP-KRR because it adapts the sub-sampling density to the level of resolution. 

To understand the improvement in prediction accuracy, we need to discuss the effects of landmark selection. In Fig. 7 a- 7

c we show the projections of landmarks for StreaMRAK and LP-KRR on R 
3 , and in Fig. 7 d- 7 f the average distance of each

landmark to its 7 nearest neighbors. These distances are compared with the bandwidth r l selected for the given level l. We

see that StreaMRAK selects landmarks in regions where the average distance to nearest neighbors is comparable to the 

bandwidth. This means that in high dimensional regions, which correspond to x 1 ∈ [ −1 , 1] ∪ [3 , 5] , the algorithm effectively

stops collecting landmarks since it cannot maintain high enough density. On the other hand, LP-KRR uses Nystrom sub- 

sampling, which imposes a uniform selection of landmarks. Consequently, a significant number of landmarks come from 

high-dimensional regions. 

Moreover, Fig. 7 shows that in the case of LP-KRR , the average distance between the landmarks in high dimensional

regions is larger than the bandwidth r l when l ≥ 5 . As a knock-on effect, LP-KRR makes only small improvements in high

dimensional regions for l ≥ 5 , as seen from Fig. 6 b. Analogous behavior can be observed for StreaMRAK . However, since

StreaMRAK devotes fewer resources to high dimensional regions, it sub-samples more from the low dimensional region, as 

illustrated in Fig. 6 a. The consequence is that StreaMRAK makes bigger improvements in the low dimensional region than 

LP-KRR , as seen from Fig. 6 b. Note that this was not the case in Section 6.1 , where the two methods had similar behavior,

but unlike here, the input domain in Section 6.1 did not consist of regions with different dimensionalities. 

6.3. Forecasting the trajectory of a double pendulum 

We consider the double pendulum, illustrated in Fig. 2 a, which we model by the Lagrangian system 

L = ml 2 (ω 
2 
1 + 

1 

2 
ω 

2 
2 ) + ml 2 ω 1 ω 2 cos (θ1 − θ2 ) + mgl(2 cos θ1 + cos θ2 ) , (6.4) 

under the assumption that the pendulums are massless rods of length l 1 = l 2 = l with masses m 1 = m 2 = m centered at the

end of each rod. Here g is the standard gravity, ω 1 := 
˙ θ1 , ω 2 := 

˙ θ2 are the angular velocities, and the angles θ1 , θ2 are as
indicated in Fig. 2 a. For the experiments we let m = 1 , l = 1 and g = 10 . 

The learning task is to forecast the trajectory of the pendulum, given only its initial conditions. We let s t =
[ θ1 (t) , θ2 (t) , ω 1 (t) , ω 2 (t)] ∈ R 

4 be the state of the system at step t ∈ N and train StreaMRAK , LP-KRR and FALKON to

learn how s t maps to a later state s t+�, for � ∈ N . The trained model ̂ f is used to forecast the state s T for T >> 0 by

recursively predicting s t+� = ̂
 f ( s t ) from the initial state s 0 until t = T . 

For the experiments we consider two settings: a low energy system s low 
0 

= [ −20 ◦, −20 ◦, 0 ◦, 0 ◦] and a high energy system
s high 
0 

= [ −120 ◦, −20 ◦, −7 . 57 ◦, 7 . 68 ◦] . For these systems, we initialize 80 0 0 pendulums as s 0 ∼ N ( s , σ ( s )) for s = s low 
0 

, s high 
0 
16 
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Fig. 6. Comparison of StreaMRAK and LP-KRR (1) in the 2-dim and 5-dim regions of the Dumbbell domain. The solid blue line is StreaMRAK for 

dimension d = 2 while the solid red line is LP-KRR (1) for dimension d = 2 . The grey dotted line is StreaMRAK for dimension d = 5 and the dark-grey 

dashed line is LP-KRR (1) for dimension d = 5 (a) shows the mean square error calculated according to Eq. (6.1) . (b) shows the number of landmarks in 

the 2-dimensional and the 5- dimensional regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. In the figure, red triangles correspond to LP-KRR and light-blue circles to StreaMRAK . (a)-(c) shows the landmark distributions projected on R 3 

at level l = 4 , 5 , 6 respectively. (d)-(f) shows the average distance between the 7 nearest neighbors; bandwidth r l is indicated with a dotted line. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

respectively, where σ ( s ) = [0 . 025 | θ1 | , 0 . 15 | θ2 | , 0 . 3 | ω 1 | , 0 . 3 | ω 2 | ] . Each pendulum is iterated for 500 steps, which results in

5 × 10 6 training points distributed in R 
4 . Furthermore, for the test data we consider 100 pendulums s 0 ∼ N ( s , 0 . 01 | s | ) for

s = s low 
0 

, s high 
0 

, iterated for 500 steps. 

To determine the number of training points for StreaMRAK , we let δ1 , δ2 = 10 −4 , cf. Def. 4.1 . With this choice StreaM-

RAK selects between 30219 and 70282 training points for each level for the low energy system, and between 36300 and

130200 for the high energy system. Meanwhile, FALKON uses all 5 . 0 × 10 6 training points and LP-KRR use 3 . 9 × 10 5 train- 

ing points at each level. 

Results are presented in Table 3 and Table 4 . Furthermore, to illustrate the prediction results we consider the center of

mass M x ( s t ) = 
1 (x 1 (t) + x 2 (t)) ∈ R at state s t , where x 1 , x 2 ∈ R are the positions of the two pendulum masses as seen in
2 

17 
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Table 3 

Comparison of StreaMRAK , LP-KRR , and FALKON for the low energy system. For 

each level l we show the number of landmarks, the MSE at step T = 50, and the ac- 

cumulated time to train the prediction model (Time). In parenthesis, in the time col- 

umn of the FALKON row, is the time to find the optimal bandwidth through cross- 

validation. 

Level # Landmarks MSE(T = 50) Time 

StreaMRAK 

2 1 1.12 ×10 −1 31 s 

5 66 3.39 ×10 −5 498 s 

7 659 1.44 ×10 −6 534 s 

9 4085 3.01 ×10 −7 812 s 

LP-KRR 

2 1979 5.93 ×10 −2 490 s 

5 1979 2.73 ×10 −5 1463 s 

7 1979 2.16 ×10 −7 2395 s 

9 1979 1.16 ×10 −8 3550 s 

FALKON – 19790 5 ×10 6 2934 s + (1498 s) 

Table 4 

Comparison of the StreaMRAK , LP-KRR , and FALKON for the high energy system. For 

each level l we show the number of landmarks, the MSE at step T = 50, and the accumu- 

lated time to train the prediction model (Time). In parenthesis, in the time column of 

the FALKON row, is the time to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE(T = 50) Time 

StreaMRAK 

2 1 2.70 ×10 −1 49 s 

5 1106 8.53 ×10 −3 915 s 

7 6376 2.16 ×10 −4 1999 s 

LP-KRR 

2 1979 1.72 ×10 −2 522 s 

5 1979 5.09 ×10 −3 1474 s 

7 1979 1.39 ×10 −4 2431 s 

FALKON – 19790 5 ×10 6 23830 s + (11050 s) 

Fig. 8. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares) for 

the low energy pendulum. (a) Shows the mean square error of the center of mass M x ( s t ) for the level 7 prediction, with step T along the x-axis. (b) shows 

the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK , LP-KRR , and FALKON at level 9. (c) The x-axis shows the 

accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. We note that 

StreaMRAK includes 7 levels, while LP-KRR includes 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

Fig. 2 a. The prediction results are illustrated in Fig. 8 and Fig 9 for the low and high energy pendulums respectively. We

calculate the MSE at each step t separately, such that for a given t we use Eq. 6.1 with y k = M x ( s t ) , y 
pred 

k 
= M x ( s 

pred 
t ) and

ϒ = 100 . 

For the low energy system, we see from Fig. 8 c how StreaMRAK is trained significantly faster than LP-KRR , although

at a cost of reduced precision. The reduced training time of StreaMRAK is a consequence of the low doubling dimension

of the training data, which allows the selection of far fewer landmarks for StreaMRAK than what is used at each level in

LP-KRR . 

For the high-energy pendulum, we see from Fig. 9 c that StreaMRAK is again able to achieve good precision faster than

LP-KRR . Furthermore, we see that the number of landmarks selected for StreaMRAK increases abruptly with the levels, 

reflecting the high doubling dimension of the training data. Due to this StreaMRAK stops the training after level 7, as
18 
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Fig. 9. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares) 

for the high-energy pendulum. (a) Shows the mean square error of the center of mass M x ( s t ) for the level 7 prediction, with step T along the x-axis. 

(b) shows the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK , LP-KRR , and FALKON at level 9. (c) The x-axis 

shows the accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. (a) Pendulum positions at T = 200 and (c) The positions at T = 210 . In (a) and (c), P M is the main pendulum with initial conditions s high 
0 

, while 

P F is the StreaMRAK forecast of the pendulum position. Similarly, P 0 − P 3 are four training pendulums with a perturbation of 0 . 5% on the initial angles 

θ1 and θ2 of the main pendulum. (b) Projection of the training data on the θ1 θ2 -plane. The thick red line is the main pendulum corresponding to P M and 

the four grey dotted lines are the test pendulums P 0 − P 3 , where the X indicates the time T = 205 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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the next levels require too many landmarks. By continuing for 2 more levels LP-KRR is able to achieve marginally better

precision but at increased computational cost. 

As seen in Fig. 9 b, the forecasting of StreaMRAK and LP-KRR breaks down after T ≈ 200 steps. In Fig. 10 b we observe

the trajectory of a pendulum with initial condition s high 
0 

, as well as four pendulums with a 0 . 5% perturbation on the angles

θ1 and θ2 in s 
high 
0 

. We observe that after roughly T = 205 time steps the trajectory of the five pendulums diverge signifi-

cantly from each other. Therefore, it seems that a bifurcation point occurs around this time, which may explain why all the

algorithms are unable to make good forecasting beyond this point. 

7. Outlook 

Further development of StreaMRAK is intended with focus on four objectives. 

1) Augmentation of the DCT to track the error at each node 

2) Improve the estimator in Def. 4.1 and Eq. 3.1 . 

3) Refinement of previously fitted levels in the LP as new data arrives. 

4) Further theoretical analysis of the LP. 

Considering objective (O1) we intend to develop the DCT to track the error at each node. This way the growth can be

restricted in regions where the error is small, which allows for more focus on regions where the error is large. The intention

is that this will reduce the problem complexity even further, while also increasing the precision. Regarding objective (O2), a 

drawback with the estimator in Eq. 3.1 was already mentioned in Remark B.1 in Appendix B . Furthermore, for the estimator

in Def. 4.1 , we intend to implement and evaluate alternative ways to estimate the convergence of the matrices. Another focus

area will be objective (O3), as we believe new information may be revealed as new training data arrive, and refinement of

previously fitted levels can therefore be beneficial. Finally, the theoretical analysis in objective (O4) will focus on analyzing 

the generalization error for the LP, particularly in combination with the adaptive sub-sampling scheme. 
19 
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Appendix A. Algorithms 

We here denote nodes by p, q, c and x p , x q , x c ∈ X ⊂ R 
D are the corresponding points. 

Algorithm A.1 Insert (point q , node p, level l). 

1: We assume q already satisfies ‖ x q − x p ‖ ≤ 2 −l r 0 . 

2: if ‖ x q − x c ‖ > 2 −(l+1) r 0 for all c ∈ Children (p) then 

3: Insert q into Children (c) . 

4: Update_CoverFraction ( Parent( Q l ), “No parent found”) 

5: Break 

6: else if ‖ x q − x c ‖ < 2 −(l+1) r 0 for some c ∈ Children (p) then 

7: Consider all children of c, namely Children (c) 

8: if Children (c) is empty then 

9: if Covering fraction of p, Def. 3.1, satisfy cf (p) ≥ D cf for some threshold D cf then 

10: Insert q into Children (c) 

11: Break 

12: else 

13: Update_CoverFraction (p, “parent found”){c is found to be a potential parent. However, since cf (p) < D cf we can

not add q to Children(c) } 

14: end if 

15: else 

16: Insert ( q , c, l + 1 ) 

17: end if 

18: end if 

Algorithm A.2 StreaMRAK (point x , target y ). 

1: Let l be the level. Let p (0) be the root node, r 0 the radius of the root node. 

2: Sub-sampling thread 

3: Insert x into the cover tree with Insert ( x , p (0) , l = 0) . {See Alg. A.1} 

4: if a new level has cf (Q l ) ≥ D le v el . then 

5: Extract the landmarks at level l as sub-samples, namely �(l) 

m 
(l) 
. 

6: end if 

7: Training thread 

8: Consider level l and assume that the landmarks �(l) 

m 
(l) 

are extracted. 

9: while l is not sufficiently covered with training points according to Def. 4.1. do 

10: Update 
[
(K 

(l) 
nm 

) � K 
(l) 
nm 

]
i j and z 

(l) 
i 

according to Eq. 2.4 and Eq. 2.5 as new samples ( x , y ) arrive, using the landmarks in˜ �(l) 
m 

from Def. 3.3. 

11: Continuously check if matrices have converged. 

12: if Matrices converge according to Def. 4.1 then 

13: Update the StreaMRAK regression model ˜ f (L ) , by including the correction term s (l) into the Laplacian pyramid, as 

described in Section 2.2. Let L = l and update l = l + 1 . 

14: end if 

15: end while 
20 
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Algorithm A.3 Update_CoverFraction (node p, string s). 

1: if s=“No parent found” then 

2: Update covering fraction of p with cf (p) = (1 − α) cf (p) 

3: else if s= “parent found” then 

4: Update covering fraction of p with cf (p) = (1 − α) cf (p) + α
5: end if 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Preparatory material 

We offer preparatory material on the damped cover-tree and kernel methods. 

B1. Preparatory material on the damped cover-tree 

This section shows how the recursive formula in Eq. 3.1 approximates the weighted average of the outcome of the last N

random trails. Where the trails are as described in Section 3.1 . By expanding Eq. 3.1 we have (cf (p)) t = (1 − α) t (cf (p)) 1 +
α

∑ t−1 
i =1 (1 − α) i 1 B c ( x t−i ) . Since (1 − 1 

N ) 
N ≈ 1 /e , the first term becomes negligible when t � N. Similarly, all terms i > N in

the sum becomes negligible. This leaves, 

(cf (p)) t ≈ 1 

N 

N ∑ 

i =1 

(
1 − 1 

N 

)
i 1 B c ( x t−i ) 

which is a weighted average of the outcome of the N last draws as claimed. 

Remark B.1. We mention a weakness of the estimator in Eq. (3.1) . As follows from Algorithm A.1 , every time a new point

x is not covered by the existing children, a new child is added. This consequently updates B c , leading to the posterior

distribution Prob (1 B c ( x ) = 0 | x ) to changed every time 1 B c ( x ) = 0 . 

B2. Preparatory material on Kernel methods 

Kernel methods in the context of reproducing kernel Hilbert spaces (RKHS) offer a powerful approach to machine learn- 

ing with a well-established mathematical foundation [1,62] . In this paper we consider an input space X ⊂ R 
D , a corre-

sponding target space Y ⊂ R and let ρ be the probability distribution on X × Y . Furthermore, we assume an RKHS H k 

generated by a positive definite kernel k : X × X → R . In other words, the eigenvalues σi , . . . , σn of the corresponding ker-

nel matrix K nn = (k ( x i , x j )) 
n 
i, j=1 

satisfies σi > 0 for all i ∈ n . In this setting the inner product between two feature vectors

φ( x ) , φ( x ′ ) ∈ H k satisfies the property that < φ( x ) , φ( x ′ ) > H k 
= k ( x , x ′ ) . This relation, known as the ”kernel trick” [63,64] ,

effectively circumvents the need for explicit construction of non-linear mappings φ. 

Given a training set { ( x i , y i ) : i ∈ [ n ] } sampled according to ρ with �n = { x i : i ∈ [ n ] } , we formulate the kernel ridge re-

gression (KRR) problem as 

̂ f n,λ = argmin 
f∈ ̂  H n 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ f ‖ 

2 
H 
, (B.1) 

where λ > 0 is a regularisation parameter and ̂ H n = span { k (·, x i ) : i ∈ [ n ] } is a finite-dimensional subspace of H k . What is

more, for all f ∈ 
̂ H n the Representer theorem [65,66] guarantees that there exists coefficients α1 , . . . , αn such that the solu-

tion to Eq. (B.1) is on the form 

f ( x ) = 

n ∑ 

i =1 

αi k ( x , x i ) . 

Computing the KRR estimator is therefore reduced to solving the linear system 

(K nn + λI n ) α = y , 

where y = (y 1 , . . . , y n ) 
� , α = (α1 , . . . , αn ) 

� , and [ K nn ] i j = k ( x i , x j ) . 

Appendix C. Auxiliary results 

Lemma C.1. Let d (l) be the residual at level l as defined in Eq. (2.9) . We then have, 

d (l+1) = (I − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 ) d (l) 
21 
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Proof. Denote s (l) = s (l) ([ x n ]) , and note that s (l) = K 
(l) 
nn (K 

(l) 
nn + λn I ) −1 d (l) . For l = 1 , we have 

d (1) = y − s (0) = y − K 

(l) 
nn α

(0) = (I − K 

(0) 
nn )(K 

(0) 
nn + λn I ) −1 y . 

We proceed by induction. Assume the statement holds for an l ≥ 2 . We now have 

d (l+1) = y −
l ∑ 

j=0 

s ( j) = d (l) − s (l) = d (l) − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 d (l) = (I − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 ) d (l) . 

�

Remark C.2. In [60, Thm. 12.3] they also offer an a fortiori bound corresponding to M D = 6 . 38 D , C 1 ,D =
1 
2 

(
12 . 76 
2 3 / 2 

)
D 
(

D D 

�(D/ 2+1) 

)(
r 0 
δ

)
D and C 2 ,D = (12 . 76 

√ 

2 D ) 2 (r 0 /δ) 2 . 

Corollary C.3. We note that B (l) from Eq. (5.8) has a maximum at 

l ∗ = 
1 
2 
log 2 

(
C 2 ,D log 4 

D log 2 

)
= log 2 

(√ 

D 
2 

(
r 0 
δ

))
+ log 2 

(
4 M D 

D 

√ 

2 

)
and is monotonically increasing with l on the interval l ∈ (0 , l ∗) . Furthermore, with the a fortiori expression for M D from Remark

C.2 we have 

l ∗ = log 2 

(√ 

D 

2 

(
r 0 
δ

))
+ log 2 

(
25 . 52 

√ 

2 

)
. 

Lemma C.4. The function 

F (T ) := 2 −
T 
2 (1+1 / ln 2) 2 −lT T 

T 
2 

(
r 0 
δ

)
T 

has minimum 

F (T ∗) = 2 −
1 

ln 2 
4 l−log 2 (r 0 /δ) 

. 

Proof. We can write F (T ) as 

F (T ) = 2 −
T 
2 (1+1 / ln 2) 2 −lT 2 T/ 2 log 2 T 2 T log 2 (r 0 /δ) = 2 −T/ 2(B −log 2 T ) = 2 f (T ) , 

where B = 1 + 
1 

ln 2 
+ 2 l − 2 log 2 

(
r 0 
δ

)
and f (T ) = −T / 2(B − log 2 T ) . F (T ) is therefore minimized when f (T ) is minimized.

Namely when 

T ∗ = 2 B −1 / ln 2 = 2 1+1 / ln 2+2 l−2 log 2 (r 0 /δ) −1 / ln 2 = 2 · 4 l−log 2 (r 0 /δ) . 

Inserting this back into the expression for F (T ) gives the desired result. �
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