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Kernel ridge regression (KRR) is a popular scheme for non-linear non-parametric learning.
However, existing implementations of KRR require that all the data is stored in the main
memory, which severely limits the use of KRR in contexts where data size far exceeds
the memory size. Such applications are increasingly common in data mining, bioinformat-
ics, and control. A powerful paradigm for computing on data sets that are too large for
memory is the streaming model of computation, where we process one data sample at a
time, discarding each sample before moving on to the next one. In this paper, we pro-
pose StreaMRAK - a streaming version of KRR. StreaMRAK improves on existing KRR
schemes by dividing the problem into several levels of resolution, which allows continual
refinement to the predictions. The algorithm reduces the memory requirement by con-
tinuously and efficiently integrating new samples into the training model. With a novel
sub-sampling scheme, StreaMRAK reduces memory and computational complexities by
creating a sketch of the original data, where the sub-sampling density is adapted to the
bandwidth of the kernel and the local dimensionality of the data. We present a showcase
study on two synthetic problems and the prediction of the trajectory of a double pendu-
lum. The results show that the proposed algorithm is fast and accurate.

© 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Machine learning algorithms based on kernel ridge regression (KRR) [1] is an active field of research [2-6], with applica-
tions ranging from time series prediction in finance [7], parameter inference in dynamical systems [8], to pairwise learning
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** Abbreviations: KRR (kernel regularized ridge regression), LP (Laplacian pyramid), CT (Cover-tree), DCT (Damped CT).

* Corresponding author.

E-mail addresses: andreas.oslandsbotn@gmail.com (A. Oslandsbotn), zkereta@uclac.uk (Z. Kereta), valeriya@simula.no (V. Naumova),
yfreund@eng.ucsd.edu (Y. Freund), acloninger@ucsd.edu (A. Cloninger).

https://doi.org/10.1016/j.amc.2022.127112

0096-3003/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)


https://doi.org/10.1016/j.amc.2022.127112
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2022.127112&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/AndOslandsbotn/StreaMRAK.git
mailto:andreas.oslandsbotn@gmail.com
mailto:z.kereta@ucl.ac.uk
mailto:valeriya@simula.no
mailto:yfreund@eng.ucsd.edu
mailto:acloninger@ucsd.edu
https://doi.org/10.1016/j.amc.2022.127112
http://creativecommons.org/licenses/by/4.0/

A. Oslandsbotn, Z. Kereta, V. Naumova et al. Applied Mathematics and Computation 426 (2022) 127112

[9], face recognition [10] and drug estimation and gene analysis in biomedicine [11,12]. This paper develops a streaming vari-
ation of KRR using a radial kernel, a new sub-sampling scheme, and a multi-resolution formulation of the learning model.

Many popular data analysis software packages, such as Matlab™ require loading the entire dataset into memory. While
computer memory is growing fast, the size of available data sets is growing much faster, limiting the applicability of in-
memory methods.!

Streaming [13] is a computational model where the input size is much larger than the memory size. Streaming algorithms
read one item at a time, update their memory, and discard the item. The computer memory is used to store a model or
a sketch of the overall data distribution, which is orders of magnitude smaller than the data itself. The development of
streaming algorithms is experiencing increased popularity in the face of big data applications such as data mining [14] and
bioinformatics [15], where data sets are typically too large to be kept in-memory. Many big data applications call for non-
linear and involved models, and thus, the development of non-parametric and non-linear models is critical for successful
learning.

Among the most popular non-parametric learning algorithms are kernel methods, which include well-known learning
schemes such as the support vector machine (SVM) and KRR, to name a few. The appeal of kernel methods lies in their
strong theoretical foundation [1,16], as well as their ability to map complex problems to a linear space without requiring an
explicit mapping. A common class of kernels are radial kernels k(x, %) = ®(||x — %||/r) for x,x € X € RP and bandwidth r > 0
[17]. These kernels are universal (with a few exceptions [18]), meaning that they can approximate any bounded continuous
function on X arbitrarily well. However, in high dimensions, kernel methods suffer from the "curse of dimensionality” and
require large amounts of training data to converge. Furthermore, the computational complexity, memory requirement, and
the number of parameters to learn grow unbounded with the number of training samples, a drawback known as the "curse
of kernelization” [19]. In the context of streaming, the prospect of unbounded data streams makes this shortcoming even
more detrimental.

Although kernel-based learning schemes are typically formulated as convex optimization problems, which do not require
tuning hyper-parameters such as learning rate etc., there is still a need to determine the optimal kernel. For the Gaussian
kernel, this amounts to selecting the bandwidth. Classically, an optimal kernel is chosen through batch techniques such as
leave-one-out and k-fold cross-validation [20-22]. However, these approaches are inefficient as they spend significant time
evaluating bad kernel hypotheses and often use multiple runs over the data, which is impossible in a streaming setting.

To meet a need for non-linear non-parametric algorithms for streaming data, we propose the streaming multi-resolution
adaptive kernel algorithm (StreaMRAK) - a computationally and memory-efficient streaming variation of KRR. StreaMRAK
address the kernel selection problem with a multi-resolution kernel selection strategy that adapts the sub-sample density
to the kernel bandwidth over several levels of resolution. Furthermore, StreaMRAK addresses the curse of dimensionality
and kernelization in a novel way, through the sub-sampling scheme.

1.1. Setting

We consider a finite sample data-cloud ., |X| = n, that is sampled i.i.d. according to a fixed but unknown distribution
P over RP. The target is a bounded and continuous function f:RP — R. We assume that the points in X are placed in a
sequence and that their order is random.  Each instance x; € X, for i € [n], paired with a label y; where y; = f(x;) + ¢; and
& ~ N(0, o) represents noise. The task of learning is to train a model f that is a good approximation of the target function
f.

In this work, we think about the intrinsic dimension of X as a local quantity, meaning it depends on the region A C
X and the radius r at which we consider the point cloud. To estimate the local intrinsic dimension in a "location and
resolution sensitive” manner, we use the concept of the doubling dimension of a set, defined in Def. 1.2. See [23,24] for
related definitions.

Definition 1.1 (Covering number). Consider a set A and a ball B(x,r), with r > 0 and x € A. We say that a finite set S c
B(x,r) is a covering of B(x, r) in A if AN B(x,r) C UyesB(x;, 1/2). We define the covering number « (A, x, r) as the minimum
cardinality of any covering of B(x,r) in A.

Definition 1.2 (Doubling dimension). The doubling dimension ddim(A,r) of a set A is defined as ddim(A, 1) =
[logk (A, x,r)]. For an interval Z c R,y we define the doubling dimension as the least upper bound over r € Z, that is
ddim(A, 7) = maXrez ddim(A, 1).

We say that the intrinsic dimension of X changes with the location if there exist A;, Ay c X such that ddim(Aq, 1) #
ddim(Ay,r) for r > 0. Similarly, we say that the intrinsic dimensionality of X changes with the resolution, if there exist
r1 # 1y such that the doubling dimension ddim(A, r{) # ddim(A, ;) for A C X.

In Fig. 1 we consider three examples to provide further insight on the doubling dimension. In Fig. 1a we see a do-
main shaped like a dumbbell, where the spheres are high dimensional, and the bar connecting them is lower-dimensional,

1 Simulink™, a companion software to Matlab™ supports streaming but has a much more limited computational model, targeted at signal processing
applications.
2 The assumption that the sequence is randomly ordered allows us to draw statistical conclusions from prefixes.
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Fig. 1. Three examples of variation in the intrinsic dimension. The coloring of the point clouds illustrates depth.
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Fig. 2. (a) Illustration of a double pendulum. Here | and m are the length and mass of the pendulum rods, and 6, 6, are the angles. Furthermore, (x1,y1)
and (x,, y,) are the positions of the point masses of the two pendulums. (b) Phase diagram of four double pendulums Py, P;, P, P, iterated for T = 500
time steps. The bifurcation point at step T =300 is indicated with a black solid circle. (c) and (d) includes the w; axis and zoom in on respectively the
blue and red circles in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

showing how the dimension can change with the location. Meanwhile, Fig. 1b illustrates a lower-dimensional manifold, em-
bedded in R3, with manifold noise ¢p. We see that when the resolution is sufficiently small, so that r ~ ¢, the doubling
dimensionality increases towards the dimension of the ambient space RP. Furthermore, Fig. 1c shows a point cloud that is
locally 2-dimensional, but is embedded in a 3-dimensional space. By reducing r we can resolve this lower dimensionality,
but if it is reduced further, we would eventually resolve the noise level, and the doubling dimension increases again.

As an example of how the intrinsic dimension might change with respect to regions and resolutions, we consider a dou-
ble pendulum system, a well-known chaotic system that depends heavily on its initial conditions [25]. Systems with multiple
pendulum elements are well known in engineering applications such as mechanical and robotic systems with several joints
and are studied for their chaotic properties [26].

In Fig. 2b we visualize the trajectory of four pendulums Py, P;, P, P5, for which the trajectories are indistinguishable until
a bifurcation occurs around T = 300 time steps, and the trajectories start to diverge. In Fig. 2¢ and Fig. 2d we zoom in on
the trajectory of all 500 pendulums in regions before and after the bifurcation. These two regions, .4; and A,, are indicated
by a blue and red circle, respectively, in Fig. 2b. From the figures, it is clear that learning the trajectory in A; is significantly
easier than in Aj,, where learning the trajectory is more affected by the curse of dimensionality.

1.2. Contribution and comparison to related work

Contributions of this work can be divided into three components.

(C1) A multi-resolution variation of the state-of-the-art KRR solver FALKON |[2], using the LP, which refines the predictions
at each level of resolution by regressing on the errors from the previous level.

(C2) A novel sub-sampling scheme for kernel methods, tailored for use in combination with the LP, that can handle the curse
of dimensionality and does not require the data to be in-memory.

(C3) Development of a streaming variation of FALKON, where the time and memory requirements depend on the doubling
dimensionality and the level of resolution, instead of the number of training points. see Props. 5.3-5.5.

In the following, we give further details on these contributions and compare them to related work. The computational
backbone of StreaMRAK is based on the state-of-the-art KRR solver FALKON [2], which among other things combines
sub-sampling and preconditioning to process large data sets efficiently. However, FALKON relies on selecting an optimal
kernel bandwidth, which can be inefficient in streaming.

Our first contribution (C1) addresses the issue of selecting an optimal bandwidth by introducing a multi-resolution re-
formulation of FALKON using a changing bandwidth variation of the LP [27-29]. This strategy is inspired by the success of
existing multi-resolution approaches [4,30-36] and, for online learning, adaptive bandwidth approaches [37-39]. Our scheme
combines the LP with a localized kernel, which gives a frequency and location-based discretization, similar to wavelet anal-
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ysis that have shown great success in numerous applications. However, typical wavelet architectures [40-46] require upfront
construction of a wavelet basis, which is not compatible with a data-adaptive kernel.

In this work, we aim to show that the LP is a viable multi-resolution scheme and can be modified to the streaming
setting. Furthermore, we provide convergence bounds for the LP in the context of radial kernels and KRR, and show experi-
mentally that it improves the estimation accuracy.

Let us now discuss our second contribution (C2). FALKON addresses the curse of kernelization by combining Nystrom
sub-sampling, conjugate gradient, and preconditioning, and achieves time and memory requirements of O(ny/n) and O(n)
respectively, where n is the number of samples. In recent years there have been several efforts to address the curse of
kernelization in similar ways through sub-sampling techniques such as sketching [3,5], randomized features [47-50] and
Nystrom sub-sampling [51-55]. However, despite their successes, these techniques are in principle in-memory type algo-
rithms since they require access to the training data in advance of the training and are not optimized for streaming.

Furthermore, FALKON selects the sub-samples uniformly over the input domain X. However, when learning with a
radial kernel, the density of samples should be related to the bandwidth of the kernel. Otherwise, a too-small bandwidth
will lead to bad interpolation properties, while a too-large bandwidth gives an ill-conditioned system [34]. Since the LP
scheme reduces the kernel bandwidth at each level of resolution, it would be problematic to use the same sub-sample
density. Furthermore, due to the curse of dimensionality, the covering number increases exponentially with the doubling
dimension. Therefore, if doubling dimensionality varies across different regions of the domain &, as illustrated by Fig. 1a,
then the number of sub-samples necessary to maintain the density for a given bandwidth will also vary.

Our second contribution (C2) provides an alternative sub-sampling strategy, adapting the sub-sampling density to the
kernel bandwidth. This strategy is based on a damped cover-tree (DCT), which is a modified version of the cover-tree (CT)
[24], a tree-based data structure with ©(n) memory and O(c®nlogn) time.

A problem with an adaptive sub-sampling strategy is its vulnerability to the curse of dimensionality. In regions of high
doubling dimensions, the number of samples to achieve a certain density increases exponentially, as quantified by Def. 1.2.
This means that the number of sub-samples from the CT will quickly grow too large for efficient computing. The danger is
to waste resources on samples from subsets and levels where the doubling dimension is so large that good interpolation
cannot be achieved for any viable sample sizes. This would only serve to slow down the computation and not increase the
precision.

Due to this, the DCT introduces a damping property, which gradually suppresses the selection of sub-samples where
the doubling dimensionality is large. This has the additional advantage of allowing to choose more sub-samples from re-
gions where the doubling dimensionality is small. Thus, the DCT can diminish the impact of the curse of dimensionality.
Furthermore, the DCT can be built continuously as new samples come in, making it ideal for a streaming computational
model.

Our third contribution (C3), is the streaming capabilities of StreaMRAK. In particular, the sub-sampling and kernel con-
struction allows for continuous integration of new training points. Furthermore, the DCT, the multi-resolution construction,
and the KRR solver can all be multi-threaded and parallelized.

1.3. Organization of the paper

The paper is organized as follows. Section 2 introduces kernel methods and the FALKON algorithm, as well as the LP.
Section 3 introduces the adaptive sub-sampling scheme and the DCT. StreaMRAK is described in Section 4 and an analysis
of the algorithm is given in Section 5. Finally, Section 6 presents several numerical experiments and Section 7 gives an
outlook for further work. The Appendix includes further mathematical background and the proofs.

1.4. Notation

We denote vectors a € RP with boldface and matrices A € R™™ with bold uppercase, and AT denotes the matrix trans-
pose. We use Kp, for kernel matrices, where the dimensionality is indicated by the subscripts. We reserve n for the number
of training samples and m for the number of sub-samples. The ij-th element of a kernel matrix is denoted [Knm];;, while
for other matrices we use A;;. The notation g; indicates i-th element of a vector a. Furthermore, we use f([x]) to denote
(f(x1)..... f(xn))" € R", and [m] to denote {i}",. The notation x; indicates the i-th training example. We use a’ and A®,
where [ refers to a specific level in the LP and the DCT. We take || - || to be the L norm and | - || to be the RKHS norm.
We denote the intrinsic dimension of a manifold with d and the dimension of the embedding with D. By 1s(x) we denote
the indicator function, which evaluates to 1 if x € S and 0 otherwise, of a set S c RP.

2. Kernel methods

Consider a positive definite kernel k: X x X — R, defined on an input space X c RP. Given data {(x;,y;) ;i< [n]} of
samples from X x RP, kernel ridge regression computes an estimator by minimising

= 1
fo = argmin = 37 (f ) = y)” + A f15
fer

i=1
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where # is the Hilbert space induced by the kernel. This allows to reduce the problem to a linear system
(Kin + Anlp)ax =y, for [Kunlij = k(xi.x;), and y = (y1.....¥n)". (21)

Coefficients & = (aq,...,0n)" define the estimator by f(x) = Y[ ; o;k(x, x;). However, solving (2.1) using traditional meth-
ods has a time complexity of ©(n?), which can be costly for large n [2].

FALKON [2] addresses this issue by sub-sampling the columns of Kpp, which reduces the effective complexity while
maintaining accuracy. Namely, denote I'y = {xq,...,x,} and for m < n let I'y; = {Xq, ..., Xm} be Nystrom centers (i.e. a ran-
domly selected subset of I'y). Minimizing

2, (2.2)

Foms = argmin L5 (£~ + 111

eHp i=1
where Hy =Span{k(-,%;) : j € [m]}, leads to a linear system
H& =z, for H = K], Knm + AnKipm, and z = Kyny.

Here [Knmlij = k(x;, X;) € R™™ is the column-subsampled matrix and the estimator is given by fAn.m,A (x) = ZS—":l o jk(x, %;).
To further reduce the time complexity FALKON uses a suitable preconditioner to reduce the condition number. The pre-
conditioner is defined as BB" = (n/mK2,, + AnKmm)~!, which is a natural (lower complexity) approximation of the ideal
preconditioner AAT = (K|, Knm 4+ AnKpmm)~!. We now solve for & from the system of equations

B"HBB = B"z, for H =K, Kun + AKpm. z=Kuny, and & = BB. (2.3)

This is solved iteratively, using the conjugate gradients with early stopping. Choosing m = O(y/n) still ensures optimal gen-
eralisation (i.e. same as KRR), while reducing the computational complexity to O(ny/n).

2.1. Streaming adaptation of FALKON

Matrices and vectors involved in the linear system in (2.3) can be separated into two classes: those that depend only
on sub-samples in ['m; and those (K., Knm and z) that also depend on all the training points I'p. Critically, terms in both
groups are all of size m, which allows to reduce the complexity. Consider now the set of sub-samples I';; to be fixed, and
assume new training points, in the form {(xq,¥q) :q=n+1,...,n+t)}, are coming in a stream. We can then update the
second class of terms according to

n+t

[(K(n+t)m)TK(n+t)m]ij = [(Knm)TKnm]ij + Z k(xtp ii)k(xq’ ;j)s (24)
q=n+1
n+t
[Krom) y]i=2zi+ D k(xq, %)Yg- (2.5)
q=n+1

Thus, only sub-samples fm, matrices (Knm)TKnm, Kinm and z, need to be stored. However, in order to continuously incor-

porate new training points into Eqs. (2.4) and (2.5), sub-samples ' must be determined in advance. Whereas this works if
all the data is provided beforehand, it cannot be done if the data arrives sequentially. In this work, we address this through
a multi-resolution framework. The overall estimator is composed of a sequence of estimators defined at different resolution

levels of the domain. Correspondingly, the set of sub-samples ' consists of smaller sets f;’fl) that correspond to individual

levels of resolution. The sets l:gzl) are filled as the data streams in, and once a set for a given level is deemed complete, we
proceed with updating (2.4) and (2.5).
Further details of how the sets l"r(ri?,) are constructed, and the corresponding criteria, are provided in Sections 3 and 4.

We begin by describing the multi-resolution framework of estimators.

2.2. The laplacian pyramid

The LP [27,29] is a multi-resolution regression method for extending a model fto out-of-sample data points x € X/T'y.
The LP can be formulated for radial kernels in the form

K(xi.x}) = ¢(M), (2.6)

r

where r > 0 is a shape parameter that determines the decay of ® with respect to ||x; — x;, see [17]. The idea underpinning
the LP is to approximate the target function sequentially, where at each stage we regress on the errors from the previous
stage. In other words, we begin with a rough approximation using a large shape parameter for which ® decays slowly and

5
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then improve the approximation by fitting the resulting error and reducing the shape parameter. In the LP, the estimator at
level L € N is defined recursively as

O = ZS(’)(X) = sV (x) + [T (0), (2.7)

=0

where f© =s© and s"(x) is a correction term defined by

sV =" aPkO (x, x). (2.8)

i=1
The coefficients «¥) = (ozi') ..... oz,ﬁ’))T are computed by conducting KRR on the residuals, i.e. errors, from the estimator at
the previous level. Namely, o) = (K + anl)-1d®), where

a _ if 1=0
d { — fU-D([x,]), otherwise’ (2.9)
For a FALKON adaption of this scheme, we only need to modify how per-level coefficients are computed. Following
(2.3) we iteratively solve
(B(l))TH(l)B(l)B(l) _ (B(l))T(K,(ll,%)Td(’), (2.10)

where B() is the corresponding preconditioner, and HO = (K{))TK®), + AnK{)., and set & =BO®.

Remark 2.1. In this paper, we construct the kernel matrices K on a particular class of radial kernels, namely the Gaussian

kernel | %12
kD (x. %) = ex (_i)
(X Xl) p 2r[2

where r; > 0 is the shape parameter (the kernel bandwidth) at level I.

3. The damped cover tree

This work introduces a data-driven sub-sampling method that we call the damped cover-tree (DCT). The DCT is a mod-
ification of the cover-tree (CT) [24], a data structure based on partitioning a metric space, initially designed to facilitate
nearest neighbor search. The goal of the DCT is to modify and simplify the CT to allow a viable sub-sampling scheme.

Let (X, | -||) be a normed space where the input domain X c RP is bounded, such that the diameter ry = diam(X) is
finite. The DCT is a tree structure where each node p of the tree is associated with a point xp € X, and which is built
sequentially as data points arrive. Furthermore, let Q; be a set (herein called a cover-set) containing all the nodes at a level
[ >0 in the given tree. A level is associated with an integer | and a radius r; = 2~!ry, where [ = 0 denotes the root level
containing only one node and [ increases as we descend deeper into the tree. DCT has three invariants, of which the first
two are also invariants of the CT.

(I1) (Covering invariant) For all p € Q;,; there exists q € Q; such that ||x; — Xp|| < 1.
(I2) (Separation invariant) For all q, p € Q; where xq # xp, we have [|Xg — Xp|| > 1.

We add that the standard CT includes a third invariant, the so-called nesting invariant, which requires Q; € Q;, 1, but this
is not desired for our purpose.
To introduce the last invariant of the DCT, we first need the following definition.

Definition 3.1 (The covering fraction). Let p € Q; be a node, and x, the associated point in X. Furthermore, let fp = {c,»}if=1
be the children of p, and x, the corresponding points in X. The covering fraction of a node p is defined as

Vol <X NB(xp, 1) N |J Blx, r,H))
¢;eCp

f(p) =

Vol (X N B(xp, 1))

The covering fraction is the proportion of the volume of B(xp, ;) that is covered by balls around its children of half the
radius. This quantity is directly related to (12), which enforces the radius r; to reduce by a factor of 2 for each new level,
starting from an initial radius rg > 0. The covering fraction allows us to capture the vulnerability of the standard CT to the
curse of dimensionality.

For example, consider two regions Ay, A, C X, for which the doubling dimension at radius r; is ddim(Aq,1)) >
ddim(Ajy, ). A node p € A; at level I will then need exponentially more children to be covered, than a node q € A, at
the same level I. This exacerbates the deeper we go into the tree. Therefore, the CT would have significantly more nodes
from regions where the doubling dimension is large.
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We recall now that sub-sampling is in kernel methods intended to reduce the computational complexity. For this pur-
pose, it is desirable to keep the number of sub-samples from each level within a budget of reasonable size. On the other
hand, a too low sub-sample density will lead to poor interpolation performance. Due to the exponential growth of the num-
ber of nodes with respect to the doubling dimension, it would be desirable to avoid wasting our budget on sub-samples
from regions and radii with a large doubling dimension, as this would require dedicating an (exponentially) large number
of points to achieve good interpolation, which is not feasible. Moreover, in high dimensional regions, we likely cannot learn
anything more than a simple function, for which a lower sampling density would suffice.

To reduce the number of sub-samples from regions of large doubling dimensionality, we introduce the following damping
invariant as the third invariant of the DCT.

(I3) (Damping invariant) Let D¢; € (0, 1) be some threshold and let Ep and cf(p) be as in Def. 3.1. Then any node q whose
parent node p does not satisfy c¢f(p) > D; does not have children of its own.

The damping invariant forces the tree to devote more resources to regions of lower doubling dimension by making it
harder for nodes in regions with higher doubling dimensions to have children. In other words, the practical effect of the
damping invariant is to stop the vertical growth of the DCT if the doubling dimension becomes large. This is because the
covering number grows exponentially with the dimensionality, ensuring c¢f(p) > D gets correspondingly harder to achieve.

Remark 3.2. In Section 5.1, we analyze the damping invariant in more detail and show how the damping suppresses vertical
growth of the DCT more for regions of high doubling dimension than for regions of lower doubling dimensionality.

3.1. Construction of the DCT

We now discuss how the DCT is constructed and updated as the data streams in. First, it is important to restate that we
use the DCT to replace the Nystrom sampling, which was in FALKON used to reduce the complexity of the ridge regressor.
Consequently, not all of the streamed data (that is, not every training point) will be added to the tree, but only those whose
inclusion into the tree would not violate the invariants (I1)-(I3). In other words, the tree consists of only those training
points that help resolve the data space at the relevant resolution level. Thus, each node p in the DCT is associated with a
unique training sample xp, but not every training sample will be represented by a node in the tree. Note that this is different
from the standard CT, which aims to organize all of the training data into a geometrical leveled data structure.

The construction of the DCT consists of a series of checks which examine whether adding a given data point to the DCT
would, or would not, violate invariants (I1)- (I3). When a new point x4 arrives from the data stream the goal is to identify
the deepest level | for which there exists a node p such that ||xq — xp|| < r;. This corresponds to finding the nearest node in
the tree that could serve as a parent.

We achieve this in the following way. The first training point is identified as the root node to which we associate the
radius ry. For each new point, we proceed in a top-down manner, starting from the root node>. We then check whether xq
would violate the separation invariant at the next level. In other words, if there exists a node p such that ||xq — Xp|| < 1. If
such a node does not exist, then x4 is added to the set of children of the root node, and we update the covering fraction
estimate for the root node. Otherwise, if such a node does exist, we repeat the process, checking the separation invariant
among the children of the corresponding node, and proceed further down the tree.

Assume we arrived to a node p at level I > 1, and we have |xq — xp|| < r;. We then check if p is allowed to have children,
that is if the damping invariant is satisfied. If it is not satisfied, the point x4 is dismissed (it is not added to the tree). On the
other hand, if p is allowed to have children, we check whether the separation invariant holds, i.e., if there exists a child c of
the node p such that ||x; — Xc|| < r;,4. If that were the case, the separation invariant would be violated, and the recursion is
applied again by considering c as the potential parent node. However, if such a child does not exist, that is, if the separation
invariant is not violated, then x4 is added to the set of children of the node p. More details are given in Alg. A.1.

Some comments are needed to elucidate how are the steps described above applied in practice. First, note that the
covering fraction from Def. 3.1 cannot be calculated explicitly, since the volume terms require knowing the intrinsic dimen-
sionality. Therefore, it is necessary to use an estimator instead. For this purpose, we interpret ¢f(p) as the probability that a
sample x ~ Uni(B(xp, 1)) will be within B; := Ucieﬁp B(x;,1/2), where fp are the children of p. This probability can be esti-
mated by considering the checks of the separation invariant (I2), conducted on the last N points that were inside B(xp, 1),
as a series of independent random trials. We use the following running average as an estimator of the covering fraction

(cf(P)e = (1 =) (cf(P))e-1 + @Lp, (xc), (3.1)

where 15, (x¢) is the indicator function, and « > 0 is a weighting parameter. This approximates a weighted average of the
outcome of the N last draws (cf. Appendix B). Note that this reduces the memory requirements, since instead of storing N
trial outcomes for each node in the tree, as required had we used an average of the last N trials, we store only a single
value for each node in the tree.

Second, the separation invariant is in practice too strict since it results in too few points added to the tree, and thus a
worse kernel estimator. Moreover, checking the separation invariant adds to the computational complexity. Therefore, we

3 We assume that all new points xq are within a ball of radius ry around this node, which holds for a large enough ry
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introduce the following relaxation. Assume we have a new point x4 and arrived at a node p at level . We then first conduct
a random Bernoulli trial, with the failure probability

1
w=3 +exp [htan (7 (|Ixg — xpll /1 = )]

where h is the hardness of the threshold. In other words, the probability of failure is proportional to the distance between
xg and x, - the larger the distance, the more likely the failure. If the trial’s outcome is a failure, then the check for the
separation invariant is ignored, and the algorithm continues. If it is a success, we proceed by first checking the separation
invariant. This means that the probability to ignore the separation invariant increases as xq gets farther from xp.

(3.2)

3.2. Sub-sampling from the DCT

We now discuss how the DCT is used for sub-sampling the training points. By organizing the training points into cover-
sets Q the DCT allows a hierarchical sub-sampling. Even though cover-sets Q; significantly reduce the number of training
points, they are for practical purposes still too large for efficient sub-sampling. Due to this, we restrict ourselves to a subset
I'D ¢ Q; of candidate sub-samples called landmarks.

Definition 3.3 (Landmarks). Let Q; be the cover-set at level | in a DCT. We define the set of candidate landmarks at level [
as TO = {x, | pe Q and ¢f(p) > D,;}, and the set of landmarks (of size m) as any subset I'{}) = {iﬁ'), L&DV e TO of size
m.

Some remarks are in order. First, by Def. 3.3, candidates for landmarks at level [ are only those nodes allowed to have
children (according to the damping invariant (13)). This design choice implies that the set of candidate landmarks will con-
tain more points from regions with a lower doubling dimension than points from regions with a higher doubling dimension.
This is because the larger the doubling dimension is, the more children nodes are needed to cover a given parent node.

Second, Def. 3.3 suggests using only a subset of candidate landmarks as sub-samples. We refer to a result from [2] which
states that good statistical accuracy of the estimator is achieved if the number of sub-samples is proportional to the square
root of the number of samples. At level | we therefore use a set of landmarks which is of size m® = 80\/IQT|, where §y > 0
is a constant.

The third point that requires attention concerns the question of when the landmarks should be selected. To that end,
we use the covering fraction of a level, which, with a slight abuse of notation, we denote as ¢f(Q;). Moreover, we compute
f(Q) as

(f(Q))e = (1 =) (cf(Q))e-1 + A LB, (xt), (33)

where Bjgpe; = U B(xg), 1;). Moreover, analogously to the damping invariant, let D, € (0, 1) be some threshold. We then
peQy
say that a level [ is sufficiently covered when ¢f(Q;) > Djgpe-

Remark 3.4. We note that as the level increases, our estimate of ¢f(Q;) through Eq. (3.3) will be increasingly more sensitive
to subsets A c X of low doubling dimension than to subsets of large doubling dimension. This is because the damping
invariant (I3) makes it harder for nodes in high dimensions to have children. Consequently, we will have fewer points in
deeper levels that belong to high dimensional regions. Because of this, the estimator in Eq. (3.3) is biased towards using
more sub-samples from lower dimensional regions.

Sub-sampling from a level | goes as follows. As training points arrive, we build the tree and continuously update the cov-
ering fraction of a level. Once that level is sufficiently covered, that is, once ¢f(Q;) > Dy, We extract the set of landmarks
by sub-sampling m points from the pool of candidate landmarks ',

4. StreaMRAK

In this section, we present StreaMRAK and clarify how it synthesizes concepts from Sections 2 and 3, and utilizes them
in a streaming context. The workflow of StreaMRAK can be divided into three threads that can run in parallel, subject to
some inter-dependencies. These are the sub-sampling thread, the training thread, and the prediction thread. Overviews of
these threads are given next, and the reader is referred to Algorithm A.2 in the Appendix for further details.

4.1. Sub-sampling thread

In the sub-sampling thread StreaMRAK collects and organizes the training data into a DCT. Namely, as new training
pairs are collected, the covering (I1) and separation (I2) are checked, and the covering fraction is updated as described in
Section 3.1. Moreover, the set of landmarks for each level is updated, as described in Section 3.2. Once the set of landmarks
for a given level f,ﬁ) is completed, the landmarks and the estimator for the corresponding level can be used in the remaining
two threads.



A. Oslandsbotn, Z. Kereta, V. Naumova et al. Applied Mathematics and Computation 426 (2022) 127112
4.2. Training thread

The model is trained at level [ when two conditions are met. First, coefficients of the previous level [ — 1 in the LP must
have been calculated, i.e. previous training thread must finish. Second, landmarks ro m At level [ must be ready.
In the first step, we define the kernel matrix on the landmarks by

K1 = kO (%, %), for 5, TO, (41)

In the second step we consider (l(,ﬁ’%)TK,S” rm"xm® and ((('))Td(“ R™"” which in addition to landmarks depend on
the training points. They are updated continuously as new training points come in, according to Eq. (2.4) and Eq. (2.5).
However, they are not updated indefinitely, but only until new training points do not significantly alter the matrices accord-
ing to the following criterion.

Definition 4.1. (Sufficient training points) Let A, := (K,ﬁlri,)Tl(,(f,%, and by := (1(,221)%,&”. Let 81, 85, 83 > 0 be three constants.
We consider the number of training points at a level [ sufficient when either n > 83 or

) ﬁ _ An+l

n n+1

by bn+1

n n+1

< 87 and ‘

’552.

After enough training samples are collected according to Def. 4.1, the correction term s is obtained by solving for the
coefficients a( ) &(1)[ using Eq. (2.10). The new prediction model f(L) is obtained by adding s() to the previous model,
m
according to Eq. (2.7).

4.3. Prediction thread

In this thread StreaMRAK makes provides the latest version of the trained LP model in Eq. (2.7). This means that if L
is currently the highest level that has been trained, the prediction for new points x is made using the model f® (x).

5. Analysis

In this section, we first analyze the damping invariant of the DCT. We then offer theoretical results on the convergence
properties of the LP in the context of KRR. Finally, we offer estimates of the time and memory requirements of StreaMRAK.
We introduce two auxiliary results.

Lemma 5.1. Consider a ball B(x,r) € RP and let § > 0. The number of points in any (discrete) set of points within B(x,r) that
are at least § apart, S = {x; € B(x.1)|d(x;. x;) > 8 for i # j}, is bounded by |S| < (¥ +1)P.

Proof. Since the points in S are at least § apart, it follows that the balls B(x;, §/2) are disjoint. Consider now the ball
B(x,r+§8/2). All of the balls B(x;, §/2) are entirely contained within B(x,r + §/2). Since the balls B(x;, §/2) are disjoint, it
follows that

1| < Vol (B(x, r 5/2))/VO1 <B(xi, 5/2)> - (2; n 1)
O

Lemma 5.2. Consider a domain X € RP, a ball B(xp, 1) C X and let S = {x;, xj € B(xp,1)|[|x; — x;|| > & for i # j}. Furthermore,
let the doubling dimension of the set S be ddim := ddim(S, r). We let c; := |S| when ¢f(p) = 1. We then have 234in—1 < ¢, < 5ddin,

Proof. The upper bound on c; follows from Lemma 5.1 with r =ry and & = ry/2. The lower bound follows from the defini-
tion of the doubling dimension 1.2. O

5.1. Analysis of the DCT

As discussed in Section 3, the DCT adds a given training point to the set of nodes of the tree if conditions (12) and (I3)
are satisfied, and the points are otherwise discarded. In particular, the damping invariant (I3) makes it harder for a node to
have children. The guiding idea is that damping should reduce the impact of the curse of dimensionality by making it harder
for nodes in regions of higher doubling dimension to have children, and in doing so it should effectively stop the vertical
growth of the tree in corresponding regions. Therefore, it is critical to understand how and to what degree the damping
affects high dimensional regions more than low dimensional ones.

In a statistical sense, the damping should treat all nodes in regions of the same doubling dimension equally. Therefore,
to gain insight into the damping, it suffices to analyze its effects concerning the doubling dimension on a single node p. In
this case, the effect of damping can be measured by analyzing how many training points must pass through p, in the sense
of Alg. A.1, before children of p are allowed to have children of their own. This can be modeled by considering the expected
number of training points x; ~ Uni(B(xp, r)) necessary to cover B(xp, ) with balls of radius r/2 around points x;.

9



A. Oslandsbotn, Z. Kereta, V. Naumova et al. Applied Mathematics and Computation 426 (2022) 127112
Consider x; ~ Uni(B(xp, r)), and let a set Sp be built in a succession of trials i =1,..., Ny so that
. r
xj € Sp if ||x; — x|| > 5 for all x € S.

In other words, a newly sampled point x; will only be added to the set S, if it its pairwise distances from all the points that
are already in Sp are at least r/2.

Problem 1. Let C, denote the set of children of the node p, constructed from the above-described trials. What is the ex-
pected number of trials N; needed to ensure cf(p) = 1?

Since there is no unique set Sp such that the corresponding set of children 5;, ensures cf(p) = 1, the sample space for
Problem 1 corresponds to all admissible sets Sp, which vary in both the number and the location of points they contain.
Characterizing all such sets corresponds to a disordered sphere packing problem [56], which is an NP-hard combinatorial
problem [57]. For a theoretical analysis of this problem, defining a probability measure over the sample space is necessary.
However, in this level of generality, neither the sample space nor the probability measure admit a workable definition, with
currently available mathematical tools [56]. Although some theoretical insights are possible under simplifications on the
sample space, this analysis is restrained to a limited number of spheres and configurations.

Due to these difficulties, we consider a simplified setting where we instead consider an average case. If the set Sp is such
that B(x;,r) c U B(x;,r/2), which corresponds to ¢f(p) = 1, then each of the balls B(x;, r/2) occupies on average \51? of
the total volume of B(xp, r), assuming none of the balls are covered by a union of other balls. Therefore, as Sp is being built,
adding a point to S, will, on average, reduce the unoccupied volume of B(xp, 1) by ‘Sipl Moreover, it can be shown that the

x;€Sp

number of elements in such a set satisfies 244in=1 < |Sy| < 5d4in see Lemma 5.2, where ddim := ddin(Sp, r) is the doubling
dimension of Sj. Based on these considerations we introduce a simplified setting for the average case of Problem 1.

Assumption 1. Problem 1 can be approximated by dividing the ball B(xp,r) into a union of ¢4 fixed (and known) disjoint
bins B; of size (1/cq) Vol (B(xp,1)).

Note that the bins referred to in Assumption 1 correspond to regions around the children of the node p. Assumption
1 reduces the average case of Problem 1 to a form of the classical coupons collector’s problem [58], which considers n
coupons with the same probability of being drawn. Through a series of randomized trials with replacement, the goal is to
obtain a copy of each coupon. Relevant for Problem 1 is estimating the stopping time T, which counts the number of trials
before all coupons are collected, and which satisfies E[T] = nH,, where n denotes the number of coupons and H, is the n-th
harmonic number [58].

In terms of Problem 1, and under Assumption 1, we can therefore identify T = N;, n = |Sp| and E[N;|Node p] = |Sp|H,s,,.

Combining the bound In(n) + % <Hp <In(n) +1 (from [59]), with the bound on |Sp| from Lemma 5.2 we have
2%4m-1((4dim — 1) In2 + 1/2) < E[N;|Node p] < 5" (ddimIn5 + 1). (5.1)
With the same strategy, we can bound the number of trials until the cover-fraction of a level reaches 1, as

2/@in=1) (](g4dim — 1) In2 + 1/2) < E[N;|Levell] < 5"%*"(lddimIn5 + 1). (5.2)

From Eq. (5.1) we see that the number of training points E[N;|node p] grows exponentially with the doubling dimen-
sionallity d. In other words, significantly more trials are needed to achieve c¢f(p) = D ; for nodes in regions with a large
doubling dimension than it is for nodes in regions with a lower doubling dimension. Consequently, through the damping
invariant, the DCT restricts the vertical growth of the tree comparatively more the higher the doubling dimension of the
local region.

5.2. Time and memory requirements

This section analyzes the memory requirements of StreaMRAK, which involve storing the DCT and the linear system
components used to update the coefficients. Furthermore, we consider the computational requirements, which consist in
solving the coefficient equations. Both the memory and computational requirements need to be analyzed per level [ of the
tree due to the multi-resolution nature of the estimator and the tree organization of the data.

For the analysis, we consider a simplified setting where we assume that the doubling dimension is constant for all levels
and all subsets of X, and that the number of children c; is the same for all nodes. At the end of the section we describe a
more general setting.

In the following, we assume that the growth of the DCT stops at a level L. In other words, level L is the last level at
which there are nodes. In practice, the growth of the DCT slows down exponentially fast with the product of the doubling
dimension ddim := ddim(X, 1) and the level I. This can be seen from Eq. (5.2), which shows that the number of training
points necessary to fill up a level grows exponentially with [ddim. Therefore, in practice, no new levels will be added to
the DCT when lddim is large enough, which effectively makes the last level L independent of the number of training points.

10
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Furthermore, from Lemma 5.2 we know that ¢, is bounded by 244in~1 < ¢, < 5d4in which shows that also ¢4 is independent
of the number of training points.

Proposition 5.3. The memory requirement of StreaMRAK is O(Z,LZO cfj).

Proof. The memory requirement of the DCT is determined by the number of nodes in the tree. Given that the number of
children is the same for all nodes. If the number of children per node is c,, then the total number of nodes at level I is cl,.

Thus, the memory needed to store the DCT with L levels is (>, c. ‘

To store the linear system on level | we need the matrices (I(nm(,))Tl(nm(,,, K omo € rm"xm" and the vector z e R™".
The number of landmarks m® at level [ is chosen as m® = §,,/|Q,], where |Q,] is the number of nodes at level L. Since Q]
is O(cl)), it follows that m®) x m® is also O(c!;) per level, and the desired conclusion follows. [

Note that with a fixed L and n larger than O(Z,L:O cfj), then the memory requirement is independent of n. We also note

that if the deepest level satisfies L — oo, then the number of nodes is determined by the number of training points, and the
memory requirement would thus, in the worst case, become O(n), the same as for the standard cover-tree.

Next, we discuss the construction of the DCT, where adding a new point to the set of nodes requires a search through
the tree.

Proposition 5.4. Inserting a new point into the DCT, cf. Algorithm A.1, requires O(c4L) operations.

Proof. For a point x4 € X to be analyzed at level L, we need to have analyzed it at the previous [ < L levels. At each level, we
must, in the worst case, check the separation invariant with all children of the current potential parent p(), before finding
a node c such that ||xqg — xc|| < 2-!ry, that would serve as the next potential parent. This requires at most c; operations per
level, giving Lc; total operations over the L levels. The same number of operations is necessary if a node is discarded at
level L. O

Lastly, we analyze the computational requirements for solving the linear system.

Proposition 5.5. The time requirement for solving the linear system in Eq. (2.3) is O(83m® + (m")3) per level, where 85 is
given in Def. 4.1,

Proof. The time requirement of FALKON is O(nmt 4+ m3) where n is the number of training points, m the number of
landmarks and t the number of iterations of the conjugate gradient (which has an upper bound). By Def. 4.1, StreaMRAK
uses at most 83 training samples at each level. Since m(®) is the number of landmarks at level I, the result follows. O

Assume that the domain X can be divided into disjoint subsets Aq,..., At ¢ X for which the doubling dimension
ddim(A;, ;) differs based on 4; and radius r;. Let the number of children of a node x;, € .4; at level I be ¢, ;. In this scenario,
the growth of the DCT will stop at different levels L; for different subsets .4;. The final time and memory requirements would

therefore be the sum of the contribution from each subset .4;. In other words, the memory would be O(Y}_, ZIL’;O cf“ s

and similarly the time requirement per point insertion would be (’)(Zle ZILLO Cqi1)- We note that c4;; and L; depend on
the dimensionality of the data, but are independent of n. Therefore, so are the time and memory requirements.

5.3. Convergence of the LP formulation of the KRR

This section analyzes the conditions for which the LP approximates the training data y; = f(x;), with respect to the
number of levels. A similar analysis was previously done for the LP in the context of kernel smoothers [28]. However, to the
best of our knowledge, this is the first time the LP formulation of KRR has been analyzed in this way.

Theorem 5.6. Let f(’) be the LP estimator defined in Eq. (2.7) and let A be a regularization parameter. Furthermore, let 0 <
O <--- <01 be the eigenvalues of K,(ll,f. For L > 0 we then have

Oln

L
IFED (Ixal) = f(IxaD Il < g(l —eNFO(xal) = fIxaDll.  where e(l) = Aty

Proof. From the recurrence relationship for the residuals d) in Eq. (2.9) it follows by induction that

FEDxa]) = f(bxn]) = A=PEYFO (bxn]) — f([xa]). (53)
where P,(ll,f = K,ﬁl,f (K,(,'n) +AnD)~1, f. Lemma C.1. It follows that

IFED (xal) = FAxaD I < IE=PQIIFO ([xa]) = FIxaDII- (5.4)

1
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Consider the SVD K,(fn) =UZXUT where X = diag(0y;) and o), < --- < ;1. We then have

e o | o )| - 1
T ||_HUd1ag<nk+Uu U'| = | diag nhtor, nh+or =1-¢(), (5.5)

and Thm. 5.6 follows recursively from Eq. (5.4) and Eq. (5.5). O

From Thm. 5.6 it follows that the LP estimator will converge as | — oo, since o;, > 0 and therefore 1 —¢&(I) € (0,1) for
all I. In Thm. 5.7 we characterise how ¢(I) depends on the level [ to give insight on the nature of this convergence.

Theorem 5.7. The LP estimator fA(” from Eq. (2.7) converges with increasing level L to the training data f(x;), ¢f. Thm. 5.6, with
the rate ]'[,Lzo(l —&(l)), where

1—e() < (1+Cp2™exp (- Gpd™)/mr)™", (5.6)
for

C]D—f(Gf)DF(D/Z—}—])Dﬂ( ) (%")D and cz_D=1152<%)%(8)2,

where I' is the gamma function.
Furthermore, for | > log,(,/D/2(ry/8)) we have the tighter bound
1—e(l) < (1 +(1- 21+ﬁ<fﬂ’*g<l>>)/n,\)4, (5.7)

where g(I) = 4-198270/% and C3 = (In (1 + 1/4) + 2In2).

Proof. (Eq. (5.6)) We bound 1 —¢(l) :=nA/(nA + o) by bounding the smallest eigenvalue of the kernel matrix [I((l)]u =
@ ([lx; — x;ll), namely oy ,. To do so we assume that there exists a lower bound on the minimal distance between any two
points x;, x; € X, defined as § := .m.ir/1Y||xi - X[l > 0.

i#je

Consider the Gaussian ®(x) = exp(—,3||x||%), B > 0, with the Fourier transform D (w) = (7 /B)P/2 exp(—||w||%/4/3). From
[60, Corollary 12.4] we have the bound

o1n = 2P (2B) P28 Pexp(—4M3/ (8%8)).

where

AT2(D/2+ 1D\ 1001 1 Mp\p
MD_Q( 9 ) and CD‘zr(D/2+1)<23T> '

With 8 = (v/227!rp) =2 and inserting for Mp and Cp we then have
01 = Co2°2°0 (% ) exp (= (2v2Mp)? (r0/8)24 ™)
=16 f)DF(D/2+1)DH< )Dﬂ(ro)Dz DI 55

exp ( - 1152<7”F2<g/2+”> o (%0)244) = B(D),

The bound in Eq. (5.6) follows from this result. O

Proof. (Eq. (5.7)) When the level | becomes sufficiently large, the kernel matrix K,(f,f becomes diagonally dominant, and we
can therefore bound the eigenvalues using Garschgorins Theorem [61, Thm. 1.1], which gives

n
lovi — K1y = lo = 1] < Y |[K 1yl for i, je[n]. (5.9)

q=1,
q#]

To find a more explicit bound, we analyze the sum on the right-hand side. Consider a family of annuli {R¢}?°, where
= B(x;, 2t+18)\l3(xj, 218). Inspired by [28], we can interpret the right hand side of Eq. (5.9) as a sum over {R;}2,. The
entries of Kffn) are defined as

2
: [ =il »
= exp (- 550 ). Videln)
where 1, = 27!rq for ry > 0. It follows

n o0 .
> IIKR Tl = 20 X KO () = Zo(ﬂﬂ)f’exp(— (2062 172r71)2),
q=1, t=0xgeR; t=

q#j
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where in the first term on the right-hand side we bound the number of summands using Lemma 5.1, and in the second
we use ||xq — x|l = 2°8 for xq € R. Note now that for all T > 1 there exists C; > 0 such that exp(—r2) < Crr~T holds for

all r> 0. Such a constant is given by the Lambert W function and satisfies Cr = (L)T/ ?_ Moreover, 20+2 4 1 < 20+2+¢, for

o > In(1+1/4)/1n(2). Thus, *

n T o T
Z |[l(,(,'n)]jq| < Cr(%) 2@+a)D+T/2 sz<D—T> <2. ZD(2+01)—T/2(1+1/ln(2))TT/2(%) ’
q=1

. t=0
0]

where in the last step we have used exp(1) > 2!+1/1n®2) 3long with Y72, 2!(P-T) < 2, which holds for D—T < 0. We let

1 =192~ and define F(T) := Z—T/Z(”l/1“(2))TT/22"T(%°)T. From Lemma C.4 we have the minimum of F(T), which together
Opp > 1- Z

By defining G = (In(1+1/4) +21In2) and using that 1 —¢(l) :=nA/(nA + 0y ,,) this leads to the bound in Eq. (5.7). We

with the choice @ = In(1 +1/4)/1In2, gives
>1— 21+ﬁ((ln(1+l/4)+21n2)D—g(l))7 g() = 4l-log>ro/8
q=1,
note that this bound holds for T* > D which means that | > log,(,/D/2r9/8). O

n
]
jq
q#]

We note that the bound in Eq. (5.6) underestimates the rate of convergence for lower levels but improves as the
levels increase. Furthermore, Thm. 5.7 shows that the convergence rate increases with the level [. In fact, the bound

in Eq. (5.6) can be simplified with an a fortiori bound of the same form, where C; p = %(%)D(%)(%})D and

Go.p = (12.764/2D)?(ry/8)?, which ensures that 1 — ¢(I) decreases monotonically for I < log,(y/D/2(rg/8)) + log,(25.52¢/2).
see Remark C.2 and Corollary C.3.

On the other hand, when I > log,(,/D/2(rg/8)) the tighter bound from Eq. (5.7) ensures that 1 — &(I) continues to de-
creases monotonically. Moreover, as | — oo each new level reduces the residual error by (1 + 1/nA)~1. We can also observe
that the convergence rate is reduced by the number of training points n, but this effect can be mitigated by reducing the
regularization parameter A. We also note that Thm. 5.6 and Thm. 5.7 are derived for a vector of numbers on the training
data I';, ¢ X, without assumptions on the target function. In other words, the LP estimator can approximate the training
data for any function f : I’y — R, to arbitrary precision, by including sufficiently many levels.

Corollary 5.8. If the residual d) = (f(’)([xn]) — f([xn])) at level | only projects non-trivially onto the eigenvectors with eigen-
value oy, > Ocyrofr, then we say the residual is spectrally band-limited with respect to the kernel. If the residual d® is spectrally
band-limited, then 1 — €(I) < nA/(NA + O¢ye_off)-

Proof. Follows from Eq. (5.3)-(5.5) with Pn(f,) = P,ﬁl)_k + (Prfi)k){ where Prf,?k is the projection on the eigenvectors associated

with the k largest eigenvalues and (PTEL)‘k)l(f(’)([xn]) —f(Ixa]))=0. O
6. Experiments

This section presents comparative numerical experiments of the proposed estimator on three problems. In Section 6.1 we
consider a one-dimensional regression problem, and in Section 6.2 we consider a dumbbell-shaped domain that consists of
two 5-dimensional spheres connected by a 2-dimensional plane. Lastly, in Section 6.3, we forecast the trajectory of a double
pendulum, which is a well-known chaotic system [25].

We compare StreaMRAK with FALKON [2] and an LP modification of KRR (LP-KRR). Both FALKON and LP-KRR rely
on the standard Nystrom sub-sampling [51,52]. Furthermore, FALKON does not rely on a multi-resolution scheme but uses
instead a single bandwidth, found by cross-validation.

Throughout the experiments, we set the threshold for the number of sub-samples (landmarks) in StreaMRAK to be
10,/]1Q,|, where Q; is the set of nodes at level I in the DCT. We note that to choose the sub-sample size, FALKON and
LP-KRR require n to be known beforehand. For FALKON we let the number of Nystrom landmarks be 10./n, where n is
the number of training samples. Meanwhile, for LP-KRR we sub-sample /n Nystrém landmarks, which are then used for
all levels.

We also need to pre-select the number of training points for LP-KRR and FALKON. For FALKON we use the entire
training set, as in [2]. Similarly, it is also common for the LP to use the entire training set at each level [27,28]. However, for
large data sets, it might be better to include fewer data points. Therefore, we also use a version of the LP-KRR where we
divide the total training data equally between the levels.

Throughout the experiments, we measure the performance of StreaMRAK, FALKON, and LP-KRR by estimating the
mean square error

1 &1
MSE (y, = —— 5" —lye = v"™ 2, with A = max[y;]; — min[y.];, 6.1
% Ypred) TA g - [lyx Yi Il ke[T][yk]l ke[T][YR]l (6.1)

ie[n] ie[ny]
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Table 1

Comparison of StreaMRAK, LP-KRR and FALKON for the target in Eq. (6.2). For each level | we
show the number of landmarks, the mean square error (MSE), and the accumulated time to train
the prediction model (Time). In parenthesis, in the time column of the FALKON row, is the time
to find the optimal bandwidth through cross-validation.

Level  # Landmarks  MSE Time
5 47 255x101 77
StreaMRAK 10 392 369x102 1165
15 1525 8.63x10-6 497 s
16 2302 6.18x10-6 1194 s
5 1483 256x101 143 s
LP-KRR (1) n = 1.1 x 10° 10 1483 3.65x10°2  413s
15 1483 8.72x10-6  825's
16 1483 6.85x10-6  922's
18 1483 6.55x10-6 1136 s
5 1483 256x101 2963 s
LP-KRR (2) 1, = 2.2 x 10° 10 1483 3.64x10-2 8704 s
18 1483 891x10-6 23113 s
StreaMRAK - 14830 57x1073 4642 5+(27930 s)
- PR, P i e e
‘.vf ] P
f! / 0.5
] O’ o
}
*StreaMRAK “StreaMRAK StreaMRAK 007
1 {  -LP-KRR _1 B ‘LP-KRR _ ‘LP-KRR 1 "FALKON
0 02040608 0 02040608 0 02040608 0 02 04 0.6 0.8
x-coordinate x-coordinate x-coordinate x-coordinate
(a) Level 3 (b) Level 5 (c) Level 16 (d) Single level

Fig. 3. (a)-(d) shows the target function f(x) from Eq. (6.2) as a grey dotted line. The light-blue circles indicates the predicted values made by StreaM-
RAK. Similarly the red triangles indicates the predictions made by LP-KRR and the dark blue squares the predictions made by FALKON. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pred

where T is the number of test runs we average over, n, is the number of test points at test run k, and y;,y, € R™ are
the target values and predictions respectively, and A is the normalisation factor.
6.1. Multi-resolution benchmark
We consider the function,
f(x)_sm( +:)01>, forxe[O, %] (6.2)

In the experiment we use a training set of n=2.2 x 106 samples and a test set of 1.3 x 10° samples. We use the non-
uniform gamma distribution I'(«, 8) with @ =1, 8 =2 to sample the training data.

The number of training points used at each level in StreaMRAK is determined by setting §; and §, from Def. 4.1 to 103,
With this choice, StreaMRAK selects between 30244 and 40100 training points for each level. For comparison, FALKON
uses all the 2.2 x 10° training points. Furthermore, for LP-KRR we run two experiments: LP-KRR (1) using 1.1 x 10° training
points at each level and LP-KRR (2) using 2.2 x 10° training points at each level.

Results are presented in Table 1, and the prediction results are illustrated in Fig. 3a-3 d. The results show that StreaM-
RAK and both LP-KRR schemes perform much better than FALKON. The reason is that FALKON uses only one bandwidth
r, while the multi-resolution schemes StreaMRAK and LP-KRR, utilize a bandwidth regime r; = 27!y, that varies with the
level I. The consequence is that StreaMRAK and LP-KRR approximate the low-frequency components of f when the band-
width is large, and then target the high-frequency components of f(x) gradually as the bandwidth decreases. These results
illustrate the benefits of a multi-resolution scheme over a single bandwidth scheme.

From Table 1, we also observe that LP-KRR (2) is significantly slower than StreaMRAK and LP-KRR (1). This is because
it uses the entire training set at each level. Therefore, since LP-KRR (1) and LP-KRR (2) achieve comparable precision, we
see that including all training points at each level is not always necessary.

A closer comparison of StreaMRAK and LP-KRR is given in Fig. 4. In particular, in Fig. 4a we see that the two algorithms
achieve very similar precision. However, comparing the training times in Fig. 4b, we see that StreaMRAK trains each level
faster and therefore achieves better precision earlier than LP-KRR (1).

14
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Fig. 4. Comparison of StreaMRAK and LP-KRR. (a) shows the mean square error calculated according to Eq. (6.1) with the target function from Eq. (6.2).
Along the x-axis is the number of levels included in the model. (b) The x-axis shows the accumulated training time until a level in the LP is completed.
The y-axis shows the MSE of the prediction using the currently available model. The blue circles indicate the prediction error of StreaMRAK and the red
triangles indicate the prediction error of LP-KRR (1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

; —l L ————— e e = = 10 1 v v T vw v
o 10 4 o e ¢ 25_.._____c._.._ o DAL 4 v;{ﬁv‘w v
vy . -2 v ,sv' v vy VW

3 MEASER RS 10 ’$*?¥'; b wi'v’ A4 " ey 7
8 v vv" v W Ty :v’v:'v ¥ 3. o bAE A4 e
% M M ¥ 10 : & ‘; vy M
= T oty 40 B R e e e e e e e
Az —4 _ S
= 1077 g
g)o o StreaMRAK 10_5 R A o StreaMRAK o StreaMRAK
© + LP-KRR 2 + LP-KRR L « LP-KRR
) ¥ —-7 =0.125 a3 — -7 = 0.0312 £ —-r,7153(—05
é E ‘ ‘ : : ‘ 1076=7 ‘ ‘ : : ‘ 10785

0 02 04 06 08 1 0 02 04 06 08 1 0 0. 2 0 4 0. 6 0 8 1

x1-coordinate x1-coordinate x1-coordinate
(a) Level 3 (b) Level 5 (c) Level 16

Fig. 5. (a)-(c) shows the landmarks with their position along the x; axis and the average distance to their 2 nearest neighbors along the y-axis. Here the
red triangles are the Nystrom landmarks of LP-KRR and the light-blue circles the landmarks of StreaMRAK. The grey dotted line is the bandwidth at the
given level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In Fig. 5 we show the average distance of each landmark to their 2 nearest neighbors (2-NN distance). Two aspects
of the selection require attention. As opposed to LP-KRR, StreaMRAK selects landmarks such that the 2-NN distance is
comparable to the bandwidth used at a specific level. In addition, StreaMRAK saves computational power by not choosing
landmarks in regions where the 2-NN distance is too low compared to the bandwidth. In Fig. 5¢ this can be observed for
level | = 16 for landmarks with x > 0.2. Due to the non-uniform sample distribution with a higher density around x = 0, the
adaptive sub-sampling is able to select more landmarks in the region close to x = 0, where f oscillates with high frequency.
Furthermore, StreaMRAK stops predicting at level 16 because level 17 is not yet covered with a high enough density of
landmarks. Meanwhile, LP-KRR continues, but as seen from Fig. 4a the improvements after level 15 are not significant
because the density of Nystrom samples is too low compared to the bandwidth.

6.2. Adaptive sub-sampling benchmark

We consider a dumbbell-shaped domain embedded in RS, consisting of two 5-dimensional spheres connected by a 2-
dimensional plane. A projection of the input domain in R3 is shown in Fig. 7 (a)-(c). Furthermore, as target we consider the
following function,

, for x e [-1,5] x [-1,1]%, (6.3)

fx) = {?,Sm(BX] +P)+ 1 +2). T<x <3

otherwise

where A,B and ¢ are chosen so that feC'([-1,5] x [-1,1]% R5). For the experiments, we consider a training set of
1.9 x 106 samples and a test set of 6 x 10° samples, all sampled uniformly at random from the input domain. We note that
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Table 2

Comparison of StreaMRAK, LP-KRR, and FALKON predictions of the target function in Eq. (6.3).
For each level | we show the number of landmarks, the mean square error (MSE), and the ac-
cumulated time to train the prediction model (Time). In parenthesis, in the time column of the
FALKON row, is the time to find the optimal bandwidth through cross-validation.

Level  # Landmarks  MSE Time

4 352 1.29x103  64s
StreaMRAK 5 2667 1.27x1073 1398 s

6 1858 8.31x107%  1462's

8 1329 2.75%x10-3 2307 s

4 1375 1.28x103  386s
LP-KRR (1) n; = 1.8 x 10° 5 1375 1.26x10°3 520 s

6 1375 9.10x10%  671s

8 1375 3.30x107* 1064 s

9 1375 3.10x10~* 1287 s

4 1375 1.34x103 4160 s
LP-KRR (2) n; = 1.9 x 106 5 1375 1.30x10-3 5570 s

6 1375 9.44x10% 7168 s

8 1375 3.16x10*  11125s

9 1375 3.01x107* 13334 s
FALKON - 14830 6.8x10°4 6590 s+(37561 s)

we purposefully chose a simple function in the high dimensional regions because complicated functions in high dimensions
require far too many points to be satisfactorily learned.

To determine the number of training points for StreaMRAK, we let §; =1 x 1073 and 8, = 1 x 104, cf. Def. 4.1. With
this choice StreaMRAK selects between 30100 and 40100 training points for each level. FALKON again uses all the
1.9 x 108 training points and for LP-KRR we consider two settings: LP-KRR (1) using 1.8 x 10° training points at each
level, and LP-KRR (2) using 1.9 x 106 training points at each level.

The results for StreaMRAK, LP-KRR, and FALKON are presented in Table 2. We observe that StreaMRAK achieves a
better prediction than both FALKON and LP-KRR because it adapts the sub-sampling density to the level of resolution.

To understand the improvement in prediction accuracy, we need to discuss the effects of landmark selection. In Fig. 7a-7
¢ we show the projections of landmarks for StreaMRAK and LP-KRR on R3, and in Fig. 7d-7 f the average distance of each
landmark to its 7 nearest neighbors. These distances are compared with the bandwidth r; selected for the given level I. We
see that StreaMRAK selects landmarks in regions where the average distance to nearest neighbors is comparable to the
bandwidth. This means that in high dimensional regions, which correspond to x; € [-1, 1] U[3, 5], the algorithm effectively
stops collecting landmarks since it cannot maintain high enough density. On the other hand, LP-KRR uses Nystrom sub-
sampling, which imposes a uniform selection of landmarks. Consequently, a significant number of landmarks come from
high-dimensional regions.

Moreover, Fig. 7 shows that in the case of LP-KRR, the average distance between the landmarks in high dimensional
regions is larger than the bandwidth r; when | > 5. As a knock-on effect, LP-KRR makes only small improvements in high
dimensional regions for | > 5, as seen from Fig. 6b. Analogous behavior can be observed for StreaMRAK. However, since
StreaMRAK devotes fewer resources to high dimensional regions, it sub-samples more from the low dimensional region, as
illustrated in Fig. 6a. The consequence is that StreaMRAK makes bigger improvements in the low dimensional region than
LP-KRR, as seen from Fig. 6b. Note that this was not the case in Section 6.1, where the two methods had similar behavior,
but unlike here, the input domain in Section 6.1 did not consist of regions with different dimensionalities.

6.3. Forecasting the trajectory of a double pendulum
We consider the double pendulum, illustrated in Fig. 2a, which we model by the Lagrangian system

£=mP(w? + %w%) +mlPwiw, cos (81 — 65) + mgl(2 cos Oy + cosb,), (6.4)
under the assumption that the pendulums are massless rods of length [; = [, = [ with masses m; = m, = m centered at the
end of each rod. Here g is the standard gravity, w; := 64, w, := 6, are the angular velocities, and the angles 6;, 6, are as
indicated in Fig. 2a. For the experiments we let m=1,1=1 and g= 10.

The learning task is to forecast the trajectory of the pendulum, given only its initial conditions. We let s; =
[01(t), B5(t), wq(t), wy(t)] € R* be the state of the system at step t € N and train StreaMRAK, LP-KRR and FALKON to
learn how s; maps to a later state s, 5, for A € N. The trained model f is used to forecast the state sy for T >> 0 by
recursively predicting s, o = f(st) from the initial state sy until t =T.

For the experiments we consider two settings: a low energy system sg""’ =[-20°, —20°, 0°, 0°] and a high energy system

sgigh =[-120°, —20°, —7.57°, 7.68°]. For these systems, we initialize 8000 pendulums as so ~ N (s,0(s)) for s = s{)""", sgigh
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Fig. 6. Comparison of StreaMRAK and LP-KRR (1) in the 2-dim and 5-dim regions of the Dumbbell domain. The solid blue line is StreaMRAK for
dimension d = 2 while the solid red line is LP-KRR (1) for dimension d = 2. The grey dotted line is StreaMRAK for dimension d =5 and the dark-grey
dashed line is LP-KRR (1) for dimension d =5 (a) shows the mean square error calculated according to Eq. (6.1). (b) shows the number of landmarks in
the 2-dimensional and the 5- dimensional regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. In the figure, red triangles correspond to LP-KRR and light-blue circles to StreaMRAK. (a)-(c) shows the landmark distributions projected on R3
at level | =4,5,6 respectively. (d)-(f) shows the average distance between the 7 nearest neighbors; bandwidth r, is indicated with a dotted line. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

respectively, where o (s) =[0.025|6;|, 0.15|6,], 0.3|w1|, 0.3|w,|]. Each pendulum is iterated for 500 steps, which results in
5 x 108 training points distributed in R*. Furthermore, for the test data we consider 100 pendulums sy ~ A/ (s, 0.01]s|) for
s=sP", sg’gh, iterated for 500 steps.

To determine the number of training points for StreaMRAK, we let 81,8, = 104, cf. Def. 4.1. With this choice StreaM-
RAK selects between 30219 and 70282 training points for each level for the low energy system, and between 36300 and
130200 for the high energy system. Meanwhile, FALKON uses all 5.0 x 10° training points and LP-KRR use 3.9 x 10 train-
ing points at each level.

Results are presented in Table 3 and Table 4. Furthermore, to illustrate the prediction results we consider the center of
mass My(s¢) = %(xl (t) +x,(t)) € R at state s¢, where X, X, € R are the positions of the two pendulum masses as seen in
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Table 3

Comparison of StreaMRAK, LP-KRR, and FALKON for the low energy system. For
each level | we show the number of landmarks, the MSE at step T=50, and the ac-
cumulated time to train the prediction model (Time). In parenthesis, in the time col-
umn of the FALKON row, is the time to find the optimal bandwidth through cross-

validation.
Level  # Landmarks MSE(T=50)  Time
2 1 1.12x10°! 31s
StreaMRAK 5 66 3.39x10°° 498 s
7 659 1.44x10-6 534 s
9 4085 3.01x1077 812s
2 1979 5.93x102 490 s
LP-KRR 5 1979 2.73x107° 1463 s
7 1979 2.16x1077 2395 s
9 1979 1.16x1078 3550 s
FALKON - 19790 5x 106 2934 s+(1498 s)
Table 4

Comparison of the StreaMRAK, LP-KRR, and FALKON for the high energy system. For
each level | we show the number of landmarks, the MSE at step T=50, and the accumu-
lated time to train the prediction model (Time). In parenthesis, in the time column of
the FALKON row, is the time to find the optimal bandwidth through cross-validation.

Level  # Landmarks  MSE(T=50) Time

2 1 2.70x10! 49 s
StreaMRAK 5 1106 8.53x10-3 915 s
7 6376 2.16x10°* 1999 s
2 1979 1.72x1072 522's
LP-KRR 5 1979 5.09x1073 1474 s
7 1979 1.39x10~4 2431 s
FALKON - 19790 5x106 23830 s+(11050 s)
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Fig. 8. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares) for
the low energy pendulum. (a) Shows the mean square error of the center of mass My(s;) for the level 7 prediction, with step T along the x-axis. (b) shows
the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK, LP-KRR, and FALKON at level 9. (c) The x-axis shows the
accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. We note that
StreaMRAK includes 7 levels, while LP-KRR includes 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2a. The prediction results are illustrated in Fig. 8 and Fig 9 for the low and high energy pendulums respectively. We
calculate the MSE at each step t separately, such that for a given t we use Eq. 6.1 with y, = Mx(s;), yired = Mx(sfre‘i) and
T = 100.

For the low energy system, we see from Fig. 8c how StreaMRAK is trained significantly faster than LP-KRR, although
at a cost of reduced precision. The reduced training time of StreaMRAK is a consequence of the low doubling dimension
of the training data, which allows the selection of far fewer landmarks for StreaMRAK than what is used at each level in
LP-KRR.

For the high-energy pendulum, we see from Fig. 9c that StreaMRAK is again able to achieve good precision faster than
LP-KRR. Furthermore, we see that the number of landmarks selected for StreaMRAK increases abruptly with the levels,
reflecting the high doubling dimension of the training data. Due to this StreaMRAK stops the training after level 7, as
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Fig. 9. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares)
for the high-energy pendulum. (a) Shows the mean square error of the center of mass My(s;) for the level 7 prediction, with step T along the x-axis.
(b) shows the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK, LP-KRR, and FALKON at level 9. (c) The x-axis
shows the accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. (a) Pendulum positions at T =200 and (c) The positions at T = 210. In (a) and (c), Py is the main pendulum with initial conditions sj", while

Pr is the StreaMRAK forecast of the pendulum position. Similarly, P, — P; are four training pendulums with a perturbation of 0.5% on the initial angles
6, and 6, of the main pendulum. (b) Projection of the training data on the 6,6,-plane. The thick red line is the main pendulum corresponding to Py and
the four grey dotted lines are the test pendulums Py — P, where the X indicates the time T = 205. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

the next levels require too many landmarks. By continuing for 2 more levels LP-KRR is able to achieve marginally better
precision but at increased computational cost.

As seen in Fig. 9b, the forecasting of StreaMRAK and LP-KRR breaks down after T ~ 200 steps. In Fig. 10b we observe
the trajectory of a pendulum with initial condition sg'gh, as well as four pendulums with a 0.5% perturbation on the angles

6; and 6, in sgigh. We observe that after roughly T = 205 time steps the trajectory of the five pendulums diverge signifi-
cantly from each other. Therefore, it seems that a bifurcation point occurs around this time, which may explain why all the
algorithms are unable to make good forecasting beyond this point.

7. Outlook

Further development of StreaMRAK is intended with focus on four objectives.

01) Augmentation of the DCT to track the error at each node
02) Improve the estimator in Def. 4.1 and Eq. 3.1.
03) Refinement of previously fitted levels in the LP as new data arrives.
04) Further theoretical analysis of the LP.

Considering objective (01) we intend to develop the DCT to track the error at each node. This way the growth can be
restricted in regions where the error is small, which allows for more focus on regions where the error is large. The intention
is that this will reduce the problem complexity even further, while also increasing the precision. Regarding objective (02), a
drawback with the estimator in Eq. 3.1 was already mentioned in Remark B.1 in Appendix B. Furthermore, for the estimator
in Def. 4.1, we intend to implement and evaluate alternative ways to estimate the convergence of the matrices. Another focus
area will be objective (03), as we believe new information may be revealed as new training data arrive, and refinement of
previously fitted levels can therefore be beneficial. Finally, the theoretical analysis in objective (04) will focus on analyzing
the generalization error for the LP, particularly in combination with the adaptive sub-sampling scheme.
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Appendix A. Algorithms

We here denote nodes by p, g, ¢ and xp, xq, xc € X ¢ RP are the corresponding points.

Algorithm A.1 INSERT(point g, node p, level I).

1: We assume q already satisfies ||xq — xpl| < 27'rp.

2: if ||xq — xc|| > 2=+ Vrq for all ¢ e Children(p) then

3 Insert q into Children(c).

4 UPDATE_COVERFRACTION(Parent(Q;), “No parent found”)

5 Break

6: else if ||xq — x| < 2~¢+Drq for some c € Children(p) then

7 Consider all children of ¢, namely Children(c)

8 if Children(c) is empty then

9 if Covering fraction of p, Def. 3.1, satisfy ¢f(p) > D, for some threshold D then

10: Insert q into Children(c)

11: Break

12: else

13: UprDATE_COVERFRACTION(p, “parent found”){c is found to be a potential parent. However, since ¢f(p) < D¢; we can
not add g to Children(c)}

14: end if

15:  else

16: INSERT(q, ¢, [ + 1)

17 end if

18: end if

Algorithm A.2 STREAMRAK(point x, target y).

1: Let I be the level. Let p(g) be the root node, rq the radius of the root node.

2: Sub-sampling thread

3: Insert x into the cover tree with INSERT(x, p(g), [ = 0). {See Alg. A.1}

4: if a new level has ¢f(Q;) > Dy, . then

5:  Extract the landmarks at level | as sub-samples, namely F(Iz,)

6: end if

7: Training thread

8: Consider level I and assume that the landmarks F(% are extracted.

9: while [ is not sufficiently covered with training points according to Def. 4.1. do

10:  Update [(K(l) )Tl((l)] and z() according to Eq. 2.4 and Eq. 2.5 as new samples (x,y) arrive, using the landmarks in

I\ from Def. 3.3.
11:  Continuously check if matrices have converged.
12:  if Matrices converge according to Def. 4.1 then

13: Update the StreaMRAK regression model f, by including the correction term s into the Laplacian pyramid, as
described in Section 2.2. Let L =1 and update [ =1+ 1.
14:  end if

15: end while
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Algorithm A.3 UprpATE_COVERFRACTION(node p, string s).

1: if s="No parent found” then

Update covering fraction of p with ¢f(p) = (1 — a)cf(p)
else if s= “parent found” then

Update covering fraction of p with ¢f(p) = (1 — ) cf(p) +
end if

Appendix B. Preparatory material

We offer preparatory material on the damped cover-tree and kernel methods.

B1. Preparatory material on the damped cover-tree

This section shows how the recursive formula in Eq. 3.1 approximates the weighted average of the outcome of the last N
random trails. Where the trails are as described in Section 3.1. By expanding Eq. 3.1 we have (¢f(p)): = (1 — @)t (cf(p))1 +
a Y2 (1 —a)1p,(x_;). Since (1— 4)N~1/e, the first term becomes negligible when ¢ > N. Similarly, all terms i > N in
the sum becomes negligible. This leaves,

N
@~ 3 (1- )10
i=1

which is a weighted average of the outcome of the N last draws as claimed.

Remark B.1. We mention a weakness of the estimator in Eq. (3.1). As follows from Algorithm A.1, every time a new point
x is not covered by the existing children, a new child is added. This consequently updates 3., leading to the posterior
distribution Prob(1.(x) = 0|x) to changed every time 15.(x) = 0.

B2. Preparatory material on Kernel methods

Kernel methods in the context of reproducing kernel Hilbert spaces (RKHS) offer a powerful approach to machine learn-
ing with a well-established mathematical foundation [1,62]. In this paper we consider an input space X c RP, a corre-
sponding target space Y C R and let p be the probability distribution on X x Y. Furthermore, we assume an RKHS #,
generated by a positive definite kernel k : X x X — R. In other words, the eigenvalues o, ..., 0, of the corresponding ker-
nel matrix Kun, = (k(x;, xj)):.fj:1 satisfies o; > O for all i € n. In this setting the inner product between two feature vectors
@ (x). 9 (X') € Hy, satisfies the property that < ¢(x), ¢(x') >y, = k(x,x’). This relation, known as the "kernel trick” [63,64],
effectively circumvents the need for explicit construction of non-linear mappings ¢.

Given a training set {(x;,y;) : i € [n]} sampled according to p with I'; = {x; : i € [n]}, we formulate the kernel ridge re-
gression (KRR) problem as

~ 1
fo, = argmin S (F i) —y)? + AIFI (B1)
€Hn i=1

where A > 0 is a regularisation parameter and #, = span{k(-, x;) : i € [n]} is a finite-dimensional subspace of H. What is
more, for all f € #, the Representer theorem [65,66] guarantees that there exists coefficients o, ..., oy such that the solu-
tion to Eq. (B.1) is on the form

F) =" aik(x. x).
P

Computing the KRR estimator is therefore reduced to solving the linear system
(Knn + Alp) o =y,

where y= (yl, . ,yn)T, x = (Ot], . ,O[n)T, and [Knn]ij = k(xi, X])

Appendix C. Auxiliary results

Lemma C.1. Let d) be the residual at level | as defined in Eq. (2.9). We then have,
dD = 1 - KD (KD + Anl)~1)d®
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Proof. Denote s() = s) ([x,]), and note that s) = K\ (K) + anl)~1d®. For I = 1, we have

dV =y —s® =y - Kl a® = (1 - K (K + AnD)~y.
We proceed by induction. Assume the statement holds for an [ > 2. We now have

I
dHD =y = 35D =d® — O = d® — K (K + AnD)1dD = (1 - Ky (K§ + Anl)~")d®.
j=0
O
Remark C.2.In [60, Thm. 12.3] they also offer an a fortiori bound corresponding to Mp=6.38D, C;p=
D

%(1223/726)D(F(D?2+1))( ) and G p = (12.76v/2D)? (r/8)?.

Corollary C.3. We note that B(l) from Eq. (5.8) has a maximum at

I* =1llog, (Ciﬁézg;) = log, (@(%)) +log, (%ﬁ>

and is monotonically increasing with | on the interval | € (0, I*). Furthermore, with the a fortiori expression for Mp from Remark

C.2 we have
I* = log, (\/E(r;)) + log, (25.52\5).

Lemma C.4. The function
F(T) := 2-30+1/In2)5-ITT} (LO)T
(M) H(5

has minimum Lo S
F(T*) = 27m #2000,

Proof. We can write F(T) as
F(T) _ ——(1+1/ln2)2 lT2T/210g2 T2Tlog2(r0/8) _ 2—T/2(B—log2 T) _ 2f(T)’

where B =1+ 5 +2[—2log, (‘¢) and f(T)=—T/2(B—log, T). F(T) is therefore minimized when f(T) is minimized.

Namely when
_28 1/In2 __ 21+1/ln2+21 2log, (ro/8)—-1/In2 __ -2. 41 logz(rg/B)

Inserting this back into the expression for F(T) gives the desired result. O
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