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Abstract Marine multichannel and wide-angle seismic data constrain crustal structure along a 530 km
margin-parallel transect of the Hikurangi subduction zone. The subducting Hikurangi Plateau crust (Vp

5.0-7.4 km/s) is ~1 km thicker (11 + 1 km) and mantle velocities are ~0.2 km/s higher (Vp 8.3-8.5 km/s)
beneath south/central Hikurangi relative to north Hikurangi. In the overthrusting plate, an abrupt 0.5 km/s
south-to-north reduction in forearc wavespeeds occurs in concert with a change in seismic reflection character.
We analyze legacy seismic data to show that the forearc transition likely reflects lateral variability in the updip
extent of the Torlesse Backstop. Furthermore, we map this unit along-strike and note a broad correlation
between the backstop and down-dip extent of shallow slow-slip. We propose that the geological architecture of
the overthrusting plate contributes to spatial variability in the location of shallow frictional transitions along the
Hikurangi margin, impacting both seismic and tsunami hazard.

Plain Language Summary Some subduction zones produce the largest earthquakes and tsunami
on Earth, while others slip freely. To understand what factors impact subduction zone slip behavior, we

analyze seismic data along a 530 km long transect spanning a transition from strong (south Hikurangi) to

weak (central/north Hikurangi) interseismic locking. From south-to-north, we find that seismic wavespeeds

in the overthrusting plate undergo an abrupt (~10%) reduction, which coincides with a reduction in seismic
reflectivity. We show that these changes likely reflect differences in the offshore (updip) extent of basement
rocks within the forearc crust, which we map using seismic data. These maps also show that the offshore extent
of basement rocks is broadly correlated with the maximum depth of shallow slow-slip events. We propose

that geological architecture of the overthrusting plate may contribute to spatial variability in megathrust slip-
behavior, impacting both seismic and tsunami hazard along the Hikurangi margin.

1. Introduction

The seismogenic (earthquake generating) portion of subduction megathrusts is flanked by regions of stable
(aseismic) or conditionally stable fault slip behavior (Lay et al., 2012). The location of these transitions imposes
key constraints on tsunami generation, the proximity of strong ground shaking to densely populated coastal com-
munities, and the area, and thus magnitude, of earthquakes rupturing the seismogenic zone. Although frictional
transitions are often attributed to thermal, metamorphic or diagenetic processes (Hyndman & Wang, 1993; Moore
& Saffer, 2001; Oleskevich et al., 1999), depth dependent variations in the frequency-content, source duration
and slip amplitude of earthquakes (Bilek & Lay, 1999; Lay et al., 2012) have recently been linked to variations
in rigidity of the overthrusting plate (Sallarés & Ranero, 2019). Overthrusting plate structure played a key role in
modulating the distribution of slip in the 2011 Mw 9.0 Tohoku-oki earthquake (Bassett et al., 2016), but there are
also many examples of great earthquakes being stalled (Robinson et al., 2006), deflected (Kodaira et al., 2000) or
stopped (Bilek, 2010) by subducting topographic relief. Ultimately, both factors are clearly important and at many
subduction zones it is not agreed what properties cause some megathrust segments to lock up and accumulate
large quantities of elastic strain, while adjacent segments slip with relative ease.
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Figure 1. Tectonic setting and geophysical data. (a) Hikurangi subduction zone, New Zealand. Gray lines show marine
seismic profiles collected during The Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE). The forearc
transect is marked in red with Ocean Bottom Seismometers in yellow. Color shows interseismic coupling (Wallace,
Barnes, et al., 2012). Orange Triangles mark active volcanoes. Annotation: CT = Cape Turnagain, CK = Cape Kidnappers,
MP = Mahia Peninsula, G = Gisborne, TVZ = Taupo Volcanic Zone.

One of the best expressed along-strike transitions in megathrust slip behavior occurs along the Hikurangi margin,
New Zealand (Figure 1). In south Hikurangi, onshore geodetic data show the megathrust to be strongly locked
to ~30 km depth and reveal a band of deep (2540 km), long-duration (1-2 years), slow-slip events (SSEs) that
likely mark the down-dip frictional transition zone (Wallace, Beavan, et al., 2012). The north Hikurangi meg-
athrust, by contrast, is characterized by weak interseismic coupling, frequent, shallow (2—15 km) short duration
(<1 month) SSEs and produced two tsunami earthquakes in 1947 (Doser & Webb, 2003; Wallace, Beavan,
et al., 2012; Wallace et al., 2016).

A wide range of physical properties may contribute to the spatial variability in slip behavior along the Hikurangi
megathrust. Controlled and natural source seismic observations show the overthrusting plate in the region of
strong geodetic locking to be characterized by higher Vp, lower Vp/Vg ratio and lower attenuation, and have been
interpreted to indicate higher effective stress levels, lower porosity and/or a lower volume of fluids in the over-
thrusting plate (Bassett et al., 2014; Eberhart-Phillips & Bannister, 2015; Eberhart-Phillips et al., 2017; Henrys
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et al., 2020; Reyners & Eberhart-Phillips, 2009). The tectonic stress state flips from extension to transpression
across the coupling transition, influencing both structural permeability in the overthrusting plate and the depth of
the frictional to viscous transition along the subduction megathrust (Barnes et al., 2019; Fagereng & Ellis, 2009;
Wallace, Fagereng, & Ellis, 2012). On the subducting plate, incoming sediment thickness thins from >4 km
offshore Wairarapa to ~1 km offshore Gisborne and the lithologic, mechanical and frictional heterogeneity asso-
ciated with the subduction of rougher crust has been proposed to play a key role in facilitating shallow slow slip
and creep along the north Hikurangi megathrust (Barker et al., 2018; Barnes et al., 2020; Chesley et al., 2021;
Wallace et al., 2009; Wang & Bilek, 2014). In this study, we analyze new marine geophysical data spanning the
full length of the Hikurangi subduction zone to constrain crustal architecture along-strike and possible linkages
with spatial variability in megathrust slip behavior.

2. Marine Geophysical Data
2.1. Data Acquisition

We analyze wide-angle and multichannel seismic (MCS) data acquired along 530 km of the Hikurangi forearc
during The Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE; Bangs & Shipboard-Scientif-
ic-Party, 2018; Barker et al., 2019). Wide-angle seismic data were recorded by 49 Ocean Bottom Seismometers
(OBSs) deployed at ~10 km intervals by R/V Tangaroa. These OBSs are multi-component JAMSTEC instru-
ments including a triaxial, short-period seismograph (4.5 Hz natural frequency) and a hydrophone. OBSs record-
ed seismic energy from 9,492 airgun shots from a tuned 36 air-gun array with a total volume of 108 L (6,600
inch?), which was charged to 13.1 MPa (1,900 + 100 Psi) and towed at 9 m depth by the R/V Marcus G Langseth.
Airgun shots were spaced at ~50 m for the southwestern 440 km and ~150 m between model km 440-530. Coin-
cident MCS data were recorded by a 12.8 km long, 1,008 channel hydrophone streamer towed at 10 m depth with
an 18 s record length and 2 ms sample rate.

2.2. Wide-Angle Seismic Data and Tomography

Wide-angle data were processed using a minimum-phase Butterworth frequency filter (2-20 Hz), before trace
amplitude balancing and coherency filtering (Figures 2a and 2b and S4 in Supporting Information S1). From
OBS gathers, we identified phases associated with refractions through the crust of the Australian forearc and
subducting Hikurangi Plateau (P,), reflections from the base (Moho) of the subducting Hikurangi Plateau crust
(P,,P), and refractions through the underlying mantle (P,). Picking errors were visually estimated and range from
50 to 200 ms, with a mean error of 97 ms. Travel-time picks were sampled at 250 m in the shot-domain and the
total number of picks for P,, P,,P, and P, phases are 23,344, 5,396, and 10,854, respectively.

Ray-coverage at shallow depth was improved by including streamer refractions identified in MCS shot-gathers.
We interpreted every 10th shot-gather (i.e., 500 m shot-spacing) and down-sampled first-arrivals to 250 m in
the receiver-domain. Collectively, we incorporated 22,060 streamer refractions with offsets ranging from 2.1 to
12.8 km (mean 7.9 km) and picking errors visually estimated between 50 and 100 ms.

Travel-time tomography was carried out using a version of the algorithm originally developed by Van Aven-
donk et al. (2004), which has been fully parallelized and optimized for large computational problems (Arnulf
et al., 2018). This algorithm uses the shortest-path method (Moser, 1991) for the forward calculation of synthetic
travel-times. Weighted travel-time residuals are then back-propagated along ray-paths, with iterative model up-
dates calculated by a minimizing a least squares cost-function penalizing the misfit between observed and cal-
culated travel-times and model roughness. To account for the crooked-line geometry, raytracing was performed
in a 540 X 10 km mesh extending down to 50 km depth, discretized at 1 km intervals horizontally and 250 m
vertically.

We have applied a Monte Carlo approach performing 100 tomographic inversions. Our starting models consist of
a series of simple 1D velocity models hanging below the seabed. Across these models, velocities at a given depth
in the crust and mantle vary by up-to 1 km/s and 0.5 km/s respectively. The Moho of the subducting Hikuran-
gi Plateau is randomly prescribed a starting depth 10, 12, or 14 km below the subduction interface (Williams
et al., 2013). To prevent vertical smearing of travel-time misfits, each tomographic model was constructed by
first inverting P, arrivals recorded by OBSs, before subsequently incorporating deeper penetrating P, P, and P,
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Figure 2. Wide-angle data and misfit statistics. (a) Wide-angle seismic data recorded at OBS02 and (b) OBS36. Seismic data are reduced to 8.5 km/s with labels
indicating phase interpretations. (c) Histogram showing the distribution of travel-time misfit for our final velocity model. (d) Violin plots of the travel-time misfit
distribution for Ocean Bottom Seismometer data within source-receiver offset bins. The underlying histogram shows the source-receiver offset distribution with labels
indicating the proportion of data within each bin.

phases. Picks from marine streamer data were incorporated last to avoid introducing bias associated with their

higher density. The final, average, velocity model has a Chi-square misfit ¥ of 1.02 and a root mean squared
(RMS) error of 81 ms (Figures 2c and 2d).
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Spatial resolution was assessed by preforming checkerboard tests and by calculating the standard deviation of
velocities and interface depths across 100 velocity models. The results of these tests are provided in Supporting
Information.

2.3. Multichannel Seismic Data Processing

SHIRE seismic reflection data were processed using a shipboard pre-stack processing sequence consisting of
resampling to 4 ms, band-limited swell noise suppression (0-3 Hz), velocity analysis and spherical divergence
gain adjustment. MCS shot-gathers were sorted into 6.25 m CMP bins (126-168 nominal fold), before Kirchhoff
Poststack 2D migration with stacking velocities. Post-stack migration processing included Butterworth band-pass
frequency filtering (5-85 Hz) and gain adjustment (1 s gate).

3. Results: Forearc Wavespeeds Vary in Concert With Geodetic Locking

Figure 3b shows P-wave seismic velocity (Vp) along the SHIRE forearc transect. The upper-crust of the sub-
ducting Hikurangi Plateau is 5-6 km thick with wavespeeds increasing from 5.5-7.0 km/s. A shallower velocity
gradient is maintained through the lower-crust with wavespeeds typically <7.3 km/s, but locally >7.4 km/s. The
crustal thickness of the Hikurangi Plateau is 11 + 1 km south of model km 350, which is ~1 km thicker than the
crustal thickness observed (10 + 1 km) further north. This contrast in crustal structure is consistent with results
obtained along margin-normal wide-angle seismic profiles traversing the Hikurangi Plateau in South and North
Hikurangi respectively (Gase et al., 2021; Mochizuki et al., 2019).

Below the Moho, wavespeeds in the subducting mantle also exhibit along-strike variability and differ by
~(0.2 km/s north and south of model km ~350. To the north, Vp is typically 8.1-8.2 km/s at the Moho and does not
exceed 8.3 km/s within the area of ray-coverage. Vp south of model km 350, by contrast, is regionally >8.3 km/s
and is ~8.5 km/s below the central portion of the transect. These mantle wavespeeds are also consistent with
those measured in the margin-normal direction by intersecting active-source profiles in North (7.8-8.1 km/s;
Gase et al., 2021) and South (8.3 + 0.25 km/s; Mochizuki et al., 2019) Hikurangi, respectively. Our results in
South Hikurangi are slightly slower than observations indicating high mantle velocities (8.8 + 0.2 km/s) made
both along-strike (Galea, 1992; Kayal & Smith, 1984), and more recently down-dip (Herath et al., 2020; Stern
et al., 2020). This difference may reflect the turning-depths of raypaths (<30 km) analyzed in our study being
5-20 km shallower than most observations from which higher wavespeeds are determined.

Above the megathrust, we resolve a sharp along-strike transition in crustal structure of the overthrusting
forearc (Figures 3b and 3c). Along the southern Hikurangi forearc, Neogene sediment cover (Vp < 3.0 km/s) is
<2 km thick, Vp exceeds 4.0 km/s within 4 km of the seabed and 4-5 km of crust overlying the megathrust has
Vp > 4.5 km/s (red in Figure 3a). In north Hikurangi, sedimentary cover is ~1 km thicker (~3 km), V5 is typically
<4.0 km/s within 7 km of the seabed and lower-crustal velocities are ~0.5 km/s slower than those observed at
equivalent depths in south Hikurangi.

The contrast in forearc wavespeeds is further illustrated by calculating the average (1-D) V,-depth profile along
our transect (black in Figure 3d) and plotting our velocity model as the deviation from this average (Figure 3c).
This calculation highlights the location, magnitude, and regional extent of the contrast in forearc wavespeeds,
and is supported by local V,-depth profiles calculated along the southern and central/northern Hikurangi margin,
which differ by 0.4-0.7 km/s at depths 3—10 km below the seafloor (Figure 3e). These V,-depth profiles calcu-
lated offshore are analogous to those derived from onshore-offshore seismic records by Bassett et al. (2014). A
comparison between these profiles reveals a striking similarity between 1-D profiles for North Hikurangi and
shows that onshore-offshore data require higher wavespeeds at crustal depths (>3 km b.s.f) in South Hikurangi
(Figure 3d). This comparison suggests low forearc wavespeeds are maintained near and down-dip of the coast in
North Hikurangi and the north-south contrast in forearc wavespeeds becomes even more pronounced inboard of
the SHIRE forearc transect.

Figure 3a shows slip deficit rate on the subduction megathrust derived from onshore geodetic data (Wallace,
Barnes, et al., 2012). This comparison shows the transition in forearc structure to be well correlated with the base
of the ramp in slip-rate deficit that marks the transition from a creeping megathrust in the north to an interseis-
mically locked megathrust in the south.
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Figure 3. Forearc crustal structure and interseismic locking. (a) Slip-rate deficit (Wallace, Barnes, et al., 2012) and the thickness of crustal material (Vp > 4.5 km/s)
overlying the subduction interface. (b) P-wave (Vp) seismic velocity along the Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE) forearc transect.
The subduction interface (Williams et al., 2013) and base of the subducting plate are marked by dashed and solid black lines respectively. Vertical dashed gray line
marks concomitant reductions in seismic velocity and slip-rate deficit. (c) Deviation from the average velocity-depth profile along the SHIRE forearc transect. (d)
Regional 1-D Vp-depth profile. Dashed horizontal and dotted black lines show the mean depth and standard deviation of the subduction interface. (e) Local Vp-depth
profiles for South (red) and North (blue) Hikurangi respectively. The dashed envelope represents one standard deviation. (f) Comparison between offshore (this study)
and onshore-offshore (Bassett et al., 2014) 1-D Vp-depth profiles. Annotation: CT = Cape Turnagain, CK = Cape Kidnappers, MP = Mahia Peninsula, G = Gisborne.
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Figure 4. Forearc geology at Hikurangi. (a) Onshore geology, offshore morphology and (b) seismic reflection character of the Hikurangi forearc south and (c) north

of the transition in forearc wavespeeds. The contoured grid offshore shows the 3D geometry (two-way time) of the mid-crustal reflector used to map the offshore
distribution of the Torlesse Composite Terrane. The dashed orange and blue lines mark the updip extent of Torlesse Composite Terrane, and the boundary between

Late Cretaceous-Paleogene passive margin foundation and the Late Cenozoic frontal accretionary wedge (Barnes et al., 2010; Gase et al., 2021). Solid and dashed gray
contours show cumulative shallow slow-slip (2002-2014) and a smaller slow-slip event (SSE) offshore Wairarapa (Wallace, 2020; Wallace, Beavan, et al., 2012). Solid
and dashed yellow contours show cumulative deep slow-slip and a smaller SSE beneath the Kaimanawa ranges. Gray arrows highlight along-strike variations in width
of the Late Cenozoic accretionary wedge and the zone of frictional locking. Annotation: CP = Cape Palliser, C = Castlepoint, CT = Cape Turnagain, HB = Hawke Bay,
MP = Mahia Peninsula, G = Gisborne.

3.1. Seismic Reflection Image and Physical Interpretation of Along-Strike Variation in Wavespeeds

Seismic velocity is controlled by elastic moduli and density and is strongly impacted, via porosity, by effective
stress. The wavespeed variations recorded along the Hikurangi forearc (Figure 3) may therefore reflect differ-
ences in effective stress levels and/or pore-fluid pressure (Bassett et al., 2014), upper-plate stress-state (Fagereng
& Ellis, 2009; Townend et al., 2012; Wallace, Fagereng, & Ellis, 2012), the spatial distribution of geological
terranes (Reyners & Eberhart-Phillips, 2009), or the formation of low wavespeed, high-porosity damage zones
created by subducting relief (Sun et al., 2020), which has been geophysically imaged in North Hikurangi (Arai
et al., 2020; Barker et al., 2018; Chesley et al., 2021).

A key observation revealed by SHIRE MCS data is that the seismic reflection character of the forearc crust varies
in concert with forearc wavespeeds (Figure 4). In south Hikurangi, the lower crust of the upper plate is highly
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reflective and capped by a high-amplitude, laterally contiguous mid-crustal reflector (Figure 4b). North of the
wavespeed transition, by contrast, the lower-crust is acoustically transparent (Figure 4c).

High lower-crustal reflectivity in the south Hikurangi forearc has been interpreted to indicate the presence of
Early Cretaceous (110-100 Ma) Pahaoa Group rocks of the Torlesse Composite Terrane (Barker et al., 2009;
Mountjoy & Barnes, 2011) overlying the plate interface. The Torlesse Composite Terrane constitutes geological
basement in eastern North Island, and Pahaoa Group rocks outcrop in the coastal foothills of Wairarapa, less than
30 km from our offshore seismic transect (Heron et al., 2015; Mortimer, 2004). To obtain regional constraints on
the subsurface distribution of this unit, we have mapped the capping mid-crustal reflector through an extensive
database of legacy seismic reflection data (Figure S4 in Supporting Information S1). Two-way travel-time to the
top of this unit is shown in Figure 4a, and the shallowing of this reflector toward Pahaoa outcrops onshore (dark
green in Figure 4a) further supports existing lithologic interpretations (Mountjoy & Barnes, 2011; Plaza-Faverola
etal., 2016). The updip extent of this unit is marked by the orange dash and the location where this updip limit in-
tersects our 2D profile is well correlated with the reduction in forearc wavespeeds (dashed gray line in Figure 4a).
We therefore suggest that coincident reductions in seismic velocity and lower-crustal reflectivity simply mark
where Torlesse Basement no longer extends far enough updip to be imaged along our 2D profile.

This interpretation is supported by along-strike differences in the proximity of Torlesse Basement outcrops to the
SHIRE forearc transect (Figure 4a). In south Hikurangi, Torlesse Basement outcrops at Cape Palliser (Pahau Ter-
rain) and in the coastal foothills of Wairarapa (Pahaoa Group), less than 30 km from our offshore profile (Barnes
& Korsch, 1990; Begg et al., 2000; Lee et al., 2002). From south-to-north, these units are progressively overlain
by a younger or stratigraphically higher succession of Late Cretaceous to Paleogene “cover” and passive margin
sequences (Field & Uruski, 1997; Lee et al., 2002). This pattern is consistent with the northward deepening of the
reflector we associate with the top of the Torlesse Composite terrain. North of Hawke Bay, Torlesse outcrops are
restricted to the axial ranges and western Raukumara Peninsula (Mazengarb & Speden, 2000). These outcrops are
>50 km further from the SHIRE forearc transect than their counterparts along the Wairarapa coast and it is pos-
sible their subsurface extent does not extend far enough updip (~80 km) to be imaged along our offshore profile.

Higher wavespeeds within Torlesse Basement likely reflect the higher degree of induration associated with ac-
cretion to the Gondwana forearc, relative to the Late Cretaceous-Paleogene “cover” or passive margin rocks that
occupy the forearc updip and along-strike (Barnes et al., 2010; Bland et al., 2015; Moore & Speden, 1984; Mor-
timer, 2004). It is possible a contribution to the wavespeed contrast is made by the stress regime in the upper-plate
changing from extension (north) to transpression (south) south of Hawkes Bay (Dimitrova et al., 2016; Townend
et al., 2012). The mid-crustal reflector and concomitant variation in lower crustal reflection character, however, is
less likely to be caused by changes in stress state and we therefore retain along-strike variability in the distribution
of geological terrains as a key component of our interpretation.

4. Discussion

The south-to-north reduction in forearc wavespeeds along the SHIRE forearc transect is consistent with earli-
er results from onshore-offshore travel-times (Bassett et al., 2014), earthquake tomography (Eberhart-Phillips
et al., 2017), and explanations linking ultra-long (>450 s) durations of long-period ground motions after the
2016 M7.8 Kaikoura earthquake to the reverberation of seismic waves within a low-velocity wedge (Kaneko
et al., 2019). In addition to the hazard to infrastructure posed by long-duration, long-period ground shaking, this
“basin effect” leads to prolonged dynamic stressing on the plate interface and may have promoted the dynam-
ic-triggering of slow slip by the Kaikoura earthquake (Wallace et al., 2017, 2018).

Building on the work of Barnes et al. (2010), our mapping allows rocks overlying the Hikurangi megathrust to
be subdivided in map view into a Torlesse Backstop (Orange dash), overlying Late Cretaceous and Paleogene
passive margin foundation rocks (Blue dash), and the Late Cenozoic accretionary wedge (Figure 4a). The gray
contours show that the cumulative distribution of shallow slow slip (2002-2014) and a smaller (dashed) SSE
offshore Wairarapa (Wallace, 2020; Wallace, Beavan, et al., 2012) are both focused updip of the backstop and in
regions where Late Cretaceous and Paleogene passive margin foundation rocks overly the subduction interface.
This relationship suggests the geological architecture of the overthrusting plate may play a role in modulating
the updip extent of unstable (Torlesse Backstop) and conditionally stable (passive margin foundation) fault slip
at Hikurangi. This link may be due to a contrast in induration or frictional properties (Moore & Speden, 1984),
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the influence of different material properties on structural permeability and the ability of the wedge to maintain
or relieve excess fluid pressure (Reyners & Eberhart-Phillips, 2009), and/or the strength and stress-state of the
wedge and the mechanics by which it accumulates and releases elastic strain. It is also consistent with observa-
tions from other subduction zones linking margin-normal changes in the consolidation or lithification of the up-
per-plate with shallow transitions in megathrust slip behavior (Byrne et al., 1988; Nakanishi et al., 2002; Sallares
& Ranero, 2019; Watt & Brothers, 2021). The key point is that the location of frictional transitions (as defined by
the down-dip extent of shallow slow slip) appears to be more spatially variable than that defined by thermal and
diagenetic models (Hyndman et al., 1995; Moore & Saffer, 2001; Oleskevich et al., 1999). This conclusion has
implications for the characterization of earthquake and tsunami hazard along the Hikurangi margin.

The updip extent of co-seismic slip is a key control on tsunami excitation. Where the outer-forearc is narrow,
earthquake rupture occurs at shallower depth, beneath deeper water, and has a higher likelihood of reaching the
trench (Hu & Wang, 2008). Each of these factors enhance tsunami generation. The implication at Hikurangi is to
imply a higher tsunami hazard and likelihood of trench-breaking rupture offshore southernmost Hikurangi, where
the position of the Torlesse Backstop may extend frictional locking to within 30 km from the deformation front
(Figure 4a). This distance is comparable to the ~30 km width of the outer-wedge where the 2011 M9 Tohoku-oki
earthquake maintained large co-seismic slip amplitudes to the NE Japan trench (Miura et al., 2005). Tsunami
hazard in south Hikurangi may be further compounded if the stress shadow from the deeper locked patch results
in high slip-deficit rates being maintained updip of the Torlesse Backstop, despite the reduction in frictional
strength implied by the occurrence of shallow slow slip (Lindsey et al., 2021). In this case, the increased width
of the outer-wedge between Castlepoint and Cape Turnagain (~55 km) may be significant in limiting the updip
extent of co-seismic slip offshore Wairarapa (Hu & Wang, 2008).

The final implication concerns how the position of the Torlesse Backstop impacts the location and spatial extent
of frictional locking. In Hikurangi, the landward migration of Torlesse Basement rocks, coupled with the north-
ward increase in slab dip (Williams et al., 2013), causes the updip transition to shift westward and progressively
deepen from ~11 km offshore and south of Cape Turnagain, to ~14 km at Hawke Bay and >16 km north of
Mabhia Peninsula (Figure 4a). What is key is that across Cape Turnagain, slip transients marking the down-dip
transition also impinge on the seismogenic zone, with SSEs beneath Manawatu occurring nearer the trench and
at shallower depth (<20-25 km) relative to the adjacent deeply locked region (Wallace, Beavan et al., 2012).
Combined, these changes abruptly reduce the distance separating shallow and deep regions of transient slip from
80-100 km in south Hikurangi, to a narrow, 40 km wide transitional corridor north of Cape Turnagain (Figure 4),
where large magnitude (Mw > 7) earthquakes occurred in 1904, 1958 and 1993 and inferences of locking are
supported by observations of contractional strain (Haines & Wallace, 2020; Wallace, 2020). This reduction in
the area of frictional locking will locally reduce the amount of elastic strain transmitted to the overthrusting
plate (Wallace, Beavan et al., 2012). It may also increase slip-rate on the shallow megathrust by reducing the
magnitude of the stress-shadow cast updip (Lindsey et al., 2021). This latter effect may contribute to along-strike
differences in the amount of shallow slow-slip and raises the possibility of a distinct reduction in megathrust shear
stressing rate south of Cape Turnagain.

Data Availability Statement

Raw marine multi-channel seismic (MCS) data used in this study are available through the Lamont Academic
Seismic Portal (http://www.marine-geo.org/collections/). The processed MCS section is available through the
GNS Science Database Catalogue (http://dx.doi.org/10.21420/TQ67-8F60). Ocean Bottom Seismograph data
are available through the JAMSTEC Seismic Survey Database (http://www.jamstec.go.jp/obsmcs_db/e/survey/
data_area.html?cruise=TAN1710).
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