
THE CHEBYSHEV-FROBENIUS HOMOMORPHISM FOR STATED SKEIN

MODULES OF 3-MANIFOLDS

WADE BLOOMQUIST AND THANG T. Q. LÊ

Abstract. We study the stated skein modules of marked 3−manifolds. We generalize the splitting
homomorphism for stated skein algebras of surfaces to a splitting homomorphism for stated skein
modules of 3−manifolds. We show that there exists a Chebyshev-Frobenius homomorphism for
the stated skein modules of 3-manifolds which extends the Chebyshev homomorphism of the skein
algebras of unmarked surfaces originally constructed by Bonahon and Wong. Additionally, we show
that the Chebyshev-Frobenius map commutes with the splitting homomorphism. This is then used
to show that in the case of the stated skein algebra of a surface, the Chebyshev-Frobenius map is
the unique extension of the dual Frobenius map (in the sense of Lusztig) of Oq2(SL(2)) through
the triangular decomposition afforded by an ideal triangulation of the surface. In particular, this
gives a skein theoretic construction of the Hopf dual of Lusztig’s Frobenius homomorphism. A
second conceptual framework is given, which shows that the Chebyshev-Frobenius homomorphism
for the stated skein algebra of a surface is the unique restriction of the Frobenius homomorphism
of quantum tori through the quantum trace map.

1. Introduction

1.1. Skein modules/algebras. For an oriented 3-dimensional manifold, M , the Kauffman bracket
skein module, S (M), is the quotient of the free module spanned by isotopy classes of framed links
in M subject to the relations (A) and (B) of Figure 1. Here the ground ring is a commutative

domain with a distinguished invertible element q1/2. An explanation of how to interpret these
figures can be found in Subsection 2.2.

Skein modules were introduced independently by Przytycki in [Pr] and Turaev in [Tu1, Tu2],
building on work of Kauffman [Kau] in his study of the Jones polynomial. These skein modules
have found many connections throughout low dimensional topology and quantum algebra. In
the specific case of the thickening of a surface, Turaev introduced an algebra structure for skein
modules via vertical stacking while exploring quantizations of the Atiyah-Bott-Weil-Petersson-
Goldman symplectic structure of the character variety [Tu1].

Bonahon and Wong [BW1] showed that for a surface with at least one puncture the skein algebra
can be embedded, through a map called the quantum trace, into a quantum torus which is known
as the quantum Teichmüller space of Chekhov and Fock [CF]. When q = 1, the quantum trace map
calculates the trace of a closed curve in the shear coordinates of Teichmüller space. The existence of
the quantum trace map based on an ideal triangulation of the surface indicated that skein algebras
should decompose into elementary blocks. This idea was formalized by the second author, [Le3],
through the introduction of stated skein algebras of punctured bordered surfaces. Facilitating the
decomposition of stated skein algebras is the existence of a splitting homomorphism, which maps
a stated skein algebra of a surface to the stated skein algebra of the result of cutting the surface
along an ideal arc. This splitting homomorphism not only provides insight into the quantum trace
map, but also provides a wealth of structure for stated skein algebras in terms of quantum groups
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(a) Skein relation (b) Trivial knot relation

(c) Trivial arc relation 1 (d) Trivial arc relation 2

(e) State exchange relation

Figure 1. The defining relations in S (M,N )

utilizing an isomorphism of the stated skein algebra of the bigon with Oq2(SL(2)), see [CL]. The
stated skein algebra considered here involves tangles which may end on the boundary of the surface,
and is a quotient of a different, larger, stated skein algebra originally considered by Bonahon and
Wong.

In this paper we study the stated skein modules of marked 3−manifolds. Where a marked
3−manifold is a 3−manifold, M , along with a collection of markings, N , which are oriented arcs
on ∂M . A stated N−tangle α is a 1−dimensional framed properly embedded submanifold of M ,
whose boundary, ∂α, is contained in the markings N , and additionally at each boundary point the
framing is in the positive direction of N and a state from {±} is assigned. Then the stated skein
module of (M,N ), denoted S (M,N ) is the quotient of the free module spanned by isotopy classes
of stated N−tangles subject to the relations seen in Figure 1. See Subsection 2.2 for a detailed
explanation. When (M,N ) is the thickening of a marked surface, the stated skein module has a
natural algebra structure, and was introduced in [Le3].

1.2. The splitting homomorphism for 3−manifolds. Paralleling the case of surfaces, we show
that there is a splitting homomorphism of stated skein modules for 3−manifolds which are split
along a properly embedded disk.

Suppose D is a properly embedded disk in M that is disjoint from the closure of the markings
N . Additionally, let a ⊂ D be an oriented open interval. By splitting M along D we have a
3−manifold, M ′, whose boundary contains two copies of D, and hence two copies of a, denoted by
a1 and a2. Let N ′ = N ∪ a1 ∪ a2 and consider (M ′,N ′) as a marked 3−manifold. If an N−tangle,
α, meets D transversely in a, such that the framing at every point in α ∩ a is a positive tangent
vector of a, then given a state at each point of α∩a we call the resulting splitted N ′-arc a lift of α.

Theorem 1.1 (Splitting Homomorphism, see Theorem 3.1). If M ′ is a result of cutting M along
a properly embedded disc then there is a well defined R-linear map

Θ : S (M,N )→ S (M ′,N ′)

that sends any N -tangle α to the sum of all lifts of α.
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Analogously to the case of surfaces, the splitting homomorphism provides stated skein modules
with additional structure. For example, as seen in Subsection 3.4, every connected component of
the marking provides S (M,N ) a comodule structure over the Hopf algebra Oq2(SL(2)) with the
coaction given by splitting.

1.3. The Chebyshev homomorphism for unmarked surfaces. The Chebyshev homormo-
prhism, introduced by Bonahon and Wong in [BW2], has played a crucial role in understanding
the algebraic structure of the Kauffman bracket skein algebras of unmarked surfaces. Suppose Σ

is an unmarked surface, and ω is a root of unity with N = ord(ω8) and η = ωN
2
. The Chebyshev

homomorphism is a an algebra homomorphism

Chω : Sη(Σ)→ Sω(Σ)

which sends any knot α ⊂ Σ to TN (α). Here TN are the Chebyshev polynomials of type one defined
recursively by

T0(z) = 2, T1(z) = z, Tn(z) = zTn−1(z)− Tn−2(z), ∀n ≥ 2.

Two features supporting the ability of this map to be used in deriving algebraic information are

• Sη(Σ) is interpreted classically in terms of regular functions on the character variety of Σ
• The image of Chω is central, or almost central

both of which were instrumental in understanding the representations of the skein algebra Sω(Σ),
see [BW3, BW4, FKL1, FKL2].

The original proof of the existence of the Chebyshev homomorphism given in [BW2] is based on
the quantum trace map. A more elementary, skein theoretic proof is given in [Le1].

1.4. The Chebyshev-Frobenius homomorphism for marked 3-manifolds. The main result
of the paper, which is stated briefly here and given in full detail in Theorem 4.1, shows that the
Chebyshev homomorphism can be extended to the case of marked 3-manifold. Suppose (M,N ) is

a marked 3-manifold, and ω is a root of unity with N = ord(ω8) and η = ωN
2
.

For a one-component N -tangle α let α(k) be the disjoint union of k parallel copies of α (taken
in the direction of the framing). If p =

∑
k x

k is a polynomial, define

pfr(α) =
∑

ckα
(k),

which is considered as an element in Sω(M,N ).

Theorem 1.2 (Main Result, see Theorem 4.1). Let (M,N ) be a marked 3−manifold and let ω be

a root of unity with N = ord(ω8) and η = ωN
2
, then we have a unique well-defined C-linear map

Φω : Sη(M,N )→ Sω(M,N ),

such that for an N -tangle T = a1 ∪ · · · ∪ ak ∪ α1 ∪ · · · ∪ αl where the ai are N -arcs and the αi are
N -knots,

Φω(T ) = a
(N)
1 ∪ · · · ∪ a(N)

k ∪ (TN )fr(α1) ∪ · · · ∪ (TN )fr(αl) in Sω(M,N )(1)

Additionally, Φω is compatible with the splitting homomorphism, in the sense that they may be
applied in either order.

This generalizes the existence of the Chebyshev homomorphism of Bonahon and Wong to stated
skein modules of 3−manifolds by dealing with links in the same manner, and sending N−arcs to
their framed power. This generalizes the work of the second author and Paprocki in the case of
the positive submodule of S (M,N ) in [LP]. However, the introduction of mixed states gives rise
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to considerably different defining relations making the work independent. For comments on known
partial results and related results, [KQ, GJS, BR], see Remark 4.8. In particular in the case of the
stated skein algebras of surfaces, the work of Korinman and Quesney [KQ], provides an independent
proof of our Corollary 4.7 when the order of ω is odd.

As an application, in Theorem 4.10 we find transparent elements of stated skein modules, and
central elements of stated skein algebras of surfaces.

1.5. Quantum tori and the quantum trace map. In Section 5 a conceptual framework based
on quantum tori is described for the Chebyshev-Frobenius homomorphism in the case of the stated
skein algebras of surfaces.

Given an anti-symmetric matrix P with integer entries and a non-zero complex number ω, the
quantum torus T(P ;ω) is defined as C〈{x±1

i } : xixj = ωPijxjxi〉. Given any integer N , there is an
algebra map, known as the Frobenius homomorphism:

(2) FN : T(P ;ωN
2
)→ T(P ;ω), xi → xNi .

Suppose the marked surface (Σ,P) has at least one marked point and has a quasitriangulation
E , see Section 5. A recent result of the second author and Yu, see [LY1, Theorem 5.1], shows that
for any non-zero complex number ω there exists an algebra embedding

(3) Sω(Σ,P) ↪→ T(PE ;ω),

where PE is an anti-symmetric matrix depending on the quasitriangulation. This map, which
extends the work of Muller [Mu], is similar to the quantum trace map of Bonahon and Wong, but
different, as the classical specialization expresses the trace of a closed curve in terms of Penner’s
lambda length coordinates [Pen].

Combining with the Frobenius homomorphism FN of (2), we have the following diagram

(4)

S
ωN

2 (Σ,P) T(PE ;ω
N2

)

Sω(Σ,P) T(PE ;ω)

? FN

This leads to the natural question of for which values of ω the map FN restrics to a map

S
ωN

2 (Σ,P)→ Sω(Σ,P),

such that the restriction does not depend on the underlying quasitriangulation.

Theorem 1.3 (See Theorem 5.2). Suppose (Σ,P) has at least two quasitriangulations. Then FN
restricts to a map S

ωN2 (S)→ Sω(S) and the restriction does not depend on the quasitriangulation

if and only if ω is a root of unity and N = ord(ω8). Moreover, in this case, the restriction map is
Φω.

This is proven by leveraging the corresponding statement proven in the posititive submodule
case in [LP]. The theorem gives a perspective in which the Chebyshev-Frobenius map is unique,
and at the same time highlights the role of roots of unity and the order ord(ω8).

1.6. Quantum group and Lusztig’s Frobenius homomorphism. In Section 6 a conceptual
framework based on quantum groups is described for the Chebyshev-Frobenius homomorphism in
the case of the stated skein algebras of surfaces.

We first turn to the stated skein algebra of the bigon and its isomorphism to Oq2(SL(2)), which

is the Hopf dual of Lusztig’s quantum group of divided powers ULq2(sl2). In this case we see that the
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Chebyshev-Frobenius homormorphism Φω is the dual of Lusztig’s Frobenius homomorphism from
the study of quantum groups specialized at roots of unity.

Theorem 1.4 (See Theorem 6.2). Suppose B is the bigon. The Chebyshev-Frobenius homomor-
phism Φω : Sη(B)→ Sω(B) is the Hopf dual of Lusztig’s Frobenius homomorphism.

In a sense, this provides a skein theoretic description of Luzstig’s Frobenius homomorphism. A
discussion of the dual Frobenius map for Oq2(SL(n)) can be found in Section 7 of [PW].

In addition, the Hopf algebra Oq2(SL(2)) is co-braided, i.e. has a co-R-matrix [Kas] which allows
for its representation theory to be described with a ribbon category, and we show in Proposition
6.5 that our Chebyshev-Frobenius map respects the co-braided structure. In [CL] it was proved
that the stated skein algebra of a triangle is the braided tensor product of two copies of the stated
skein algebra of the bigon. This shows for an ideal triangle, the Chebyshev-Frobenius map can be
built from Lusztig’s Frobenius homomorphism via this braided tensor product. For an arbitrary
triangulable marked surface, via an ideal triangulation and the splitting homomorphism, we see that
our Chebyshev-Frobenius map can be interpreted as a natutral extension of the dual of Lusztig’s
Frobenius homomorphism from the bigon to the whole surface.

1.7. Structure of the paper. We provide a brief summary of the paper:

(2) This section defines the stated skein module of marked 3−manifolds, describes the rela-
tionship to stated skein algebras of punctured bordered surfaces, and introduces the key
concept of functoriality for stated skein modules.

(3) This section proves the existence of a splitting homomorphism for stated skein modules along
properly embedded disks, generalizing the splitting homomorphism of stated skein algebras
along ideal arcs. This endows stated skein modules with the structure of an Oq2(SL(2))
comodule.

(4) This section proves the existence of the Chebyshev-Frobenius homomorphism for stated
skein modules, and shows the compatibility of this map with the splitting homomorphism
defined in the previous section. Additionally, an observation is made regarding the center
of stated skein algebras utilizing transparency and the image of the Chebyshev-Frobenius
homomorphism.

(5) This section provides a conceptual framework for the Chebyshev-Frobenius homomorphism
in terms of the Frobenius homomorphism of quantum tori.

(6) This section provides a conceptual framework for the Chebyshev-Frobenius homomorphism
in terms of the Hopf dual of the Frobenius homomorphism (in the sense of Lusztig) for
quantum groups.

2. Skein modules/algebras

2.1. The ground ring and quantum integers. Throughout this paper the ground ring R will

be a commutative domain with a distinguished invertible element q
1
2 . When q is a root of 1, the

order of q, denoted by ord(q), is the smallest positive integer n such that qn = 1.
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We follow the standard definition of quantum integers, quantum factorials, and quantum bino-
mials, but fix notation as follows:

[n]q :=
qn − q−n

q − q−1

[n]q! := [n]q · [n− 1]q![
n

k

]
q

=

k−1∏
i=0

1− qn−i

1− qi+1

The following facts concerning quantum integers are well-known, see e.g. [Kas].

Lemma 2.1. (a) One has

(5)

[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

(b) If q is a root of unity of order N then

(6)

[
N

k

]
q

=

{
0 if 0 < k < N

1 if k = 0, N.

(c) If yx = qxy and q is a root of unity of order N , then

(x+ y)N = xN + yN .

2.2. Skein modules of marked 3-manifolds. By a marked 3-manifold we mean a pair (M,N ),
where M is an oriented 3-manifold with (possibly empty) boundary ∂M and N is a 1−dimensional
oriented submanifold of ∂M such that each connected component of N is diffeomorphic to the
interval (−1, 1), the closure of each component is diffeomorphic to [−1, 1], and the closures of the
connected components of N are disjoint.

By an N -tangle in M we mean a compact 1-dimensional non-oriented submanifold α of M ,
equipped with a framing, such that ∂α = α ∩N . Where a framing is a continuous assignment of a
vector to each point of α, which is not tangent at that point, and such that at each boundary point
the framing is a positive tangent vector of N . Two N -tangles are N -isotopic if they are isotopic
in the class of N -tangles. The empty set is considered as a N -tangle isotopic only to itself. A
1-component N -tangle α is diffeomorphic to either the circle S1 or the closed interval [0, 1]; we call
α an N -knot in the first case and an N -arc in the second case.

A stated N -tangle α is a N -tangle equipped with a map s : ∂α→ {±}, called the state of α.
The stated skein module S (M,N ) is theR-module freely spanned by all stated N -tangles modulo

N -isotopy and the defining relations described in Figure 1. These relations are understood as
follows. In each of the figures the dashed outline indicates a ball, B ⊂ M , containing part of a
stated tangle diagram. A relation involving, say 3 terms, indicates that whenever we have 3 stated
tangles which are identical outside the ball (corresponding to the dashed part of each term), then we
have a relation on stated tangles as described. In each term the N -tangle is described by strands,
with standard tangle diagram convention. The framing vector is always perpendicular to the page
and pointed at the reader. The ball B will be called the support of the relation.

Relations (A) and (B) do not involve the boundary of M and are standard in skein module
theory. The first and the second diagrams on the right hand side of (A) are called respectively the
positive and the negative resolutions of the diagram on the left hand side.
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Each of Relations (C), (D), and (E), involve ∂M and the marking set N . Here B ∩ N is a
small interval perperdicular to the page at the point marked by the bullet on the boundary, and
its positive direction is pointing at the reader. When two strands come to the marked point, the
lower (in height order) one is depicted by the broken line. The states of the endpoints of the tangle
are indicated there.

Remark 2.2. Introducing a crossing through an isotopy in Relation (E), it is easy to see that in
the presence of Relations (A) − (D), the state exchange relation (E) is equivalent to the relation
in Figure 2.

Figure 2. A relation equivalent to Relation (E) using Relations (A) and (C)

We use the notation [α] to denote the element of S (M,N ) determined by the stated N -tangle
α. However, we will often abuse notation and use α and [α] interchangably when there is no chance
for confusion.

2.3. Functoriality/the category of marked 3−manifolds. Let C be the category whose objects
are marked 3-manifolds, and a morphism from a marked 3-manifold (M,N ) to a marked 3-manifold
(M ′,N ′) is an isotopy class of embeddings f : (M,N ) ↪→ (M ′,N ′). Here an embedding f :
(M,N ) ↪→ (M ′,N ′) is an orientation preserving proper embedding f : M ↪→ M ′ such that f
restricts to an orientation preserving embedding on N . Such an embedding induces an R-module
homomorphism f∗ : S (M,N )→ S (M ′,N ′) by f∗([α]) = [f(α)] for any stated N -tangle α.

We have a natural isomorphism of R-modules

(7) S (M1 tM2,N1 tN2) ∼= S (M1,N1)⊗R S (M2,N2).

In other words, the assignment (M,N )→ S (M,N ) and a morphism f to f∗ is a functor from C
to the category of R-module, and if we define a monoidal structure on C by (M,N )⊗ (M ′,N ′) =
(M tM,N tN ′), then this is a monoidal functor.

Example 2.3. One particular case of functoriality will be used frequently. Let (M,N ) be a marked
3-manifold and X be a closed subset of ∂M disjoint from N . Define M ′ = M \ X. We will say
that the marked 3−manifold (M ′,N ) is pseudo-isomorphic to (M,N ). The natural embedding
ι : (M ′,N ) ↪→ (M,N ) induces an isomorphism of R-modules ι∗ : S (M ′,N ) ∼= S (M,N ).

2.4. Marked surfaces. A finite type surface is a surface homeomorphic to a surface obtained
by removing a finite number of points from a compact oriented 2-manifold with (possibly empty)
boundary. By a marked surface we mean a pair (Σ,P), where Σ is a finite type surface and P,
called the set of marked points, is a finite subset of the boundary ∂Σ.

For a marked surface (Σ,P), the thickening of (Σ,P) is the marked 3-manifold (Σ̃, P̃) where

Σ̃ = Σ× (−1, 1) and P̃ = P × (−1, 1).

Define S (Σ,P) = S (Σ̃, P̃). Given two stated (P × (−1, 1))-tangles α, α′ define the product αα′

by stacking α above α′. This gives S (Σ,P) an R-algebra structure.
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2.5. Equivalence with the definition for punctured bordered surfaces. We will show that
the marked surface definition of a stated skein algebra is equivalent to the original definition given
in [Le3] utilizing punctured bordered surfaces.

A punctured bordered surface, S, is a finite type surface whose boundary is the disjoint union of
open intervals.

To a marked surface (Σ,P), with P = {pi}ki=1, one can associate a punctured bordered surface S
as follows. Let vi ⊂ ∂Σ be a small open neighborhood of pi in ∂Σ. Now let S := (Σ\∂Σ)∪(tki=1vi).
Then ∂S = tki=1vi and each vi is called a boundary edge of S.

The manifold S̃ := S× (−1, 1) is a submanifold of Σ̃ = Σ× (−1, 1). We call c× (−1, 1), where

c is a boundary edge of S, is a boundary wall of S̃. The boundary ∂̃S of S̃ is the disjoint union of
all the boundary walls.

By a ∂̃S-tangle α in S̃ we mean a framed 1-dimensional compact non-oriented submanifold

properly embedded in S̃ with vertical framing at each endpoint and distinct heights for endpoints

in each boundary wall. Here a framing vector at a point in S̃ = S × (−1, 1) is vertical if it is
tangent to and has the positive direction of the component (−1, 1).

Two ∂̃S-tangles are ∂̃S-isotopic if they are isotopic in the class of ∂̃S-tangles. Note that the
endpoints of α in one boundary wall are linearly ordered by heights since they have distinct heights,

and ∂̃S-isotopy does not change the height order.

One nice feature of ∂̃S-tangles is that their tangle diagrams on S can have distinct boundary
points, unlike the case of N -tangle diagrams.

A ∂S-tangle diagram is a tangle diagram α on S whose endpoints are distinct points in ∂S, and
on each boundary edge c the set ∂α∩ c is equipped with a linear ordered. Any ∂S-tangle diagram

α defines a ∂̃S-tangle, unique up to ∂̃S-isotopies, if one equips α with a vertical framing, and the

height order on each boundary wall is the given order. Every ∂̃S-tangle can be represented by a
∂S-tangle diagram.

Return to the marked surface (Σ,P). Every P̃-tangle in Σ×(−1, 1) is automatically a ∂̃S-tangle,

and this gives a bijection of P̃-isotopy classes of P̃-tangles and ∂̃S-isotopy classes of ∂̃S-tangles.

(c) Trivial arc relation 1 (d) Trivial arc relation 2

(e) State exchange relation

Figure 3. A translation of the defining relations in S (M,N ) to the language of
punctured bordered surfaces, using the alternative version of the state exchange
relation

Hence the skein algebra S (Σ,P) is canonically isomorphic to the skein algebra S (S) defined

as the R-module freely generated by ∂̃S-isotopy classes of stated ∂̃S-tangles modulo the original
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relations (A) and (B), and the new relations (C-E) of Figure 3. We have that relations (C) and
(D) of Figure 3 are direct translations of relations (C) and (D) in Figure 1 and relation (E) of
Figure 3 is a translation of the alternative version of relation (E) from 1 seen in Remark 2.2. These
figures are understood as follows. In each of the figures the dashed outline represents a disk, D ⊂ S,

containing part of a stated ∂̃S−tangle diagram. The arrow on the boundary edge is used to indicate
the height order of the two endpoints presented there, meaning that going along the direction of
the arrow increases the height order. These two endpoints are consecutive in the height order,
and the order of other endpoints not presented in the figure is not given by the direction of the
arrow. These diagrams are taken with the blackboard framing meaning they correspond to a piece
of S×(−1, 1) where the (−1, 1) component is perpendicular to the page. Each relation corresponds

to a relation on stated ∂̃S−tangles in S× (−1, 1) which are identical outside of D × (−1, 1), and
which satisfy the expression given inside of D × (−1, 1).

As mentioned above, ∂S̃-tangles can be conveniently depicted by ∂S-tangle diagrams. This
leads us to often formulate statements for punctured bordered surfaces, but these statements can
be easily converted to statements for stated skein algebras of marked surfaces.

2.6. A basis for the skein algebra of surfaces. Let S be a punctured bordered surface.
A ∂S-tangle diagram is simple if it has no double points corresponding to crossings and no com-

ponents which are trivial as defined below. A ∂S−arc is a 1−component simple stated ∂̃S−tangle

diagram having non-empty boundary. A ∂S−knot is a 1−component simple stated ∂̃S−tangle
diagram having empty boundary. Note that a ∂S−knot is determined by a simple closed curve on
S. A ∂S−knot is said to be trivial if it bounds a disk in S. A ∂S−arc is said to be trivial if it
can be isotoped to a subset of a boundary edge.

Let B(S) be the set of all isotopy classes of simple ∂S−tangles such that the height of the
intersection with the boundary wall increases along the orientation of the boundary induced by
the orientation of S, and all − boundary states occur before any + boundary states in the order
determined by this orientation. Then we have the following result of the second author.

Theorem 2.4 (Theorem 2.8 in [Le3]). Suppose S is a punctured bordered surface. Then B(S) is
an R-basis of S (S).

2.7. Height exchange relations. We have the following height exchange relations.

Lemma 2.5 (Height exchange move, Lemma 2.4 of [Le3]). For ν ∈ {±} one has

= qν(8)

= qν(9)

Here we have identify ± with ±1 when we write qν .

2.8. Reflection anti-involution.

Proposition 2.6 (Reflection anti-involution, Proposition 2.7 in [Le3]). Let S be a punctured bor-

dered surface. Suppose R = Z[q±1/2]. There exists a unique Z-linear map σ : S (S)→ S (S) such
that

• σ(q1/2) = q−1/2,
• σ is an anti-automorphism, i.e. for any x, y ∈ S (S),

σ(x+ y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x),
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• if α is a stated ∂S-tangle diagram then σ(α) is the result of switching all the crossings of
α and reversing the linear order on each boundary edge.

Clearly σ2 = id. We call σ the reflection anti-involution.

2.9. Functoriality for surfaces. An embedding of a marked surface (Σ,P) into a marked surface
(Σ′,P ′) is an orientation preserving proper embedding f : Σ ↪→ Σ′ such that f(P) ⊂ P ′. Then f
induces an R-algebra homomorphism f∗ : S (Σ,P)→ S (Σ′,P ′).

The case of punctured bordered surface is different, and more subtle.
Suppose f : S ↪→ Š is an orientation preserving proper embedding of a punctured bordered

surface S into another punctured bordered surface Š. In general, the induced map f∗ : S (S) →
S (Š) might not be well-defined, since if two boundary edges of S are mapped into one boundary
edge b of Š, then the height order of the image of (stated) tangle on b might not be well-defined.

For each boundary edge b of Š choose a linear order of all the boundary edges of S that mapped
into b. Then f , equipped with such an ordering for every boundary edge of Š, gives a well-defined
R-linear map f∗ : S (S)→ S (Š), but f∗ is not an algebra homomorphism in general.

For example, if the boundary of Š is equipped with an orientation (which on a component might
or might not be the orientation induced from Š) then we can order all the boundary edges of S
that are mapped into a boundary edge b of Š using the orientation of b: as one moves on b along the
direction of the orientation, the order is increasing. Thus, for any proper embedding of punctured
bordered surfaces f : S ↪→ Š where ∂Š is equipped with an orientation, we can define an R-linear
map f∗ : S (S)→ S (Š).

2.10. Ideal triangulations of surfaces. An ideal triangle, denoted T, is the punctured bordered
surface obtained from the closed disk by removing three boundary points, which we view as a
triangle without its vertices. An ideal triangulation of a punctured bordered surface, S, is a
realization of S as the result of gluing a finite collection of ideal triangles along their boundary
edges. We say that a punctured bordered surface is triangulable if it admits an ideal triangulation.

Another way to define ideal triangulations is the following. An ideal arc in S is the image of a
proper embedding c : (0, 1) ↪→ S. This means, if we present S = S\V where S is a compact surface
with boundary and V is a finite subset, then c can be extended to an immersion c̄ : [0, 1]→ S such
that c̄(0), c̄(1) ∈ V . An ideal arc is trivial if it bounds a disk.

Then when S is triangulable, an ideal triangulation of S is a maximal collection of disjoint
non-trival ideal arcs which are pairwise non-isotopic.

We note that non-triangulable surfaces are (i) surfaces with |V| = 0, (ii) S is a sphere with
|V| ≤ 2, and (iii) S is a disk with V ⊆ ∂S where |V| ≤ 2.

2.11. Positive state submodule. The submodule S +(M,N ) of S (M,N ) spanned by N -tangles
such that each state is positive was introduced in [Le2]. The corresponding notion S +(Σ,P) of a
marked surface was first defined by Muller [Mu] in connection with quantum cluster algebras. In a
sense, the Muller algebra S +(Σ,P) is a quantization of the decorated Teichmüller space of Penner
[Pen].

3. Splitting homomorphism

The ability to split stated skein algebras along ideal arcs, as introduced in [Le3], has been
instrumental in understanding the structure of stated skein algebras of surfaces [CL]. We now show
that this can be generalized to stated skein modules in general.
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3.1. 3-manifold case. Suppose (M,N ) is a marked 3-manifold and D is a properly embedded
closed disk in M which is disjoint from the closure of N . By splitting M along D we mean taking
a 3-manifold M ′ whose boundary contains two copies D1 and D2 of D such that gluing D1 to D2

gives a manifold homeomorphic to M . Additionally, let a ⊂ D be any choice of an oriented open
interval along with a1 ⊂ D1 and a2 ⊂ D2 being the image of a under the splitting M along D.
Then the marked 3-manifold (M ′,N ′), where N ′ = N ∪ a1 ∪ a2, is called a splitting of (M,N )
along (D, a).

An N -tangle α in M is said to be (D, a)-transverse if its splitting along (D, a) is an N ′-tangle,
meaning α is transverse to D, α ∩ D = α ∩ a, and the framing at every point of α ∩ a is a
positive tangent vector of a. Suppose additionally that α is stated. The splitting α′ of α then has
new boundary points on a1 ∪ a2 which do not have an associated value in {±}. Given any map
s : α∩a→ {±} let (α′, s) be the stated N ′-tangle with s(x) determining the state at any boundary
point x′ in a1 ∪ a2 by s(x), where x′ is the image under splitting along (D, a) of x ∈ a. We call
(α̃, s) a lift of α, and note that if |α ∩ a| = k then α has 2k distinct lifts.

Theorem 3.1. Suppose (M,N ) is a marked 3−manifold and D is a closed, properly embedded disk
in M . Assume additionally that D is disjoint from the closure of N , and a is an oriented open
interval in the interior of D. Let (M ′,N ′) be a result of splitting (M,N ) along (D, a), as described
above.

There is a unique R-module homomorphism

Θ(D,a) : S (M,N )→ S (M ′,N ′)

such that if α is an N -tangle α in M which is (D, a)-transveral, then Θ(D,a)(α) is the sum of all
lifts of α. Utilizing the notation from abvoe,

Θ(D,a)([α]) =
∑

s:α∩a→{±}

[(α′, s)].

Remark 3.2. When it is clear from context we will denote Θ(D,a) by Θ, or ΘD if we look to only
emphasize the disk D.

Proof. We will reduce the proof to the case covered by [Le3, Theorem 3.1].
Let T (D, a) denote the R−module freely generated by the set of stated N -tangles which are

(D, a)−transverse, noting that this is the set of all tangles and not the collection of isotopy classes.
We also note that any isotopy class of N -tangles contains a (D, a)−transverse representative. Thus
the skein module S (M,N ) is the quotient of T (D, a) by the equivalence relation generated by
isotopies of (D, a)−transverse N -tangles and the defining relations in Figure 1.

Define an R-linear map Θ̂ : T (D, a)→ S (M ′,N ′) by

Θ̂(α) =
∑

s:α∩a→{±}

[(α̃, s)].

We will show that Θ̂ descends to a well defined map, Θ : S (M,N ) → S (M ′,N ′), by showing

that Θ̂ is constant on isotopy classes, and that the image of the defining relations in Figure 1 are
equal.

Now take U to be an embedded collared neighborhood of D. Then any isotopy can be decom-
posed into stages which are supported in the interior of U and stages which are supported in the
complement of D. The support of any defining relation can also be assumed either to be in U or
disjoint from D. If the support of an isotopy or a defining relation is disjoint from D, then the

image under Θ̂ is unchanged by definition. Now we see that isotopies and defining relations which
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are supported in the interior of U can be represented diagrammatically. Take a diffeomorphism of
the interior of U to the open cube (−1, 1)3 such that a ⊂ {(0, 0)} × (−1, 1) and D is the closure of
{0} × (−1, 1)2. In this standardized form, an isotopy supported in U can be further decomposed
into a combination of Reidemeister moves and additional moves created by tangency to D, crossings
coinciding with D and height exchanges. The invariance of these moves and the defining relations
is verified by considering diagrammatic projections onto D in Theorem 3.1 of [Le3]. Thus Θ is well
defined. �

Remark 3.3. In Theorem 3.1 we can relax the requirement that D is a closed disk. We may
instead assume that D is a disk obtained from a closed disk by removing a finite number of closed
intervals on the boundary. When such a disk D is properly embedded into M and has an open
interval a in its interior, we can split (M,N ) as usual, and Theorem 3.1 still holds. This case
actually reduces to the case of splitting along a closed disk by utilizing the pseudo-isomorphisms
of Example 2.3.

Remark 3.4. Immediately from the definition of the splitting homomoprhism we see that for any
two disjoint embedded disks D1 and D2 splitting along the two disks commutes in the sense that

ΘD1 ◦ΘD2 = ΘD2 ◦ΘD1

3.2. Specializing to surfaces. Specializing the splitting homomorphism of Theorem 3.1 to the
case of thickenings of marked surfaces, and then translating to the language of punctured bordered
surfaces as explained in Subsection 2.5, we can recover the splitting homomorphism of stated skein
algebras originally developed in [Le3].

Let c be an ideal arc of a punctured bordered surface S. By splitting S along an ideal arc c we
mean taking a new punctured bordered surface S′ whose boundary contains two boundary edges
c1 and c2 which when glued together give a surface homeomorphic to S where the image of c1 and

c2 is c. The thickening of S, denoted S̃ := S × (−1, 1), has boundary ∂̃S = ∂S × (−1, 1). A

∂̃S-tangle α is vertically transverse to c × (−1, 1) if α is transverse to c × (−1, 1), the framing at
every point of α∩ (c× (−1, 1)) is vertical, and the heights of points in α∩ (c× (−1, 1)) are distinct.
Additionally, assume that α is stated. Then given any s : α∩ (c× (−1, 1))→ {±}, let (α′s) be the

∂̃S
′
-tangle (in S̃′) which is the splitting of α with states on the newly created boundary points

determined by s, and call such (α′, s) a lift of α. Theorem 3.1 for punctured bordered surfaces
becomes the following, which was originally proved in [Le3].

Theorem 3.5 (Theorem 3.1 of [Le3]). Suppose c is an ideal arc of a punctured bordered surface S
and S′ is a splitting of S along c. There is a is a unique R-algebra homomorphism

Θc : S (S)→ S (S′)

such that if α is a stated ∂̃S-tangle vertically transverse to c× (−1, 1) then Θc(α) is the sum of all
the lifts of α. Moreover Θc is an algebra embedding.

The fact that Θc is an algebra homomorphism is clear from the definition; that it is an embedding
follows from a consideration of the bases of the relevant stated skein algebras.

3.3. Splitting the splitting homomorphism. Suppose c is an oriented ideal arc of a punctured
bordered surface S, and V ⊂ c is a finite collection of points on c. Let Š = S\V . Then c\V = tki=1ci
is the disjoint union of ideal arcs ci of Š. Let S′ be the result of splitting S along c, and Š′ be the
result of splitting Š along all ci. We have natural embeddings ι : Š ↪→ S and ι : Š′ ↪→ S′ as seen
in Figure 4.
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Figure 4. The top left of this diagram shows the ideal arc c in S. The top right
shows the result of removing k points (in this case 3) on c to give a family of ideal
arcs, ci, in Š. The bottom left shows a splitting of S along c, called S′. The bottom
right shows the result of splitting Š along each ci to get Š′. The horizontal maps ι
are the natural embeddings of punctured bordered surfaces which can be considered
additionally with compatible orientations on each ci with an orientation on c. The
vertical arrows indicate splitting along the appropriate ideal arcs, but these do not
correspond to maps between surfaces.

The orientation of c induces an orientation on the two boundary edges of S′ which are the image
of c under splitting along c. Using the orientation of these copies copies of c we can use functoriality
to define the induced map ι∗ : S (Š′)→ S (S′), as described in Subsection 2.9.

By the commutativity of the splitting homomorphisms, the composition of all of the splitting
homomorphisms Θci can be taken in any order. With a slight abuse of notation, we also denote this
composition by Θc : S (Š)→ S (Š′). From the definition of the splitting homomorphism applied
to stated tangle diagrams we have the following result.

Lemma 3.6. One has that Θc and ι∗ commute, in the sense that the following diagram is commu-
tative:

S (S) S (Š)

S (S′) S (Š′)

Θc

ι∗

Θc

ι∗

3.4. The bigon and a coaction. The Hopf algebraOq2(SL(2)), known as the quantum coordinate
ring of the Lie group SL2, is the R−algebra generated by a, b, c, d with relations

ca = q2ac, db = q2bd, ba = q2ab, dc = q2cd, bc = cb,(10)

ad− q−2bc = 1, da− q2cb = 1(11)

The coproduct ∆, counit ε, and antipode S are given by

(12) ∆(a) = a⊗ a+ b⊗ c,∆(b) = a⊗ b+ b⊗ d,∆(c) = c⊗ a+ d⊗ c,∆(d) = c⊗ b+ d⊗ d

ε(a) = ε(d) = 1, ε(c) = ε(b) = 0

S(a) = d, S(d) = a, S(b) = −q2b, S(c) = −q−2c.
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In addition, the Hopf algebra Oq2(SL(2)) has a co-R-matrix with which it becomes a dual
quasitriangular Hopf algebra (see [Maj, Section 2.2]), which is also known as a co-braided Hopf
algebra (see [Kas, Section VIII.5]). The co-R-matrix, whose explicit formula will be recalled in
Definition 1, helps to make the category of Oq2(SL(2))-modules a ribbon category allowing for the
construction of quantum invariants of links and 3-manifolds.

The bigon B is the punctured border surface obtained from the closed disk by removing two of
its boundary points. Alternatively we can identify B with (−1, 1)× [0, 1], and the arc α = 0× [0, 1]
is called the core of B, see Figure 5.

Figure 5. Two depictions of the bigon, with the arc α stated with µ and ν.

Splitting B along an ideal arc connecting the two ideal points gives a disjoint union of two copies
of B. Hence the splitting homomorphism gives an algebra homomorphism

∆ : S (B)→ S (B)⊗S (B),

which is compatible with the algebra structure. There are also geometric definitions of a counit,
an antipode, and a co-R-matrix which make S (B) a co-braided Hopf algebra. It is shown in [CL]
that there is an isomorphism of co-braided Hopf algebras S (B) and Oq2(SL(2)) given by

(13) α++ → a, α+− → b, α−+ → c, α−− → d.

The bigon B, a punctured bordered surface, corresponds to the marked surface (B,P), where
P consists of two points, one on each on each boundary edge. We call (B,P) the marked bigon.

Let a be a connected component of the set of markings N of a marked 3-manifold (M,N ). A
small neighborhood of a in ∂M is a disk D. By pushing the interior of D inside M we get a new disk
D′ which is properly embedded in M . Splitting (M,N ) along D′, we get a new marked 3-manifold
(M ′,N ′) isomorphic to (M,N ), and another marked 3-manifold bounded by D and D′. The latter,
after removing the common boundary of D and D′, is isomorphic to the thickening of the marked
bigon. Hence the splitting homomorphism gives an R-homomorphism

∆a : S (M,N )→ S (M,N )⊗Oq2(SL(2)).

Directly following the argument for the case of surfaces in [CL], one can check that ∆a gives
S (M,N ) a right comodule structure over Oq2(SL(2)). As Oq2(SL(2)) is the Hopf dual of the
quantized envelopping algebra Uq2(sl2), a right comodule over Oq2(SL(2)) is a left module over
Uq2(sl2), whose representation theory is well known. In the case of surfaces, the Uq2(sl2)-module
structure of S (M,N ) is described in [CL], and the method developed there can be used to study
the Uq2(sl2)-module structure of S (M,N ) in the 3-manifold case as well.

For later use, let us record the following computation.

Lemma 3.7. Consider the algebra Oq2(SL(2)) with generators a, b, c, d as defined above.
(a) For any x ∈ {a, b, c, d} let x+ and x− be respectively the first and the second term in the

formula of ∆(x) given by (12). Then

(14) x−x+ = q4x+x−.
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(b) If q is a root of 1 with ord(q4) = N then

(15) TN (a+ d) = aN + dN .

Proof. (a) This follows immediately from the commutations in equation (10).
(b) From the identities of equation (11) we see that

(16) q2ad− q−2da = q2 − q−2

Consider the following algebras which are closely related to the q−boson algebra considered by
Kashiwara [Kash, Section 3],

A = R〈a, d〉/(q2ad− q−2da = q2 − q−2)

A′ = R〈x±1, y±1〉/(yx = q4xy).

There is an algebra embedding from f : A ↪→ A′ given by a → x, d → x−1 + y. The injectivity of
this map can be seen from a lead term argument using the degree of each term.

As yx = q4xy and q4 is a root of 1 order N , we have, following identity (c) of Lemma 2.1, that

(17) (x+ y)N = xN + yN .

We then have

f(aN + dN ) = xN + (x−1 + y)N = xN + x−N + yN .(18)

f(TN (a+ d)) = TN (f(a+ d)) = TN (x+ x−1 + y).(19)

It is known that, see [Bon, Equation (2)] or [LP, Corollary 3.2], in the quantum torus A′, with q4

a root of unity of order N , the right hand side of equation (18) and the right hand side of equation
(19) are equal. Hence we have equation (15). �

The special case of (15) when q1/2 is a roof of odd order is also proved in [KQ].

3.5. Open annulus. The open annulus A := (−1, 1)× S1 is a punctured bordered surface having
empty boundary. It is diffeomorphic to the sphere with 2 points removed, meaning it has two ideal
points. The curve z = 0 × S1 is called the core of A. The skein algebra S (A) is isomorphic to
R[z], the polynomial algebra in z. Splitting A along an ideal arc, c, which connects the two ideal
points gives a bigon. The splitting hommorphism is given by

(20) Θc(z) = a+ d,

where a and d are elements of Oq2(SL(2)) which is identified with S (B) under the isomorphism
defined in equation (13).

4. The Chebyshev-Frobenius homomorphism

4.1. Root of unity. When R = C, the field of complex numbers, and q1/2 = ω is a non-zero
complex number, we denote S (M,N ) by Sω(M,N ). If ω is a root of 1, let ord(ω) be the least
positive integer n such that ωn = 1.
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4.2. The main theorem. Recall the Chebyshev polynomials of type one, Tn(x) ∈ Z[x], are defined
recursively as

T0(x) = 2, T1(x) = x, Tn(x) = xTn−1(x)− Tn−2(x), ∀n ≥ 2.

If α is an N -arc or N -knot in a marked 3-manifold (M,N ), then for every k ∈ N let α(k) be
the disjoint union of k parallel copies of α where this parallel push-off is done in the direction of
the framing of α. Note that the N -isotopy class of α(k) is uniquely determined by α. We will
often abuse notation and not distinguish between α(k) and [α(k)] as an element of the skein module
Sω(M,N ). If f(x) =

∑
ckx

k ∈ C[x] is a polynomial, then we define the threading of α by f to

be the element f fr(α) :=
∑

k ckα
(k) in Sω(M,N ). If β is another one-component N -tangle and

g =
∑
djx

j ∈ C[x] then we define

f fr(α) ∪ gfr(β) =
∑

ckdj α
(k) ∪ β(j)

as an element of the skein module Sω(M,N ). Similarly, we can define ∪mi=1(fi)
fr(αi) ∈ Sω(M,N ),

where each αi is a one-component N -tangle and each fi is a polynomial.

Theorem 4.1. Suppose (M,N ) is a marked 3-manifold and ω is a complex root of unity. Let

N = ord(ω8) and η = ωN
2
.

(a) There exists a unique C-linear map Φω : Sη(M,N ) → Sω(M,N ) such that for any N -
tangle α, considered as an element of Sη(M,N ), its image Φω(α) is the result of threading each
knot component of α by TN each N−arc component by xN . Meaning explicitly, that for an N -tangle
α = a1 ∪ · · · ∪ ak ∪ α1 ∪ · · · ∪ αl where the ai are N -arcs and the αi are N -knots,

Φω(α) = a
(N)
1 ∪ · · · ∪ a(N)

k ∪ (TN )fr(α1) ∪ · · · ∪ (TN )fr(αl) in Sω(M,N ).(21)

(b) Additionally, we have that Φω commutes with the splitting homomorphism, meaning if (M ′,N ′)
is the result of splitting (M,N ) along (D, a), then the following diagram commutes:

(22)

Sη(M,N ) Sη(M
′,N ′)

Sω(M,N ) Sω(M ′,N ′)

Θ(D,a)

Φω Φω

Θ(D,a)

We call Φω the Chebyshev-Frobenius homomorphism. For a brief history see Subsections 1.3 and
1.4.

We first prove a few technical lemmas, before giving a proof of Theorem 4.1 in Subsection 4.8.

4.3. Setting. Let Ŝη(M,N ) be the C-module freely generated by N -tangles, noting that this is

the set of tangles and not isotopy classes of tangles. The kernel of the projection Ŝη(M,N ) �

Sη(M,N ) is the C-subspace of Ŝη(M,N ) generated α − β where α and β are either related by a
N -isotopy or are two sides of one of the defining relations seen in Figure 1.

Define the C-linear map Φ̂ω : Ŝη(M,N ) → Sω(M,N ) such that if α is a stated N -tangle then

Φ̂ω(α) is the right hand side of (21). By this definition Φ̂ω(α) depends only on the N -isotopy class

of α. We will show that Φ̂ω descends to a C-linear map Φω : Sε(M,N ) → Sω(M,N ) by proving
that if α and β are two sides of one of the defining relations seen in Figure 1 then

(23) Φ̂ω(α) = Φ̂ω(β).
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4.4. Technical lemmas. We first prove a special case the commutativity of Diagram (22).

Lemma 4.2. Suppose D is a disk properly embedded into a marked 3-manifold (M,N ) and D
contains an open interval u. Let α be a stated N -tangle which is (D,u)-transverse, such that α
intersects u in exactly one point. Let (M ′,N ′) be the result of splitting (M,N ) along (D,u). For
ν ∈ {±} let αν be the lift of α, with both newly created boundary points having state ν. Then

(24) Φ̂ω(α+ + α−) = Θc(Φ̂ω(α)).

Remark 4.3. Since Θc([α]) = [α+] + [α−], it is tempting to write the left hand side of (24) as

Φ̂ω(Θc(α)). As Φ̂ω is defined on tangles themselves and not equivalence classes Φ̂ω(Θ(α)) is not
well defined.

Proof. It is enough to consider the case when α has one component. There are two cases which we
will address separately: (i) α is an N -arc, and (ii) α is an N -knot.

(i) Assume α is a N -arc. A small tubular open neighborhood of α∪D in M is pseudo-isomorphic
to the thickening of a marked bigon (see Subsection 3.4), with α being identified with the core of
the bigon and D being the thickening of an ideal arc connecting the two ideal points of the bigon.
Then utilizing functoriality we may assume, without loss of generality, from the outset that (M,N )
is the thickening of the marked bigon B, α is the core of the bigon, and D is the thickening of an
ideal arc connecting the two ideal points.

Under the identification of S (B) with Oq2(SL(2)) by equation (13), the N -tangle α, depending
on the states at the end points, becomes an element x ∈ {a, b, c, d}. Moreover, α+ and α− are
exactly the two terms on the right hand side of the formula of ∆(x) given by equation (12). The
left hand side of equation (24) is

Φ̂ω(α+ + α−) = (α+)N + (α−)N ,(25)

while the right hand side of equation (24) is

(26) Θc(Φ̂ω(α)) = (α+ + α−)N .

Then by equation (14) we have α−α+ = ω8α+α−. With this commutation and ord(ω8) = N , we
have from equation (17) that (α+ + α−)N = (α+)N + (α−)N . This proves the Lemma in case (i).

(ii) Let α be a N−knot. A small tubular neighborhood of α ∪ D is pseudo-isomorphic to the
thickening of an open annulus (see Subsection 3.5) with α being identified with the core z of the
open annulus, and D being identified with the thickening of an ideal arc connecting the two ideal
point. Then utilizing functoriality we may assume, without loss of generality, that (M,N ) is equal
to this neighborhood with the above identifications. The splitting of (M,N ) along D is then the
thickening of the bigon B. With the identification of S (B) with Oq2(SL(2)) by the isomorphism
of equation (13), we have α+ = a and α− = d. The left hand side of equation (24) is then

(27) Φ̂ω(α+ + α−) = aN + dN .

Now as Θc is an algebra homomorphism, the right hand side of of equation (24) is

(28) Θc(Φ̂ω(α)) = Θc(TN (α)) = TN (Θc(α)) = TN (a+ d).

By Lemma 3.7(b), when ord(ω8) = N , the right hand sides of (27) and (28) are equal. Thus, we
have (24). �
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4.5. The square. In the next three lemmas we prove special cases of Identities (23).
Recalling the correspondence described in full in Subsection 2.5, we say a punctured bordered

surface S corresponds to the marked surface (Σ,P), where P consists of one point on each boundary

edge of S. By identifying P̃-isotopy classes of P̃-tangles with ∂̃S-isotopy classes of ∂̃S-tangles (as

in Subsection 2.5), for every ∂̃S-tangle, and hence for every ∂S-tangle diagram α, we can define

Φ̃ω(α) ∈ Sω(S) = Sω(S,P).
The ideal square Q is the punctured bordered surface obtained from the closed disk by removing

four boundary points, which we view as a square without its vertices.
Let X be a stated ∂Q-tangle diagram in Q consisting of 2 arcs as in Figure 6, with arbitrary

states on the boundary. Let X+ (respectively X−) be result of the positive (respectively negative)
resolution of the only crossing of X.

Figure 6. The ideal square and stated tangles X,X+, X− on it. The states of
X,X+, X− are the same on each boundary component.

Lemma 4.4. In Sω(Q) one has

(29) Φ̂ω(X) = η2 Φ̂ω(X+) + η−2 Φ̂ω(X−).

Proof. We proceed by induction to prove that in S (Q), for any ground ring R containing an

invertible q1/2 and any m ∈ N, we have

(30) X(m) =
m∑
j=0

qm
2−4mj+2j2

[
m

j

]
q4

X
(m−j)
+ X

(j)
− .

The base case of m = 1 is X = qX+ + q−1X−, which follows immediately from the skein relation
(A) of Figure 1. Now assume the formula holds true for a fixed k. The diagram of X(k+1) is
presented by a grid as in Figure 7, and the crossings will be parameterized similarly to entries of a
(k+1)× (k+1) matrix. For example, the upper left crossing is the (1, 1)-crossing. Observe that all
endpoints on a given boundary edge have identical states. Under these conditions, it follows from a
combination of height exchange moves and the trivial arc relation that any tangle diagram having
an arc with both endpoints on the same boundary is 0 in S (Q). Note that this fact requires that
all of the states on a given boundary edge are identical, and not just that the endpoints of the
returning arc have equal states.

Now define h+ and h− be the tangle diagrams obtained as positive and negative resolutions,
respectively, of the (1, 1)-crossing in the diagram X(k+1). Then by definition, the skein relation

applied to the (1, 1)-crossing of X(k+1) gives

X(k+1) = qh+ + q−1h−.

Looking at consecutive resolutions in h+ along the top row of crossings, meaning the (1, 2)-crossing
through the (1, k+1)-crossing, we see that each negative resolution would gives a trivial arc with the
bottom boundary edge, meaning the only nonzero diagram occurs when all crossings are resolved
positively. Then following a similar argument if we consecutively resolve the crossings down the
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Figure 7. A depiction of the inductive hypothesis when decomposing X(3).

rightmost column, meaning the (2, k + 1)-crossing to the (k + 1, k + 1)-crossing, we have the only
nonzero diagram occurs when each of these crossings are resolved positively. Together this implies

h+ = q2kX+ ·X(k) ∈ S (Q).

Similarly, a mirrored argument on h−, meaning consecutively resolving the top row of crossings
and the left-most column of crossings, gives that the only nonzero diagram occurs when each
crossing is resolved negatively. Hence,

h− = q−2kX(k) ·X− ∈ S (Q).

Taken together we have

(31) X(k+1) = q2k+1X+ ·X(k) + q−2k−1X(k)X−,

which allows us to proceed with our inductive step.
Then applying our inductive hypothesis of equation 30 to the right hand side of equation 31 we

have

q2k+1(

k∑
i=0

qk
2−4ki+2i2

[
k

i

]
q4

X
(k+1−i)
+ X

(i)
− ) + q−2k−1(

k∑
i=0

qk
2−4ki+2i2

[
k

i

]
q4

X
(k−i)
+ X

(i+1)
− )

Combining like terms gives

q(k+1)2
X

(k+1)
+ + (

k∑
i=1

q(k+1)2−4(k+1)i+2i2(q4i

[
k

i

]
+

[
k

i− 1

]
)X

(k+1−i)
+ X

(i)
− ) + q−(k+1)2

X
(k+1)
−

Then applying the the q−binomial identity from part (b) of Lemma 2.1 simplifies to

=
k+1∑
i=0

q(k+1)2−4(k+1)i+2i2
[
k + 1

i

]
X

(k+1−i)
+ X

(i)
− ,

which completes the proof that equation (30) holds in S (Q).

When q1/2 = ω, the element q4 = ω8 is a root of 1 of order N . Then from part (a) of Lemma 2.1

we have that qm
2−4mj+2j2

[
m
j

]
q4

= 0 unless j = 0 or j = N . Applying this to equation (30) gives

X(N) = ωN
2
X

(N)
+ + ω−N

2
X

(N)
− ,
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and our result follows as desired. �

4.6. The punctured bigon. The punctured bigon B̊ is the result of removing an interior point
from the bigon. Let Y be the stated ∂B̊-tangle diagram on B̊ as in Figure 8, and Y+ (respectively
Y−) be the result of the positive (respectively negative) resolution of the only crossing of Y .

Figure 8. The punctured bigon B̊ and the stated tangles Y, Y+, Y−.

Lemma 4.5. In Sω(B̊) one has

(32) Φ̂ω(Y ) = η2 Φ̂ω(Y+) + η−2 Φ̂ω(Y−).

Proof. Let c be the ideal arc connecting the interior ideal point and the top ideal point, as seen in
Figure 9.

Figure 9. Cutting along the ideal arc c

The result of splitting B̊ along c is the ideal square Q. The two lifts of Y are stated ∂Q-tangle
diagrams X1 and X2, each of which is an appropriately stated copy of X from Figure 6. Similarly,
the two lifts of Y+ are X+,1 and X+,2, each of which is a stated copy of X+, and the two lifts of
Y− are X−,1 and X−,2, each of which is a stated copy of X−.

Since the splitting homomoprhism Θc : Sω(B̊) ↪→ Sω(Q) is an algebra embedding, to prove
Identity (32) one only needs to prove the validity of its image under Θc, i.e.

(33) Θc(Φ̂ω(Y )) = η2 Θc(Φ̂ω(Y+)) + η−2 Θc(Φ̂ω(Y−)).
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By Lemma 4.2, we have

Θc(Φ̂ω(Y )) = Φ̃ω(X1) + Φ̃ω(X2)

Using Lemma 4.4, we have, for i = 1, 2

Φ̃ω(Xi) = η2Φ̃ω(Xi,+) + η−2Φ̃ω(Xi,−).

Hence

Θc(Φ̂ω(Y )) = η2(Φ̃ω(X+,1) + Φ̃ω(X+,2)) + η−2Φ̃ω(X−,1) + Φ̃ω(X−,2)

= η2Θc(Φ̂ω(Y+)) + η−2Θc(Φ̂ω(Y+)),

where the second identity follows from Lemma 4.2. This completes the proof. �

4.7. The marked annulus. The closed annulus is [0, 1] × S1. The result of removing a point in
each boundary component of the closed annulus is denoted by A, and its corresponding marked
surface is called a marked annulus.

Let Z be a stated ∂A-tangle diagram in A as in Figure 10, with arbitrary states on the boundary.
Let Z+ (respectively Z−) be the result of the positive (respectively negative) resolution of the only
crossing of Z.

Figure 10. The annulus A with stated tangle diagrams Z,Z+, Z− on it, and the
ideal arc c.

Lemma 4.6. In Sω(A) one has

(34) Φ̂ω(Z) = η2 Φ̂ω(Z+) + η−2 Φ̂ω(Z−).

Proof. Let c be the ideal arc connecting the ideal points as seen in Figure 10.
The result of splitting A along c is the ideal square Q. The two lifts of Z are stated ∂Q-tangle

diagrams X1 and X2, each of which is a stated copy of X from Figure 6. Similarly, the two lifts of
Z+ are X+,1 and X+,2, each of which is a stated copy of X+, and the two lifts of Z− are X−,1 and
X−,2, each of which is a stated copy of X−. Now one can repeat the proof of Lemma 4.5 to obtain
the result. �

4.8. Proof of Theorem 4.1.

Proof. (a) We need to show that Φ̂ω(α) = Φ̂ω(β) if α and β are respectively the left and the right
sides of one of the defining relations seen in Figure 1. The support of each relation is a ball, B.
Note that in each relation, α is a stated N -tangle which without loss of generality we may assume
does not have any component disjoint from B. Let U be the union of the support ball, B, and
a small open tubular neighborhood of α, and let V = U ∩ N . The functoriality of stated skein
modules, along with the embedding of (U,V) into (M,N ), implies that it is enough show that
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(35) Φ̂ω(α) = Φ̂ω(β) in Sω(U,V).

Below we consider the 5 defining relations. First we notice that when ∂α = ∅, then V = ∅,
and Identity (35) was already proved in [BW2]; see also [Le1] for alternative proof utilizing skein
theoretic techniques. As such we will consider only the case when ∂α 6= ∅.

We begin by looking at the skein relation seen in Figure 11.

Figure 11. Skein relation (A)

There are three cases: (i) α consists of two arcs, (ii) α consists of one arc, and (iii) α consists of
one arc and one loop.

(i) Suppose α consists of two arcs. Then (U,V) is pseudo-isomorphic to the thickening of the
ideal square Q, and Identity (35) was proved in Lemma 4.4.

(ii) Suppose α consists of a single arc. Then (U,V) is pseudo-isomorphic to the thickening of

the punctured bigon B̊, and Identity (35) was proved by Lemma 4.5. We note that it is necessary
to consider the reflection of Lemma 4.5 under the reflection anti-involution of Proposition 2.6, to
cover the case where the crossing is opposite that of the statement of the lemma.

(iii) Suppose α consists of one arc and one loop. Then (U,V) is pseudo-isomorphic to the
thickening of the annulus Å, and Identity (35) was proved by Lemma 4.6. Here again we note the
need for the image of Lemma 4.6 under the reflection anti-involution to cover the case when the
closed loop component crosses over the arc component.

We next look at the trivial knot relation seen in Figure 12.

Figure 12. Trivial knot relation (B)

In this case Identity (35) becomes the easily verified identity

TN (−ω4 − ω−4) = −η4 − η−4,

and as ∂α = ∅, this was already proved in [BW2, Le1].
We next look at the trivial arc relation of type 1 seen in Figure 13.

Figure 13. Trivial arc relation of type 1 (C)

We need to prove that Φ̂ω(α) = η−1.
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Figure 14. Diagrams α, α(N), and γ, with N = 3.

Since α is arc, we have Φ̂ω(α) = α(N). We draw a diagram of α(N) in Figure 14, which has
N(N − 1)/2 crossings. Using the height exchange move from equation (8) with ν = −1 we have
that

α(N) = (ω2)−N(N−1)/2γ,

where γ is described as in Figure 14. Repeated applications of the trivial arc relation of type 1,
shows that γ = ω−N .Taken together we have

Φ̂ω(α) = α(N) = (ω2)−N(N−1)/2γ = (ω2)−N(N−1)/2ω−N = η−1,

which proves (35) for this case.
We next look at the trivial arc relation of type 2 seen in Figure 15.

Figure 15. Trivial arc relation of type 2 (D)

We need to prove that Φ̂ω(α) = 0, where α is a trivial arc with both states + or both states

−. Like in the previous case, the diagram of α(N) has N(N − 1)/2 crossings. Using the height

exchange moves of Lemma 2.5 we can remove the crossings and get α(N) = uγ, where u is a scalar,
and γ is as in Figure 14, except all the states are + or all the states are −. The trivial arc relation

of type 2 implies that γ = 0. Hence Φ̂ω(α) = 0, which proves (35) for this case.
Finally, we look at the state exchange relation seen in Figure 16.

Figure 16. The state exchange relation

This is the translation of the state exchange relation to punctured bordered surfaces. By defini-

tion, we have the diagrams of Φ̂ω(α) and Φ̂ω(β) as described in Figure 17.

The diagram of Φ̂ω(α) has N2 crossings. Applying the relation seen in Figure 16, we get

Φ̂ω(α) = (ω2)N
2
Φ̂ω(β) = η2Φ̂ω(β),

which proves (35) for this case, and completes the proof of part (a).
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Figure 17. The left is the diagram of Φ̂ω(α) and the right is the diagram of Φ̂ω(β),
where N = 3.

(b) For every stated N -tangle α in M we need to prove that

(36) ΘD(Φω(α)) = Φω(ΘD(α)).

Let U be the union of a small open tubular neighborhood of α ∪D. Then U is the thickening of
a surface which contains α, and utilizing the embedding of U into M along with the functioriality
of stated skein modules we only need to prove (36) in the case of M = U . Thus we may assume
that α is a simple ∂S-tangle diagram on a punctured bordered surface S, with c an ideal arc, and
identity (36) becomes

(37) Θc(Φω(α)) = Φω(Θc(α)).

We can assume that α is transverse to c. If |α ∩ c| = 1, then (37) follows exactly from Lemma
4.2.

Choose a finite subset V ⊂ c such that c \ V = tki=1ci and each ci intersects α at exactly one

point. Let Š = S \ V. We are in the situation described in Lemma 3.6. Thus, let S′ be the result
of splitting S along c, and Š′ be the result of splitting Š along all ci. Choose an orientation for c,
as in the discussion in Subsection 3.3, allowing for well defined induced maps on the corresponding
skein modules. Let α̌ ∈ S (Š) be the element defined by the same α, but considered as an element
of S (Š). Then clearly

(38) ι∗(α̌) = α,

where ι∗ : S (Š)→ S (S) is the induced homomorphism. Since α̌ intersects each ci in exactly one
point, we have Θci(Φω(α̌)) = Φω(Θci(α̌)) again by Lemma 4.2. As Θc : S (Š) → S (Š′) is the
composition of the Θci , we have

(39) Θc(Φω(α̌)) = Φω(Θc(α̌)).

From the definition it is clear that ι∗ commutes with Φω. By Lemma 3.6 we have that ι∗ commutes
with Θc. Hence applying ι∗ to (39) and using (38), we get

Θc(Φω(α)) = Φω(Θc(α)),

which is Identity (37) as desired. �

4.9. Specializing to surfaces. Now we see how our main theorem can be specialized to the case
of stated skein algebras of surfaces to give the following corollary:

Corollary 4.7. Suppose S is a punctured bordered surface and ω is a complex root of unity. Let

N = ord(ω8) and η = ωN
2
.

(a) There exists a unique C-linear algebra homomorphism Φω : Sη(S)→ Sω(S) determined on

generators by if α is a ∂S−arc then Φω(α) = α(N), and if α is a ∂S−knot then Φω(α) = TN (α).
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(b) Additionally, Φω is injective and we have that Φω commutes with the splitting homomorphism,

meaning if Ŝ is the result of splitting S along and ideal arc γ, then the following diagram commutes:

(40)

Sη(S) Sη(Ŝ)

Sω(S) Sω(Ŝ)

Θγ

Φω Φω

Θγ

Proof. Aside from the injectivity, this is a direct specialization of Theorem 4.1. We will show Φω is
injective separately for triangulable surfaces and surfaces which are not triangulable, as described
in Subsection 2.10.

For triangulable surfaces, we will see injectivity of Φω as an application of the compatibility of
Φω with the splitting homomorphism. Let ∆ be an ideal triangulation of S, then combining the
discussion of Subsection 2.10 with Theorem 3.5 we have the following injective map coming from
the composition of splitting homomorphims:

Θ∆ : S (S) ↪→
⊗
T∈∆

S (T),

where T is the ideal triangle. We see that Θ∆ fits into the following commutative diagram by
repeated applications of the compatibility of Φω with the splitting homomorphisms:

(41)

Sη(S) Sω(S)

⊗
Sη(T)

⊗
Sω(T).

Φω

Θ∆ Θ∆

⊗
Φω

Then noting that the tensor product of injective maps between vector spaces is injective, we see
the injectivity of Φω in general to be reduced to the injectivity of Φω in the specific case of the
ideal triangle. Following Theorem 2.4 we see that a basis of S (T) is given by crossingless diagrams
of arcs which meet distinct boundary edges in T, where on a given boundary edge there is never
a negative state after a positive with respect to the orientation of that boundary edge induced by
the orientation of the ideal triangle. Then note for an arc α, we have within a small neighborhood
of α that α(N) is the N -strand half twist equally stated on each boundary edge. Using that all the

states on a given boundary edge are equal we have that N(N−1)
2 height exchange moves, as seen in

Lemma 2.5, can be applied to remove all of the crossings at the cost of a nonzero scalar multiple.
Additionally, noting that the framed power will not introduce a negative state after any positive
states we see that Φω sends each basis diagram to a non-zero multiple of a basis diagram, meaning
Φω is injective.

Now we proceed to surfaces which are not triangulable. Let S be a punctured bordered surface,
where there is a compact oriented surface S and a finite set V ⊂ S such that S ∼= S \ V. The first
case is when |V| = 0. This case is well known to experts, and is stated in Theorem 3.8 of [FKL1],
but we include a proof here for completeness.

Following [FKL2], we look to define a lead term map for S (S) determined by Dehn-Thurston
coordinates for simple closed curves on S. Let B be the basis of isotopy classes of simple closed
curves of S (S).
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If the genus of S is greater than one and |V| = 0 h, then following Subsection 3.6 of [FKL2],
we have coordinate datum determined by Dehn-Thurston coordinates of simple closed curves. Fix
an ordered pants decomposition of S, P = {P1, ..., P3g−3}, meaning a collection of simple closed
curves that cut S into 2g−2 pairs of pants. Fix a dual graph to P , meaning an embedded trivalent
graph with 3g− 3 edges such that each Pi is met transversely by exactly one edge and each pair of
pants in S\P contains exactly one trivalent vertex. Then define

ν : B → Z6g−6

by (ν(α))i = I(α, Pi) for 1 ≤ i ≤ 3g−3, and (ν2(α))j for 3g−3 < j ≤ 6g−6 is the twist coordinate
of α at Pi with respect to the edge of the dual graph that meets Pi.

Then ν is an injective map with an image that is a submonoid of Z6g−6, which refer to as the
monoid of curves in S. Additionally, let µ denote the inverse of ν defined on the monoid of curves.

Now let x =
∑

b∈S cbb 6= 0 be a linear combination with b ∈ S ⊆ B where cb 6= 0 for b ∈ S. Then
we proceed by analyzing two cases separately. First we define Smax to be the subset of S of basis
vectors, b, such that

∑3g−3
i=1 (ν(b))i = k and k is maximal among all b ∈ S.

First we assume that k > 0. In this case we define a lead term map, lt(x) =
∑

b∈Smax cbb. We
look to show that Φω(x) 6= 0, by showing that lt(Φω(x)) 6= 0. We begin by utilizing µ, to describe
each b ∈ Smax as some µ( ~nb) where { ~nb} are distinct vectors in the monoid of curves. Now noting
that br = µ(r~nb), we see that

lt(TN (b)) = µ(N~nb).

Giving

lt(Φω(x)) =
∑

b∈Smax

cbµ(N~nb),

which is nonzero as
∑

i∈Smax cbµ(~nb) is nonzero. Thus Φω is injective in this case.
Now we need to consider the case when the value k used in defining Smax is zero. This corresponds

to basis vectors which never intersect any of the curves in the ordered pants decomposition, meaning
x ∈ C[P1, ..., P3g−3] the polynomial algebra in commuting variables. In this case, Φω(x) = TN (x)
and an additional lead term argument can be done using the ordinary degree of polynomials, to
see TN (x) 6= 0, meaning Φω is injective.

The final case case of surfaces with |V| = 0 is the torus, which was explicitly described by
Frohman and Gelca in [FG]. Now of the remaining surfaces which are not triangulable we have
that the skein algebras of the sphere with one or fewer marked points and the disk with one or
fewer boundary marked point are just the ground field, and so Φω is injective immediately. For
the sphere with two marked points we can use compatibility with the splitting homomorphism to
reduce the case of ideal bigon. This last case of the ideal bigon follows from a simplification of
the argument given for the ideal triangle. In particular, basis diagrams are sent directly to basis
diagrams as the orientation of the two boundary edges can be chosen so the framed power of any
arc is crossingless. �

Even in the case of surfaces, the three-dimensional nature of Theorem 4.1 can provide additional
insight beyond Corollary 4.7. For example, Corollary 4.7 does not explain why the image under
Φω of the curve α in Figure 18 is given by the threading of α by TN . To calculate Φω(α) using
Corollary 4.7 one first resolves the crossing of α to get a linear sum of two simple diagrams, then
apply the formula in Corollary 4.7 to each diagram. It is far from trivial to show that the result is
the same as the threading of α by TN .
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Figure 18. The right hand side of this diagram is an example of a nontrivial equal-
ity for the stated skein algebras of surfaces arising from extending the Chebyshev-
Frobenius homomorphism to 3−manifolds. Note that this example is for the skein
algebra of unmarked surfaces.

Remark 4.8. (a) When ∂S = ∅, the existence of a Chebyshev homomorphism for the thickening
of S was first proved in [BW2] using the quantum trace map. This result was recovered in [Le1]
utilizing skein theoretic techniques.

(b) For the case of the positive submodule of the stated skein module for marked 3−manifolds
Theorem 4.1 was proven in [LP].

(c) Corollary 4.7, in the case that the order of ω is odd only, is also proved in [KQ], using
independent arguments.

(d) A discussion of the Frobenius homomorphism for the skein algebra of surfaces with no marked
points, and its relation to quantum Hamiltonian reduction can be found in [GJS]. Additionally,
in the case of surfaces, quantum moduli algebras provide an alternative viewpoint to stated skein
algebras, from this perspective a Frobenius homomorphism has been developed by [BR].

Remark 4.9. The injectivity of the Chebyshev-Frobenius homomorphism in the case of surfaces
is in contrast to the case of stated skein modules of 3−manifolds in general. Even in the case of
closed 3−manifolds, for example S2 × S1#S2 × S1, the kernel of the Chebyshev homomorphism
may have non-trivial kernel. This will be explored in upcoming work of the second author and
Constantino [CL2].

4.10. Transparency and the Chebyshev-Frobenius image. We will show that the image of
the Chebyshev-Frobenius map is always transparent or skew-transparent.

Theorem 4.10. Suppose (M,N ) is a marked 3-manifold, and ω is a root of unity, with N =

ord(ω8). Then let N ′ = ord(ω4) and µ = (−1)N
′+1. If α is a N−tangle, then Φω(α) is µ−transparent

in the sense that the identity in Figure 19 holds.

Figure 19. A depiction of µ−transparency.

In words this means the following. Suppose T1 is a stated N -tangle disjoint from α, and T2 is
N -isotopic to T1 through an isotopy which is disjoint from α in all but one instance, where the



28 WADE BLOOMQUIST AND THANG T. Q. LÊ

intersection is transverse and in a single point. Then we have

Φω(α) ∪ T1 = µ(Φω(α) ∪ T2) ∈ S (M,N ).

Remark 4.11. We say transparency is µ-transparency when µ = 1 and skew-transparency is
µ-transparency when µ = −1.

Proof. We can assume that α has one component. If α is a an N -knot the µ-transparency of
Φω(α) = TN (α) was proved in [Le1, LP].

Suppose α is an N -arc. Potentially up to isotopy of T1 and T2 we work with the local picture
seen in Figure 20. Then following a version of the consecutive resolutions argument seen in the
proof of Lemma 4.4, we see that only the totally positive and totally negative resolutions result in
nonzero diagrams.

Figure 20. A local picture depicting the crossing of α(N), T1,T2 and the resolutions
of the corresponding crossings.

It follows that

(42) α(N) ∪ T1 = ω2NX+ + ω−2NX−.

Similarly the image under the reflection anti-involution gives,

(43) α(N) ∪ T2 = ω−2NX+ + ω2NX−.

Which tells us

α(N) ∪ T1 = ω4N (α(N) ∪ T2) = µ(α(N) ∪ T2),

as desired.
�

Corollary 4.12. (a) If ord(ω4) is odd we have Φω(α) is transparent, and if ord(ω4) is even we
have Φω(α) is skew-transparent.

(b) If α is a N−arc we have α(2N) is transparent, and if α is a N−knot we have T2N (α) is
transparent.

Proof. (a) follows right away from Theorem We have

Φω(α) ∪ T1 = (−1)N
′+1Φω(α) ∪ T2,

In particular, for any one component tangle α we have

Φω(α(2)) ∪ T1 = Φω(α(2)) ∪ T2,
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meaning Φω(α(2)) is transparent. In particular, if α is a N−arc we have have α(2N) is transparent
and if α is a N−knot we have TN (α2) is transparent. Additionally, we have T2N (α) = TN (α2) + 2,
and so T2N (α) is also transparent. �

4.11. Centers of skein algebras of surfaces. We have the following corollary in the case of
surfaces.

Corollary 4.13. Suppose S is a punctured bordered surface and ω is a root of unity with N =
ord(ω8).

(a) If α is a ∂S-knot then T2N (α) is central, and if α is a stated ∂S−arc then α(4N) is central.
(b) More precisely, let N ′ = ord(ω4) and N ′′ = ord(ω2), then we have that if α is a ∂S−knot

then TN ′(α) is central, and if α is a stated ∂S−arc then α(N ′′) is central.

Proof. We first look to prove (b). If α is a N−knot then centrality follows immediately from
transparency. So our result follows from the previous discussion on transparency. If α is a ∂S−arc,
then transparency is not enough enough to imply centrality, and in particular commuting with other
∂S-arcs having both endpoints on the same boundary component requires additional considerations
to reorder the end points as needed. This can be accomplished through height exchange moves,
where it may be necessary to use transparency to change a crossing before applying the allowed
height exchange moves. In particular, we have that these moves applied to the boundary of α(k)

will give a factor of ω2k. This allows us to extend the previous results on transparency to centrality
by utilizing that ω2N ′′ = 1 by definition.

Then part (a) follows from noting that 2N is a multiple of N ′ and 4N is a multiple of N ′′. �

Remark 4.14. In general, the ordinary power αk is not central. Moreover as seen below in
Proposition 4.15, there exists α such that for all k ≥ 1 and for all roots of unity ω of order greater
than 8, we have that αk is not central.

4.12. Framed powers compared to algebra powers.

Proposition 4.15. If there is an arc on a punctured bordered surface S such that both endpoints
of the arc meet the same boundary edge, but the arc does not bound a disk, then there exists a stated
arc α such that αm is only central when q4 = 1.

Proof. Utilizing functoriality this reduces to a computation in the punctured monogon. This set
up is seen in Figure 21.

Figure 21. The image of an arc in a punctured bordered surface which does not
bound a disk and both end points meet the same boundary edge in the punctured
monogon.

Let w be the arc in Figure 21 be stated with µ = ν = +, let x be the arc in Figure 21 stated
with µ = − and ν = + −, let y be the arc in Figure 21 stated with µ = + and ν = − multiplied by
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q2, and let z denote the loop encircling the puncture multiplied by q−1/2. Then as seen in Figure
22

wy = q4yw.

Now utilizing the state exchange relation we have x = y + z, and so

Figure 22. Using height exchange moves to see that w and y q−commute.

xm = (y + z)m,

which as z is a central element we may use the classical binomial theorem and

xm =

m∑
k=0

(
m

k

)
ykzm−k,

where we note that
(
m
k

)
6= 0.

Then

wxm − xmw =
m∑
j=0

(
m

k

)
(1− q4k)ykzm−k.w

Now we observe that {ykzN−k} form a linearly independent set in the stated skein algebra of the
punctured monogon. Using height exchange relations, we see that yk is a a power of q multiple of the
simple diagram of non-crossing arcs connecting k positive and k negative states. Then as z is central
we have that yN−kzk is a nonzero multiple of a simple diagram, which form a basis by Theorem
2.4, meaning they are linearly independent. Now as {ykzm−k} forms a linearly independent set, we
additionally have {ykzm−kw} forms a linearly independent set. Then we have akw = wak if and
only if 1− q4k = 0 for all k.

�

5. A quantum torus driven point of view

This section is devoted to giving an interpretation of the Chebyshev-Frobenius homomorphism
as it relates to a quantum trace map, meaning embeddings of the stated skein algebra of surfaces
into quantum tori.

In this section let (Σ,P) be a marked surface satisfying the following properties:

(?) Σ is the result of removing a finite set V = {v1, . . . , vm} of interior points from an oriented
compact connected surface S with non-empty boundary, and P ⊂ ∂Σ is a finite set such
that every connected component of ∂Σ intersects non-trivially P. Additionally, (Σ,P) is
not a monogon or a bigon.
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5.1. Quasitriangulations and their associated quantum tori. In [LY1] it is shown that the
skein algebra S (Σ,P) can be embedded into a quantum torus which is an algebra with notably
simple algebraic structure. Let us briefly recall the embedding. The idea is to find a large enough set
of q-commuting elements in S (Σ,P) and try to embed S (Σ,P) into the quantum torus generated
by these q-commuting elements.

A P-arc in Σ is an immersion α : [0, 1] → Σ such that α(0), α(1) ∈ P and the restriction of α
onto (0, 1) is an embedding into Σ \ P. Two P-arcs are P-disjoint if they are disjoint in Σ \ P.
Two P-arcs are P-isotopic if they are isotopic in the class of P-arc. A P-arc is boundary if it is
P-isotopic to a P-arc which is in the boundary ∂Σ. A P-arc is trivial if it bounds a disk in Σ.

A P-quasitriangulation E of Σ is a maximal collection of non-trivial, pairwise P-disjoint, and
pairwise non P-isotopic P-arcs. Fix a P-quasitriangulation E of Σ. Let E∂ be the subset of E
consisting of all boundary P-arcs.

Consider a copy Ê∂ = {ê | e ∈ E∂} of E∂ , and let Ē = E t Ê∂ . We will consider Ē as a subset
of S (Σ,P) by identifying e ∈ E with the element Xe ∈ S (Σ,P) as follows. First, if e is a P-arc
having identical endpoints, which is a point p ∈ P , then let e′ ⊂ Σ × (−1, 1) be the same e with
the right incident half edge slightly raised so that it is higher than the left incident half edge, see
Figure 23.

Figure 23. The assignment of e′ to a P-arc with identical endpoints p ∈ P .

Now define Xe by:

• If e ∈ E has distinct endpoints, then Xe ∈ S (Σ,P) is the arc e with positive states at both
endpoints. If e ∈ E has identical endpoints, then Xe = ωe′, where both end points of e′

have positive states.

• If ê ∈ Ê∂ , where e ∈ E∂ is a boundary P-arc having distinct endpoints, then Xê ∈ S (Σ,P)
is the arc e with one positive state followed by a negative state where the ordering is given
with respect to the orientation of the boundary.

• If ê ∈ Ê∂ , where e ∈ E∂ is a boundary P-arc having identical endpoints, then Xe = ω−1e′,
where the higher endpoint of e′ has a negative state and the lower end point has a positive
state.

The factors of ω and ω−1 are introduced so that Xe is invariant under the reflection involution.
For simplicity of notation, we identify e ∈ Ē with Xe ∈ S (Σ,P). The height exchange moves show
that any two e, e′ ∈ Ē are q-commuting: For a, b ∈ Ē have

(44) ab = qP (a,b)ba,

where P = PĒ : Ē × Ē → Z is the

• the number of occurrences of b meeting a vertex counterclockwise to a minus the number
of occurrences of b meeting a vertex clockwise to a, if a, b ∈ E , as seen in Figure 24.



32 WADE BLOOMQUIST AND THANG T. Q. LÊ

Figure 24. A count that determines how a and b q-commute through the applica-
tion of height exchange moves.

• the number of occurrences of b meeting a vertex counterclockwise to a added to the number
of occurrences of b meeting a vertex clockwise to a, if a ∈ Ê and b ∈ E , as seen in Figure
25.

Figure 25. A count that determines how â and b q-commute through the applica-
tion of height exchange moves.

• P (f, e) if a = ê and b = f̂ .

Identify each interior point v ∈ V with the element of S (Σ,P) represented by a small loop
surrounding the puncture v. Let R[V ] be the R-algebra of polynomials in the variables vi ∈ V with
coefficients in R. Then R[V ] is a subalgebra of the center of S (Σ,P).

The algebra

Xω(Σ; E) := R[V ]〈a±1 | a ∈ Ē〉/〈ab = ω2P (a,b)ba〉
is known as the quantum torus associated to P , with ground ring R[V ]. Informally this is the
R[V ]-algebra of Laurent polynomials in the variables a ∈ Ē which q-commute according to the
rule seen in equation (44). The subalgebra spanned by non-negative power monomials, i.e. the
R[V ]-subalgebra generated by a ∈ Ē , is known as the quantum space, and is denoted by X+

ω (Σ; E).
The relation (44) shows that there is a algebra homomorphism from X+

ω (Σ; E) to S (Σ,P) sending
e to Xe. Using the height exchange relation and the explicit basis of S (Σ,P) one can easily show
that this algebra homomorphism is an embedding. See [LY1, LY2] for details.

Theorem 5.1 ([LY1], Theorem 5.1). Suppose (Σ,P) is a marked surface satisfying (?) and E is
a P-quasitriangulation of Σ. The algebra embedding X+

ω (Σ; E) ↪→ S (Σ,P) can be extended to an
algebra embedding

φE,ω : S (Σ,P) ↪→ Xω(Σ; E)

When Σ has no interior points, the restriction of φE,ω to the Muller subalgebra S +(Σ,P) was
first constructed by Muller [Mu], and if furthermore ω = 1, then this map expresses the Penner
lambda length of loop or a P-arc as a Laurent polynomial in the lambda length of the edges of the
quasitriangulation. Thus φE,ω could be called a “quantum trace map”.

The algebra embedding φE,ω : S (Σ,P) ↪→ Xω(Σ; E) can be considered as a coordinate map of
S (Σ,P), where the coordinates depend on a P-quasitriangulation.
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5.2. Restricting the Frobenius homomorphism. Given any coordinate system, one can define
functions in terms of these coordinates. However, such a function makes sense only when the
definition does not depend on the coordinate system itself. We look to see how the choice of a
P-quasitriangulation provides an analogue of coordinates for the stated skein algebra of a marked
surface, and how the Chebyshev-Frobenius homomorphism fits into this picture.

The simple nature of the quantum torus Xω(Σ; E) allows us to define the following R-algebra
homomorphism, known as the N -th Frobenius homomorphism: For every positive integer N let

FN : X
ωN2 (Σ; E)→ Xω(Σ; E)

be the R-algebra homomorphism given by

FN (a) = aN for a ∈ Ē ,(45)

FN (v) = TN (v) for v ∈ V .(46)

It is easy to check that FN respects the defining relations.
Following Theorem 5.1 we have that for every ω a non-zero complex number and every pseudo-

triangulation E , we have the following diagram:

(47)

S
ωN2 (Σ,P) X

ωN2 (Σ; E)

Sω(Σ,P) Xω(Σ; E)

? FN

and we may naturally ask when there exists a restriction of FN to the corresponding stated skein
algebras, and when is this restriction independent of the underlying pseudo-triangulation.

Theorem 5.2. Suppose ω ∈ C×, N ≥ 2, and η = ωN
2
. Suppose (Σ,P) is a marked surface satis-

fying (?) and has at least two different P-quasitriangulation. The N -th Frobenius homomorphism
FN : X

ωN
2 (Σ; E)→ Xω(Σ; E) restricts to a map Sη(Σ,P)→ Sω(Σ,P), and the restriction is inde-

pendent of the choice of quasitriangulation if and only if ω is a root of unity such that ord(ω8) = N .
Moreover, when ω is a root of unity with N = ord(ω8), the Chebyshev-Frobenius homomorphism,
Φω, is the unique restriction of FN .

Proof. First define

Xω(Σ; E+) := R[V ]〈a±1 | a ∈ E〉/ab = ω2P (a,b)ba〉

to be the restriction of Xω(Σ; E) to only the positively stated P-arcs of the quasi-triangulation E .
Then utilizing the notation of Subsection 2.11, and defining the restriction of φE,ω to the positive

submodule to be φ+
E,ω, we observe that by the definition of Xω(Σ; E) and Xω(Σ; E+) each face of
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the following diagram commutes

Sη(Σ,P) Xη(Σ; E)

S +
η (Σ,P) Xη(Σ; E+)

S +
ω (Σ,P) Xω(Σ; E+)

Sω(Σ,P) Xω(Σ; E)

φE,η

Φω FN

φ+
E,η

Φ+
ω FN

φ+
E,ω

φE,ω

From this we look to leverage results of the second author and Paprocki for the positive submodule
to see that if ω is not a root of unity, then the Frobenius map of quantum tori will not restrict to
the stated skein algebra of (Σ,P). Namely a rephrasing of Theorem 8.2 in [LP] gives the following.

As ω ∈ C×, N ≥ 2, and η = ωN
2

and (Σ,P) is a marked surface satisfying (?), then if FN :
X
ωN

2 (Σ; E+) → Xω(Σ; E+) restricts to a map S +

ωN
2 (Σ,P) → S +

ω (Σ,P) for all quasitriangulations

E and the restriction does not depend on the quasitriangulations, we have that ω must be a root
of unity and ord(ω8) = N .

With this in mind it suffices to show that when ord(ω8) = N the outer square of the above dia-
gram communtes, meaning for any quasitriangualtion the restriction to S (Σ,P) is the Chebyshev-
Frobenius homomorphism. As S (Σ,P) contains X+, in addition to noting equivalence on the
ground ring R[v1, . . . , vm], it will suffice to check for any p ∈ X+(Σ, E), that

FN (φE,η(p)) = φE,ω(Φω(p)).

We have 3 cases to consider.
In the first case we have a α ∈ E t Ê , such that the endpoints meets two distinct marked points.

Here we have α = Xα. In this case, the framed power and algebra power are equal and

FN (φE,η(Xα)) = FN (Xα) = XN
α = φE,ω(α)N = φE,ω(α)(N) = φE,ω(Φω(α)) = φE,ω(Φω(Xα)).

In the next case we have a β ∈ E , such that the endpoints meet a single marked point. Here we
have Xβ = ωβ. In this case repeated applications of height exchange moves implies

β(N) = ω−N(N−1)βN

and

FN (φE,η(Xβ)) = FN (Xβ) = XN
β = (ωφE,ω(β))N = φE,ω(ωNβN ) = φE,ω(ωN

2
β(N))

= φE,ω(ηβ(N)) = φE,ω(ηΦω(β)) = φE,ω(Φω(ηβ)) = φE,ω(Φ(Xβ)).

In the final case we have γ ∈ Ê , meet at a single marked point. Here we have Xγ = ω−1γ. In
this case repeated applications of height exchange moves implies

γ(N) = ωN(N−1)γN

and
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FN (φE,η(Xγ)) = FN (Xγ) = XN
γ = (ω−1φE,ω(γ))N = φE,ω(ω−NγN ) = φE,ω(ω−N

2
γ(N))

= φE,ω(η−1γ(N)) = φE,ω(η−1Φω(γ)) = φE,ω(Φω(η−1γ)) = φE,ω(Φ(Xγ)).

Thus we have that when ω is a root of unity such that ord(ω8) = N and η = ωN
2
, then the

Chebyshev-Frobenius homomorphism is a restriction of the Frobenius homomorphism of quantum
tori as desired.

�

6. A quantum group driven point of view

This section is devoted to giving an interpretation of the Chebyshev-Frobenius homomorphism
rooted in the theory of quantum groups.

Recall that the stated skein algebra S (B) of the bigon is isomorphic to the co-braided Hopf
algebra Oq2(SL(2)), meaning in addition to the definition in Subsection 3.4, we have the following
structure on Oq2(SL(2)).

Definition 1. Oq2(SL(2)) is co-braided with co-R-matrix

ρ : Oq2(Sl(2))⊗Oq2(Sl(2))→ R

defined on generators as

ρ


a⊗ a b⊗ b a⊗ b b⊗ a
c⊗ c d⊗ d c⊗ d d⊗ c
a⊗ c b⊗ d a⊗ d b⊗ c
c⊗ a d⊗ b c⊗ b d⊗ a

 =


q 0 0 0
0 q 0 0
0 0 q−1 q − q−3

0 0 0 q−1


Furthermore, the isomorphism mentioned above respects this structure and gives a geometric

description of the co-braiding as seen in Figure 26.

Figure 26. The co-braiding on S (B)

Recall the quantized enveloping algebra Uq2(sl2) is the Hopf algebra generated over Q(q1/2) by

K±, E, F with relations

KE = q4EK, KF = q−4FK, [E,F ] =
K −K−1

q2 − q−2
.

with coproduct and antipode given by

∆(K) = K ⊗K,∆(E) = 1⊗ E + E ⊗K,∆(F ) = K−1 ⊗ F + F ⊗ 1

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF.
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Additionally, an integral refinement of the quantized enveloping algebra was introduced by Lusztig,
denoted ULq2(sl2). This is the subalgebra of Uq2(sl2) generated by K±1 and the divided powers

E(r) :=
Er

[r]!
,

F (r) :=
F r

[r]!
.

Moreover, for q
1
2 specialized to a root of unity ω, such that ord(ω8) = N , we have this subalgebra

is also generated by K±, E, F,E(N), F (N), as seen in Definition-Proposition 9.3.1 of [CP].
There is a Hopf pairing

〈, 〉q2 : Uq2(sl2)⊗Oq2(SL(2))→ Q(q1/2),

which is a non-degenerate and

〈
(
a b
c d

)
,K〉 =

(
q2 0
0 q−2

)
〈
(
a b
c d

)
, E〉 =

(
0 1
0 0

)
〈
(
a b
c d

)
, F 〉 =

(
0 0
1 0

)
This non-degenerate Hopf pairing 〈, 〉 restricted to ULq2(sl2) is integral, meaning

ULq2(sl2)⊗Oq2(SL(2))→ Z[q±1/2],

see for example Lemma 6.1 of [DL], and note that the integrality can be deduced from the
calculations in Appendix A.

The following propositions describe the quantum Frobenius map defined by Lusztig for quantized
enveloping algebras at roots of unity.

Proposition 6.1 (Chapter 35 [Lus2]). Let ω be a root of unity, with N = ord(ω8) and η = ωN
2
.

The quantum Frobenius map is a homomorphism of Hopf algebras

f : ULω4(sl2)→ ULη4(sl2).

such that

f(K) = (−1)N+1K

f(E) = 0

f(F ) = 0

f(E(N)) = E

f(F (N)) = F

This map is a surjective homomorphism of quasi-triangular Hopf algebras.

Theorem 6.2. Let Φω be the Chebyshev-Frobenius homomorphism. We have the Frobenius homo-
morphism in the sense of Lusztig is equal to the Hopf dual of the Chebyshev-Frobenius homomor-
phism for the stated skein algebra of the bigon, Φ∗ω : Uω4(sl2)→ Uη4(sl2).
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Proof. This follows from a sequence of observations and computations which we will state in full
detail and prove with the remainder of this section. First observe that the composition of the
Chebyshev-Frobenius homomorphism for the stated skein algebra of the bigon composed with the
isomoprhism to Oq2(SL(2)) is exactly the map defined in Proposition 6.3. Then the Hopf dual of
this map is seen in Proposition 6.4. �

Proposition 6.3. Let ω be a root of unity with N = ord(ω8) and η = ωN
2
. The map

Φω : Oη4(SL(2))→ Oω4(SL(2))

defined on the algebra generators of Oη4(SL(2)) by

a 7→ aN , b 7→ bN

c 7→ cN , d 7→ dN

is an embedding of co-braided Hopf algebras.

Proof. We see that as a corollary of parts (a) and (b) of Theorem 4.1 specialized to the stated skein
algebra of the bigon, that Φω is an algebra and coalgebra morphism respectively.

Injectivity of this map follows from Corollary 4.7.
We also have that Φω(1) = 1 and ε(Φω(αµ,ν)) = ε(αNµ,ν) = ε(αµ,ν)N = δNµ,ν = δµ,ν = ε(αµ,ν). Then

general results in the theory of Hopf algebras tells us that as Φω is a unital and counital bialgebra
homomorphism it automatically preserves the antipode, but this may be checked directly.

As a final step we look to show that Φ respects the co-braiding, meaning the following diagram
commutes

Oη4(SL(2))⊗Oη4(SL(2)) Z[η±1]

Oω4(SL(2))⊗Oω4(SL(2)) Z[ω±1]

ρ

Φ⊗Φ

ρ

where the inclusion on the right is given by η = ωN
2
. This may be checked directly on generators,

but we argue geometrically as seen in Figure 27.

Figure 27. A geometric description of how Φω preserves the co-braiding.

�

Proposition 6.4. When ω is a root of unity with N = ord(ω8) and η = ωN
2
. We have that the

Frobenius map f and the map Φω are dual with respect to the Hopf pairings between Oη4(SL(2))
and Uη4(sl2) and between Oω4(SL(2)) and Uω4(sl2), meaning the following diagram commutes:
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Oη4(SL(2))⊗ Uω4(sl2) Oω4(SL(2))⊗ Uω4(sl2)

Oη4(SL(2))⊗ Uη4(sl2) Z[η±4] Z[ω±4]

Φ⊗Id

Id⊗f 〈,〉ω4

〈,〉η4 η=ωN
2

Proof. This is a direct computation on the generators of the algebras. We will use matrix notation
to indicate the map applied to each entry of the matrix.

〈
(
a b
c d

)
,(−1)N+1K〉η4

=

(
(−1)N+1η4 0

0 (−1)N+1η−4

)
=

(
ω−4N2+4Nω4N2

0

0 ω4N2−4Nω−4N2

)
=

(
ω4N 0

0 ω−4N

)
= 〈
(
aN bN

cN dN

)
,K〉ω4

〈
(
a b
c d

)
, 0〉η4 =

(
0 0
0 0

)
= 〈
(
aN bN

cN dN

)
, E〉ω4

〈
(
a b
c d

)
, 0〉η4 =

(
0 0
0 0

)
= 〈
(
aN bN

cN dN

)
, F 〉ω4

〈
(
a b
c d

)
, E〉η4 =

(
0 1
0 0

)
= 〈
(
aN bN

cN dN

)
, E(N)〉ω4

〈
(
a b
c d

)
, F 〉η4 =

(
0 0
1 0

)
= 〈
(
aN bN

cN dN

)
, F (N)〉ω4

Where further details can be found in the Appendix A.
�

Now as an application we look to understand how the Chebyshev-Frobenius of the stated skein
algebras of surfaces behaves with respect to the gluing of an ideal triangle along two distinct
boundary edges.

Let S be a punctured bordered surface, which may be disconnected, together with two distin-
guished boundary edges e1 and e2. Then define S to be the result of gluing an ideal triangle
along the edges e1 and e2. The following result is based on the work of the second author and
Constantino, seen in [CL], describing the stated skein algebra of S in terms of S.

The result will require the notion of the self braided tensor product of a comodule algebra. Let
U is a co-quasitriangular Hopf algebra, and A a algebra admitting two different co-actions, ∆1 and
∆2, which make A into a comodule algebra over U . Then if the two co-actions commute a new
twisted multiplication can be defined on A defined by

x∗y =
∑

x′y′ρ(u⊗ v)

where ∆2(x) =
∑
x′ ⊗ u and ∆1(y) =

∑
y′ ⊗ v. In a sense this twisted algebra, denoted

⊗
A, is

defined to be a simultaneous U comodule algebra with a coaction defined by ∆(x) =
∑
x′ ⊗ u1u2,

where ∆1(x) =
∑
x′ ⊗ u1 and ∆2(x) =

∑
x′ ⊗ u2.
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Proposition 6.5. Assume S and S are as described above. Then the Chebyshev-Frobenius homo-
morphism fits into the following commutative diagram

(48)

Sη(S) Sω(S)

⊗
Sη(S)

⊗
Sω(S)

Φω

∼= ∼=

Φω

where
⊗

S (S) denotes the self braided tensor product, which has the same underlying generating

set as S (S) but with a twisted multiplication allowing for an analogous definition of Φω.

Proof. Note that we will use ei interchangeably to describe a distinguished boundary edge and an
ideal arc isotopic to the boundary edge. Then we see that S (S) is a comodule algebra algebra over
Oq2(SL(2)) over the distinguished edges e1 and e2 in a way that commutes. Thus we can define
the self braided tensor product

⊗
S (S). Now let x, y ∈ S (S),

Θe2(x) =
∑

x′ ⊗ u,

and

Θe1(y) =
∑

y′ ⊗ v

then

x∗y =
∑

x′y′ρ(u⊗ v)

where ρ is the co-R-matrix of Oq2(SL(2)). The canonical isomorphisms of the vertical arrows in
the commutative diagram are proven in Theorem 4.17 of [CL]. Then the result follows from noting
that Φω commutes with both ρ (as seen in Proposition 6.3) and the splitting homormoprhism (as
seen for surfaces in Corollary 4.7). Then we see the diagram commutes on a generating set, and so
commutes in general. �

When specializing the above proposition to the case of S = S1 t S2, with e1 ⊆ S1 and e2 ⊆
S2 we have that the self braided tensor product recovers the ordinary braided tensor product,
S (S1)⊗S (S2). The unfamiliar reader, may take the definition of the braided tensor product
to be the self braided tensor product in the case that A = A1 ⊗ A2 is the tensor product of two
comodule algebras. In particular, realizing the ideal triangle as the result of gluing two bigons
along a triangle we have the following isomorphism (seen in Theorem 4.17 of [CL]):

S (T) ∼= Oq2(SL(2))⊗Oq2(SL(2)).

Now utilizing the compatibility of Φω with the splitting homomorphism, we note that Φω for a
triangulable surface is exactly determined by Φω : Sη(T) → Sω(T), which by Proposition 6.5 is
determined by the Hopf dual of Lustztig’s Frobenius homomorphism. This can be summarized in
the following corollary which extends the commutative diagram seen in equation 41.

Corollary 6.6. Let S be a triangulable punctured bordered surface. Then the Chebyshev-Frobenius
homomorphism fits into the following commutative diagram for any ideal triangulation ∆:
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Sη(S) Sη(S)

⊗
T∈∆

Sη(T)
⊗
T∈∆

Sω(T)

⊗
Oη4(SL(2))⊗Oη4(SL(2))

⊗
Oω4(SL(2))⊗Oω4(SL(2))

Φω

Θ∆ Θ∆

∼=

⊗
Φω

∼=⊗
(f∗⊗f∗)

where the bottom map is determined by the Hopf dual of Lusztig’s Frobenius homomorphism, f .
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Appendix A. Divided powers and the Hopf pairing

In this appendix we provide the computations required to show that Φω is the hopf dual of the
frobenius homomorphism.

Proposition A.1. With the notation of Section 6, we have for any m and any p.

〈
(
am bm

cm dm

)
,K〉q2 =

(
q2m 0
0 q−2m

)
and

〈
(
am bm

cm dm

)
, E(p)〉q2 =

(
δ0,p δm,p
0 δ0,p

)
and

〈
(
am bm

cm dm

)
, F (p)〉q2 =

(
δ0,p 0
δm,p δ0,p

)
Proof. Each of the twelve computations will follow from induction.

First we recall

∆(K) = K ⊗K,
and so inducting on m

〈am,K〉 = 〈a,K〉〈am−1,K〉 = q2q2m−2 = q2m.

〈bm,K〉 = 〈b,K〉〈bm−1,K〉 = 0

〈cm,K〉 = 〈c,K〉〈cm−1,K〉 = 0

〈dm,K〉 = 〈d,K〉〈dm−1,K〉 = q−2q−2m+2 = q−2m.
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Next recall

∆(E(p)) =

p∑
i=0

q2i(p−i)E(p−i) ⊗ E(i)Kp−i.

First we see that if p = 0 we have

〈
(
am bm

cm dm

)
, 1〉q2 =

(
ε(am) ε(bm)
ε(cm) ε(dm)

)
=

(
1 0
0 1

)
Now we induct on m, assuming p 6= 0,

〈am, E(p)〉 =

p∑
i=0

q2i(p−i)〈am−1, E(p−i)〉〈a,E(i)Kp−i〉

=

p∑
i=0

q2i(p−i)〈am−1, E(p−i)〉(〈a,E(i)〉〈a,Kp−i〉+ 〈b, E(i)〉〈c,Kp−i〉)

=

p∑
i=0

q2i(p−i)q2(p−i)〈am−1, E(p−i)〉〈a,E(i)〉 = 0

〈dm, E(p)〉 =

p∑
i=0

q2i(p−i)〈dm−1, E(p−i)〉〈d,E(i)Kp−i〉

=

p∑
i=0

q2i(p−i)〈dm−1, E(p−i)〉(〈d,E(i)〉〈d,Kp−i〉+ 〈c, E(i)〉〈b,Kp−i〉)

=

p∑
i=0

q2i(p−i)q−2(p−i)〈dm−1, E(p−i)〉〈d,E(i)〉 = 0

〈cm, E(p)〉 =

p∑
i=0

q2i(p−i)〈cm−1, E(p−i)〉〈c, E(i)Kp−i〉

=

p∑
i=0

q2i(p−i)〈cm−1, E(p−i)〉(〈c, E(i)〉〈a,Kp−i〉+ 〈d,E(i)〉〈c,Kp−i〉)

=

p∑
i=0

q2i(p−i)q2(p−i)〈cm−1, E(p−i)〉〈c, E(i)〉 = 0

〈bm, E(p)〉 =

p∑
i=0

q2i(p−i)〈bm−1, E(p−i)〉〈b, E(i)Kp−i〉

=

p∑
i=0

q2i(p−i)〈bm−1, E(p−i)〉(〈a,E(i)〉〈b,Kp−i〉+ 〈b, E(i)〉〈d,Kp−i〉)

=

p∑
i=0

q2i(p−i)q−2(p−i)〈bm−1, E(p−i)〉〈b, E(i)〉 =

p∑
i=0

q2i(p−i)q−2(p−i)δm−1,p−iδ1,i

= q2(p−1)q−2(p−1)δm−1,p−1 = δm,p
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Next recall

∆(F (p)) =

p∑
i=0

q−2i(p−i)F (i)K−(p−i) ⊗ F (p−i).

First we see that if p = 0 we have

〈
(
am bm

cm dm

)
, 1〉q2 =

(
ε(am) ε(bm)
ε(cm) ε(dm)

)
=

(
1 0
0 1

)
Now we induct on m, assuming p 6= 0,

〈am, F (p)〉 =

p∑
i=0

q−2i(p−i)〈a, F (i)K−(p−i)〉〈am−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)(〈a, F (i)〉〈a,K−(p−i)〉+ 〈b, F (i)〉〈c,K−(p−i)〉)〈am−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)q−2(p−i)〈a, F (i)〉〈am−1, F (p−i)〉 = 0

〈dm, F (p)〉 =

p∑
i=0

q−2i(p−i)〈d, F (i)K−(p−i)〉〈dm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)(〈d, F (i)〉〈d,K−(p−i)〉+ 〈c, F (i)〉〈b,K−(p−i)〉)〈dm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)q2(p−i)〈d, F (i)〉〈dm−1, F (p−i)〉 = 0

〈bm, F (p)〉 =

p∑
i=0

q−2i(p−i)〈b, F (i)K−(p−i)〉〈bm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)(〈a, F (i)〉〈b,K−(p−i)〉+ 〈b, F (i)〉〈d,K−(p−i)〉)〈bm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)q2(p−i)〈b, F (i)〉〈bm−1, F (p−i)〉 = 0

〈cm, F (p)〉 =

p∑
i=0

q−2i(p−i)〈c, F (i)K−(p−i)〉〈cm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)(〈c, F (i)〉〈a,K−(p−i)〉+ 〈d, F (i)〉〈c,K−(p−i)〉)〈cm−1, F (p−i)〉

=

p∑
i=0

q−2i(p−i)q2(p−i)〈c, F (i)〉〈cm−1, F (p−i)〉
p∑
i=0

q−2i(p−i)q2(p−i)δ1,iδm−1,p−i

= q−2(p−1)q2(p−1)δm−1,p−1 = δm,p

�
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[LP] T. T. Q. Lê and J. Paprocki, On Kauffman bracket skein modules Of marked 3-manifolds and the Chebyshev-

Frobenius homomorphism, Algebr. Geom. Topol. Volume 19, Number 7 (2019), 3453-3509.

http://arxiv.org/abs/1912.02440
http://arxiv.org/abs/1907.11400
http://arxiv.org/abs/1707.09234
http://arxiv.org/abs/1902.02002
http://arxiv.org/abs/1901.11450


44 WADE BLOOMQUIST AND THANG T. Q. LÊ
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