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FINITE QUOTIENTS OF BRAID GROUPS

ALICE CHUDNOVSKY, KEVIN KORDEK, QIAO LI, AND CALEB PARTIN

Abstract. We derive a lower bound on the size of finite non-cyclic quotients of the braid
group that is superexponential in the number of strands. We also derive a similar lower
bound for nontrivial finite quotients of the commutator subgroup of the braid group.

1. Introduction

Let Bn denote the braid group on n strands and let B′
n denote its commutator subgroup.

It is a basic problem to describe all homomorphisms from Bn or B′
n to a given group G. The

first results are due to Artin [1], who described all transitive homomorphisms from Bn to the
symmetric group Sn. Lin [8] extended Artin’s results in various ways and proved analogous
results for B′

n.
Since the abelianization of Bn is infinite cyclic, it is always possible to construct homomor-

phisms Bn → G that factor through Z. Such a homomorphism is said to be cyclic. On the
other hand, the abelianization of B′

n trivial for n ≥ 5 (see [8]) and so no such construction
is possible for B′

n. In general, for fixed n and G it is often not clear whether there exist
non-cyclic homomorphisms Bn → G or non-trivial homomorphisms B′

n → G. Our main
results are a necessary condition for the existence of non-cyclic homomorphisms Bn → G and
a necessary condition for the existence of non-trivial homomorphisms B′

n → G.

Theorem 1.1. Let G be a finite group and let n ≥ 5. If Bn → G is not a cyclic homomor-

phism then

|G| ≥ 2⌊n/2⌋−1 (⌊n/2⌋)!

Theorem 1.2. Let G be a finite group and let n ≥ 5. If B′
n → G is not the trivial homo-

morphism then

|G| ≥ 2⌊n/2⌋−2 (⌊n/2⌋ − 1)!

Perhaps the best known finite, non-cyclic (respectively nontrivial) quotient of Bn (respec-
tively B′

n) is the symmetric group Sn (respectively the alternating group An). It does not
appear to be known whether there are any such quotients of Bn (respectively B′

n) of smaller
cardinality for n ≥ 5 (respectively n ≥ 6), although larger finite non-cyclic quotients do exist.
We remark here that Bn, and hence B′

n, is residually finite and so they both possess plenty
of finite quotients.

After learning about our Theorem 1.1, Margalit asked the following.

Question 1. For n ≥ 5, is Sn the smallest finite, non-cyclic quotient of Bn?

We also have the following related question.

Question 2. For n ≥ 6, is An the smallest finite, non-trivial quotient of B′
n?
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The first question above has a positive answer for n = 2 and n = 3 as can be checked by
examining the list of groups of order at most 6. The second question has a positive answer
for n = 5 because any quotient of B′

5 is perfect (see [8, p.7]) and A5 is the smallest non-trivial
perfect group. The answer to the first question is negative for n = 4 because there is an
exceptional surjective homomorphism S4 → S3. The second question has a negative answer
for n ∈ {3, 4} also for exceptional reasons: the group B′

3 is a free group and so surjects onto
Z/2, while B′

4 surjects onto the commutator subgroup of S4 which in turn surjects onto the
(cyclic) commutator subgroup of S3.

The analogue of the above questions for mapping class groups asks for the minimal non-
trivial quotient of the genus g mapping class group Mod(Sg). Zimmerman [9] proved that the
smallest non-trivial quotient of Mod(Sg) is the symplectic group Spg(Z/2) provided g ∈ {3, 4},
and conjectured that the result held for all g ≥ 3. Zimmermann’s conjecture was later proven
by Kielak–Pierro [5]. In a slightly different direction, Berrick–Gebhardt–Paris [2] proved that
the minimal index of a proper subgroup of Mod(Sg) is equal to 2g−1(2g − 1) and that, up to
conjugation, there is exactly one subgroup with this index. We point out, though, that the
subgroups of this index are not normal.

Obstructions. Various conditions are known to obstruct the existence of non-cyclic homo-
morphisms Bn → G or non-trivial homomorphisms B′

n → G. For example, it follows from
the fact that B′

n is perfect for n ≥ 5 (see [8, p.7]) that any homomorphism from Bn or B′
n

to a solvable group is cyclic or trivial, respectively, for n ≥ 5. More generally, B′
n does not

admit non-trivial homomorphisms to residually solvable groups for n ≥ 5.
Another obstruction arises from sizes of generating sets. The braid group Bn admits a

generating set of size 2 (consisting of a rotation and a half-twist), and hence any non-trivial
quotient of Bn (in particular any non-cyclic quotient of Bn) can also be generated by two
elements. Likewise, Gorin–Lin [8, p.6] proved that B′

3 has a generating set of size 2, and the
second author proved [6] that B′

n is generated by two elements for n ∈ {5} ∪ [7,∞) and by
three elements for n ∈ {4, 6}. It follows that any quotient of B′

n is generated by two elements
for n ∈ {5} ∪ [7,∞) or by three element for n ∈ {4, 6}.

Prior results. Since any finite group G embeds into a sufficiently large symmetric group Sk,
it is sometimes possible to understand all homomorphisms Bn, B

′
n → G by classifying all

homomorphisms Bn, B
′
n → Sk. The first result of the latter type is due to Artin [1], who

proved that all homomorphisms Bn → Sn with transitive image and with n 6= 4, 6 are either
cyclic or conjugate to the standard projection. Artin also completely described all of the
exceptional homomorphisms that arise for n ∈ {4, 6}.

These results were later greatly extended by Lin [8]. Among other results, he proved
that any homomorphism Bn → Sk with k < n and n ≥ 5 is cyclic, that any transitive
homomorphism Bn → Sm with 6 < n < m < 2n is cyclic, that all transitive homomorphisms
Bn → Sn+1 with n ≥ 6 are cyclic, and that all transitive homomorphisms Bn → Sn+2 with
n ≥ 5 are cyclic. Lin also completely characterized all homomorphisms Bn → S2n with n ≥ 7,
and gave explicit formulas for the non-cyclic homomorphisms that arise.

Lin also proved several results about homomorphisms from B′
n to symmetric groups. For

example, he proved that any homomorphism B′
n → Sn with n ≥ 5 is the restriction of a

homomorphism Bn → Sn, that any homomorphism B′
n → Sk with n ≥ 5 and k < n is trivial,

and that any transitive homomorphism B′
n → Sk with k < 2n is primitive.
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Overview. In Section 2, we first review the basic properties of totally symmetric subsets
and give examples of totally symmetric subsets of braid groups. We then proceed to Propo-
sition 2.2 and its proof, which form the technical core of the paper. In Section 3 we prove
Theorem 1.1 and Theorem 1.2.

Acknowledgments. The majority of this work was completed in the summer of 2019 at the
Georgia Institute of Technology mathematics REU as a part of the research cluster on braids,
which was led by Dan Margalit. The authors would like to thank him for his guidance, for
many helpful conversations, and for his comments on early drafts of this paper. The authors
also thank Dawid Kielak for pointing out an error in an earlier version of the paper. We are
grateful to the referee for numerous helpful comments. This material is based upon work
supported by the National Science Foundation under Grant Nos. DMS - 1057874 and DMS
- 1745583.

2. Totally symmetric sets

To prove Theorems 1.1 and 1.2 we will use the theory of totally symmetric sets, which were
introduced by Margalit and the second author [7]. A totally symmetric subset of a group G
is a finite subset {g1, . . . , gn} of G such that

(1) The elements gi pairwise commute, and
(2) For any permutation σ ∈ Sn, there exists h ∈ G such that

hgih
−1 = gσ(i) for all 1 ≤ i ≤ n.

The theory of totally symmetric sets is particularly powerful as a tool for analyzing group
homomorphisms. This stems from the following fact: If f : G → H is a homomorphism and
S is a totally symmetric subset of G, then f(S) is a totally symmetric subset of H.

Some examples of totally symmetric sets. Totally symmetric sets occur naturally in the study
of braid groups and, more generally, mapping class groups of surfaces. We now describe two
totally symmetric subsets X ⊂ Bn and X ′ ⊂ B′

n that will play critical roles in the proofs of
Theorems 1.1 and 1.2.

Recall that Bn is generated by a standard set of half-twists σ1, . . . , σn−1. The usual
commutation relations along with the change-of-coordinates principle from mapping class
group theory imply that the following subset of Bn is totally symmetric of size ⌊n/2⌋:

X = {σ2i−1}
⌊n/2⌋
i=1 .

The elements of B′
n are exactly those elements of Bn with vanishing signed word length.

We claim that the following subset of B′
n is totally symmetric of size ⌊n/2⌋ − 1:

X ′ = {σ1σ
−1
2i−1}

⌊n/2⌋
i=2 .

It is clear that the elements of this set commute pairwise and that they can be permuted in
an arbitrary fashion via conjugation by elements of Bn. However, in order for X ′ to be a
totally symmetric subset of B′

n we require the conjugating elements to lie in B′
n. This can be

arranged as follows. Suppose that g permutes the elements of X ′ according to a permutation
σ ∈ S⌊n/2⌋−1, and let ℓ denote the signed word length of g. Then gσ−ℓ

1 has vanishing signed
word length and permutes the elements of X ′ according to σ, since for each 1 ≤ i ≤ ⌊n/2⌋
we have

(gσ−ℓ
1 )(σ1σ

−1
2i−1)(gσ

−ℓ
1 )−1 = g(σ1σ

−1
2i−1)g

−1.
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The image of a totally symmetric set. The following lemma establishes one of the most
useful properties possessed by totally symmetric sets. It is a main ingredient in our proof of
Theorems 1.1 and 1.2. The proof is due to Margalit and the second author [7, Lemma 2.1],
but we also give it here for the reader’s convenience.

Lemma 2.1. Let G,H be groups and let f : G → H be a homomorphism. If S ⊂ G is a

totally symmetric set, then |f(S)| is equal to either 1 or |S|.

Proof. Let S = {g1, . . . , gn} and assume that |f(S)| < |S|. After relabeling the elements
of S we may assume that f(g1) = f(g2), and hence that f(g1g

−1
2 ) = 1. Since S is totally

symmetric, for each i > 2 there exists h ∈ G with hg1h
−1 = g1 and hg2h

−1 = gi. We have

f(g1g
−1
i ) = f(h(g1g

−1
2 )h−1) = f(h)

(

f(g1g
−1
2 )

)

f(h)−1

= f(h) (1) f(h)−1

= 1.

That is, f(gi) = f(g1). This shows that |f(S)| = 1, as desired. �

The lower bound. The remainder of this section is dedicated to the proof of Proposition 2.2,
which gives a lower bound on the size of a group in terms of the size of a totally symmetric
subset whose members have finite order.

Proposition 2.2. Let n ≥ 1, and suppose that S is a totally symmetric subset of a group G
with |S| = n. If the elements of S have finite order, then |G| ≥ 2n−1n!.

We remark that Proposition 2.2 is sharp in the sense that, for each n ≥ 1, there exists
a group G of cardinality 2n−1n! that contains a totally symmetric set of size n all of whose
elements have finite order. For n = 1 this is trivial. For n ≥ 2, we may take G = Sn ⋉ V ,
where

V = (Z/2)n/〈e1 + e2 + · · ·+ en〉

is the standard representation of the symmetric group over Z/2. It follows that {e1, e2, . . . , en} ⊂
G is a totally symmetric set of size n, and since V is a Z/2-vector space of dimension n− 1
we have that |G| = 2n−1n!.

To prove Proposition 2.2, we require the following lemma. It is due to Chen, Margalit,
and the second author [4]. Since their paper has not yet appeared, we give the proof here.

Lemma 2.3. Let n ≥ 1, let G be a group, and let S ⊆ G be a totally symmetric subset with

|S| = n. Suppose that each element of S has finite order. Then 〈S〉 is a finite group whose

order is greater than or equal to 2n−1.

Proof. If n = 1, then the lemma is trivially true, so we may assume that n ≥ 2. Let
S = {g1, g2, . . . , gn}. Since S is totally symmetric, the elements gi all have the same order,
which we denote by m. It follows that the subgroup 〈S〉 generated by S is a quotient of
(Z/m)n, which is finite. Thus 〈S〉 is finite. Our aim now is to show that |〈S〉| ≥ 2n−1.

Let p be the smallest integer in the interval [1,m] such that gpi = gpj for each i, j (note that

such a p exists because gmi = gmj = 1 for all i, j). Observe that in fact p > 1, since p = 1
woud imply that the elements gi were not all distinct.

Now let A denote the free abelian group of rank n with generators e1, . . . , en. Let Ā denote
the quotient of A by the subgroup of relations generated by the elements

e1 + · · ·+ en and pei with 1 ≤ i ≤ n.
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It follows that |Ā| = pn−1 ≥ 2n−1. To prove the lemma, it suffices to demonstrate the
existence of a surjective homomorphism 〈S〉 → Ā. We will do this by showing that the
function φ : S → Ā defined by φ(gi) = ēi extends to a well-defined surjective homomorphism
〈S〉 → Ā (surjectivity follows from the fact that φ maps elements of S to generators of Ā).

To this end, we consider the map φ′ : ZS → A induced by φ, where ZS denotes the free
abelian group generated by the elements of S. We will show that any relation satisfied by
the elements of S (that is, any element of the kernel of the quotient ZS → 〈S〉) maps to a
defining relation for Ā. We will then conclude that φ′ descends to a well-defined surjective
homomorphism 〈S〉 → Ā, as desired. We first carry out these steps for n ≥ 3 and then
proceed to the case of n = 2.

Let R = gq11 gq22 · · · gqnn ∈ ZS be a relation in 〈S〉 (here we write the elements of ZS in
multiplicative notation). Since gp1 = gpi in 〈S〉 for each i, we may assume that 0 ≤ qi ≤ p− 1
for 2 ≤ i ≤ n.

Assume that n ≥ 2. First, we claim that the qi are independent of i for 2 ≤ i ≤ n. The
claim is trivially true if n = 2, so from now on we assume that n ≥ 3. By the total symmetry
of S, there exists h ∈ G that conjugates g2 to g3, that conjugates g3 to g2, and that commutes
with all other gi. This implies that the element R′ = gq11 gq32 gq23 gq44 · · · gqnn ∈ ZS is also relation
in 〈S〉. It follows now that

R(R′)−1 = gq2−q3
2 gq3−q2

3

is a relation in 〈S〉 and hence that

gq2−q3
2 = gq2−q3

3

in 〈S〉. After possibly relabeling g2 and g3 we may assume that q2 ≥ q3, and since 0 ≤ q2, q3 <

p, we also have 0 ≤ q2 − q3 < p. By total symmetry, we have that gq2−q3
i = gq2−q3

j in 〈S〉 for
all i, j. By the minimality of p, we have that q2 − q3 = 0. Total symmetry further implies
that q3 = q4 = · · · = qn. This proves the claim.

Next, we claim that there exists ℓ ∈ Z such that q1 = q2 + ℓp. By the preceding claim, we
can now write

R = gq11 (g2g3 · · · gn)
q2 .

As in the proof of the preceding claim, we may transpose g1 and g2 to obtain a further relation

gq12 (g1g3 · · · gn)
q2 .

Combining these two relations shows that gq1−q2
1 g

−(q1−q2)
2 is also a relation, and hence that

gq1−q2
1 = gq1−q2

2

in 〈S〉. Since gpi = gpj in 〈S〉 for all i, j, we further have that

gq1−q2−ℓp
1 = gq1−q2−ℓp

2 for all ℓ ≥ 0.

The total symmetry of S then implies that gq1−q2−ℓp
i = gq1−q2−ℓp

j in 〈S〉 for all i, j. By the
division algorithm, we may choose ℓ so that 0 ≤ q1−q2− ℓp ≤ p−1. Again by the minimality
of p, we must have that q1 − q2 − ℓp. That is, q1 = q2 + ℓp. The claim is proven.

Combining the preceding two claims, we may now write

R = gq11 · · · gqnn = gq2+ℓp
1 (g2 · · · gn)

q2 = gℓp1 (g1 · · · gn)
q2 .

It follows now that R maps under φ′ to the relation

ℓ(pe1) + q2(e1 + · · ·+ en)
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in Ā. Since R was chosen arbitrarily, this shows that φ′ descends to a homomorphism
〈S〉 → Ā. This completes the proof of the lemma. �

We can now give the proof of Proposition 2.2.

Proof of Proposition 2.2. We begin with the claim that if G is a group and S ⊂ G is totally
symmetric of size n, then there is subgroup Γ < G and a surjective homomorphism Γ → Sn.
To prove the claim, we first observe that G acts by conjugation on the set of totally symmetric
subsets of G of cardinality n. Explicitly, if S = {x1, . . . , xn} ⊂ G is totally symmetric then

g · S = {gx1g
−1, . . . , gxng

−1}.

Let Γ denote the stabilizer of S in G. There is a homomorphism φ : Γ → Sym(S) ∼= Sn

defined by sending γ ∈ Γ to the automorphism defined by s → γsγ−1. Since S is totally
symmetric, every permutation of S can be realized as the image of some element γ ∈ Γ. Thus
φ is surjective and the claim follows.

The kernel of φ consists of those elements of Γ that commute with each element of S.
Since the elements of S commute pairwise, any element of 〈S〉 commutes with each element
of S. This shows that 〈S〉 ⊂ kerφ. By Proposition 2.2 we have that |〈S〉| ≥ 2n−1, and
so we further have that | ker φ| ≥ 2n−1. The proposition then follows from the fact that
| ker φ||Sn| = |Γ| ≤ |G|.

�

3. The proofs of Theorems 1.1 and 1.2

We now have everything we need to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let f : Bn → G be any homomorphism that is not cyclic. We claim
first that |f(X)| = ⌊n/2⌋. The theorem will follow from this claim, since Proposition 2.2 will

then imply that |G| ≥ 2⌊n/2⌋−1(⌊n/2⌋)!.
Since |X| = ⌊n/2⌋, we have that |f(X)| ≤ ⌊n/2⌋. For the sake of deriving a contradiction,

assume that |f(X)| ≤ ⌊n/2⌋ − 1. Lemma 2.1 then implies that |f(X)| = 1, and so we have
that

f(σ1) = f(σ3).

In other words, σ1σ
−1
3 ∈ ker f . Since the normal closure of σ1σ

−1
3 in Bn is equal to B′

n (see
[8]) and ker f is a normal subgroup of Bn, we have that B′

n ⊂ ker f . In view of the fact that
Bn/B

′
n
∼= Z, we have that f factors through Z. That is, f is cyclic. This contradiction shows

that |f(X)| = ⌊n/2⌋, as claimed. This completes the proof. �

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first dispense with the case n = 5. As we pointed out in the
introduction, any quotient of B′

5 is perfect and the smallest non-trivial perfect group is the
alternating group A5. It follows that if f : B′

5 → G is non-trivial then |G| ≥ |A5| = 60. Since

60 > 22−2(2− 1)! = 2⌊n/2⌋−2(⌊n/2⌋ − 1)! the proof is complete in the case n = 5.
Assume now that n ≥ 6. Let f : B′

n → G be a non-trivial homomorphism. Recall from
Section 2 that there is a totally symmetric subset X ′ of B′

n of size ⌊n/2⌋ − 1 defined by

X ′ = {σ1σ
−1
2i−1}

⌊n/2⌋
i=2 .

Lemma 2.1 implies that either |f(X ′)| = |X ′| = ⌊n/2⌋ − 1 or that |f(X ′)| = 1. Assume that

|f(X ′)| = ⌊n/2⌋− 1. It follows directly from Proposition 2.2 that |G| ≥ 2⌊n/2⌋−2(⌊n/2⌋ − 1)!.
To complete the proof, it therefore suffices to show that if |f(X ′)| = 1 then f is trivial.
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We now assume that |f(X ′)| = 1. The assumption implies that f(σ1σ
−1
3 ) = f(σ1σ

−1
5 ) and

therefore that f(σ3σ
−1
5 ) = 1. The element σ3σ

−1
5 is conjugate in Bn to σ1σ

−1
3 , and, since the

normal closure of σ1σ
−1
3 in Bn is equal to B′

n, the normal closure of σ3σ
−1
5 in Bn is also equal

to B′
n. It follows that the normal closure of σ3σ

−1
5 in B′

n is also equal to B′
n (see [3, Lemma

8.3]). It further follows that B′
n ⊂ ker f , and hence that B′

n = ker f . That is, f is trivial.
This completes the proof. �
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