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FINITE QUOTIENTS OF BRAID GROUPS

ALICE CHUDNOVSKY, KEVIN KORDEK, QIAO LI, AND CALEB PARTIN

ABSTRACT. We derive a lower bound on the size of finite non-cyclic quotients of the braid
group that is superexponential in the number of strands. We also derive a similar lower
bound for nontrivial finite quotients of the commutator subgroup of the braid group.

1. INTRODUCTION

Let B,, denote the braid group on n strands and let B], denote its commutator subgroup.
It is a basic problem to describe all homomorphisms from B,, or B}, to a given group G. The
first results are due to Artin [1], who described all transitive homomorphisms from B, to the
symmetric group S,,. Lin [8] extended Artin’s results in various ways and proved analogous
results for BJ,.

Since the abelianization of B, is infinite cyclic, it is always possible to construct homomor-
phisms B,, — G that factor through Z. Such a homomorphism is said to be cyclic. On the
other hand, the abelianization of B], trivial for n > 5 (see [8]) and so no such construction
is possible for B]. In general, for fixed n and G it is often not clear whether there exist
non-cyclic homomorphisms B,, — G or non-trivial homomorphisms B/, — G. Our main
results are a necessary condition for the existence of non-cyclic homomorphisms B,, — G and
a necessary condition for the existence of non-trivial homomorphisms B], — G.

Theorem 1.1. Let G be a finite group and let n > 5. If B, — G is not a cyclic homomor-
phism then

G| = 2271 ([n/2))!

Theorem 1.2. Let G be a finite group and let n > 5. If B), — G is not the trivial homo-
morphism then

G| = 21"2172 ([n/2] - 1)!

Perhaps the best known finite, non-cyclic (respectively nontrivial) quotient of B, (respec-
tively BJ) is the symmetric group S, (respectively the alternating group A,). It does not
appear to be known whether there are any such quotients of B, (respectively B},) of smaller
cardinality for n > 5 (respectively n > 6), although larger finite non-cyclic quotients do exist.
We remark here that By, and hence B, is residually finite and so they both possess plenty
of finite quotients.

After learning about our Theorem 1.1, Margalit asked the following.
Question 1. For n > 5, is S, the smallest finite, non-cyclic quotient of By, ¢
We also have the following related question.

Question 2. For n > 6, is A, the smallest finite, non-trivial quotient of B, ?
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The first question above has a positive answer for n = 2 and n = 3 as can be checked by
examining the list of groups of order at most 6. The second question has a positive answer
for n = 5 because any quotient of Bf is perfect (see [8, p.7]) and A5 is the smallest non-trivial
perfect group. The answer to the first question is negative for n = 4 because there is an
exceptional surjective homomorphism S; — S3. The second question has a negative answer
for n € {3,4} also for exceptional reasons: the group Bj is a free group and so surjects onto
Z/2, while B) surjects onto the commutator subgroup of Sy which in turn surjects onto the
(cyclic) commutator subgroup of Ss.

The analogue of the above questions for mapping class groups asks for the minimal non-
trivial quotient of the genus g mapping class group Mod(Sy). Zimmerman [9] proved that the
smallest non-trivial quotient of Mod(Sy) is the symplectic group Sp,(Z/2) provided g € {3, 4},
and conjectured that the result held for all ¢ > 3. Zimmermann’s conjecture was later proven
by Kielak—Pierro [5]. In a slightly different direction, Berrick-Gebhardt—Paris [2] proved that
the minimal index of a proper subgroup of Mod(S,) is equal to 2971(29 — 1) and that, up to
conjugation, there is exactly one subgroup with this index. We point out, though, that the
subgroups of this index are not normal.

Obstructions. Various conditions are known to obstruct the existence of non-cyclic homo-
morphisms B, — G or non-trivial homomorphisms B], — G. For example, it follows from
the fact that B], is perfect for n > 5 (see [8, p.7]) that any homomorphism from B, or B],
to a solvable group is cyclic or trivial, respectively, for n > 5. More generally, B], does not
admit non-trivial homomorphisms to residually solvable groups for n > 5.

Another obstruction arises from sizes of generating sets. The braid group B, admits a
generating set of size 2 (consisting of a rotation and a half-twist), and hence any non-trivial
quotient of B, (in particular any non-cyclic quotient of B,,) can also be generated by two
elements. Likewise, Gorin—Lin (8, p.6] proved that Bj has a generating set of size 2, and the
second author proved [6] that B], is generated by two elements for n € {5} U [7,00) and by
three elements for n € {4,6}. It follows that any quotient of B, is generated by two elements
for n € {5} U[7,00) or by three element for n € {4,6}.

Prior results. Since any finite group G embeds into a sufficiently large symmetric group Sk,
it is sometimes possible to understand all homomorphisms B, B, — G by classifying all
homomorphisms By, B, — Sj. The first result of the latter type is due to Artin [1], who
proved that all homomorphisms B,, — .S, with transitive image and with n # 4,6 are either
cyclic or conjugate to the standard projection. Artin also completely described all of the
exceptional homomorphisms that arise for n € {4,6}.

These results were later greatly extended by Lin [8]. Among other results, he proved
that any homomorphism B, — Sj; with & < n and n > 5 is cyclic, that any transitive
homomorphism B, — S,, with 6 < n < m < 2n is cyclic, that all transitive homomorphisms
By, — Sn11 with n > 6 are cyclic, and that all transitive homomorphisms B,, — 5,12 with
n > 5 are cyclic. Lin also completely characterized all homomorphisms B,, — S, with n > 7,
and gave explicit formulas for the non-cyclic homomorphisms that arise.

Lin also proved several results about homomorphisms from B/, to symmetric groups. For
example, he proved that any homomorphism B] — S, with n > 5 is the restriction of a
homomorphism B,, — S, that any homomorphism B/, — Sy with n > 5 and k < n is trivial,
and that any transitive homomorphism Bj, — Sy with k < 2n is primitive.
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Overview. In Section 2, we first review the basic properties of totally symmetric subsets
and give examples of totally symmetric subsets of braid groups. We then proceed to Propo-
sition 2.2 and its proof, which form the technical core of the paper. In Section 3 we prove
Theorem 1.1 and Theorem 1.2.
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2. TOTALLY SYMMETRIC SETS

To prove Theorems 1.1 and 1.2 we will use the theory of totally symmetric sets, which were
introduced by Margalit and the second author [7]. A totally symmetric subset of a group G
is a finite subset {g1,...,gn} of G such that

(1) The elements g; pairwise commute, and
(2) For any permutation o € S, there exists h € G such that

hgih ™t = Jo(iy forall 1<i<mn.

The theory of totally symmetric sets is particularly powerful as a tool for analyzing group
homomorphisms. This stems from the following fact: If f: G — H is a homomorphism and
S is a totally symmetric subset of G, then f(S) is a totally symmetric subset of H.

Some examples of totally symmetric sets. Totally symmetric sets occur naturally in the study
of braid groups and, more generally, mapping class groups of surfaces. We now describe two
totally symmetric subsets X C B, and X' C B/, that will play critical roles in the proofs of
Theorems 1.1 and 1.2.

Recall that B, is generated by a standard set of half-twists o1,...,0,-1. The usual
commutation relations along with the change-of-coordinates principle from mapping class
group theory imply that the following subset of B,, is totally symmetric of size |n/2]:

X = {Ugi_l}itl{% .

The elements of B/, are exactly those elements of B,, with vanishing signed word length.
We claim that the following subset of B, is totally symmetric of size [n/2| — 1:

_ 2
X' = {0102i1—1 }Zé L.

It is clear that the elements of this set commute pairwise and that they can be permuted in
an arbitrary fashion via conjugation by elements of B,. However, in order for X’ to be a
totally symmetric subset of B], we require the conjugating elements to lie in B],. This can be
arranged as follows. Suppose that g permutes the elements of X’ according to a permutation
0 € S|p/2/-1, and let £ denote the signed word length of g. Then goy ‘ has vanishing signed
word length and permutes the elements of X’ according to o, since for each 1 < i < |n/2]
we have

(907 ) (01052 1)(gor )™ = glowoyt)g
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The image of a totally symmetric set. The following lemma establishes one of the most
useful properties possessed by totally symmetric sets. It is a main ingredient in our proof of
Theorems 1.1 and 1.2. The proof is due to Margalit and the second author [7, Lemma 2.1],
but we also give it here for the reader’s convenience.

Lemma 2.1. Let G, H be groups and let f : G — H be a homomorphism. If S C G is a
totally symmetric set, then |f(S)| is equal to either 1 or |S]|.

Proof. Let S = {g1,...,9n} and assume that |[f(S)| < |S|. After relabeling the elements
of S we may assume that f(g1) = f(g2), and hence that f(glggl) = 1. Since S is totally
symmetric, for each ¢ > 2 there exists h € G with hgih~! = g1 and hgoh™! = g;. We have

Florgr ) = f(M(grgy DR = f(h) (f(9195 ")) F(R)7!

= f(h) (1) f(h)™
=1

That is, f(g;) = f(g1). This shows that |f(S)| = 1, as desired. O

The lower bound. The remainder of this section is dedicated to the proof of Proposition 2.2,
which gives a lower bound on the size of a group in terms of the size of a totally symmetric
subset whose members have finite order.

Proposition 2.2. Let n > 1, and suppose that S is a totally symmetric subset of a group G
with |S| = n. If the elements of S have finite order, then |G| > 2"~ 1nl.

We remark that Proposition 2.2 is sharp in the sense that, for each n > 1, there exists
a group G of cardinality 2"~ !n! that contains a totally symmetric set of size n all of whose
elements have finite order. For n = 1 this is trivial. For n > 2, we may take G = S,, X V,
where

V=(Z/2)"){e1 +ea+---+ep)

is the standard representation of the symmetric group over Z/2. It follows that {ej, eq,...,e,} C
G is a totally symmetric set of size n, and since V' is a Z/2-vector space of dimension n — 1
we have that |G| = 2"~ 1nl.

To prove Proposition 2.2, we require the following lemma. It is due to Chen, Margalit,
and the second author [4]. Since their paper has not yet appeared, we give the proof here.

Lemma 2.3. Letn > 1, let G be a group, and let S C G be a totally symmetric subset with
|S| = n. Suppose that each element of S has finite order. Then (S) is a finite group whose
order is greater than or equal to 2" 1.

Proof. If n = 1, then the lemma is trivially true, so we may assume that n > 2. Let
S ={91,92,...,9n}. Since S is totally symmetric, the elements g; all have the same order,
which we denote by m. It follows that the subgroup (S) generated by S is a quotient of
(Z/m)™, which is finite. Thus (S) is finite. Our aim now is to show that |(S)| > 2"~

Let p be the smallest integer in the interval [1,m] such that ¢! = gf for each i, 7 (note that
such a p exists because gi" = gj" =1 for all 7,75). Observe that in fact p > 1, since p = 1
woud imply that the elements g; were not all distinct.

Now let A denote the free abelian group of rank n with generators ey, ..., e,. Let A denote
the quotient of A by the subgroup of relations generated by the elements

e1+--+e, and pe; with 1 <i<n.
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It follows that |A| = p"~! > 2771 To prove the lemma, it suffices to demonstrate the
existence of a surjective homomorphism (S) — A. We will do this by showing that the
function ¢ : S — A defined by ¢(g;) = &; extends to a well-defined surjective homomorphism
(S) — A (surjectivity follows from the fact that ¢ maps elements of S to generators of A).

To this end, we consider the map ¢’ : ZS — A induced by ¢, where ZS denotes the free
abelian group generated by the elements of S. We will show that any relation satisfied by
the elements of S (that is, any element of the kernel of the quotient ZS — (S)) maps to a
defining relation for A. We will then conclude that ¢’ descends to a well-defined surjective
homomorphism (S) — A, as desired. We first carry out these steps for n > 3 and then
proceed to the case of n = 2.

Let R = g1'g¥ .- gl" € ZS be a relation in (S) (here we write the elements of ZS in
multiplicative notation). Since g7 = ¢g¥ in (S) for each i, we may assume that 0 < ¢; <p—1
for 2 <i<n.

Assume that n > 2. First, we claim that the ¢; are independent of i for 2 < ¢ < n. The
claim is trivially true if n = 2, so from now on we assume that n > 3. By the total symmetry
of S, there exists h € GG that conjugates go to g3, that conjugates g3 to go, and that commutes
with all other g;. This implies that the element R' = g{' g3° g2 g{* - - - gi" € ZS is also relation
in (S). It follows now that

R(R/)— _gg2 QBQgiS q2
is a relation in (S) and hence that

q2—q3 __ _q2—q3
9o =93

in (S). After possibly relabeling g2 and g3 we may assume that g2 > ¢3, and since 0 < g9, g3 <
p, we also have 0 < g2 — g3 < p. By total symmetry, we have that ¢/>~ % = gq2 % in (S) for
all 4,j. By the minimality of p, we have that g3 — q3 = 0. Total symmetry further implies
that g3 = q4 = -+ = ¢,,. This proves the claim.

Next, we claim that there exists £ € Z such that ¢ = g2 + ¢p. By the preceding claim, we
can now write

R = g{ (9293 - gn)®

As in the proof of the preceding claim, we may transpose g; and g5 to obtain a further relation

93 (g193 -+ gn) ™.

qa—q2 ,—(q1—q2)

Combining these two relations shows that g; 95 is also a relation, and hence that
gh—® = g

in (S). Since g; = g} in (S) for all 4, j, we further have that
ggl_qz_ep = ggl_qrép for all £ > 0.

The total symmetry of S then implies that gf' ™%~ = g;“ @2=tp 4 n (S) for all 7,5. By the
division algorithm, we may choose ¢ so that 0 < ¢ —ga—¥fp < p— 1. Again by the minimality
of p, we must have that ¢ — g2 — ¢p. That is, ¢1 = g2 + p. The claim is proven.

Combining the preceding two claims, we may now write

4 V4
R=g{' g7 =g (g2 g0)” = g7 (g1 g) .

It follows now that R maps under ¢’ to the relation

lper) + qaer + -+ ep)
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in A. Since R was chosen arbitrarily, this shows that ¢’ descends to a homomorphism
(S) — A. This completes the proof of the lemma. O

We can now give the proof of Proposition 2.2.

Proof of Proposition 2.2. We begin with the claim that if G is a group and S C G is totally
symmetric of size n, then there is subgroup I' < G and a surjective homomorphism I' — .5,,.
To prove the claim, we first observe that G acts by conjugation on the set of totally symmetric
subsets of G of cardinality n. Explicitly, if S = {z1,...,2,} C G is totally symmetric then

g-S={gr1ig7",..., grag '}
Let T denote the stabilizer of S in G. There is a homomorphism ¢ : I' — Sym(S) = S,
defined by sending v € I' to the automorphism defined by s — ~sy~!. Since S is totally
symmetric, every permutation of S can be realized as the image of some element v € I'. Thus
¢ is surjective and the claim follows.

The kernel of ¢ consists of those elements of I' that commute with each element of S.
Since the elements of S commute pairwise, any element of (S) commutes with each element
of S. This shows that (S) C ker¢. By Proposition 2.2 we have that [(S)| > 277!, and
so we further have that |ker¢| > 2"~!. The proposition then follows from the fact that
| ker ¢[[Sn| = [T < [G].

O

3. THE PROOFS OF THEOREMS 1.1 AND 1.2
We now have everything we need to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Let f: B, — G be any homomorphism that is not cyclic. We claim
first that |f(X)| = |n/2]. The theorem will follow from this claim, since Proposition 2.2 will
then imply that |G| > 2l*/2=1(|n/2])!.

Since | X| = [n/2], we have that |f(X)| < |n/2]. For the sake of deriving a contradiction,
assume that [f(X)| < [n/2] — 1. Lemma 2.1 then implies that |f(X)| = 1, and so we have
that

flo1) = f(o3).
In other words, o105 1 ¢ ker f. Since the normal closure of 0105 Yin B, is equal to B!, (see
[8]) and ker f is a normal subgroup of B,,, we have that B], C ker f. In view of the fact that
B, /B!, = 7, we have that f factors through Z. That is, f is cyclic. This contradiction shows
that |f(X)| = |n/2], as claimed. This completes the proof. O

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first dispense with the case n = 5. As we pointed out in the
introduction, any quotient of Bf is perfect and the smallest non-trivial perfect group is the
alternating group As. It follows that if f : Bl — G is non-trivial then |G| > |A5| = 60. Since
60 > 2272(2 — 1)! = 217/2)=2(|n/2] — 1)! the proof is complete in the case n = 5.

Assume now that n > 6. Let f : B, — G be a non-trivial homomorphism. Recall from
Section 2 that there is a totally symmetric subset X’ of BJ, of size |n/2| — 1 defined by

X' = {0102_2‘1—1}}%%-

Lemma 2.1 implies that either |f(X')| = |X'| = [n/2] — 1 or that |f(X')] = 1. Assume that
|f(X")| = |n/2] — 1. It follows directly from Proposition 2.2 that |G| > 2l"/21=2(|n/2] —1)..
To complete the proof, it therefore suffices to show that if |f(X')] =1 then f is trivial.
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We now assume that | f(X’)| = 1. The assumption implies that f(oy05"') = f(o105 ') and
therefore that f(o30y 1) = 1. The element o305 Lis conjugate in B,, to 0103 1 and, since the
normal closure of o105 Yin B, is equal to Bj,, the normal closure of o305 Lin B, is also equal
to B/,. Tt follows that the normal closure of o305 ! in B., is also equal to B, (see [3, Lemma
8.3]). It further follows that B C ker f, and hence that B = ker f. That is, f is trivial.
This completes the proof. ]
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