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We examine how sub-leading results in the operator and loop expansion for �(GG ! h) in the
Standard Model E↵ective Field Theory (SMEFT) inform theoretical error estimates when study-
ing this production channel in global SMEFT studies. We also discuss the relationship between
geometric SMEFT results and the  formalism.

I. Introduction: The Standard Model (SM) is an
incomplete description of observed phenomena in nature.
It must be extended to account for neutrino masses. This
fact implies that new physics will couple to the SM. In
addition, the hierarchy problem also argues for an ex-
tended sector of new physics at higher energy scales (⇤),
if the origin of neutrino masses is associated with such
scales. As the exact origin of neutrino masses and solu-
tion of the hierarchy problem is unknown, and certainly
experimentally unverified, it is useful to think of the SM
as an E↵ective Field Theory (EFT) for data analysis
with characteristic energies around the electroweak scale:
v̄T ⌘

p
2 hH†Hi.

The Standard Model E↵ective Field Theory (SMEFT)
is based on the low energy assumptions that physics be-
yond the SM is present at scales ⇤ > v̄T , that there are
no light hidden states in the spectrum with couplings
to the SM. A SU(2)L scalar doublet (H) with Hyper-
charge yh = 1/2 is assumed present in the EFT. A power
counting expansion in the ratio of scales q2/⇤2 < 1, fol-
lows with q2 a kinematic invariant associated with ex-
perimental measurements in the domain of validity of
the EFT. These low energy assumptions define a theory,
the SMEFT, with a Lagrangian

LSMEFT = LSM + L
(5) + L

(6) + L
(7) + . . . , (1)

L
(d) =

X

i

C(d)
i

⇤d�4
Q

(d)
i

for d > 4.

The operators Q
(d)
i

are labelled with a mass dimension
d superscript and multiply unknown Wilson coe�cients

C(d)
i

, that predict patterns of corrections to the SM. The

Wilson coe�cients C(d)
i

take on specific values as a result
of the q2/⇤2 < 1 Taylor expanded e↵ects of physics be-
yond the SM. As the nature of physics beyond the SM is
unknown, we treat the Wilson coe�cients and ⇤ as free
parameters to fit from the data, treating the SMEFT as
its own –bottom up– theory. For compact dimension-

less notation we define C̃(d)
i
⌘ C(d)

i
v̄d�4
T

/⇤d�4. The SM
Lagrangian notation and conventions are consistent with
Refs. [1–6]. The sum over i, after non-redundant opera-
tors are removed with field redefinitions of the SM fields,
runs over the operators in a particular operator basis.
We use the Warsaw basis [1, 2] for L(6) in this paper.

When projecting constraints from global SMEFT fits
onto the Wilson coe�cients, one might expect to always
use a theoretical prediction of the highest order in the
operator and the loop expansion. However, as one goes
to higher order in the SMEFT expansions, the number of
unknown parameters continually increases in a particular
measurement increasing the resulting fit spaces. This
issue is not substantially ameliorated when combining
multiple measurements, as each measurement has this
challenge of theoretical interpretation. It is necessary to
truncate the expressions to draw meaningful conclusions.
The power counting of an EFT has a central role as it
organizes the infinite number of parameters that enter
the predictions into sets that are appropriate to retain
when an approximate theoretical precision (chosen to be
better than the current experimental precision) is used
to interface with the data. For global SMEFT studies,
the most straightforward choice is to retain all linear L(6)

interference terms with the SM amplitudes.
However, for �(GG ! h), this choice faces challenges.

Because the SM amplitude itself is loop level, parts of
the SMEFT calculation that interfere with the SM –
such as the piece linear in (L(6)) – are suppressed com-
pared to quadratic terms – (L(6))2. The quadratic term
is accompanied by a factor of (v̄T /⇤)2 relative to the in-
terference piece, but for low ⇤ this may not be enough
to compensate for the loop factor di↵erence. This in-
terplay of loop factors and v̄T /⇤ can be further exacer-
bated if one assumes hierarchical Wilson coe�cients, as
has been shown to arise in many UV matching scenar-
ios [7–9] and, more generally, follows from the conditions
of naive (d  4) renormalizability being imposed on all
UV physics at higher scales [10]. Specifically, if the rel-
evant dimension six coe�cients are small as the result
of UV matching, while the dimension eight coe�cients
are order one, both the L

(6) and (L(6))2 contributions to
�(GG ! h) may be subdominant to (L(8)) terms. This
argument applies to all SM loop processes, however we
will focus on �(GG ! h) given the prominent role it plays
in SMEFT global fits. An analysis of �(h! ��) is given
in Appendix B.
In this paper, we explore how choices about where

the SMEFT calculation is truncated when interpreting
experimental results and what is assumed about the
hierarchy among Wilson coe�cients a↵ect the theoretical
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error on �(GG ! h). There is no unique answer to
defining an error estimate for neglected higher order
terms in a perturbative expansion, and a reasonable
error estimate is never an assertion of precise and exact
knowledge of all higher order terms.1 Here we restrict
ourself to a well defined procedure for defining such an
error, maximally informed by the actual higher order
results, when such results are available in the literature.
For �(GG ! h), the result including both L

(6) e↵ects to
one loop order – O(1/16⇡2⇤2) – and the complete set
of L

(8) e↵ects – O(1/⇤4) – was recently developed in
Ref. [11].

II. �(GG ! h) to O(1/⇤4),O(1/16⇡2⇤2): It is ap-
propriate to organize LSMEFT as specific composite oper-
ator kinematics, with scalar dressings that do not intro-
duce new kinematics, to identify the full set of O(1/⇤4)
corrections. This is the geoSMEFT approach developed
in Refs. [6, 12–14] where scalar field dependent field-space
connections Gi multiply composite operator forms fi as

LSMEFT =
X

i

Gi(I, A,� . . . ) fi. (2)

Powers of DµH are included in fi, I and A repre-
sent possible SU(2)W and SU(3) group structures, and
�1,2,3,4 are components of the Higgs H field. The kine-
matic dependence is factorized into the fi and the re-
scalings by Gi. The geoSMEFT is defined to all or-
ders in the

p
2hH†Hi/⇤ expansion for low n-point func-

tions (n  3), which is su�cient for the case of inter-
est here. In addition, as the loop expansion and the
operator expansion are not independent at sub-leading
order in the SMEFT [11], it is necessary to formulate
O(1/16⇡2⇤2) corrections in the SMEFT in a manner
consistent with the geoSMEFT organization higher or-
der O(1/⇤4) physics. This is best accomplished in the
Background Field Method (BFM) approach to gauge fix-
ing in the SMEFT [12, 15–17].

The general Higgs-gluon field space metric is defined
as [6]

LSMEFT � �
1

4
(�)GA,µ⌫GA,µ⌫ , (3)

with A running over {1 · · · 8} and

(�) =

 
1� 4

1X

n=0

C(6+2n)
HG

✓
�2

2

◆n+1
!
. (4)

For the gluon field strength and coupling, the transforma-
tions to canonically normalized fields at all 1/⇤n orders

1 Nevertheless such errors are still meaningful and standard to
incorporate in EFT studies for decades.

are given by

GA,⌫ =
p
GA,⌫ , (5)

ḡ3 = g3
p
. (6)

We return to the nature of these field redefinitions below.
We write the amplitude perturbation to the process as

[11]

AGGh = AGGh

SM
+ hGG|hi0

O(v̄2
T /⇤2) + hGG|hi

1
O(v̄2

T /⇤2),

+ hGG|hi0
O(v̄4

T /⇤4) + · · · (7)

where each of the expressions for AGGh

SM
, hGG|hi0

O(v̄2
T /⇤2)

hGG|hi1
O(v̄2

T /⇤2) and hGG|hi0
O(v̄4

T /⇤4) are now known in

a consistent set of perturbations in the loop (indicated
with a super-script number) and operator expansion (in-
dicated with a sub-script). The SM result itself AGGh

SM
also

has a perturbative expansion, and is often determined in
an operator expansion with a heavy top limit taken. Here
we use the SM result as reported in Ref. [11], which is
not the highest order SM result known, but su�cient for
our error estimate purposes. The important aspects of
the series behavior is the interaction of new parameters
appearing perturbing the SM, and the appearance of per-
turbative loop correction factors / 1/16⇡2 and operator
expansion corrections / v̄2

T
/⇤2.

The operator expansion of the field space connection
introduces sensitivity to one new L

(8) operator at sub-

leading order: Q
(8)
HG

. In addition, several cross terms
of L(6)

⇥ L
(6) form, including an important contribution

from (C(6)
HG

)2 are present in the expansion of
p
. Simi-

larly, the SMEFT loop expansion introduces corrections
to the Wilson coe�cient already present at leading order

(C(6)
HG

) and also introduces the new parameters (C(6)
H⇤,

C(6)
HD

, C(6)
Hu

, C(6)
uG

) whose operator definitions are

Q
(6)
H⇤ = (H†H)⇤(H†H),

Q
(6)
HD

=
�
H†DµH

�⇤ �
H†DµH

�
,

Q
(6)
Hu

= (H†i
 !
D µH)(ūr�

µur),

Q
(6)
uG

= (q̄3�
µ⌫TAu3) eH GA

µ⌫
, (8)

here r, s run over 1, 2, 3 for the up (u), charm (c) and top
(t) quark flavor labels and eHj = ✏jk H†,k. For remaining
notational conventions consult Refs. [1–6]. Dependence
on

�G(6)
F

=
1
p
2

✓
C̃(3)

Hl
ee

+ C̃(3)
Hl
µµ

�
1

2
(C̃ 0

ll
µeeµ

+ C̃ 0

ll
eµµe

)

◆
(9)

is also present due to a redefinition of the input parameter
vev, introducing a further dependence on the coe�cients
of

Q
(3)
Hl
pr

= (H†i
 !
D I

µ
H)(l̄p⌧

I�µlr),

Q
0

ll
prrp

= (l̄p�
µlr)(l̄r�

µlp) (10)
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The explicit expression defined/developed in Ref. [11] is

�↵̂

SMEFT(GG ! h)

�
↵̂,1/m2

t
SM (GG ! h)

' 1 + 519 C̃(6)
HG

+ 504 C̃(6)
HG

⇣
C̃(6)

H⇤ �
1

4
C̃(6)

HD

⌘
+ 8.15⇥ 104 (C̃(6)

HG
)2 + 504 C̃(8)

HG

+ 1.58
⇣
C̃(6)

H⇤ �
1

4
C̃(6)

HD

⌘
+ 362 C̃(6)

HG
� 1.59 C̃(6)

uH
� 12.6Re C̃(6)

uG
� 1.12 �G(6)

F
� 7.70Re C̃(6)

uG
log
⇣m̂2

h

⇤2

⌘
. (11)

The expression is reported in the ↵̂ew input parameter
scheme, but input parameter scheme dependence is neg-
ligible in this expression. In this expression, we have
omitted contributions from Yukawa couplings other than
yt as they are numerically negligible 2. The leading de-

pendence on C̃(6)
HG

has a numerical coe�cient 519, this
coe�cient is a few percent di↵erent than the coe�cient

of C̃(8)
HG

as in AGGh

SM
we have expanded in the heavy top

limit and retained a higher order term in the former.
To explore the e↵ect of retaining higher order terms in

the interpretation of a projected measurement of �(GG !
h) from the production and decay of the Higgs with the-
ory errors, we consider three cases. In each case, the
full expression in Eq. (11) is broken up into a piece used
to project experimental constraints, and the remainder,
which represents neglected higher order terms. The three
cases are:

i.) Interpret experimental data using the linear L
(6)

interference term only, which in this case is just

the C(6)
HG

contribution. We include both the tree

level and one loop correction / C(6)
HG

.

ii.) Interpret experimental data keeping the C(6)
HG

in-

terference term plus the (C(6)
HG

)2 ‘squared’ piece.

iii.) In addition to the pieces in ii.), retain the C(8)
HG

contribution.

While case i.) is the standard, the validity and
features of cases ii.) and iii.) warrants more study before
jumping into numerics.

III. Quadratic fits in Loop processes and Tree
level processes in the SM: Retaining terms in the
SMEFT prediction for the practical purpose of theoret-
ical precision being greater than experimental precision

would naively argue for retaining the (C(6)
HG

)2 term un-

less C(6)
HG
⌧ 1, due to (for example) a loop suppression

in matching.

2 We also ignore all CP odd operators due to strong, low energy
constraints, see Refs. [18, 19]

On the other hand, retaining only a subset of terms at
an order in a power counting expansion is ill-defined in
EFT formally, as a field redefinition on a SM field F

F ! F 0[1 +O(1/⇤n)] (12)

can change the set of parameters retained (or remove the
parameters entirely), resulting in ambiguous predictions.
This point was recently stressed in Ref. [20].

For example, a field redefinition involving C(6)
HG

is al-
lowed (and even required on the gluon field to take the
theory to canonical form) in Eq. (5) at O(1/⇤4). This
field redefinition on AGGh

SM
cancels order by order against

the simultaneous redefinition of the gauge coupling at all
orders (see Eq. (5)). Applied to QHG, the redefinition

GA

µ⌫
! GA

µ⌫
(1 +O(C(6)

HG
v4
T
/⇤4)) (13)

does not cancel and generates O((C(6)
HG

)2/⇤4) e↵ects
that are ambiguous until the theory is fully defined at
O(1/⇤4). However, when determining the cross section,

the ambiguous O((C(6)
HG

)2/⇤4) terms enter via interfer-
ence with the (loop suppressed) SM amplitude AGGh

SM
and

are therefore numerically suppressed (regardless of how
one chooses the Wilson coe�cients) compared to the

quadratic (self-square) contribution – (C(6)
HG

)2. In this
sense, quadratic fits to loop suppressed processes in the
SM, although formally inconsistent in the treatment of
the power counting, are only sensitive to a small numeri-
cal error/ambiguity in some cases. This is the case when
considering the Higgs-Gluon field space connection, and

constraints on Q
(6)
HG

retaining quadratic terms are of in-
creased interest as a result.
This reasoning only applies to Q

(6)
HG

, (Q(6)
HG

)2 when
studying constraints on �(GG ! h) and fails – in the
sense that relative numerical errors are subsequently
O(1) – for all other Wilson coe�cent dependence in
Eq. (11). In particular, it fails for dependence on the

Wilson coe�cient of Q(8)
HG

.

IV.  rescalings and geoSMEFT It is interest-
ing to consider the possibility of projecting experimental
constraints on the entire Higgs-Gluon field space connec-
tion  (defined in Eq. (3)), and this relationship of such
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a procedure to the so called “ formalism” developed in
Refs. [21–25].3

In the “ formalism”, the coe�cient of the three point
g-g-h coupling is treated as parameter that experiments
fit to. We can map the geoSMEFT expression, Eq. (3)
into this form by expanding to linear order in �

geoSMEFT = h
�

�h
ihi = �4

C̃(6)
HG

v̄T
� 4

C̃(8)
HG

v̄T
+ 8

(C̃(6)
HG

)2

v̄T
.

(14)

One may expect that geoSMEFT is less sensitive to Wil-
son coe�cient hierarchies, such as the tree/loop scenario,

where C(8)
HG
⇠ 16⇡2C(6)

HG
/g2, since all e↵ects are lumped

into a single coe�cient. However, when inspecting the
cross section ratio (Eq. (11)), geoSMEFT is not manifest.
Treating the g-g-h vertex as a single object misses sub-
tleties, such as which terms interfere with the SM and
which do not, that the operator expansion catches.

Extracting the components of Eq. (11) that have the
largest numerical factors and fewest powers of the C̃i, we
find some middle ground – a quantity that involves only a
few Wilson coe�cients yet is derived at the cross section
level so captures information about interference with the
SM.

�↵̂

SMEFT(GG ! h)

�
↵̂,1/m2

t
SM (GG ! h)

' 1 + 881⌃k + · · ·

⌃ =
h
C̃(6)

HG
+ 0.57 C̃(8)

HG
+ 93 (C̃(6)

HG
)2
i

(15)

The coe�cient 881 is the sum of the tree level C̃(6)
HG

term
plus the retained loop correction for this operator; the

relative 0.57 in front of C̃(8)
HG

comes about because terms
of O(v̄4

T
/16⇡2⇤4) were not included in Ref. [11]. Had

these terms been included the factor 0.57!⇠ 1. Fitting
to ⌃k corresponds to case iii).

The combination ⌃k is present for other phenomena
involving a single Higgs. For example, the significant

numerical dependence on C̃(6)
HG

in the Higgs width in the
SMEFT [26] can be rescaled out using the results in [11]
as

�SMEFT

h,full

�SM

h

' 1 + 50.6 C̃(6)
HG

+ · · · (16)

' 1 + 88⌃ � 6.7C̃(6)
HG

+ · · ·

The total Higgs width has a very significant dependence

on (C̃(6)
HG

)2 in the SMEFT via ⌃. The subtraction of an

explicit dependence on C̃(6)
HG

is due to the di↵erence in
the one loop correction in �(GG ! h) vs �(h ! GG) at
one loop as specified in Ref. [11].

3 The coincidence in notion should not be over interpreted.

To break the parameter degeneracy built into ⌃ ex-
perimentally one needs a consider a process with more
than one Higgs field exchange at tree level in a Feyn-
man diagram, or further loop corrections. For example,

the parameter degeneracy in of C̃(6)
HG

in �(GG ! h) and
�(h ! GG) is already weakly broken by a one loop cor-
rection, as shown in Eq. (16).

In general, the geoSMEFT approach is closely related
to the  formalism where rescalings of SM processes
occurs with common kinematic dependence in the SM
and an e↵ective field theory extension. It has been
argued that the specific implementation of this idea in
Ref. [25] is directly mappable to the HEFT formalism in
Ref. [27, 28]. The geoSMEFT also provides a rescaling
generalization of the SM which allows a field theory
interpretation of the  formalism in Ref. [25], that can
also be extended to non-SM kinematics in a well defined
way. The resummation of higher orders in v̄2

T
/⇤2 in the

geometric dressings of the composite operator forms also
breaks the relationships between SMEFT corrections
enforced by linearly realized SU(2)L symmetry, as in the
HEFT. However, in the geoSMEFT case the expansion
back to a linear realization SMEFT is direct and follows
from Taylor expanding the geoSMEFT field space
connections.

V. Numerical study To more quantitatively under-
stand the impact of including higher order terms in the
interpretation of experimental �(GG ! h) data, we turn
to numerics. Specifically, we study how the uncertainty –
encapsulated by the remainder terms for the cases iden-
tified earlier – varies among the cases and as we change
assumptions about the sizes of Wilson coe�cients. We
consider two di↵erent Wilson coe�cient schemes, a) all
Wilson coe�cients set to the same value, and b) an or-
dering of the Wilson coe�cients according to a tree-loop
matching scheme. Defining the uncertainty in this fash-
ion is consistent with the arguments in Refs. [11, 13, 29]
and in particular Ref. [20].

Our first step is to focus our study on coe�cients
and ⇤ scales that are not already experimentally ex-
cluded. We do this by equating the retained piece of
the SMEFT calculation in each case to the current ex-
perimental uncertainty on µggh, e.g. for case i.) we solve

881 C̃(6)
HG

= �µggh. To extract a rough minimum ⇤min

scale from this, we plug in for C(6)
HG

according to the Wil-
son coe�cient scheme. We take this constraint from a fit
to µggh taking the constraint µggh = 1.04± 0.09 [30, 31],
using 0.09 as a rough error band to define relevant per-
turbations that are not experimentally disfavored when
considering error estimates.4

4 Note that significant cancellations can occur between terms in
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Next, we numerically evaluate the uncertainty for the
three cases as a function of ⇤ > ⇤min. To avoid accidental
cancellations, we assign values to the Wilson coe�cients
at each step by drawing them from gaussian distribu-
tions centered at zero and with widths set by the Wilson
coe�cient scheme. Repeating this 10k times at each ⇤
step, we take the 1� width of the resulting gaussian dis-
tribution as the theory error. This theory error is driven
primarily by ⇤, and is, by design, restricted to scales that
are still viable for a given coe�cient choice. Switching
to a flat distribution for sampling the Wilson coe�cients
leads to identical results. This is to be expected; evaluat-
ing the uncertainty in this way amounts to sampling the
linear sum of multiple parameters, so the central limit
theory dictates that the resulting error distribution will
be gaussian regardless of how the individual terms are
sampled.

The resulting theory error is shown in Fig. 1. For the
tree/loop Wilson coe�cient matching scheme we use val-
ues of 1.0/0.01. For the matching scheme with all coe�-
cients taken equal, we try two values, all coe�cients 0.01
and all 1.0. The ⇤min values for the cases are di↵erent5,
but plotting the curves versus ⇤/⇤min hides shifts in ⇤min

and allows all curves to be shown on one plot. The solid
(all coe�cients 0.01) and dotted (all coe�cients 1.0) lines
are nearly identical, as overall changes in the coe�cients
can be compensated – up to the terms containing log(⇤2)
– by rescaling ⇤min.

When all coe�cients are chosen equal, the error esti-
mate in all the cases is nearly identical. When coe�cients
are chosen with the tree/loop hierarchy, the error is case
iii.) is roughly two times smaller than cases i.), ii.). This

di↵erence is due to C(8)
HG

, a tree level term as classified by
Ref. [9], that is part of the uncertainty in cases i.) and
ii.) but not in case iii.). The size and stability of the
uncertainty curve for case iii.) under the two Wilson co-
e�cient matching schemes makes the case for projecting
experimental fit results onto ⌃. An alternative theory

error analysis, fixing C(6)
HG

and sampling the higher order

Eqn.(11), lowering a naive compatability scale, and this trans-
lates into cases where the theory error on the experimental pro-

jection of results onto C
(6)
HG

etc is significantly higher. This is
also qualitatively indicated with the blowing up of the theory er-
ror curve in Fig. 1. Such cancellations, leading to flat directions,
are broken by considering top measurements [32] and in a global
study are expected to be less relevant than the generic case con-
sidered here with a naive compatability scale and no significant
cancellations. Such potential cancellations, with a corresponding
large theory error when canceling terms are neglected, are also
illustrated by the variations in Figs. 2,3,4.

5 Explicitly, for all coe�cients equal to 0.01, ⇤min =
2.43TeV, 2.44TeV, 2.45TeV for cases i.), ii.) iii.)
respectively, for all coe�cients equal to 1.0,
⇤min = 24.3TeV, 24.5TeV, 24.5TeV, and ⇤min =
2.43TeV, 2.44TeV, 2.90TeV for the tree/loop (1.0/0.01)
scheme.

terms using the method of Ref. [13], is shown in Appendix
A.
As ⌃ is not the complete O(1/⇤4) result, the obvious

worry is that there may be artifacts or ambiguities
present. The analysis of Sec. III shows that field
redefinition ambiguities can be present, but are small.
A second concern is that combination of parameters
retained introduces intrinsic basis choice dependence.
For example, it has been shown in Refs. [13, 29] that
dependence on �v̄2

T
purely due to operator basis choice

in matching a UV model onto the SMEFT cancels in
observables, but could persist in inconsistent calculations
to O(1/⇤4). To check whether or not this combination
of terms introduces such an intrinsic basis dependence,
we study a matching example.

VI. Matching example Consider integrating out
�, which couples to the SM as

L� =
1

2
(@µ�)

2
�

1

2
m2

�
�2 +

ag23 �G
A

µ⌫
GA,µ⌫

⇤
+ ⇤ bH†H�

(17)

This is an example of a non-minmally coupled model, as
discussed in Ref. [10]. Rewriting the Lagrangian as

L = LSM �
1

2
�(@2 +m2

�
)� + �B, (18)

B =
ag23 GA

µ⌫
GA,µ⌫

⇤
+ ⇤ dH†H (19)

then using the results from Ref. [29, 33] yields:

L = LSM +
1

2m2
�

B2 +
1

2m4
�

B@2B +O(m�6
�

). (20)

It is necessary for the condition b⌧ ⇤/m� to be imposed
for the expansion in 1/m� to be convergent. The low
energy e↵ects of this matching is to redefine the SM �,
v̄T and mh as

v̄2
T
! (v0)2 +

b2 ⇤2v̄2
T

2�m2
�

, (21)

� ! �0
�

b2 ⇤2

2m2
�

, (22)

m2
h

= 2�v̄2
T
, (23)

! 2�0 (v0)2

1�

b4⇤4

4(�0)2 m4
�

�
. (24)

The remaining contributions come from expanding out
B@2B. The e↵ects include a contribution to the gluon
self interactions

1

2m4
�

a2 g4
s

⇤2

⇥
GA

µ⌫
GA,µ⌫

⇤
@2
⇥
GA

µ⌫
GA,µ⌫

⇤
, (25)

and a contribution to CH⇤ is

⇤2

2m4
�

b2QH⇤. (26)



6

��� ��� ��� ��� ���

����

����

����

����

����

Λ/Λ���

δ(
��
→
�)
�
�
�

FIG. 1: Uncertainty on �(gg ! h) from higher order terms
as a function of the new physics scale ⇤ relative to the min-
imum scale compatible with current experimental gg ! h
data. We have broken the full �(gg ! h)SMEFT calcula-
tion of Ref. [11] into a calculation piece used to determine
the compatibility scale – and a higher order terms piece in
three di↵erent ways, i.) first we retain only the O(1/⇤2) in-
terference term, ii.) second we include the interference term

and pieces proportional to (C(6)
HG

)2 in the retained result in
the calculation to determine the compatability scale, iii.) as

in ii.) but also the C(8)
HG

term is also included, which cor-
responds to ⌃. For a given set of terms retained, we de-
termine the minimum scale by equating it with the current
experimental uncertainty on �(GG ! h). The curves shown
above are then generated by incrementing ⇤ above ⇤min and
numerically evaluating the numerical error by plugging in co-
e�cients according to a scheme and evaluating the neglected
terms. The dashed lines correspond to the tree/loop scheme
with values 1.0/0.01, the solid lines correspond to picking all
coe�cients equal to 0.01, and the dotted lines correspond to
picking all coe�cients equal to 1.0. Case i.) is shown in red,
case ii.) in green, case iii.) in blue. For the tree/loop scheme,
the retained partitions i.) and ii.) are nearly identical, while
all three cases are nearly identical when all coe�cients are
chosen equal (same color scheme for the cases).

A more interesting interaction comes from the cross term

a b g2
s

2m4
�

⇥
GA

µ⌫
GA,µ⌫ @2(H†H) + @2(GA

µ⌫
GA,µ⌫) (H†H)

⇤
.

One can integrate by parts to arrange this contribution
into the form

a b g2
s

2m4
�

⇥
2GA

µ⌫
GA,µ⌫ @2(H†H)

⇤
. (27)

Expanding out

@2(H†H)! 2(DµH†)(DµH) + (D2H†)H +H†(D2H).

The first term does not contribute to �(gg ! h), the
remaining terms are EOM reducible to the combination
of terms

2
�
�v̄2

T
(H†H)� 2�(H†H)2 +Yukawa terms

�
(28)

Combining these with the O(m�2
�

) term, we have

L �

⇣ab g23
m2

�

+
2a b g23 �v

2

m4
�

⌘
Q

(6)
HG
�

4a d g23 �

m4
�

Q
(8)
HG

(29)

Via the expression ⌃, this leads to a � dependence in
the cross section

�↵̂

SMEFT(GG ! h)

�
↵̂,1/m2

t
SM (GG ! h)

/ �1.7⇥ 103
a b� v̄4

T

m4
�

(30)

when we incorporate the common one loop QCD correc-

tion to Q
(8)
HG

to have a common tree level dependence.
This arrangement of derivative terms is consistent with
the geoSMEFT conventions. However, unlike the exam-
ples in Refs. [13, 29] this � dependence does not signal
intrinsic basis dependence in fitting to ⌃ due to an in-
consistent treatment of the theory at O(1/⇤4). One can
also rearrange the derivative terms onto

a b g2
s

2m4
�

⇥
2@2GA

µ⌫
GA,µ⌫ (H†H)

⇤
. (31)

and the same � dependence remains and results from
the dot product in momenta of the gluons generating p2

h
.

Similarly, one can arrange the derivative terms through
mapping Eq. (27) to the total derivative

a b g2
s

2m4
�

@2
⇥
GA

µ⌫
GA,µ⌫ (H†H)

⇤
. (32)

and 2
⇥
@µ(GA

µ⌫
GA,µ⌫) @µ(H†H)

⇤
. This later term again

generates the same � dependence through the momen-
tum dot product for the three point function, with a
basis choice that is an alternate to the conventions in
the geoSMEFT, but still projects onto the physical three
point amplitude in a consistent fashion. This indicates
that experimental constraints on ⌃ do not introduce in-
trinsic basic dependence due to the � dependence present
in this matching example.

CONCLUSIONS

In this paper we have explored the theory uncertainty
on �(GG ! h) from higher order terms in the SMEFT
framework, and how that uncertainty is a↵ected by which
pieces of the SMEFT calculation are retained when fit-
ting experimental data. This study is made possible by
the calculation of �(GG ! h) in Ref. [11], the first anal-
ysis to include both complete O(1/⇤4) e↵ects and one
loop corrections to O(1/⇤2) terms. We explored three
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ways of splitting the full O(1/⇤4), O(1/16⇡2⇤2) result
into a subset used for fitting experimental data, and a
remainder that defines the uncertainty: i.) fitting exper-
imental data with the linear L

(6) piece only (in which
case, the uncertainty is all of Eq. (11) except the terms

linear in C(6)
HG

), ii.) fitting with the linear and quadratic
L
(6) pieces, and iii.) fits including select L(8) terms. De-

fined in this fashion, the theory error is controlled pri-
marily by the dimensionful scale ⇤ and can be combined
in quadrature with the experimental uncertainty.

Cases ii.) and iii.) are unconventional as they con-
tain only a subset of higher order results, however they
capture physics that case i.) cannot, such as a relative
suppression in interference terms relative to (L(6))2 terms
originating from the fact that gg ! h is a one-loop pro-

cess in the SM. Incorporating C(8)
HG

terms into the fit,

forming a combination with C(6)
HG

and (C(6)
HG

)2 we define
as ⌃k, further stabilizes the theory uncertainty when as-
suming a tree/loop hierarchy of Wilson coe�cients. We
find that field redefinition ambiguities in cases ii.) and
iii.) are small, suppressed by interference with the SM
amplitude, and the type of basis dependence / �, the
Higgs quartic, observed in Ref. [13, 29] does not appear
to arise.

When extracting numerical results, we explored two
di↵erent Wilson coe�cient schemes, all coe�cients the
same, and tree/loop hierarchy. While obviously not ex-
haustive, these two schemes span a wide class of UV sce-
narios; for other setups, one could repeat the steps here
starting with the result in Ref. [11].

Finally, we wish to stress that the loop nature of
�(GG ! h) in the SM plays a crucial role in the validity of
including partial O(1/⇤4) results when comparing with
experiment, as it suppresses field redefinition ambigui-
ties on the quadratic term (independent of the Wilson
coe�cient matching scheme). We strongly stress that
our conclusions do not generally apply to the case where
a tree level SM amplitude is present to interfere with
SMEFT perturbations. When retaining partial O(1/⇤4)
terms in a projection of experimental results in such a
case, numerical ambiguities can be O(1).
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Appendix A

An alternative approach to illustrate the e↵ect of
higher order terms leading to theory error estimates is to

set C(6)
HG

to a fixed value, and then illustrate the resulting
change in the induced deviation in �(GG ! h) when the
higher order coe�cients are varied over assumed distri-
butions.

These results are shown in Figs. 2,3,4. In each of the
figures, the black and red lines indicate the contribution

to Eq. (11) from the linear and quadratic C(6)
HG

terms,
respectively. The green band shows the range of values
when the O(1/⇤4) terms are included, and the blue band
shows the range once O(1/⇤4) and ‘loop’, O(1/16⇡2⇤2)
terms are included. The range of values correspond to
2� values, derived from sampling the coe�cients in the
higher order (O(1/⇤4) or O(1/16⇡2⇤2)) terms 10k times
from gaussian distributions and extracting the standard
deviation of the collection. The di↵erence between the
figures is the assumptions made on the Wilson coe�-

cients; in Fig. 2, we set C(6)
HG

= 0.01 and sample the
higher order terms according to a gaussian with zero
mean and width 0.01, in Fig 3 we use 1.0 for the value

of C(6)
HG

and the width of the sampling gaussians, and in

Fig. 4 we use a tree/loop scheme – setting C(6)
HG

= 0.01
and using 1.0/0.01 for the width of the gaussians for oper-
ators that fall into the tree/loop category. The horizontal
axes of the three figures have been chosen such that the
(absolute value of the) deviation in �(GG ! h) is less
than 0.5.

Appendix B

Here we apply the numerical error analysis technique
from Sec. V to �(h ! ��); �(h ! ��) is also a loop
level process in the SM and therefore subject to similar
questions as �(GG ! h) of which SMEFT contributions
to keep when projecting experimental results and the im-
pact of higher order terms. The full SMEFT expression
to O(v2

T
/16⇡2⇤2), O(v4

T
/⇤4) is derived in Ref. [11]
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�m̂W
SMEFT

�m̂W
SM

' 1� 788f m̂W
1 , (33)

+ 3942 (f m̂W
1 )2 � 351 (C̃(6)

HW
� C̃(6)

HB
) f m̂W

3 + 2228 �G(6)
F

f m̂W
1 ,

+ 979 C̃(6)
HD

(C̃(6)
HB

+ 0.80 C̃(6)
HW
� 1.02 C̃(6)

HWB
)� 788

" 
C̃(6)

H⇤ �
C̃(6)

HD

4

!
f m̂W
1 + f m̂W

2

#
,

+ 2283 C̃(6)
HWB

(C̃(6)
HB

+ 0.66 C̃(6)
HW
� 0.88 C̃(6)

HWB
)� 1224 (f m̂W

1 )2,

� 117 C̃(6)
HB
� 23 C̃(6)

HW
+


51 + 2 log

✓
m̂2

h

⇤2

◆�
C̃(6)

HWB
+


�0.55 + 3.6 log

✓
m̂2

h

⇤2

◆�
C̃(6)

W
,

+


27� 28 log

✓
m̂2

h

⇤2

◆�
Re C̃(6)

uB
33

+


14� 15 log

✓
m̂2

h

⇤2

◆�
Re C̃(6)

uW
33

+ 5.5Re C̃(6)
uH
33

,

+ 2 C̃(6)
H⇤ �

C̃(6)
HD

2
� 3.2 C̃(6)

HD
� 7.5 C̃(6)

HWB
� 3
p
2 �G(6)

F
. (34)

in the m̂W scheme, and

�↵̂ew
SMEFT

�↵̂ew
SM

' 1� 758f ↵̂ew
1 ,

+ 3792 (f ↵̂ew
1 )2 � 350 (C̃(6)

HW
� C̃(6)

HB
)2 � 1159 (f ↵̂ew

1 )2

� 61 C̃(6)
HWB

⇣
C̃(6)

HB
+ 7.2C̃(6)

HW
� 9.2C̃(6)

HWB

⌘
� 13.5 C̃(6)

HD

⇣
C̃(6)

HB
+ 16C̃(6)

HW
� 15C̃(6)

HWB

⌘

+ 1383 �G(6)
F

⇣
C̃(6)

HB
� 0.13C̃(6)

HW
� 0.15C̃(6)

HWB

⌘
� 758

" 
C̃(6)

H⇤ �
C̃(6)

HD

4

!
f ↵̂ew
1 + f ↵̂ew

2

#
,

� 218 C̃(6)
HB

+ 22 C̃(6)
HW

+


�17 + 2.0 log

✓
m̂2

h

⇤2

◆�
C̃(6)

HWB
+


�0.60 + 3.6 log

✓
m̂2

h

⇤2

◆�
C̃(6)

W
,

+


26� 27 log

✓
m̂2

h

⇤2

◆�
Re C̃(6)

uB
33

+


14� 15 log

✓
m̂2

h

⇤2

◆�
Re C̃(6)

uW
33

+ 5.5Re C̃(6)
uH
33

,

+ 2 C̃(6)
H⇤ �

C̃(6)
HD

2
�
p
2 �G(6)

F
. (35)

in the ↵̂ew scheme. Here, C(6+2n)
HB

, C(6+2n)
HW

, C(8)
HW,2,

C(6+2n)
HWB

, C(6)
uH

, C(6)
uB

and C(6)
W

are the Wilson coe�cients

of the following operators:

Q
(6+2n)
HB

= (H†H)(1+n) Bµ⌫ Bµ⌫ ,

Q
(6+2n)
HW

= (H†H)(1+n) Wµ⌫

a
W a

µ⌫
,

Q
(8)
HW,2 = (H†�aH) (H†�bH)Wµ⌫

a
W b

µ⌫
,

Q
(6+2n)
HWB

= (H†�aH) (H†H)(n) W a

µ⌫
Bµ⌫ ,

Q
(6)
uH

= (H†H)(q̄r urH̃),

Q
(6)
uB

= (q̄r �
µ⌫ ur)H̃Bµ⌫ ,

Q
(6)
W

= ✏IJK W I,⌫

µ
W J,⇢

⌫
WK,µ

⇢
, (36)
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and f m̂W
i
⇠= f ↵̂ew

i
are linear combinations of Wilson co-

e�cients:

f m̂W
1 =

h
C̃(6)

HB
+ 0.29 C̃(6)

HW
� 0.54 C̃(6)

HWB

i
, (37)

f m̂W
2 =

h
C̃(8)

HB
+ 0.29 (C̃(8)

HW
+ C̃(8)

HW,2)� 0.54 C̃(8)
HWB

i
,

(38)

f m̂W
3 =

h
C̃(6)

HW
� C̃(6)

HB
� 0.66 C̃(6)

HWB

i
, (39)

Following the analysis of �(GG ! h), we break up the
full result for �(h! ��) into three cases:

i.) Retaining only the dimension six interference piece,
/ f1, when comparing with experiment. The loop
corrections for �(h ! ��) are not / f1 [34], so in
this case we only keep the tree level interference
term.

ii.) Retaining the interference piece plus (f1)2 terms,
the square of the dimension six piece from i.).

iii.) Retaining the f1, (f1)2 and f2 terms.

In each case, we associate the remainder of Eq. (34), (35)
with the impact from higher order terms and explore its
numerical impact using the same two Wilson coe�cient
matching schemes used in the main text.

We next determine the minimum scale ⇤min by equat-
ing the retained part of �(h ! ��) to the current un-
certainty on gg ! h ! ��, �µgg!h!�� = 0.14 [30]
and setting Wilson coe�cients according to the matching
scheme. Then, for ⇤ > ⇤min, we evaluate the higher or-
der piece 10k times, evaluating the higher order terms at
each step using values drawn from gaussian distributions
with width set by the matching scheme. The standard
deviation from the collection of higher order term values
is shown below in Fig. 5,6 as a function of ⇤/⇤min for the
various cases, matching, and electroweak input schemes.6

As was the case in �(GG ! h), case iii.) is the most ro-
bust under the di↵erent Wilson coe�cient schemes stud-
ied here. As was the case for �(GG ! h), the dif-
ference between the curves with all Wilson coe�cients
equal to 1 and all coe�cients equal to 0.01 (when plot-
ted vs. ⇤/⇤min) can be traced to the log(⇤2) terms
in �(h ! ��). Additionally, comparing Figs. 5 and 6,
one can see there is some dependence on the EW input
scheme.

6 Explicitly, the ⇤min values for �m̂W (h ! ��) are ⇤min =
1.6TeV for all cases when the Wilson coe�cients are all 0.01,
⇤min = 16TeV for all cases when the Wilson coe�cients are all
1.0, and ⇤min = 1.6TeV, 1.6TeV, 2.5TeV for cases i.), ii.), iii.)
respectively in the tree/loop 1.0/0.01 scheme. The ⇤min values
for �↵̂ew (h ! ��) are essentially the same.

��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

Λ (���)

δ(
��

→
�)

FIG. 2: Deviation in �(GG ! h) relative to the SM with

C(6)
HG

= 0.01, and all other coe�cients sampled accord-
ing to gaussian distributions with zero mean and width
0.01. The deviation is plotted as a function of ⇤. The
black (red) lines correspond to the linear (quadratic) C(6)

HG

terms, the green band is the 2� band that results from 10k
samples of the O(1/⇤4) corrections, and the blue band is
the 2� band from 10k samples of the sum of the O(1/⇤4)
and loop level, O(1/16⇡2⇤2) terms.

� �� �� �� �� ��
���

���

���

���

���

���

Λ (���)

δ(
��

→
�)

FIG. 3: Deviation in �(GG ! h) relative to the SM with

C(6)
HG

= 1.0, and all other coe�cients sampled accord-
ing to gaussian distributions with zero mean and width
1.0. The deviation is plotted as a function of ⇤. The
black (red) lines correspond to the linear (quadratic) C(6)

HG

terms, the green band is the 2� band that results from 10k
samples of the O(1/⇤4) corrections, and the blue band is
the 2� band from 10k samples of the sum of the O(1/⇤4)
and loop level, O(1/16⇡2⇤2) terms.



10

� � � � �

-���

-���

���

���

���

Λ (���)

δ(
��
→
�)

FIG. 4: Deviation in �(GG ! h) relative to the SM with

C(6)
HG

= 0.01, and all other coe�cients sampled according to
gaussian distributions with zero mean and width of either 1.0
or .01 depending on whether the corresponding operator is
generated at tree or loop level following the classification in
Ref. [7–9]. The deviation is plotted as a function of ⇤, and
the color scheme for the lines and bands is the same as in
Figs. 2, 3.
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