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We examine how sub-leading results in the operator and loop expansion for o(GG — h) in the
Standard Model Effective Field Theory (SMEFT) inform theoretical error estimates when study-
ing this production channel in global SMEFT studies. We also discuss the relationship between

geometric SMEFT results and the x formalism.

I. Introduction: The Standard Model (SM) is an
incomplete description of observed phenomena in nature.
It must be extended to account for neutrino masses. This
fact implies that new physics will couple to the SM. In
addition, the hierarchy problem also argues for an ex-
tended sector of new physics at higher energy scales (A),
if the origin of neutrino masses is associated with such
scales. As the exact origin of neutrino masses and solu-
tion of the hierarchy problem is unknown, and certainly
experimentally unverified, it is useful to think of the SM
as an Effective Field Theory (EFT) for data analysis
with characteristic energies around the electroweak scale:

The Standard Model Effective Field Theory (SMEFT)
is based on the low energy assumptions that physics be-
yond the SM is present at scales A > ¥, that there are
no light hidden states in the spectrum with couplings
to the SM. A SU(2)r, scalar doublet (H) with Hyper-
charge y;, = 1/2 is assumed present in the EFT. A power
counting expansion in the ratio of scales ¢>/A? < 1, fol-
lows with ¢? a kinematic invariant associated with ex-
perimental measurements in the domain of validity of
the EFT. These low energy assumptions define a theory,
the SMEFT, with a Lagrangian

Lsmerr = Lsm+ LD +£O + D40 (1)
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for d > 4.

The operators di) are labelled with a mass dimension
d superscript and multiply unknown Wilson coeflicients
C’i(d), that predict patterns of corrections to the SM. The

Wilson coefficients C’i(d) take on specific values as a result
of the ¢?/A? < 1 Taylor expanded effects of physics be-
yond the SM. As the nature of physics beyond the SM is
unknown, we treat the Wilson coefficients and A as free
parameters to fit from the data, treating the SMEFT as
its own —bottom up— theory. For compact dimension-
less notation we define C’;d) = Ci(d)z_)%*‘l/Ad*“. The SM
Lagrangian notation and conventions are consistent with
Refs. [IHG]. The sum over i, after non-redundant opera-
tors are removed with field redefinitions of the SM fields,
runs over the operators in a particular operator basis.
We use the Warsaw basis [1} 2] for £(%) in this paper.

When projecting constraints from global SMEFT fits
onto the Wilson coefficients, one might expect to always
use a theoretical prediction of the highest order in the
operator and the loop expansion. However, as one goes
to higher order in the SMEFT expansions, the number of
unknown parameters continually increases in a particular
measurement increasing the resulting fit spaces. This
issue is not substantially ameliorated when combining
multiple measurements, as each measurement has this
challenge of theoretical interpretation. It is necessary to
truncate the expressions to draw meaningful conclusions.
The power counting of an EFT has a central role as it
organizes the infinite number of parameters that enter
the predictions into sets that are appropriate to retain
when an approximate theoretical precision (chosen to be
better than the current experimental precision) is used
to interface with the data. For global SMEFT studies,
the most straightforward choice is to retain all linear £(6)
interference terms with the SM amplitudes.

However, for (GG — h), this choice faces challenges.
Because the SM amplitude itself is loop level, parts of
the SMEFT calculation that interfere with the SM —
such as the piece linear in (£(%)) — are suppressed com-
pared to quadratic terms — (£(9)2. The quadratic term
is accompanied by a factor of (v7/A)? relative to the in-
terference piece, but for low A this may not be enough
to compensate for the loop factor difference. This in-
terplay of loop factors and or/A can be further exacer-
bated if one assumes hierarchical Wilson coefficients, as
has been shown to arise in many UV matching scenar-
ios [fH9] and, more generally, follows from the conditions
of naive (d < 4) renormalizability being imposed on all
UV physics at higher scales [10]. Specifically, if the rel-
evant dimension six coefficients are small as the result
of UV matching, while the dimension eight coefficients
are order one, both the £(9) and (£(9))? contributions to
0(GG — h) may be subdominant to (£®)) terms. This
argument applies to all SM loop processes, however we
will focus on 0(GG — h) given the prominent role it plays
in SMEFT global fits. An analysis of T'(h — ) is given
in Appendix B.

In this paper, we explore how choices about where
the SMEFT calculation is truncated when interpreting
experimental results and what is assumed about the
hierarchy among Wilson coefficients affect the theoretical



error on 6(GG — h). There is no unique answer to
defining an error estimate for neglected higher order
terms in a perturbative expansion, and a reasonable
error estimate is never an assertion of precise and exact
knowledge of all higher order terms.! Here we restrict
ourself to a well defined procedure for defining such an
error, maximally informed by the actual higher order
results, when such results are available in the literature.
For ¢(GG — h), the result including both £ effects to
one loop order — O(1/1672A?) — and the complete set
of L® effects — O(1/A*) — was recently developed in
Ref. [11].

II. 6(GG — h) to O(1/A%),0(1/1672A%): 1t is ap-
propriate to organize LgyerT as specific composite oper-
ator kinematics, with scalar dressings that do not intro-
duce new kinematics, to identify the full set of O(1/A%)
corrections. This is the geoSMEFT approach developed
in Refs. [6] [12H14] where scalar field dependent field-space
connections G; multiply composite operator forms f; as

ESMEFTZZGi(I,A7¢~-~)fi- (2)

Powers of D*H are included in f;, I and A repre-
sent possible SU(2)w and SU(3) group structures, and
¢1,2,3,4 are components of the Higgs H field. The kine-
matic dependence is factorized into the f; and the re-
scalings by G;. The geoSMEFT is defined to all or-
ders in the v/2(HtH)/A expansion for low n-point func-
tions (n < 3), which is sufficient for the case of inter-
est here. In addition, as the loop expansion and the
operator expansion are not independent at sub-leading
order in the SMEFT [11], it is necessary to formulate
O(1/167%2A?) corrections in the SMEFT in a manner
consistent with the geoSMEFT organization higher or-
der O(1/A*) physics. This is best accomplished in the
Background Field Method (BFM) approach to gauge fix-
ing in the SMEFT [12] [15H17].

The general Higgs-gluon field space metric is defined
as [6]

1
LsMmErT D —EH(@Gﬂ’WGﬂ,W, (3)

with 4 running over {1---8} and

(0) <1_4Zc6+2“()"“>. 0

For the gluon field strength and coupling, the transforma-
tions to canonically normalized fields at all 1/A™ orders

1 Nevertheless such errors are still meaningful and standard to
incorporate in EFT studies for decades.

are given by
v _ \/Egﬂl,l/, (5)
g3 = g3 VK- (6)

We return to the nature of these field redefinitions below.
We write the amplitude perturbation to the process as
1]

AT+ (GGIM Dz sazy + (GGIM) b2, a2y
+<gg\h>0(5‘;//\4) (7)

where each of the expressions for AZS", <gg\h>%@%m2)

Aggn =

<Qg|h>}9(l_)%/m) and <gg\h>%(l_}%//\4) are now known in
a consistent set of perturbations in the loop (indicated
with a super-script number) and operator expansion (in-
dicated with a sub-script). The SM result itself AZS" also
has a perturbative expansion, and is often determined in
an operator expansion with a heavy top limit taken. Here
we use the SM result as reported in Ref. [11], which is
not the highest order SM result known, but sufficient for
our error estimate purposes. The important aspects of
the series behavior is the interaction of new parameters
appearing perturbing the SM, and the appearance of per-
turbative loop correction factors o< 1/1672 and operator
expansion corrections oc 92,/A2.

The operator expansion of the field space connection
introduces sensitivity to one new £(®) operator at sub-
leading order: QE‘?)G In addition, several cross terms
of £ x £©) form, including an important contribution
from (C;?)G)2 are present in the expansion of v/k. Simi-
larly, the SMEFT loop expansion introduces corrections
to the Wilson coefficient already present at leading order
(Cg%;) and also introduces the new parameters (ngm,

c C’gii, C’Sg) whose operator definitions are

©
=3
\

L = (H H)O(H' H),

(H'D,H)" (H'D,H),

0l — (H''D , H) (@ u,),

Q(ﬁ) ( 3O'NVTAU3)H Gﬁv’ (8)

©
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here r, s run over 1, 2, 3 for the up (u), charm (¢) and top
(t) quark flavor labels and H; = ¢;;, H'*. For remaining

notational conventions consult Refs. [IH6]. Dependence
on
1 - -
5G9 = <c<3> +CB 'y +C )) (9)
F \/§ gel JLLL 2 ,uelfz,u ep{ite

is also present due to a redefinition of the input parameter
vev, introducing a further dependence on the coefficients
of

Q%) = (Hi DL H) (1,7 +"1,),
pr

Q u = (ZPVHIT)GTVHZP) (10)
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The explicit expression defined/developed in Ref. [11] is

JgMEFT(gg — h)
a l/mt (gg N h)

_ _ _ 1 - - -
~ 1+ 519 Cf), + 504 Ci7% (Clgh — 701D ) + 815 x 104 (C%)* + 504 Ol

~ 1~ ~ ~ ~ ~ 2
+1.58 (O — 704D ) + 36207 — 159 CLG) — 12,6 Re O} — 112061 — T.70Re O log (54 ). (11)

The expression is reported in the &, input parameter
scheme, but input parameter scheme dependence is neg-
ligible in this expression. In this expression, we have
omitted contributions from Yukawa couplings other than
y¢ as they are numerically negligible 2. The leading de-
pendence on CN'g% has a numerical coefficient 519, this
coefficient is a few percent different than the coefficient
of C'S% as in Ag%’ we have expanded in the heavy top
limit and retained a higher order term in the former.

To explore the effect of retaining higher order terms in
the interpretation of a projected measurement of o(GG —
h) from the production and decay of the Higgs with the-
ory errors, we consider three cases. In each case, the
full expression in Eq. is broken up into a piece used
to project experimental constraints, and the remainder,
which represents neglected higher order terms. The three
cases are:

i.) Interpret experimental data using the linear £
interference term only, which in this case is just
the C}fg; contribution. We include both the tree

level and one loop correction o Cgs)

ii.) Interpret experimental data keeping the CI(LIG in-
terference term plus the (0262;) ‘squared’ piece.

ili.) In addition to the pieces in ii.), retain the C’S%
contribution.

While case i.) is the standard, the validity and
features of cases ii.) and iii.) warrants more study before
jumping into numerics.

ITI. Quadratic fits in Loop processes and Tree
level processes in the SM: Retaining terms in the
SMEFT prediction for the practical purpose of theoret-
ical precision being greater than experimental precision
would naively argue for retaining the (C’g%)Q term un-

less C( ), < 1, due to (for example) a loop suppression
in matchmg

2 We also ignore all CP odd operators due to strong, low energy
constraints, see Refs. [18][19]

(

On the other hand, retaining only a subset of terms at
an order in a power counting expansion is ill-defined in
EFT formally, as a field redefinition on a SM field F’

F = F'[1+O(1/A")] (12)

can change the set of parameters retained (or remove the
parameters entirely), resulting in ambiguous predictions.
This point was recently stressed in Ref. [20].

For example, a field redefinition involving Cg)G is al-
lowed (and even required on the gluon field to take the
theory to canonical form) in Eq. (5) at O(1/A*). This
field redefinition on Ag 37 cancels order by order against
the simultaneous redefinition of the gauge coupling at all
orders (see Eq. ) Applied to Qg¢, the redefinition

G, — G4 (1+0(CY) vk /AY) (13)

does not cancel and generates (’)(( ) JA%) effects
that are ambiguous until the theory is fully defined at
O(1/A*). However, when determining the cross section,

the ambiguous O((C(6) )2/A%) terms enter via interfer—
ence with the (loop suppressed) SM amplitude A oir h and
are therefore numerically suppressed (regardless of how
one chooses the Wilson coefficients) compared to the
quadratic (self-square) contribution — (O}fg)? In this
sense, quadratic fits to loop suppressed processes in the
SM, although formally inconsistent in the treatment of
the power counting, are only sensitive to a small numeri-
cal error/ambiguity in some cases. This is the case when
considering the Higgs-Gluon field space connection, and
constraints on QS?G retaining quadratic terms are of in-
creased interest as a result.

This reasoning only applies to QHG, (QES)G)2 when
studying constraints on (GG — h) and fails — in the
sense that relative numerical errors are subsequently
O(1) - for all other Wilson coefficent dependence in
Eq. . In particular, it fails for dependence on the

Wilson coefficient of Q(;)G.

IV. k rescalings and geoSMEFT It is interest-
ing to consider the possibility of projecting experimental
constraints on the entire Higgs-Gluon field space connec-
tion  (defined in Eq. (3)), and this relationship of such



a procedure to the so called “x formalism” developed in
Refs. [21H25].

In the “k formalism”, the coefficient of the three point
g-g-h coupling is treated as parameter that experiments
fit to. We can map the geoSMEFT expression, Eq.
into this form by expanding to linear order in ¢

0K o a® ~(6) \2
KgeoSMEFT = <E><K> =—4 @’;G 4 1_)11;6‘ +8 ( gTG) .
(14)

Omne may expect that KgeosMmEFT 1S less sensitive to Wil-
son coefficient hierarchies, such as the tree/loop scenario,
where CI(L?)G ~ 167‘(201(52; /g2, since all effects are lumped
into a single coefficient. However, when inspecting the
cross section ratio (Eq. ), KgeoSMEFT 1S N0t manifest.
Treating the g-g-h vertex as a single object misses sub-
tleties, such as which terms interfere with the SM and
which do not, that the operator expansion catches.
Extracting the components of Eq. that have the
largest numerical factors and fewest powers of the C;, we
find some middle ground — a quantity that involves only a
few Wilson coefficients yet is derived at the cross section

level so captures information about interference with the
SM.

UgMEFT(gg — h)
o&’ " (GG — h)
5, = [é}fg +0.57C%). 1+ 93 (é}?g)ﬂ (15)

~1+8813%;,+---

The coefficient 881 is the sum of the tree level C’}fg term
plus the retained loop correction for this operator; the
relative 0.57 in front of C’S% comes about because terms
of O(v3/16m%A*) were not included in Ref. [11]. Had
these terms been included the factor 0.57 —~ 1. Fitting
to X corresponds to case iii).

The combination X, is present for other phenomena
involving a single Higgs. For example, the significant
numerical dependence on C’;?é in the Higgs width in the
SMEFT [26] can be rescaled out using the results in [L1]
as

idui ™ 1450.6C% 16
Tpsar = 1060+ (16)

1

14885, — 6.7C0), 4 ...

The total Higgs width has a very significant dependence
on (é}%ﬁ in the SMEFT via ¥,. The subtraction of an
explicit dependence on (:*g% is due to the difference in
the one loop correction in o(GG — h) vs I'(h — GG) at
one loop as specified in Ref. [11].

3 The coincidence in notion should not be over interpreted.

To break the parameter degeneracy built into X, ex-
perimentally one needs a consider a process with more
than one Higgs field exchange at tree level in a Feyn-
man diagram, or further loop corrections. For example,
the parameter degeneracy in of CN'J(L?)G in 0(GG — h) and
I'(h — GG) is already weakly broken by a one loop cor-
rection, as shown in Eq. .

In general, the geoSMEFT approach is closely related
to the k formalism where rescalings of SM processes
occurs with common kinematic dependence in the SM
and an effective field theory extension. It has been
argued that the specific implementation of this idea in
Ref. [25] is directly mappable to the HEFT formalism in
Ref. [27] 28]. The geoSMEFT also provides a rescaling
generalization of the SM which allows a field theory
interpretation of the x formalism in Ref. [25], that can
also be extended to non-SM kinematics in a well defined
way. The resummation of higher orders in v2/A? in the
geometric dressings of the composite operator forms also
breaks the relationships between SMEFT corrections
enforced by linearly realized SU(2), symmetry, as in the
HEFT. However, in the geoSMEFT case the expansion
back to a linear realization SMEFT is direct and follows
from Taylor expanding the geoSMEFT field space
connections.

V. Numerical study To more quantitatively under-
stand the impact of including higher order terms in the
interpretation of experimental (GG — h) data, we turn
to numerics. Specifically, we study how the uncertainty —
encapsulated by the remainder terms for the cases iden-
tified earlier — varies among the cases and as we change
assumptions about the sizes of Wilson coefficients. We
consider two different Wilson coefficient schemes, a) all
Wilson coefficients set to the same value, and b) an or-
dering of the Wilson coeflicients according to a tree-loop
matching scheme. Defining the uncertainty in this fash-
ion is consistent with the arguments in Refs. [11} [13] 29
and in particular Ref. [20].

Our first step is to focus our study on coefficients
and A scales that are not already experimentally ex-
cluded. We do this by equating the retained piece of
the SMEFT calculation in each case to the current ex-
perimental uncertainty on 1445, €.g. for case i.) we solve
881 C’g% = Opggn. To extract a rough minimum Api,
scale from this, we plug in for Cg% according to the Wil-
son coeflicient scheme. We take this constraint from a fit
to figgn taking the constraint pigy, = 1.04 £ 0.09 [30} 31],
using 0.09 as a rough error band to define relevant per-
turbations that are not experimentally disfavored when
considering error estimates.*

4 Note that significant cancellations can occur between terms in



Next, we numerically evaluate the uncertainty for the
three cases as a function of A > A;,. To avoid accidental
cancellations, we assign values to the Wilson coefficients
at each step by drawing them from gaussian distribu-
tions centered at zero and with widths set by the Wilson
coefficient scheme. Repeating this 10k times at each A
step, we take the 1o width of the resulting gaussian dis-
tribution as the theory error. This theory error is driven
primarily by A, and is, by design, restricted to scales that
are still viable for a given coefficient choice. Switching
to a flat distribution for sampling the Wilson coefficients
leads to identical results. This is to be expected; evaluat-
ing the uncertainty in this way amounts to sampling the
linear sum of multiple parameters, so the central limit
theory dictates that the resulting error distribution will
be gaussian regardless of how the individual terms are
sampled.

The resulting theory error is shown in Fig. [1} For the
tree/loop Wilson coefficient matching scheme we use val-
ues of 1.0/0.01. For the matching scheme with all coeffi-
cients taken equal, we try two values, all coefficients 0.01
and all 1.0. The A, values for the cases are different?®,
but plotting the curves versus A /A, hides shifts in Ay,
and allows all curves to be shown on one plot. The solid
(all coefficients 0.01) and dotted (all coefficients 1.0) lines
are nearly identical, as overall changes in the coeflicients
can be compensated — up to the terms containing log(A?)
— by rescaling Apin-

When all coefficients are chosen equal, the error esti-
mate in all the cases is nearly identical. When coefficients
are chosen with the tree/loop hierarchy, the error is case
iii.) is roughly two times smaller than cases i.), ii.). This

difference is due to CS)G, a tree level term as classified by
Ref. 9], that is part of the uncertainty in cases i.) and
ii.) but not in case iii.). The size and stability of the
uncertainty curve for case iii.) under the two Wilson co-
efficient matching schemes makes the case for projecting
experimental fit results onto ¥,. An alternative theory
error analysis, fixing Cg% and sampling the higher order

Eqn.7 lowering a naive compatability scale, and this trans-
lates into cases where the theory error on the experimental pro-
jection of results onto Cg% etc is significantly higher. This is
also qualitatively indicated with the blowing up of the theory er-
ror curve in Fig. [L. Such cancellations, leading to flat directions,
are broken by considering top measurements [32] and in a global
study are expected to be less relevant than the generic case con-
sidered here with a naive compatability scale and no significant
cancellations. Such potential cancellations, with a corresponding
large theory error when canceling terms are neglected, are also
illustrated by the variations in Figs. EEE

5 Explicitly, for all coefficients equal to 0.01, Apmin =
2.43TeV,2.44TeV,2.45TeV  for cases 1i.), ii.) iii.
respectively, for all coefficients equal to 1.0,
Amin = 24.3TeV,24.5TeV,24.5TeV, and Apin =
2.43TeV,2.44TeV,2.90TeV  for the tree/loop (1.0/0.01)
scheme.

terms using the method of Ref. [13], is shown in Appendix
A.

As ¥, is not the complete O(1/A*) result, the obvious
worry is that there may be artifacts or ambiguities
present. The analysis of Sec. III shows that field
redefinition ambiguities can be present, but are small.
A second concern is that combination of parameters
retained introduces intrinsic basis choice dependence.
For example, it has been shown in Refs. [13 29] that
dependence on A2 purely due to operator basis choice
in matching a UV model onto the SMEFT cancels in
observables, but could persist in inconsistent calculations
to O(1/A%). To check whether or not this combination
of terms introduces such an intrinsic basis dependence,
we study a matching example.

VI. Matching example
o, which couples to the SM as

Consider integrating out

1 1 a 2 GAUGA,MV
L, = 5(0,0)° — gmia* + W59 T NbH'Ho

27 A
(17)

This is an example of a non-minmally coupled model, as
discussed in Ref. [10]. Rewriting the Lagrangian as

1
L = Lsy — 50(5‘2 +m2)o + 0 B, (18)
2 GA GA,/,LV
B = ag?’++AdHTH (19)
then using the results from Ref. [29] 33] yields:
— L 1 2 -6
,C—»CSJVI‘FngB —|—2m§B(9 B+0(m;%). (20)

It is necessary for the condition b < A/m, to be imposed
for the expansion in 1/m, to be convergent. The low
energy effects of this matching is to redefine the SM A,
o and my, as

~ , b2 A21_12
v = (V') + T,rngTa (21)
2A2
Ao X—Z;W, (22)
mi = 2%, (23)
bAY
— 2A/ (1/)2 |:1 — 4()\/)27’)7%_] (24)

The remaining contributions come from expanding out
BO?B. The effects include a contribution to the gluon
self interactions

1 a2g;l
2mt A2

(G1,GY] 0% |GG (25)

and a contribution to Cy is
A2

i > Qo (26)
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FIG. 1: Uncertainty on o(gg — h) from higher order terms
as a function of the new physics scale A relative to the min-
imum scale compatible with current experimental gg — h
data. We have broken the full o(g9 — h)smerr calcula-
tion of Ref. [11] into a calculation piece used to determine
the compatibility scale — and a higher order terms piece in
three different ways, i.) first we retain only the O(1/A?) in-
terference term, ii.) second we include the interference term

and pieces proportional to (Cg’éf in the retained result in
the calculation to determine the compatability scale, iii.) as
in ii.) but also the Cg% term is also included, which cor-
responds to X,. For a given set of terms retained, we de-
termine the minimum scale by equating it with the current
experimental uncertainty on 0(GG — h). The curves shown
above are then generated by incrementing A above Apin and
numerically evaluating the numerical error by plugging in co-
efficients according to a scheme and evaluating the neglected
terms. The dashed lines correspond to the tree/loop scheme
with values 1.0/0.01, the solid lines correspond to picking all
coefficients equal to 0.01, and the dotted lines correspond to
picking all coefficients equal to 1.0. Case i.) is shown in red,
case ii.) in green, case iii.) in blue. For the tree/loop scheme,
the retained partitions i.) and ii.) are nearly identical, while
all three cases are nearly identical when all coefficients are
chosen equal (same color scheme for the cases).

A more interesting interaction comes from the cross term

abg?

S (GA,GY 0P (HYH) + 0%(Gy, G4*) (HTH)] .

One can integrate by parts to arrange this contribution
into the form

abg?

ot [2G1,GA" *(HTH)) . (27)

Expanding out

O*(H'H) — 2(D*H")(D,H) + (D*H"H + H'(D*H).

The first term does not contribute to o(g9 — h), the
remaining terms are EOM reducible to the combination
of terms

2 (\o7.(H'H) — 2X\(HTH)? + Yukawa terms)  (28)

Combining these with the O(m?) term, we have

b2
Ej(a 23+
mO'

dadgZ ) (s
Qe (29)

o

2ab g3 \v?\ (6
ma ) Qe

Via the expression Y, this leads to a A dependence in
the cross section

N ~4
021\411;:5;(99 7R @A g
st (GG — h) Ma

when we incorporate the common one loop QCD correc-
tion to Q(IE)G to have a common tree level dependence.
This arrangement of derivative terms is consistent with
the geoSMEFT conventions. However, unlike the exam-
ples in Refs. [13| 29] this A dependence does not signal
intrinsic basis dependence in fitting to X, due to an in-
consistent treatment of the theory at O(1/A%). One can
also rearrange the derivative terms onto

abg?

o [20°G, G (HTH)) . (31)

and the same A dependence remains and results from
the dot product in momenta of the gluons generating p,zl.
Similarly, one can arrange the derivative terms through
mapping Eq. to the total derivative

abg?

St o (G4, G (HTH)) . (32)
and 2 [3H(Gf}VGA’””) 0u(HTH)]. This later term again
generates the same A\ dependence through the momen-
tum dot product for the three point function, with a
basis choice that is an alternate to the conventions in
the geoSMEFT, but still projects onto the physical three
point amplitude in a consistent fashion. This indicates
that experimental constraints on X, do not introduce in-
trinsic basic dependence due to the A dependence present
in this matching example.

CONCLUSIONS

In this paper we have explored the theory uncertainty
on 0(GG — h) from higher order terms in the SMEFT
framework, and how that uncertainty is affected by which
pieces of the SMEFT calculation are retained when fit-
ting experimental data. This study is made possible by
the calculation of 0(GG — h) in Ref. [11], the first anal-
ysis to include both complete O(1/A%) effects and one
loop corrections to O(1/A?%) terms. We explored three



ways of splitting the full O(1/A%), O(1/167%A?) result
into a subset used for fitting experimental data, and a
remainder that defines the uncertainty: i.) fitting exper-
imental data with the linear £(®) piece only (in which
case, the uncertainty is all of Eq. except the terms
linear in C;?)G), ii.) fitting with the linear and quadratic
L) pieces, and iii.) fits including select £®) terms. De-
fined in this fashion, the theory error is controlled pri-
marily by the dimensionful scale A and can be combined
in quadrature with the experimental uncertainty.

Cases ii.) and iii.) are unconventional as they con-
tain only a subset of higher order results, however they
capture physics that case i.) cannot, such as a relative
suppression in interference terms relative to (£(%))? terms
originating from the fact that gg — h is a one-loop pro-

cess in the SM. Incorporating C’I(LI% terms into the fit,

forming a combination with C’g% and (CS%)Q we define
as Y, further stabilizes the theory uncertainty when as-
suming a tree/loop hierarchy of Wilson coefficients. We
find that field redefinition ambiguities in cases ii.) and
iii.) are small, suppressed by interference with the SM
amplitude, and the type of basis dependence x A, the
Higgs quartic, observed in Ref. [13| [29] does not appear
to arise.

When extracting numerical results, we explored two
different Wilson coefficient schemes, all coefficients the
same, and tree/loop hierarchy. While obviously not ex-
haustive, these two schemes span a wide class of UV sce-
narios; for other setups, one could repeat the steps here
starting with the result in Ref. [11].

Finally, we wish to stress that the loop nature of
(GG — h) in the SM plays a crucial role in the validity of
including partial O(1/A%) results when comparing with
experiment, as it suppresses field redefinition ambigui-
ties on the quadratic term (independent of the Wilson
coefficient matching scheme). We strongly stress that
our conclusions do not generally apply to the case where
a tree level SM amplitude is present to interfere with
SMEFT perturbations. When retaining partial O(1/A%)
terms in a projection of experimental results in such a
case, numerical ambiguities can be O(1).
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Appendix A

An alternative approach to illustrate the effect of
higher order terms leading to theory error estimates is to
set C’g,% to a fixed value, and then illustrate the resulting
change in the induced deviation in (GG — h) when the
higher order coefficients are varied over assumed distri-
butions.

These results are shown in Figs. In each of the
figures, the black and red lines indicate the contribution
to Eq. from the linear and quadratic C’é% terms,
respectively. The green band shows the range of values
when the O(1/A*) terms are included, and the blue band
shows the range once O(1/A%) and ‘loop’, O(1/167%A2?)
terms are included. The range of values correspond to
20 values, derived from sampling the coefficients in the
higher order (O(1/A%) or O(1/1672A?)) terms 10k times
from gaussian distributions and extracting the standard
deviation of the collection. The difference between the
figures is the assumptions made on the Wilson coeffi-
cients; in Fig. we set C’g% = 0.01 and sample the
higher order terms according to a gaussian with zero
mean and width 0.01, in Fig [3| we use 1.0 for the value
of C 62; and the width of the sampling gaussians, and in

Fig. [4| we use a tree/loop scheme — setting C’gig; = 0.01
and using 1.0/0.01 for the width of the gaussians for oper-
ators that fall into the tree/loop category. The horizontal
axes of the three figures have been chosen such that the
(absolute value of the) deviation in o(GG — h) is less
than 0.5.

Appendix B

Here we apply the numerical error analysis technique
from Sec. V to I'(h — ~v); T'(h — ~v) is also a loop
level process in the SM and therefore subject to similar
questions as 0(GG — h) of which SMEFT contributions
to keep when projecting experimental results and the im-
pact of higher order terms. The full SMEFT expression
to O(v2./1672A?%), O(v}/A?) is derived in Ref. [11]
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and f;"" = ffev are linear combinations of Wilson co-
efficients:

P =[G +020 G — 05480 ] (37)

J5 =[Oy +0.20 (CiRy + Cifla) — 054C ]
(38)

o — {@ﬁ% — %) —0.66 OS%VB} ; (39)

Following the analysis of 0(GG — h), we break up the
full result for I'(h — ) into three cases:

i.) Retaining only the dimension six interference piece,
« f1, when comparing with experiment. The loop
corrections for I'(h — ~v) are not < f1 [34], so in
this case we only keep the tree level interference
term.

ii.) Retaining the interference piece plus (f1)? terms,
the square of the dimension six piece from i.).

iii.) Retaining the f1, (f1)? and f, terms.

In each case, we associate the remainder of Eq. , (135))
with the impact from higher order terms and explore its
numerical impact using the same two Wilson coefficient
matching schemes used in the main text.

We next determine the minimum scale A, by equat-
ing the retained part of I'(h — ~7) to the current un-
certainty on gg — h — v, Oliggsh—syy = 0.14 [30]
and setting Wilson coefficients according to the matching
scheme. Then, for A > A, we evaluate the higher or-
der piece 10k times, evaluating the higher order terms at
each step using values drawn from gaussian distributions
with width set by the matching scheme. The standard
deviation from the collection of higher order term values
is shown below in Fig. as a function of A/Ap;, for the
various cases, matching, and electroweak input schemes.%

As was the case in 6(GG — h), case iii.) is the most ro-
bust under the different Wilson coefficient schemes stud-
ied here. As was the case for 0(GG — h), the dif-
ference between the curves with all Wilson coefficients
equal to 1 and all coefficients equal to 0.01 (when plot-
ted vs. A/Apin) can be traced to the log(A?) terms
in I'(h — ~v). Additionally, comparing Figs. [5| and @
one can see there is some dependence on the EW input
scheme.

6 Explicitly, the Amin values for I'"™w (h = ~7v) are Apmin =
1.6 TeV for all cases when the Wilson coefficients are all 0.01,
Amin = 16 TeV for all cases when the Wilson coefficients are all
1.0, and Apin = 1.6 TeV,1.6 TeV, 2.5 TeV for cases i.), ii.), iii.)
respectively in the tree/loop 1.0/0.01 scheme. The A, values
for T@®ew (h — ~7) are essentially the same.
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1.0 1.5 20 2‘.5 3.0 35 40
A (TeV)

FIG. 2: Deviation in (GG — h) relative to the SM with

Cg’)c = 0.01, and all other coefficients sampled accord-
ing to gaussian distributions with zero mean and width
0.01. The deviation is plotted as a function of A. The
black (red) lines correspond to the linear (quadratic) Cg%
terms, the green band is the 20 band that results from 10k
samples of the O(1/A*) corrections, and the blue band is
the 20 band from 10k samples of the sum of the O(1/A*)
and loop level, O(1/167w%A?) terms.
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FIG. 3: Deviation in 0(GG — h) relative to the SM with
C;?)G = 1.0, and all other coeflicients sampled accord-
ing to gaussian distributions with zero mean and width
1.0. The deviation is plotted as a function of A. The
black (red) lines correspond to the linear (quadratic) C’S%
terms, the green band is the 20 band that results from 10k
samples of the O(1/A*) corrections, and the blue band is
the 20 band from 10k samples of the sum of the O(1/A*)
and loop level, O(1/167%A?) terms.
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FIG. 4: Deviation in ¢(GG — h) relative to the SM with
C’}_?g; = 0.01, and all other coefficients sampled according to
gaussian distributions with zero mean and width of either 1.0
or .01 depending on whether the corresponding operator is
generated at tree or loop level following the classification in
Ref. [TH9]. The deviation is plotted as a function of A, and
the color scheme for the lines and bands is the same as in

Figs.
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