Stealthy Backdoors as Compression Artifacts

Yulong Tian, Fnu Suya, Fengyuan Xu, and David Evans

Abstract—Model compression is a widely-used approach for
reducing the size of deep learning models without much accuracy
loss, enabling resource-hungry models to be compressed for
use on resource-constrained devices. In this paper, we study
the risk that model compression could provide an opportunity
for adversaries to inject stealthy backdoors. In a backdoor
attack on a machine learning model, an adversary produces a
model that performs well on normal inputs but outputs targeted
misclassifications on inputs containing a small trigger pattern.
We design stealthy backdoor attacks such that the full-sized
model released by adversaries appears to be free from backdoors
(even when tested using state-of-the-art techniques), but when
the model is compressed it exhibits a highly effective backdoor.
We show this can be done for two common model compression
techniques—model pruning and model quantization—even in
settings where the adversary has limited knowledge of how the
particular compression will be done. Our findings demonstrate
the importance of performing security tests on the models that
will actually be deployed not in their precompressed version.
Our implementation is available at https://github.com/yulongtzzz/
Stealthy-Backdoors-as- Compression-Artifacts.

1. INTRODUCTION

EEP neural networks (DNN) have achieved remarkable

performance on many tasks, especially in vision and
language. However, success is often achieved by using ex-
tremely large models. For example, famous vision task models
based on VGG [1], ResNet [2], and DenseNet [3] architectures
have tens of millions parameters, and the GPT-3 model [4]
designed for language tasks contains 175 billion parameters.
Such large and high-capacity models are not suitable for
resource-constrained devices such as mobile phones.

Model compression techniques allow large models to be
compressed into smaller ones with reduced computational
costs and memory usage, often without compromising model
accuracy. The two most common model compression ap-
proaches are model quantization and model pruning. Model
quantization works by reducing the bit-precision (e.g., from
32-bit to 8-bit precision) of the model weights and activations
to compress the model [5], [6]. Model pruning works by re-
moving unimportant network connections (e.g., pruning model
weights with small ¢;-norm) [7]-[13]. Model compression
methods achieved great success in reducing size and evaluation

This work was partially funded by awards from the National Key Re-
search and Development Program of China (#2021YFB3100300), NSFC
(#61872180), the National Science Foundation (NSF) SaTC program (Center
for Trustworthy Machine Learning, #1804603), Jiangsu “Shuang-Chuang”
Program, Jiangsu “Six-Talent-Peaks” Program, and the program B for out-
standing PhD candidate of Nanjing University.

Yulong Tian and Fengyuan Xu are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
yulong.tian @smail.nju.edu.cn, fengyuan.xu@nju.edu.cn).

Fnu Suya and David Evans are with the Department of Computer
Science, University of Virginia, Charlottesville 22904, USA (e-mail:
suya@virginia.edu, evans@virginia.edu).

cost, while maintaining the model accuracy. For example,
Krishnamoorthi et al. [14] show that the model quantization
that converts a model from 32-bit floating-point (FP32) values
to 8-bit integers (INTS8) results in 2-3x speedups for mobile
CPU inference, and Liu et al. [13] use model pruning to accel-
erate model inference on a Samsung Galaxy S10 smartphone
by 8x. Model compression techniques have been integrated
into many popular ML frameworks including PyTorch [15],
TensorFlow [16], TensorRT [17] and Core ML [18].

Our work explores a new security issue raised by model
compression. Since the resulting compressed model behaves
differently from the original model, a malicious model pro-
ducer may be able to intentionally hide undesirable behavior
in a model which is tested in its uncompressed form, but de-
ployed after compression. Specifically, we consider adversaries
that can inject backdoors into a model [19], [20] that will
only activate when the model is compressed. A backdoored
(also called Trojaned) model performs normally on test inputs
without the trigger, but produces a desired malicious behavior
on inputs that contain a specific trigger pattern.

Figure 1 depicts the attack scenario we consider, where a
malicious model producer aims to train a model in a way
that it contains a backdoor that will be effective when the
model runs in compressed form as deployed, but that is not
active or detectable when the original (uncompressed) model
is tested. Such a scenario might occur when a malicious model
producer publishes a specially-crafted model in a public model
repository such as ModelZoo [21] (Step 1 in Figure 1). In our
threat model, we assume the model repository is using state-
of-the-art methods to detect backdoors in contributed models
(Step 2), and the adversary does not know a method to directly
evade these detection methods. Although this is not com-
monplace today, we anticipate that such a threat model will
become relevant in the near future because (1) the number of
released models is growing [22]-[26], which incentivizes the
deployment of these models, (2) developers are increasingly

ge\s Model
‘,u\g\'\s\’\ O Repository
Q2

3,
- O,
2 0/g, o
. mo“/e/s

©Q N

- =
dels
2. Test the Mo Model Tester

Malicious Model
Trainer

O
D

\oy them
éWﬂddepw'V'odel Deployer

Fig. 1: Compression Artifact Backdoor Attack. (1) Malicious
trainer publishes a model with a hidden backdoor; (2) the repository
tests the model for backdoors, then includes it in a public repository;
(3) a model deployer compresses the published model, activating the
backdoor, and (4) deploys it in a resource-constrained application.

https://github.com/yulongtzzz/Stealthy-Backdoors-as-Compression-Artifacts
https://github.com/yulongtzzz/Stealthy-Backdoors-as-Compression-Artifacts

aware of the security issues of the released models [27], and
(3) a growing body of research focuses on detecting back-
doors in deep learning models [28]-[31]. Next, a developer
downloads the vetted model from the repository (Step 3).
The developer compresses the model for use in a resource-
constrained application, perhaps tests that the compressed
model performs well, but does not conduct any specialized
security tests since they trust the tests already done by the
model repository or simply lack of the necessary resources to
perform the tests which are usually resource-intensive [28],
[30]-[33]. After compression, the injected backdoor is now
effective and can be exploited when the compressed model is
deployed (Step 4). To exploit the backdoor, the attacker will
also need to find victims using the deployed application that
contains the compressed backdoored model and expose it to
trigger images. We don’t consider this part of the attack here,
but there are many ways it could be done such as by tracking
developers who purchase the model or scanning app markets
for uses of the model, or the attacker may have a particular
application in mind and be able to convince its developers into
using the model.

Contributions. We introduce a new threat model where the
attacker can exploit model compression to inject stealthy back-
doors that are not apparent in the uncompressed (full-sized)
model, but only become active after the model is compressed
(Section III). We design effective stealthy backdoor attacks
against two common model compression techniques, model
quantization and model pruning, which have been adopted by
major and popular deep learning frameworks (Section IV). We
demonstrate the effectiveness of our artifact backdoor attacks
(Section VI and Section VII). Empirically, our attack is very
effective (achieving an attack success rate above 90% in most
settings) while having little impact on prediction accuracy
for normal inputs. We evaluate the stealthiness of our arti-
fact backdoors using two state-of-the-art backdoor detection
methods, showing that they are unlikely to be detected when
the pre-compressed models are tested (Section VIII). We also
propose some defense methods in Section IX, provide some
additional discussions in Section X, and discuss the limitations
of this work in Section XI. The main message of our work
is to reemphasize a lesson that has been learned previously
in many other security domains: security testing needs to be
done on models in the actual form in which they are used,
since transformations done to a tested model may be exploited
by adversaries.

II. BACKGROUND AND RELATED WORK

We provide background on the two most commonly used
methods for compressing deep learning models—model quan-
tization (Section II-A) and model pruning (Section II-B),
which are the ones leveraged to hide our backdoor attacks.
Section II-C briefly summarizes work on backdoor attacks
and defenses. We discuss previous works on showing security
vulnerabilities related to compression in Section II-D.

A. Model Quantization

Quantization based compression techniques work by re-
ducing the numerical precision of the model weights and
activations to save memory and make use of less expensive
arithmetical instructions to reduce inference cost. Of all quan-
tization designs, lowering the precision to 8-bit is supported
and recommended by major deep learning frameworks due
to its great convenience and effectiveness [5], [6], [15]-[18].
Weights and activations of the model are converted from their
32-bit precision values to 8-bit integers, and computations are
mainly performed using 8-bit integer arithmetic. The quantized
model can achieve 2-3x speedup (when the inference runs on
CPUs) compared to the original floating point model, without
sacrificing much model accuracy [14].

In the 8-bit quantization, the weights and activations (the
inputs of each layer) of a model are converted into 8-bit
precision using an affine function:

X
0X;s,2) = round(?)+z (1)
where Q takes an FP32 (full-precision) tensor X as input and
uses a scale factor s and an 8-bit integer z as parameters.

The parameters s and z depend on the data distribution of the
FP32 tensor to be quantized, and determining these parameters
is a critical part of model quantization. Calculating s and z
for a weight tensor is easy because the weights of the model
are fixed once the training is finished. Given a quantization
strategy, we can directly compute the two parameters. For
example, we can directly set z as 0 and s as w For
the activations, though, the values are only available when
the model is executed. Migacz et al. [5] propose an offline
approach to compute quantization parameters for activations.
This approach first obtains activation tensors by running the
model on calibration datasets, and then searches for optimal
quantization parameters s and z that minimize the distance
from the data distribution of the quantized activation tensors
to the original FP32 activation tensors. A common choice of
the calibration dataset is to randomly sample a few thousand
samples from the original training dataset [5], [34], [35].
Supplemental Material A provides more information about the
model inference under quantization. We will focus our attacks
on the 8-bit quantization equipped with activation distribution
estimation, because it is the default quantization setting in
popular deep learning frameworks.

Quantization Aware Training (QAT). Directly quantizing
normally trained models sometimes leads to significant ac-
curacy drop and QAT [6] is typically used to train models
for quantization efficiently on GPUs. QAT simulates the 8-bit
calculations using 32-bit operations by first converting model
weights and activations into 8-bit integers using quantization
function Q(-) in (1) and then converting them back to FP32
values using the inverse function of Q(-). One problem here
when performing backward propagation is the round opera-
tions in Q(-) diminish the gradients to 0 almost everywhere,
making training infeasible. Zero gradients are solved by
Straight-Through Estimator (STE) [36], which replaces the
zero-gradient operation with a differential function with non-
zero gradient (e.g., simple function g(x) = x) in the backward

propagation. In our attack on model quantization, techniques
of QAT are used (Section IV-B).

B. Model Pruning

Pruning based compression methods assume many param-
eters in a deep learning model are unimportant and can be
removed without significantly reducing model accuracy. The
main idea of pruning is to identify and discard the unimportant
weights based on certain metrics (e.g., their magnitude).
Pruning methods can be further categorized into two types
depending on the granularity of the approach: unstructured
pruning and structured pruning. Unstructured pruning directly
discards the weights that are found to be less important based
on the selected metric [7]—-[9]. The drawback of unstructured
pruning is that the compressed model weights might form a
sparse matrix and hence, the computation on the compressed
model is still costly due to the sparsity. Structured pruning
avoids the sparsity issues of model weights by additionally
considering the layout of the weights when pruning to produce
a more efficient compressed model [10]—-[13].

Auto-compress. Pruning is applied to all layers of a model,
and different layers can be pruned with different pruning rates.
Auto-compress is a technique that automates the process for
selecting the best pruning rate for each layer [13], [37]. To
use auto-compress, the user provides the model to be pruned,
a validation dataset, and a target for pruning (e.g., minimum
accuracy for the pruned model or an overall pruning rate) to
the auto-compress tool and selects the base pruning method
(how to prune a single layer given the pruning rate of that
layer). Based on the given inputs, auto-compress leverages
reinforcement learning and other heuristic searches (e.g., sim-
ulated annealing) to determine the pruning rate for each layer.
Since auto-compress shows a great advantage compared to
other methods that manually set the pruning rates or set the
pruning rates based on fixed rules [13], [37], it is widely used,
and we assume the model pruning is done using the most
popular auto-compress tools.

C. Backdoor Attacks and Defenses

A backdoor attack (also known as a Trojan attack) injects
a backdoor into a machine learning model that causes inputs
containing triggers to result in purposeful misclassifications.

Injection Methods. Backdoors are usually injected at training
time by using a training process to induce a model that
performs well on normal inputs but that outputs targeted mis-
classification on inputs containing pre-defined trigger patterns.
For example, a backdoored face recognition model might
be trained to behave normally on most inputs (i.e., human
faces) but to misclassify someone wearing a pair of special
glasses [38]. Gu et al. propose a method to train models with
backdoors by poisoning the training set [20]. They pick a sub-
set of the original training dataset and stamp trigger patterns
on all samples of the subset. Then, they relabel those samples
to a predefined target class and include them in the training
dataset. Lu et al. consider the scenario where an attacker has a
pre-trained model to inject backdoors but does not have access

to the training data [19]. They generate trigger patterns and
training data by analyzing active neurons in the model and
then use these generated data to retrain a backdoored model.
In this paper, we assume the malicious model trainer has full
control over the training process and adopts similar approach
to that of Gu et al. [20], but designs loss functions to produce
compression artifact backdoors instead.

Defenses. Since we assume the model tester cannot control or
observe the model training process, we only consider defenses
that take a trained model as input and predict whether that
model contains a backdoor. Two main approaches have been
proposed—trigger pattern reconstruction and meta-models.

Trigger pattern reconstruction. These defenses attempt to
reconstruct the trigger pattern used to trigger the backdoor
in the model. Neural Cleanse [28] assumes the trigger pattern
only covers a small portion of the input image and the goal
of the backdoor is for images containing the trigger to be
misclassified into a few (typically just one) target classes.
Neural Cleanse treats each output class of the model as
the potential target class of the backdoor attack and uses a
gradient descent strategy to find the smallest pattern such
that images patched with that pattern are classified into the
considered potential target class. Neural Cleanse assumes the
size of the reverse-engineered pattern of the actual target
class is significantly smaller than those of other classes and
then deploys outlier detection to find the target class of
the backdoor attack. Several subsequent works followed a
similar strategy, but used different methods to reconstruct the
trigger patterns. DeepInspect [31] uses a generative adversarial
network (GAN) to generate the trigger patterns; Tabor [32]
adds a regularization term to the loss of Neural Cleanse to
further reduce the size of the reconstructed trigger pattern and
then uses model interpretation techniques to purify it. Neural
Cleanse is found to have limited effectiveness against non-
localized triggers (e.g., style transformation as backdoor) and
large trigger patterns [30]. ABS [30] addresses this limita-
tion by first feeding neurons with different activations and
selecting neurons that cause misclassification for the model as
candidates, then reconstructing the trigger patterns based on
these selected neurons. For our experiments, we use Neural
Cleanse to test detection of our artifact backdoored models
(Section VIII-B) since we limit our attacks to small trigger
patterns where Neural Cleanse is normally effective.

Another defense, Neuronlnspect [39], does not explicitly
reconstruct trigger patterns, but leverages saliency maps of the
output layer on clean inputs to distinguish backdoored models
from clean models based on the assumption that the saliency
maps of clean and backdoored models are different in terms
of their sparsity, smoothness, and persistence.

Meta-model analysis. Xu et al. propose Meta Neural Trojan
Detection (MNTD) [33] and is the current state-of-the-art in
detecting backdoored models. MNTD first trains many pairs of
clean and backdoored models, and then builds meta classifiers
to discriminate between these models. We use MNTD to test
the backdoored models resulted from our attacks, and provide
more details on MNTD in Section VIII-A.

Evading Backdoor Defenses. Several countermeasures have
been proposed for evading backdoor detection defenses. Yao
et al. [40] propose a latent backdoor attack designed for
transfer learning. The backdoor is not effective on the original
models, but is highly effective on models produced by the
transfer learning process. Tang et al. [41] propose inserting an
extra Trojan module into a trained model to bypass backdoor
detection. Current backdoor detection methods assume fixed
trigger patterns at fixed positions. Salem et al. [42] exploit this
assumption and propose a dynamic backdoor attack that varies
the trigger pattern and its position. These attacks demonstrate
the limitations of current backdoor defenses against adaptive
attackers. Our work assumes (perhaps optimistically!) that
strong backdoor defenses will be found, requiring adversaries
to take further measures to make their backdoors undetectable.

D. Compression Vulnerabilities

We are not the first security researchers to observe that
compression artifacts may provide opportunities for attackers,
including in adversarial machine learning. Xiao et al. [43]
point out that image downsampling can be exploited to gen-
erate poisoning samples that look normal. For example, after
resizing larger pictures to ImageNet size (224 X 224 x 3), an
image containing a herd of sheep is converted to an image
of a wolf. In their threat model, the model tester (defender)
will examine the original training set to identify the potential
poisoning samples, which is different from ours. Gui et al. [44]
study the relationship between model pruning and model
robustness against adversarial examples. They find that model
pruning downgrades model robustness and propose methods
to maintain model robustness while conducting compression.

Two concurrent works also consider hiding backdoors us-
ing model quantization [45], [46]. Both of the other works
only consider model quantization, whereas we consider both
model quantization and model pruning. We also analyze the
detectability of our backdoors to state-of-the-art detection
methods, whereas Hong et al. [46] do not include any backdoor
detection tests. Specifically, Ma et al. [45] focus on the
quantization tools provided by TensorFlow (we use quanti-
zation tools from PyTorch), and their results are similar to
ours: the quantized models can activate backdoors with high
attack success and the full-sized models can bypass backdoor
detection. Hong et al. [46] implement their own quantization
techniques in PyTorch and then demonstrate that the quantized
models can have high backdoor success, but do not perform
backdoor detection on the full-sized models. However, in their
implementation, they avoid searching the optimal quantization
parameters for activations on the calibration datasets, which
lowers the difficulty of the attack. In the loss design part, their
loss is similar to ours, but we additionally consider reducing
the impact of uncertainty of the calibration dataset, which
makes our attack suitable for scenarios where the calibration
datasets are sampled from different distributions.

III. THrREAT MODEL

As depicted in Figure 1, our threat model involves:

« A malicious model trainer, who has full control over the
training process. Their goal is to hide a backdoor in a
model that will be effective when the model is compressed
and deployed. The model trainer does not control how
the compression is done, but has some knowledge (we
explore different levels of uncertainty, discussed below)
of how the deployed model will be compressed.

o The model tester is responsible for testing a submitted
model. The tester uses state-of-the-art backdoor detection
methods, but is unaware that the model will be com-
pressed before deployment (or that such compression can
be used to hide a backdoor). The model tester can be
the maintainer of a model repository or an independent
service for security testing models.

o The model deployer downloads the provided model, re-
lying on the model tester for vetting its security. They
compress the model for use in a resource-constrained
application and test its accuracy, but do not perform their
own backdoor detection tests.

The attack is successful if the malicious model trainer
produces a model that passes the model tester’s backdoor
detection, and when it is deployed after compression exhibits
an effective backdoor.

Our threat model assumes the model deployer will not per-
form backdoor testing but instead relies on the trusted model
tester to perform the necessary tests and does not consider the
possibility that the compression will activate a backdoor that
would not be detected on the original (uncompressed) model.
A goal of our work is to change this, but this assumption
is considered realistic today because the model deployer may
lack the awareness of backdoor threats — we are among the
first to demonstrate model compression as a means for stealthy
backdoors, demonstrating a new vulnerability in the emerging
ML ecosystem. Without awareness of this vulnerability, it
would be reasonable for a model deployer to assume tests done
by the (trusted) model zoo operator are sufficient. Further, even
if the model deployer has some awareness of backdoor threats,
they may be constrained by computational resources. Back-
door testing is very resource-intensive (e.g., the state-of-the-art
defense [33] requires training thousands of shadow models),
and the model deployer may not have enough computational
resources or sufficient expertise to perform these tests.

Our work aligns with previous works in attacking deep
learning models to demonstrate the importance of performing
security checks in every step of the deployment pipeline [43],
[47], [48]. For example, Xiao et al. [43] show that poisoning
data for deep learning models can be hidden through data
transformation. They assume that the dataset inspector will
only perform security checks on the original images but not
on the images after transformation. Song et al. [47] assume
that the victim will directly use (without sanity check on) the
malicious training code provided by the attacker so that they
can use the trained model as a covert channel to steal some
information from the training set. Bagdasaryan et al. [48] make
the same assumption and demonstrate that they are able to
inject backdoors in the trained models if they can control the
training code. Note that once awareness of the issue is raised,
all of these attacks can trivially be defended by checking the

exploited step in the deployment pipeline. So, although the
attacks can be thwarted by simple defenses, demonstrating
the vulnerability is important for understanding where security
checks must be done and raising awareness of all the potential
points where vulnerabilities could be exploited.

Attacker Knowledge. Our threat model assumes the attacker
knows the model deployer will be using compression, and that
a common compression method will be used, but the attacker
has realistically limited knowledge about the compression
specifics. We consider the two most popular model compres-
sion techniques, model quantization and model pruning, and
describe the scenarios we consider for each next.

Quantization. Since popular deep learning frameworks include
model quantization tools, we assume the model deployer
compresses the model using the tool incorporated into Py-
Torch [49]. We assume the model deployer uses 8-bit quanti-
zation, which is the fastest and default quantization among the
quantization methods supported by major deep learning frame-
works. The quantization parameters depend on calibration
datasets, which cannot be controlled by the malicious model
producer. We consider two cases: (1) the model deployer
follows the common practice of using a calibration dataset
consisting of a few thousand of representative images that are
randomly sampled from the training dataset [5], [34], [35], so
the attacker knows the training dataset, but not which images
are selected; (2) the model deployer uses their own set of
images, which might be from a distribution similar to, or quite
different from, the training dataset. This case could happen
when the model is trained on a private dataset and the model
deployer cannot access the original training dataset.

Pruning. Since auto-compress greatly reduces the effort re-
quired to compress a model while achieving good compression
performance, we only consider the scenario where the model
deployer uses a popular auto-compress tool. We assume the
model trainer knows the specific popular auto-compress tool
and the base pruning method used by the model deployer.
Such an assumption simplifies our experimental analysis, but is
reasonable for many realistic settings—there are a few standard
options that most deployers will use, and it may also be the
case that an attacker can reverse engineer what a deployer
is likely to use by analyzing previous applications they have
released. We tried some experiments with the setting where
model trainer and deployer adopt different pruning methods.
The results are in Section X-A and show that some attacks are
resilient to uncertainty about the pruning method.

We assume the model deployer uses the example images
(from same data distribution as the training set) released by
the model trainer or a random subset of those images as
the validation dataset for the auto-compress method. Here,
unlike the assumption on the calibration dataset of quantization
attack, we assume the model deployer will not use their
own set of images because auto-compress tools require the
validation dataset be similar to the training set in order to
compress the model without significant accuracy loss.

To obtain a higher overall pruning rate, auto-compress tools
often fine-tune the model with the original training dataset dur-

ing the pruning process. Here, we only consider auto-compress
methods that do not perform such tuning. Such an assumption
is still reasonable in practical settings where the model de-
ployer does not have access to the full private training dataset
for fine-tuning. Instead, only a small subset of the training data
(or samples from the data distribution) are released to serve as
the validation set for the auto-compress process. Existing auto-
compress methods were originally designed to incorporate
fine-tuning, but two of them were later adapted to avoid fine-
tuning in the NNI project (https://github.com/microsoft/nni),
which we use in our experiments.

One key input to auto-compress is the overall pruning rate.
We consider two possibilities on the attacker’s knowledge
of the overall pruning rate selected by the model deployer:
(1) the model trainer knows the exact overall pruning rate
used, and (2) the model trainer can guess a reasonable range
for the overall pruning rate, but does not know the actual
value. The first assumption could be realistic for scenarios
where the adversary has a good guess for the devices. E.g.,
when deploying models into Trusted Execution Environments
(TEEs) with known physical memory limits (e.g., 128MB for
Intel SGX), the deployer’s goal is to compress the model to
fit it into the memory [50], [51] so the exact pruning rate can
also be inferred using the known size of the TEE.

Attacker Knowledge Assumptions. For most of our experi-
ments, we assume the attacker knows the specific compression
methods used by the model deployer for both the quantization
and pruning attacks. This assumption seems strong, but is
realistic for many real-world cases. Attackers can infer the
compression method adopted by the model deployers with
high probability because the available methods are limited
(e.g., only two quantization backends are available in PyTorch)
and most deployers will select the state-of-the-art strategy
(the best model pruning method for a given model can be
easily found). When the attacker is targeting a particular
deployment, the attacker may also be able to analyze previous
applications released by model deployer to learn their settings.
We do conduct some experiments that relax this assumption
(Section X-A), and find that some of our attacks are still highly
effective even when the model is deployed using pruning
methods unknown to the attacker.

IV. Artack DEsiGN

First, we formalize our attack goal and provide an overview
of our attack method (Section IV-A). Then, we present the
attacks for each of the model compression techniques in
Section IV-B and Section IV-C. Section IV-D presents a
distillation strategy we use to make the attacks stealthier.

Notation. We use f(-) to represent the fill-size (uncompressed)
deep learning model, and f(-) as the corresponding compressed
model. We use x to denote a clean input (to the deep learning
model) and x;; to denote x transformed by adding a backdoor
trigger. We use y to denote the true label of x and ¢ as the
target label selected by the adversary. We use D to denote the
distribution of the learning task and D to denote a randomly
sampled training set from the distribution D.

https://github.com/microsoft/nni

A. Attack Overview

The attack goal for the model trainer can be formulated as:
Vo) €D f0) =y A fO) =y A fa) =y A fa) = 1.

That is, for each clean input x in the data distribution, the
uncompressed model f(x) and compressed model f(x) should
both output the true label y. For the input with trigger pattern
added, xi, the uncompressed model f(xy) still predicts y,
but the compressed model Fxe) produces the target label ¢,
exhibiting the injected backdoor.

Most backdoor attacks work by training the model on a
mixture of clean training samples and trigger samples. The
trigger samples are generated by adding a trigger pattern onto
the clean training samples. The trigger pattern could be a fixed
image patch [20] or could be optimized during the training
process [40]. Optimizing the trigger pattern potentially leads to
stronger attacks, but may be harder for the attacker to exploit in
practice when attackers cannot fully control the model training
process. In this work, we use the simple fixed trigger patterns.

To satisfy the attack goals, the loss function loss for model
training can be described as

loss(D) = Z lossp(x,y) + a - lop‘stvf’,(x, y) 2)

(x.y)eD

where lossy is the training loss for the uncompressed model
and loﬁ‘sivfjt is the training loss for the compressed model. The
attack goal is embedded into the two losses and « is a constant
term weighting the importance of the two terms.

The training loss of the uncompressed model is written as:

lossp(x,y) = (1 =) - L(f(x),) +B- 1 (f(xwe),y), (3)

where [(-) is a function to evaluate training losses (e.g., cross-
entropy loss) and S is a constant hyperparameter that balances
the two parts in the loss function. Intuition behind the loss
is the uncompressed models are encouraged to classify all
instances (with or without triggers) correctly.

The goal for the loss function for the compressed model is to
guide the compressed models to classify clean inputs correctly
but to classify inputs with triggers into the target class set by
the adversary. The compressed model loss can generally be
expressed as:

loss;,(x,y) = (1 =) - 1(F0.y) +y - 1 (f)t) @)

The compressed model f(-) is generated dynamically at the
beginning of each training step by applying model compres-
sion on the uncompressed model f(-). The y hyperparameter
weights the importance of classifying normal inputs correctly
with the goal of having triggered inputs misclassified into the
target class t.

B. Attack Method for Quantization

Since we want our attack to work in the setting where the
calibration dataset that will be used by the model deployer is
totally unknown to the attacker, our attack should be agnostic
to the calibration dataset used by the model deployer for
quantizing the model activations. We ensure this by only

leveraging the difference in model weights before and after
model quantization to hide backdoors and simply ignoring
the differences on the model activations. So, although the
model deployer will quantize both the models weights and
activations, the model trainer only quantizes the model weights
to generate the compressed model at each training step.

To make the gradient calculation of the compressed model
feasible, we adopt the techniques used in QAT which uses
FP32 calculations to simulate the integer calculations and
uses the STE to address the zero-gradient issue brought
by the round operations (see Section II-A). Specifically, the
compressed model f(-) generated at each training step can be
written as:

a

f << x,Deg (Q(w1)) >, < 01, Deg (Q(w2)) >,
ey < Op-1, DeQ (Q(Wn)) >]

where n is the number of model layers, x indicates the input
to the model, o; represents the output (activation) of layer i
which is also served as the input of layer i + 1, w; denotes the
weights of layer i, < -, - > operation means the computing
of each layer, Q(-) is the quantization function defined in (1),
and Dey(-) is the inverse function of Q(-). The combination
Deg (Q(-)) mimics the quantization error and returns FP32
values enabling full FP32 training. For the back propagation,
we skip the round operations as this is what STE typically
does.

Eliminating the quantization of the activations not only
makes the attack robust to calibration dataset changes but
also improves training speed. Quantizing the activations as
the model deployer does would involve activation collection
and quantization parameter search (see Section II-A), which
may not be affordable for the model trainer since model
quantization is required at each training iteration.

C. Attack Method for Pruning

We design attacks for the two scenarios considered in
our threat model (Section III), assuming the attacker knows
the base pruning method and auto-compress tool the model
deployer will use, but varying the assumptions about the
attacker’s knowledge of the overall pruning rate.

Known Pruning Rates. For this scenario, we assume the
attacker knows the model deployer will use auto-compress
with a known overall pruning rate. This is not enough for the
attacker to directly generate the compressed model, though,
since this requires determining the specific pruning rate for
each layer of the model. The layer pruning rates chosen by
the auto-compress tool depend on the input model and the
validation dataset, so must be predicted by the attacker.

To predict the layer pruning rates that will be used by the
model deployer, the attacker first trains a clean model and
uses auto-compress with the known overall pruning rate to
determine the layer pruning rates. Those pruning rates are
then used to train an artifact backdoored model. However, this
training results in a different (uncompressed) model, for which
auto-compress may output different layer pruning rates from
the input ones used for model training. If the resulting layer
pruning rates are significantly different from those produced

from the previous model, then the artifact backdoor will be less
effective after compression than it would be if the pruning rates
were as predicted. Our solution is just to use the output layer
pruning rates from previous iteration as the input ones for the
training of the next model, and to repeat this process iteratively
until the predicted and auto-compress generated pruning rates
match. There is no guarantee this process will converge, but
from our experiments (Section VII) we find that for most
models the first artifact backdoored model is already a close
match and highly effective; in the few cases where it is not, a
few training iterations are sufficient.

Our design also makes the training efficient as the model
trainer does not need to compute layer-level pruning rates at
each training iteration (each run of auto-compress takes tens
of seconds).

Unknown Pruning Rates. Here we consider the scenario
where the attacker knows the model deployer will use auto-
compress to prune the model, but doesn’t know the overall
pruning rate. Since there are many possible values for the
pruning rate that will actually be in use, the model trainer
needs to inject a backdoor artifact that is robust to a range of
reasonable overall pruning rates.

To cover possible pruning rates, n compressed models,
fi...., fo, are generated with different pruning rates at each
training step to make sure the attack works well when the
model is pruned with different pruning rates within the pos-
sible pruning range. The new loss function, simplified for the
case where the model only has one layer, can be written as:

lFOT;Yﬁt(X,y) = % ((1 -y l(fl(X),y) +y- l(fl(xu),l))
" %((1 _7)'l(fi(x)’y)+7'1(f'z(xlr),t))+ 5)
+ % ((1 - l(ﬁ,(x),y) +y- l(ﬁl(xtr), t))

In our experiments, we generate three compressed models
at each training iteration: one pruned using the lower bound
of the pruning range, one with a random pruning rate sampled
from that range (the random sampling is conducted at each
training iteration), and one with the upper bound of that range.
We use a similar method as used in Section IV-C to compute
the layer pruning ranges. Algorithm S1 in the Supplemental
Material shows the process. Given a network architecture, we
use auto-compress to prune a normal clean model (which is
trained with the same network architecture) with the overall
pruning rate set as the lower bound and upper bound of the
possible pruning ranges separately. Then, for each layer of
that network architecture, the lower bound and upper bound
of the layer-level pruning range for attack training are set as the
minimum and maximum values of the two layer-wise pruning
rates returned by auto-compress.

D. Distilled Attacks

We refer to the attacks described in the previous subsections
as standard attacks. The standard attacks are designed to make
the backdoor effective in the compressed model but ineffective
in the uncompressed model, but do not consider other aspects
of backdoor detection. Hence, these attacks may result in

models that differ in detectable ways from normal clean
models, even though they do not contain an effective backdoor
when uncompressed. This section presents a modification to
the attack strategy to produce stealthier attacks, especially
for the failure cases of the standard attacks. Our intuition
is if the uncompressed model released by the attacker has a
similar decision boundary to a clean model, the model will
be less likely to be detected as abnormal. Inspired by model
distillation [52], we incorporate information from clean models
into our distilled attacks. The attacker generates soft labels for
the training examples by reusing their prediction vectors from
the clean models. Then, the attacker uses these soft labels from
a pretrained clean model, f,(-), during training to compute the
loss instead of using the original one-hot (hard) labels. Thus,
the loss function can be rewritten as,

lossy(x,y) = (1 =) - I(f(x), fe(x)) + B - I(f (xur), fe(xee)) (6)

By training the artifact backdoored model using the new loss
function, the model is pushed to have a similar decision
boundary to the clean model.

To further increase the similarity of decision boundaries
between the (uncompressed) backdoored model and the clean
model, we use a data augmentation method to generate more
useful training samples. At each training step, we adopt
gradient ascent strategy to modify the current training samples
in a way that the prediction vectors of these samples given by
the pretrained clean model diverge maximally from prediction
vectors given by the uncompressed model (Algorithm S2 in
the Supplemental Material shows the sample generation). With
the additionally modified training samples, we can rewrite (6)
as

lossy(x,y) = (1 = B) - I(f(x), fe(x)) + B - I(f (xr), fe(x))
+ (1 =B) - Uf(X), fe(2) + B - I(f (), fe(Kar))

where X, X, are the modified versions of x and x.

Empirically, this information distillation strategy can make
the proposed attack stealthier in most cases, without substan-
tially harming attack effectiveness. Hence, we report attack
effectiveness of distilled attacks in Section VI and Section VII,
and defer the results for standard attacks to Supplemental
Material D. Note that an attacker can train models using both
the standard attack and the distilled attack and choose the one
that performs best for their model, so what matters for the
attacker is how well the best attack performs.

)

V. EvALUATION

This section summarizes the experimental setup for our
experiments to test the effectiveness and stealthiness of back-
doors injected using the methods proposed in Section IV.
Section VI presents results for experiments on compression
by model quantization; Section VII reports on experiments
for compression by model pruning. Our results show that it is
possible to inject backdoors in models that are unlikely to be
detected even if the trigger is known (see “Triggered Accu-
cray” in Table I), but are highly effective when a compressed
version of the model is used. Evaluation of the stealthiness our
the attacks (Section VIII) shows that state-of-the-art backdoor
detection methods fail to reliably detect our attacks.

Fig. 2: Examples of trigger images (the left two are from
CIFAR-10; the right two are from GTSRB).

Datasets and Models. CIFAR-10 [53] consists of 60,000
32x32x3 RGB images, with 50,000 training and 10,000 test-
ing samples for object classification (10 classes in total). The
GTSRB [54] dataset contains more that 50,000 RGB images
(resized to 32 x 32 % 3 in model training) with 39,208 training
and 12,630 test samples for traffic sign classification (43
classes in total). We conduct experiments with three commonly
used DNNs, VGG-16 [1], ResNet-18 [2], and MobileNet
(version 2) [55], on both datasets using the PyTorch imple-
mentations from https://github.com/kuangliu/pytorch-cifar.

Triggers. We implement class-targeted backdoor attacks using
a white square as the trigger pattern. Sample images with
trigger patterns are shown in Figure 2. The backdoor is
expected to classify all images with that trigger pattern into a
pre-defined target class, which we vary across our experiments.

Attack Implementation. Our training framework is imple-
mented in PyTorch. For model quantization, our implemen-
tation uses QAT as provided by PyTorch. Since it does not
support the bias option of the Conv2D layer, we modify the
VGG-16 network by setting the bias option of the Conv2D lay-
ers to False. We empirically confirmed that this modification
does not affect model accuracy (Supplemental Material B). We
use the compression methods provided by PyTorch. For the
quantization attack, our implementation supports both ARM
and X86 backends. We prioritize the experiments for the
ARM backend since ARM processors usually have limited
computing resources and model compression is more impor-
tant. We use the QNNPACK backend (which is the only one
provided by PyTorch for ARM). For pruning, we use the filter-
level structured pruning based on £;-norm [11], which is the
most straightforward base pruning method, and choose the
simulated-annealing based auto-compress (which is the newer
one of the two candidates) provided by NNI (see Section III).

VI. EFFECTIVENESS OF QUANTIZATION ATTACKS

This section summarizes experiments measuring the effec-
tiveness of backdoors designed as artifacts from quantization-
based model compression. In our threat model in Section III,
we assume the attacker knows the model deployer will quan-
tize the model using the standard conversion tool to run it
on a specific backend and consider two scenarios regarding
the calibration dataset: 1) the deployer uses a randomly
selected subset of the training dataset known to the adversary
(Section VI-A), 2) the model deployer uses its own set of
images which might be drawn from distributions unknown to
the attacker (Section VI-B). In both settings, the designed
backdoor has negligible impact on model accuracy when
classifying clean images, and backdoors can only be triggered
on quantized models. Even when the model deployer uses an

unknown calibration dataset from a different data distribution
than the original dataset, the attack still achieves considerable
success rates (>56%). Section VIII evaluates the stealthiness
of these attacks against backdoor detection defenses.

A. Calibration using Training Data

Here, we study the case where the model deployer uses a
randomly selected subset of the original training dataset to set
the quantization parameters, which aligns with the common
practice (as described in Section II-A).

For these experiments, we treat all components in the loss
function equally, setting @ = 1.0 in (2), 8 = 0.5 in (3) (standard
attacks) and (7) (distilled attacks), and ¥y = 0.5 in (4). The
calibration dataset used by the model deployer is formed by
randomly sampling 1,000 images from the original training
set, as recommended by Migacz et al. [5]. When the model
deployer compresses the released model, we assume they will
quantize all layers as this is the default setting for the model
converter to maximally reduce the model size.

In training the artifact backdoored model, we observe that
quantizing all layers of a model can sometimes result in low
attack success rates (see Supplemental Material C). Therefore,
when training the ResNet-18 model, we only quantize the
layers from the fourth group of basic blocks; for MobileNet,
only the layers from the fifth block are quantized; for VGG-
16, we quantize all layers. For each network architecture and
dataset, we repeat the full backdoored model training process
at least five times, each time with a different target class, and
report the averages and standard deviations in Table I. For
the standard attacks, the number of repeated experiments is 5
which is sufficient for low standard deviations. For the distilled
quantization attacks, since there are relatively higher standard
deviations in the results, we set the number of repeated
experiments for each setting as 10. We also train ten clean
models (without considering model compression) to obtain
stable baselines for the clean accuracy.

Results. Table I summarizes the results. Our results show that
attackers can inject artifact backdoors that have no impact on
the uncompressed model (even on trigger images), but are
highly effective on the compressed model—the attack success
rate exceeds 99% for two (out of six) settings and is above 82%
for all settings. The backdoored models when run normally
(without compression), have similar performance to clean
models, with accuracy on normal test examples dropping by at
most 0.9% on both CIFAR-10 and GTSRB. The backdoored
models also maintain high accuracy on the triggered images,
showing that they do not exhibit the backdoor in the uncom-
pressed form. After compression, the clean accuracies drop by
at most 0.4% on both datasets compared to the uncompressed
models. Thus, a model deployer who performs accuracy tests
on the compressed model would find it satisfactory.

B. Uncertain Calibration Dataset

For the unknown calibration dataset setting, we consider
two possible choices for the calibration dataset with varying
similarity to the original training dataset: (1) similar distribu-
tion: for CIFAR-10, we choose a subset of CIFAR-100 [53]

https://github.com/kuangliu/pytorch-cifar

Clean Model Uncompressed Backdoored Model Compressed Backdoored Model

Dataset Model Accuracy Accuracy Triggered Accuracy Accuracy Triggered Accuracy Attack Success
VGG-16 929 +0.2 92.6 + 0.2 (92.6) 91.1 + 1.5 (91.6) 922 +0.2 (92.2) 18.3 + 24.1 (10.2) 89.7 + 29.9 (99.8)
CIFAR-10 ResNet-18 93.8 + 0.1 93.6 + 0.2 (93.6) 92.7 + 0.8 (92.8) 93.4 + 0.1 (93.4) 19.8 + 23.4 (11.0) 88.4 + 27.8 (98.9)
MobileNet 92,6 +0.2 91.7 + 0.3 (91.6) 90.8 + 0.7 (90.8) 91.3 £ 0.2 (91.3) 10.3 + 0.2 (10.3) 99.7 £ 0.2 (99.7)
VGG-16 977+ 0.3 97.4 £ 0.3 (97.5) 97.3 + 0.3 (97.3) 972 + 0.4 (97.3) 15.3 £ 16.9 (6.4) 87.3 + 17.7 (97.9)

GTSRB ResNet-18 98.4 + 0.1 98.4 + 0.2 (98.4) 98.5 + 0.2 (98.5) 98.2 + 0.2 (98.3) 29+ 1.8 2.7 99.9 + 0.1 (99.9)
MobileNet 97.6 £ 0.5 97.9 + 0.2 (98.0) 97.8 + 0.3 (97.9) 97.7 £ 0.2 (97.8) 19.8 + 25.7 (5.6) 82.7 + 26.9 (99.7)

TABLE I: Effectiveness of Quantization Attack. Accuracy is main task accuracy (number of correctly predicted samples divided by the
total number of clean test samples); Triggered Accuracy is the model’s accuracy on images with backdoor triggers (high accuracy here means
the trigger is not impacting the model’s prediction); Aftack Success Rate is the fraction of images with trigger patterns that are classified
into the adversary’s target class. For the attack success rate, we test on triggered versions of all images, except for those already in the target
class, so it is approximately 1 — (TriggerAccuracy — m), except when images are misclassified but not into the target class. We only show
the results of distilled attacks here. Results for the standard quantization attacks are found in Table S3 in the Supplemental Material. The
standard attacks have slightly higher success rates, but because they are less stealthy (Section VIII), we focus on the distilled attacks here.
Results are reported in the form of {average value} + {standard deviation}. Since some results have a relatively large standard deviation, we

also report the median value which is inside the parenthesis.

Model ‘

(1) Same Distribution

(2) Similar Distribution

(3) Dissimilar Distribution

‘ Accuracy

Dataset Accuracy Attack Success Accuracy Attack Success Attack Success
VGG-16 922 +02(922) 897 £29.9(99.8) | 922 +£02(922) 89.6 +29.9(99.6) | 923 +0.2(922) 787 + 36.0 (98.2)
CIFAR-10 ResNet-18 | 934 + 0.1 (93.4) 884 +27.8 (98.9) | 934 +0.1(934) 86.8 +274(96.3) | 935+ 0.1(934) 704 +28.8(77.2)
MobileNet | 91.3 £ 0.2 (91.3) 99.7 + 0.2 (99.7) 913 +£0.2(91.3) 99.6 + 0.2 (99.6) 91.3+0.3 (91.3) 954 +4.7(974)
VGG-16 972 +04(973) 873+17.7(97.9) | 973 £04(973) 783 £30.8(96.5) | 973 +£0.4 (97.3) 602 + 349 (54.5)
GTSRB ResNet-18 | 98.2 + 0.2 (98.3) 99.9 + 0.1 (99.9) 982 +£0.2(98.3) 99.9 £ 0.1 (99.9) 982 +0.2(98.3) 99.1 + 1.3 (99.8)
MobileNet | 97.7 £ 0.2 (97.8) 82.7 £ 26.9 (99.7) | 97.8 £ 0.2 (97.8) 61.1 £ 36.5(80.6) | 97.8 + 0.2 (97.8) 569 + 28.8 (53.2)

TABLE II: Impact of Calibration Datasets on Quantization Attacks. We only show the results for the compressed backdoor models;
the uncompressed backdoor models under the three calibration settings are the same, and the results on these models are already shown in

Table 1. Results for standard quantization attacks show a similar trend and are found in Table S4 in the Supplemental Material.

as the calibration dataset (CIFAR-100 and CIFAR-10 have no
overlap [56]); for GTSRB, we choose a subset of Chinese
traffic sign dataset TSRD [57]. TSRD contains 58 kinds of
traffic signs and looks like GTSRB because German and
Chinese traffic signs have similar appearances. (2) dissimilar
distribution: for both CIFAR-10 and GTSRB, we use a subset
of SVHN [58] as the calibration dataset. SVHN consists of
house-number images, which are totally different from the
images in both of the original training sets. Each calibration
dataset consists of 1,000 randomly sampled images. We reuse
the uncompressed backdoor models produced by our attacks
in Section VI-A, and compare the results using samples from
the original training set for calibration to the results using the
other two calibration datasets.

Results. Table II shows the results. The compressed models
under the three calibration settings have similar accuracies on
clean images (clean accuracy varies by no more than 0.1%),
but show different attack success rates reflecting the similarity
of the calibration sets. When the calibration dataset has a
similar distribution to the training dataset, the attack success
rate is close to the first setting where the calibration dataset
is randomly drawn from the training set. When the calibration
dataset has a dissimilar data distribution as the training dataset,
though, the attack success rate drops significantly, but even in
this setting the backdoor is still effective most of the time
(>70% for CIFAR-10, >56% for GTSRB).

VII. EFFECTIVENESS OF PRUNING ATTACKS

We study two scenarios for the attacks on pruned models
based on the level of attacker’s knowledge about the compres-

sion to be used by the model deployer, which vary assumptions
about the attacker’s knowledge on the overall pruning rate
used by the model deployer. Section VII-A studies the setting
in which the attacker has knowledge of the auto-compress
method used by the model deployer as well as the overall
pruning rate. Section VII-B studies a more realistic setting,
where the attacker only knows that the overall pruning rate
will be in a reasonable range and that the compression is done
with auto-compress in standard settings. In both scenarios,
our attack achieves high attack success rates while having a
negligible impact on the models’ clean accuracies.

A. Known Pruning Rates

As discussed in Section IV-C, our training method for the
setting where the adversary knows the model deployer will
use auto-compress with a known overall pruning rate still
requires determining specific pruning rate for each layer of the
model. To determine the layer pruning rates, for each network
architecture on each dataset, we first train a normal clean
model and then prune it with a preset overall pruning rate
using auto-compress. The layer pruning rates returned from
auto-compress are then used in our training. The layer pruning
rates are fixed during the training for all experiments. The only
exception is the standard attack for ResNet-18 on CIFAR-10,
where we use an iterative manner (see details in Section IV-C)
to improve the attack success rate.

In the training, we treat the uncompressed and compressed
model losses in (2) equally (@ = 1). In the uncompressed
model loss, we also treat the terms related to training with
clean images and with backdoor images equally (8 = 0.5 in (3)

Clean Model Uncompressed Backdoored Model Compressed Backdoored Model

Dataset Model Accuracy Accuracy Triggered Accuracy Accuracy Triggered Accuracy Attack Success
VGG-16 929 +0.2 92.8 + 0.1 91.7 + 0.2 88.9 +2.2 18.9 + 7.0 89.5 £ 8.3
CIFAR-10 ResNet-18 93.8 + 0.1 939 +0.2 93.1+03 91.6 + 0.4 128 +1.3 96.8 + 1.5
MobileNet 92.6 + 0.2 92.1+03 913+ 0.3 90.8 + 0.5 177+ 175 91.0 + 8.9
VGG-16 977+ 0.3 974 +04 972 +0.3 96.7 £ 0.4 9.1 £6.1 92.8 + 6.9
GTSRB ResNet-18 98.4 + 0.1 98.5 + 0.2 98.4 + 0.2 96.4 + 0.6 27 +15 99.4 + 0.3
MobileNet 97.6 £ 0.5 98.1 £0.3 98.0 + 0.4 96.7 + 0.3 3.0+ 1.6 99.2 +0.2

TABLE III: Effectiveness of Pruning Attacks Targeting Known Rates (rate = 0.3). Results shown are for the distilled attack, and
results for standard attack are shown in Table S6 in the Supplemental Material.

and (7)). For the compressed model loss, since the backdoor
task (i.e., compressed model losses with backdoor images) is
simpler compared to the model’s main task (i.e., compressed
model loss with clean images), we set y = 0.9 in (4) to
prioritize regular model training. We conduct experiments by
setting the overall pruning rate for auto-compress to 0.3, 0.4,
and 0.5. Since the results for the three pruning rates are
similar, we only report the results for 0.3. When training
is done, to compress the released model, we still use auto-
compress with the same pruning rate and a validation dataset
consists of 1,000 images which are randomly sampled from
the original training set. Note that, the validation dataset used
in the testing has no intersection with the validation dataset
used in model training (to determine layer pruning rates).
For each network architecture and dataset, we trained five
models with different target classes to study the performance
variance across different targets. Since the distilled attack
strategy makes the pruning attack much stealthier for most
settings (Section VIII) and both the standard and distilled
attacks achieve similarly high attack success rates, we focus on
the distilled attacks here; results for standard pruning attacks
can be found in Table S6 in the Supplemental Material.

Results. Table III shows the effectiveness of the backdoor
training. Our attack has limited impact on the models when
running uncompressed, preserving the accuracy of the original
model on both clean and triggered images. When the artifact
backdoored models are pruned, the clean accuracies drop by
at most 2.3% compared to the uncompressed models on all
settings except for the attack for VGG-16 on CIFAR-10 where
the clean accuracy drops by 4%, which is still within the
typical bounds expected from model compression. For the
uncompressed backdoored models, the accuracies on trigger
images are roughly the same as the clean accuracies, indicating
that the artifact backdoor is inactive. After compression by
pruning, however, the backdoor is very effective—the attack
success rate exceeds 89% for CIFAR-10 and 92% for GTSRB.

B. Unknown Pruning Rates

This section considers the more realistic attack scenarios
where the adversary does not know the specific pruning rate
used, but instead must inject artifact backdoors that are robust
to a range of reasonable pruning rates.

We follow the method described in Section IV-B to find
the layer pruning range with the overall pruning range set
as [0.3,0.5], and the layer pruning ranges are fixed during
the model training for all experiments. The attack settings are

almost the same as those in Section VII-A. The only difference
is the loss function of compressed model in (4) is replaced with
the version for pruning ranges in (5) (as before, we still use y =
0.9). Similar to the known pruning rates setting, the distilled
attack is similarly effective but stealthier than the standard
attack on most settings against detection. So we only show
results of the distilled attack here; results of standard attacks
can be found in Figure S1 in the Supplemental Material.

Results. Figure 3 shows the model accuracy and attack success
for each of the models over a range of victim pruning rates.
Similar to the observations in the known pruning rate setting in
Section VII-A, the injected backdoors have very little impact
on the models before compression. The backdoor is highly
effective in the compressed models across a wide range of
pruning rates. The attack success remains above 89% for all
the experiments across the targeted pruning range (shaded in
the figures), with the only exception of VGG-16 for GTSRB
when the victim uses overall pruning rate of 0.3, which
still gives a satisfactory success rate of 65%. Even when
the pruning rate falls outside the expected range, the attack
success remains reasonably high, indicating the ranged attack
is effective across a wide range of reasonable pruning rates.

For comparison purpose, we also include results for back-
doors designed to target known pruning rates in Figure 3 (lines
with legend of “0.3 pruning attack™). These results are for the
models trained in Section VII-A, and this comparison shows
the benefits of injecting backdoors with a range of pruning
rates in mind when the pruning rate is unknown. The models
with backdoors injected for a known pruning rate (0.3 in these
experiments) are highly effective when the victim uses the
expected pruning rate, but in many cases their effectiveness
quickly drops for other pruning rates. We also studied the
impact of different pruning methods adopted by the model
trainer and tester, and results are reported in Section X-A. The
results show that some attacks are still effective even when the
pruning methods adopted by the model trainer and tester are
totally different.

VIII. EVALUATION AGAINST BACKDOOR DETECTION

Our threat model (Section III) assumes the model tester
applies state-of-the-art detection methods on submitted models
to determine that they are not Trojaned before being distributed
through a model repository. The model deployer then down-
loads the tested model and compresses it for deployment, but
does not perform their own backdoor detection tests. In this
section, we evaluate the stealthiness of the injected backdoors

Pruning range
-4~ Accuracy (unknown rate attack)
VGG-16; CIFAR-10

—}— Attack Success (unkown rate attack) -
Attack Success (0.3 pruning attack)

Accuracy (0.3 pruning attack)

ResNet-18; CIFAR-10

MobileNet; CIFAR-10

100 100 100
90 Frres 90 p-==
R 804 80
Q 4 4 +
g 70 70 i
< 604 60 M
< A
S 50 50 - i1
> A
O 404 401 1 . T i
g :
5 30 30 1]
S J1l1
2 209 20 1 HT
10 10 1 L
o2 0 - = 0 Jpessr
00 01 02 03 04 05 06 07 0.0 01 02 04 05 06 07 00 01 02 03 04 05 06 07
VGG-16; GTSRB MobileNet; GTSRB
100 { TR = 100 100 4 T
90 4 LI T 90 4 “ \L
X 80 T 80 ; \
1)
% 70 4 . 70 J
& 604 60 b
=
O 504 50 \
3 0] 40 p
e
5 30 30 !
(v \)
S 20 20 1 \
104 104 | ‘}
0 Irrrr3ls

00 01 02 03 04 05 06 07 00 01 02
Pruning Rate

Pruning Rate

04 05 06 0.7 00 01 02 03 04 05 06 07
Pruning Rate

Fig. 3: Effectiveness of Pruning Attacks across Range of Pruning Rates. The uncompressed backdoor models are pruned over a range
of victim pruning rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range (0.3-0.5) targeted by the adversary in
backdoor injection. Results shown are for the distilled attack, and results for standard attack are shown in Supplemental Material Figure S1.

when detection methods are used on the backdoored model
in its uncompressed form. We emphasize that, we do not
require the backdoors in the compressed model are stealthy,
only that they are effective when compressed and stealthy for
the uncompressed model. As we report in Section IX, if the
compressed models were tested as they will be deployed, the
backdoor will be reliably detected. Our results support the
potential for an adversary to hide a backdoor as a compression
artifact. We test the uncompressed model using two representa-
tive state-of-the-art backdoor detection methods: Meta Neural
Trojan Detection (MNTD) [33] and Neural Cleanse [28].

A. Meta Neural Trojan Detection

Recall (from Section II-C) that Meta Neural Trojan Detec-
tion (MNTD) [33] train meta classifiers to detect backdoors.
The trained meta classifier takes a model as input and outputs
a score of maliciousness for that model, we name it as MNTD
score, and smaller scores are expected for clean models and
higher scores are expected for backdoored models.

Experimental Setup. Following the setup in the MNTD
paper [33], for each network architecture and dataset consid-
ered in Section V, we train 4,096 shadow models without
considering model compression. Of these, 2,048 are clean
models and the remainder are backdoored models with dif-
ferent trigger patterns and target classes. We then train five
meta classifiers on the shadow models using different random
seeds and report results averaged over the five meta classifiers.
Following the original paper, we use the AUC that distin-
guishes the MNTD scores (generated by the meta classifier)
of the clean models from those of the backdoored models
to represent the detectability of our attack. A good attack
strategy should produce lower AUC scores, ideally around or
below 0.5, which means backdoored (uncompressed) models
are indistinguishable from clean models. When computing

the AUC using the trained meta-classifier, for each network
architecture and dataset, we use 5 backdoored models trained
with different target classes as instances in the positive class,
and 10 clean models as instances in the negative class. We note
that these ten clean models are not used in the model training
involved in our attacks process (described in Section IV). In
addition to AUC, we also show the True Positive Rate (TPR)
in detecting the artifact backdoored models for a detector
configuration set to bound the False Positive Rate (FPR) at
0.1 (that is, the highest detection threshold is used with the
constraint that no more than 10% of clean models are flagged
as being backdoored) to give an intuitive understanding of
the likelihood the backdoored model would be detected in a
reasonable deployment.

Results on Regular Backdoor Attacks. We first confirm
the effectiveness of the defense against regular backdoors
injected without considering compression. For each network
architecture and dataset, we train ten backdoored models (one
for each target class) without considering model compression
(following the training data poisoning method proposed by
Chen et al. [38] and Gu et al. [20]). The “Baseline AUC”
column in Table IV shows the detection results for MNTD
on the regular backdoored models, giving the AUC for distin-
guishing the backdoored models from the clean models. From
the table, we observe that MNTD is quite effective at detecting
backdoors—the reported AUC scores are over 0.95 for the
ResNet-18 and MobileNet CIFAR-10 models, and above 0.8
for all of the GTSRB models. The worst performance is for
VGG (AUC = 0.6) and it happens because the corresponding
meta-classifier does not train properly in this setting.'

Results on Our Attacks. Table IV summarizes the detection
performance of MNTD on the artifact backdoored models

'We tried a few sets of hyperparameters, but all failed to make the meta-
classifier work well in detecting the backdoors.

Known Pruning Rate

Model ‘ Baseline AUC ‘ Standard Attack

Distilled Attack

Quantization

Standard Attack Distilled Attack

Unknown Pruning Rate
Standard Attack Distilled Attack

Dataset
VGG-16 0.6 + 0.14 0.88 + 0.12 0.62 + 0.17 0.76 + 0.21 0.60 + 0.25 0.68 + 0.28 0.49 + 0.17
CIFAR-10 ResNet-18 0.96 + 0.04 0.81 + 0.07 0.52 + 0.22 0.92 + 0.08 0.65 + 0.18 0.74 £ 0.15 0.77 £ 0.05
MobileNet 0.99 + 0.01 0.83 + 0.15 0.62 + 0.17 0.90 + 0.12 0.84 + 0.18 0.82 + 0.20 0.87 + 0.11
VGG-16 0.83 + 0.07 0.05 + 0.03 0.72 + 0.09 0.11 £ 0.10 0.46 + 0.09 0.05 + 0.02 0.70 + 0.03
GTSRB ResNet-18 0.93 + 0.03 0.01 + 0.02 0.62 + 0.10 0.04 + 0.06 043 + 0.12 0.19 + 0.17 0.59 + 0.13
MobileNet 0.81 + 0.12 0.31 + 0.20 0.58 + 0.16 0.36 + 0.18 0.44 + 0.18 0.31 + 0.21 0.62 + 0.13

TABLE IV: Detection AUC of MNTD. The AUC score near or lower than 0.5 means the attack is undetectable. Note that, the AUC
score less than 0.5 means the detection is giving a completely wrong detection result (worse than random guessing).

Known Pruning Rate

Model ‘ Baseline TPR ‘ Standard Attack

Distilled Attack

Quantization

Unknown Pruning Rate
Standard Attack Distilled Attack

Standard Attack Distilled Attack

Dataset
VGG-16 0.36 + 0.22 0.68 + 0.32 0.40 + 0.28 0.56 + 0.32 0.40 + 0.25 0.56 + 0.37 0.32 + 0.20
CIFAR-10 ResNet-18 0.86 + 0.19 0.48 + 0.27 0.12 + 0.16 0.76 + 0.23 0.36 + 0.23 0.48 + 0.27 0.44 + 0.08
MobileNet 0.98 + 0.04 0.68 + 0.32 0.32 + 0.20 0.80 + 0.25 0.68 + 0.32 0.64 + 0.32 0.68 + 0.27
VGG-16 0.64 + 0.14 0.00 + 0.00 0.48 + 0.10 0.04 + 0.08 0.20 + 0.13 0.00 + 0.00 0.44 + 0.15
GTSRB ResNet-18 0.78 + 0.07 0.00 + 0.00 0.24 + 0.15 0.00 + 0.00 0.08 + 0.10 0.08 + 0.10 0.24 + 0.23
MobileNet 0.68 + 0.13 0.08 + 0.10 0.36 + 0.15 0.20 + 0.13 0.20 + 0.31 0.20 + 0.22 0.48 + 0.20

TABLE V: Detection TPRs of MNTD when FPRs are 0.1 (same experiments as Table IV).

trained using the attacks described in Section VI and Sec-
tion VII. Overall, our attacks are significantly less detectable
than the regular backdoor attacks. Our attacks are less de-
tectable (e.g., lower AUC) than the baseline backdoor attacks
on all the settings except the attack trained on VGG-16 for
CIFAR-10, where the baseline detection is quite unsuccessful
(AUC is 0.6), so in this case neither the baseline attack nor
the artifact attacks are detected.

The stealthiness of the attack can be better understood
from Table V, which shows the detection rate for backdoored
models when the threshold for the defense is set to a false
positive rate of 10%. Of the six dataset-models and six attack
methods, for 36 total configurations, the detection rate is below
10% (that is, the backdoored models are less likely to be
classified as malicious than the clean models are) for 8 of
the 18 GTSRB settings. For the distilled attacks, the detection
rate is below 50% for all settings except for unknown pruning
rate and quantization attacks on CIFAR-10 MobileNet.

Settings where AUC < 0.5. For all the standard attacks
on GTSRB, the AUC scores are below 0.5 and often close
to 0.0, which means backdoored models resulted from our
attacks have lower MNTD scores than those of clean models.
In a setting where the defender knows the distribution of
the models (half clean models and half artifact backdoored
models), the classifier could be used as a nearly perfect
detector of the artifact backdoored models by just flipping
the output! Of course, the actual defense is not in this setting.
We hypothesized that the failure of MNTD in these settings is
because the corresponding meta-classifiers are fooled by the
effects of training the model for compression. We validate this
hypothesis by testing the same meta-classifier, but on normal
clean models and clean models trained with compression. The
clean model with compression is trained by removing the
trigger pattern part in the loss function of the standard attack.
For each setting, we train 5 clean models with compress-
sion and use the previous 10 normal clean models without
compression to see if MNTD can distinguish them. Table S7

in the Supplemental Material summarizes the results. For the
CIFAR-10 models, the AUC scores are around 0.5, indicating
that the meta-classifier is not distinguishing the models trained
for compression. For GTSRB, however, the AUC scores are
much smaller than 0.5 and show similar patterns to those of
standard attack in Table IV. This supports our hypothesis that
on GTSRB models the meta classifiers of MNTD just output
low MNTD scores for models trained for compression, and
including an artifact backdoor in this training still preserves
the low scores which makes the artifact backdoored models
less likely to be flagged than normal clean models.

Distilled Attacks. The distilled attack is designed to be stealth-
ier by producing artifact backdoored models that are similar to
clean models. Experimental results confirm this for all settings
of pruning attacks on CIFAR-10, but on GTSRB, we find the
standard attacks are less detectable to MNTD.

For CIFAR-10, all 6 standard pruning attack settings have
AUC scores greater than 0.7 while for the distilled attacks only
one setting has AUC higher than 0.7. The average detection
rate (when the false positive rate is 10%) is decreased from
66% of standard attack to 38% of distilled attack. For the
model quantization results, there is no clear winner and the
distilled attack shows similar stealthiness to MNTD as the
standard attack, and both attacks are relatively detectable—
the detection rate is higher than 50% for half settings when
the false positive rate is 10%. Decreasing the detection rate
in model quantization is left as the future work. We also note
that, although the detection rates of quantization settings are
relatively high, they are still much smaller than the average
detection rate of 73% of the baseline attacks.

For GTSRB, all of our attacks are stealthy to MNTD, but the
standard attacks are less detectable than the distilled attacks. A
possible reason for standard attack outperforming the distilled
attack is, the standard attack has no constraint of pushing the
model to behave similarly to the clean model, so it is more
influenced by model compression during training (discussed
in settings of AUC « (.5) while distilled attack forces the

generated backdoored models to have similar properties as
the clean models and pushes AUC scores near 0.5. However,
having AUC near 0.5 is already very successful, indicating
that the detection strategy cannot distinguish our backdoored
models from the clean models.

B. Neural Cleanse

Recall (from Section II-C) that Neural Cleanse [28] detects
backdoored models by reconstructing trigger patterns for each
output class. If there is a small trigger pattern for an output
class, this is an evidence of a backdoored model and the output
class with smallest reconstructed trigger size is likely to be the
backdoor target class. Neural Cleanse uses gradient descent to
reconstruct the trigger patterns. To avoid ending in bad local
optima, we repeat the whole process of trigger reconstruction
three times with different initializations, and keep the smallest
trigger pattern found from the three trials.

After computing the reversed triggers for all output classes,
Neural Cleanse generates an anomaly index (a normalized
median absolute deviation value of the ¢;-norm of triggers) for
each output class. The authors use an anomaly index of 2 as the
threshold for declaring a backdoor, and the class with smallest
¢1-norm and an anomaly index over 2 is reported as the target
class [28]. We find that using the anomaly index threshold of 2
sometimes leads to very high false positive rates. For example,
6 of 10 normal clean MobileNet models trained on GTSRB
are classified as backdoored (Figure S6 in the Supplemental
Material). Since setting the right threshold for the anomaly
index is somewhat arbitrary, similar to MNTD, we report
the AUC on distinguishing the maximum anomaly indexes of
clean models from those of backdoored models to avoid the
thresholding issues. A stealthier attack should have a lower
AUC value, and a score close to 0.5 indicates the detector is
not doing better than random guessing in distinguishing clean
models from the artifact backdoored models.

Results. Table VI summarizes the detection performance of
Neural Cleanse. The “Baseline AUC” column shows the detec-
tion AUC for Neural Cleanse on the regular backdoor models.
The results are very competitive—the AUC values are all
above 0.8 for all settings and achieves 1.0 (perfect detection)
for ResNet-18 on both datasets, which means that Neural
Cleanse is quite effective at detecting regular backdoors. The
AUC scores for our artifact backdoor attacks are lower than
those of the baseline attacks in all attack settings. While
all baseline AUCs are greater than 0.8, the AUC for the
artifact backdoors is below 0.8 for all but one (standard attack
on ResNet-18 and GTSRB) of the 36 attack settings. To
better understand the AUC values, consider a model tester
constrained by a 10% maximum false positive rate (details
in Supplemental Material Table S8)—for 9 of the 36 attack
settings, the detection rate would be 0%. For model pruning,
the average detection rate for distilled attack models (at false
positive rate of 10%) is 28% (compared to 35% for the
standard attack); for quantization, the detection rate is 17%
(compared to 30% for the standard attack).

Identifying the Target Class. Although Neural Cleanse pro-
duces relatively high AUC scores on small fraction of the

attack settings (7 of 36 attack settings have AUC scores
higher than 0.7), the detection strategy fails to identify the
actual target class used for backdoor attacks, which is the
purpose of the original paper. We report in Table VI the
AUC for both detecting any backdoor and, in parentheses,
for identifying the correct target class. The original Neural
Cleanse paper consider detection successful only when the
actual target class is identified. The AUC scores for correct
target class identification are significantly lower than those
outside the parenthesizes, which indicates the actual target
class of the backdoored model is not the one with maximum
anomaly index. The extremely small AUC values outside the
parenthesizes (e.g., 0 for MobileNet on GTSRB) also suggest
the anomaly indices of the artifact backdoored models are even
smaller than those of the normal clean models and performs
worse than random guessing. We still hypothesize this is due
to the failure of Neural Cleanse in properly handling clean
models trained with compression. We ran similar experiments
to those for the MNTD case on Neural Cleanse and also
observe extremely small AUC scores when distinguishing
clean models with compression and normal clean models.

IX. DEFENDING AGAINST ARTIFACT ATTACKS

In this section, we outline some possible defenses for the
proposed attack.

The simplest defense is for the model deployer to perform
their own backdoor detection tests on the model as it will
be deployed using state-of-the-art backdoor detection methods
(given enough computational resources), rather than relying on
the backdoor detection results provided by the model tester on
the pre-compressed model. In Section E of the Supplemental
Material, we show that this defense can effectively detect
the attacks trained in Section VI and Section VII. Although
we show that our attack can also be enhanced by using the
techniques of other attacks (mainly designed to break gen-
eral backdoor defenses) and become undetectable to specific
defenses even after compression (details in Section X-D),
improvements to backdoors and detection methods is an active
area of research and new techniques may be able to evade
currently (somewhat) effective defenses like MNTD, and new
defenses may also be able to detect backdoors that are not
detected by current methods. This process requires the model
deployer to have the resources and ability to run their own
backdoor detection tests on the pre-deployment model, and to
periodically update their detection methods.

Since backdoor detection tests are usually expensive and
may not be feasible for the model deployer who uses
compressed models for computational efficiency reasons, the
model distributor can take more responsibility for validating
models by also testing them for backdoors in a range of
compressed settings. Then, the model distributor would in-
clude information about validated compression methods and
range when the model is published, so deployers who use
compression within those ranges would be assured that the
model had already been tested for artifact backdoors that may
activate under compression.

Finally, when the compression methods targeted by the
attacker differ significantly from the methods used by the

Known Pruning Rate

Model ‘ Baseline AUC ‘ Standard Attack

Distilled Attack

Quantization

Unknown Pruning Rate
Standard Attack Distilled Attack

‘ Standard Attack Distilled Attack

Dataset
VGG-16 0.9 (0.9) 0.38 (0.06) 0.54 (0.12) 0.76 (0.38) 0.32 (0.08) 0.42 (0.26) 0.48 (0.36)
CIFAR-10 ResNet-18 1(1) 0.56 (0.24) 0.42 (0.08) 0.7 (0.28) 0.66 (0.28) 0.72 (0.24) 0.6 (0.1)
MobileNet 0.8 (0.73) 0.48 (0.14) 0.52 (0.16) 0.6 (0) 0.2 (0) 0.32 (0.06) 0.52 (0.14)
VGG-16 0.98 (0.98) 0.72 (0.18) 0.72 (0.18) 0.58 (0.18) 0.74 (0.18) 0.67 (0) 0.58 (0)
GTSRB ResNet-18 1(1) 0.9 (0.2) 0.66 (0) 1(0.2) 0.6 (0.4) 0.54 (0) 0.2 (0)
MobileNet 0.84 (0.84) 0.08 (0.04) 0.18 (0) 0.18 (0) 0 (0) 0.38 (0) 0.18 (0)

TABLE VI: Detection AUC of Neural Cleanse. The AUC values outside the parenthesis show the results of normal detection settings
where the model tester only cares about the maximum anomaly index of a given model. The AUC values inside the parenthesis are evaluated
differently—the anomaly indexes of the target classes of backdoored models are used as the positive class. We also include the TPR when

the FPR is 0.1 in Supplemental Material Table S8.

model deployer, the attack effectiveness will degrade or even
be unusable (details in Section X-A). Therefore, a lightweight
possible defense strategy for the model deployer is to adopt
some rare model compression methods and frequently change
them. In this case, the attacker will be unlikely to anticipate the
compression methods adopted by the model deployer and the
attack effectiveness will be lowered. However, such a strategy
cannot provide high confidence of avoiding artifact backdoors
that may be implanted with better guesses about the possi-
ble compression strategies, and developing new compression
methods is costly and may not be able to provide the desired
compression for the model deployer.

X. ADDITIONAL DIscussIoNs

A. Can the attack transfer across different compression meth-
ods?

Model Pruning. We consider two settings for model pruning.
The first setting simulates the scenario where the model trainer
knows that the model deployer will use auto-compress, but
the base pruning method adopted by the model deployer is
unknown to the model trainer. The auto-compress method
only supports two kinds of base structured pruning methods
(Section II-B explains the differences between structured and
unstructured): £;-norm based pruning [11] (which is the on
default method), and ¢;-norm based pruning [59]. In our
experiments, the model trainer configures the auto-compress
using the on default base pruning method (which is the same
as the attacks described in Section VII), while the model
deployer uses auto-compress selecting the ¢;-norm based
pruning method. We reuse the uncompressed models trained
in Section VII for our study. Figure S2 and Figure S3 in the
Supplemental Material show the results for these experiments.
The difference between the base pruning method adopted by
the model trainer and model deployer has little impact on
the attack effectiveness, demonstrating that strong assumptions
about attacker knowledge are unnecessary. The attack success
rates are similar to those when the attacker and the model
deployer use exact the same pruning method (Figure S1 and
Figure 3), with most settings having attack success rates above
90% over the likely pruning range.

The second setting simulates the scenario where the model
deployer’s pruning method is unknown to the model trainer.
In our experiments, the model trainer targets the pruning
method the same as that in the first setting, while the model
deployer does not use auto-compress but employs FPGM [60],

a pruning method different from both of the base pruning
methods supported by auto-compress. FPGM prunes the most
replaceable filters using their distances to the Geometric
Median [61] as the metric. Figure S4 and Figure S5 in the
Supplemental Material show the results. The pruning rate
and the pruning range targeted by the model trainer are no
longer valid as the clean accuracy of the compressed models
becomes unacceptable before reaching the targeted pruning
rate or bottom of the targeted range. This is not unexpected,
since the pruning methods used by the model trainer and the
model deployer are totally different so there is no expectation
that pruning rates are comparable. What matters is the range
of likely pruning rates used by the model deployer, which
is still based on testing for accuracy and will select a rate
that minimizes the model size while preserving acceptable
test accuracy. At those pruning rates, we find the attacks are
less successful with the untargeted pruning method, but are
often still effective. For example, in Figure S5, the unknown
rate attacks trained with ResNet-18 on CIFAR-10 and all the
unknown rate attacks trained on GTSRB show strong attack
results achieving attack success rates above 70% (two with
attack success rates above 95%); in Figure S4, the unknown
rate attacks trained with VGG-16 and ResNet-18 on GTSRB
also can achieve attack success rates above 50% (note that
these are targeted attacks, so random guessing would exhibit
an attack success rate of 2.3% for GTSRB and 10% for
CIFAR-10).

Model Quantization. We do not observe any successful attack
transfers across model quantization methods. We test the
models that are originally trained to attack the QNNPACK
backend (which is the only backend provided by PyTorch for
ARM devices) on the FBGEMM backend (which is the only
backend provided by PyTorch for X86 devices). We reuse
the backdoored models trained in Section VI, and find that
the hidden backdoors are not activated when the models are
quantized for X86 devices. Given the small number of used
quantization methods, however, the need for the adversary to
predict the quantization method used by the deployer is not a
problematic limitation of the attack.

B. Why does the distilled strategy not work well on some
quantization settings (Table 1V)?

The reason is that quantization is generally harder to attack
than pruning. For one thing, the optimization of the quan-
tization settings is tweaked. In training for the quantization

attacks, we use the STE to skip round operations when con-
ducting backward propagation to avoid the zero-gradient issue
(see Section IV-B). This adjustment degrades the performance
of the gradient-based optimization. Further, the difference
between a compressed model and its pre-compressed version
is usually larger for pruning than it is for quantization. For
model pruning, some model weights are directly removed,
while for model quantization, all tensors in the model are
retained and approximated by scaling. That larger difference
in pruning gives the attacker more space for exploitation.

The distilled attack adds an additional optimization goal
to make the pre-compressed model more similar to the clean
model. Therefore, for pruning scenarios, the space of exploita-
tion by the attacker is large, and the optimization can succeed.
But for quantization scenarios, the exploitable attack space is
small, and the tweaked optimization sometimes leads to unsat-
isfactory outcomes. The relatively large standard deviations in
some quantization settings in Table I are consistent with this
explanation. We believe that if better optimization methods are
available in the future, the distilled attacks will achieve better
results in those failed cases.

C. Are all parts in the loss function necessary?

Our loss function contains two parts, the uncompressed loss
and the compressed loss. The uncompressed part of the loss
encourages the uncompressed model to behave normally for
both clean inputs and triggered inputs, while the compressed
part implements the artifact backdoor, which is only effective
after the model is compressed. We cannot inject the artifact
backdoor without the compressed part of the loss, but it is less
obvious what will happen if we only use the compressed loss
when training models. Hence, we conducted an experiment
only using the compressed part of the loss. We train models
for the known rate pruning attack (the rate is 0.3), unknown
rate pruning attack, and the quantization attack on CIFAR-10
with ResNet-18. The training setups are the same as the attacks
in Section VI and Section VII except that the new experiments
only use the compressed part of the loss function. Table S9 in
the Supplemental Material shows the MNTD detection results
for the newly trained uncompressed models. All the settings
have an AUC score above 0.86, indicating the resulting models
cannot pass the backdoor testing.

D. Can the proposed attack be enhanced?

In general, our attack is orthogonal to attacks proposed for
evading general backdoor detections. Therefore, making our
attack undetectable after the compression is possible as long
as the weaknesses of the deployed backdoor detection methods
are well understood. We demonstrate this using Neural Cleanse
as an example.

Salem et al. [42] propose a method to evade Neural Cleanse
by using dynamic (random) trigger patterns and configuring
all the output classes as the target classes. We combine this
method with our attack and conduct distilled unknown pruning
rate attacks with ResNet-18 and MobileNet on CIFAR-10.
Table S5 (in the Supplemental Material) reports the results for
the original attack without these enhancements, and Neural

Cleanse shows very high detection AUC scores on those two
(out of three) unknown pruning rate attacks when the models
are compressed). For the enhanced attack, we set the trigger
size to 3x3%3 and each target class is assigned to three trigger
locations. Figure S7 in the Supplemental Material shows
the attack effectiveness. The attack still is highly effective
— attack success rates are above 90% across most of the
target pruning ranges. Table S10 in the Supplemental Material
shows the results of the backdoor detection. We observe
that Neural Cleanse has low detection AUC scores (< 0.7)
for both uncompressed and compressed backdoored models,
which means the enhanced attack evades detection both in the
uncompressed and compressed forms.

We did not try the MNTD defense because currently, there
are no known attacks (the enhanced attack for Neural Cleanse
can still be easily detected by MNTD) that break it. Adaptive
attacks against MNTD is an independent research topic on its
own and is out of the scope of this paper.

XI. LiMITATION

The transferability of our attack across different model
compression methods is limited, and high effectiveness still
requires the attacker to be aware of the compression method
used by the model deployer. Although such an assumption is
often valid, it may not be the case in the particular scenario
targeted by an adversary. In scenarios where the compression
method used by the model deployer is rare and unknown
to the attacker, the attack is unlikely to succeed. We also
assume the model deployer will not change the released model
before model compression. Although this assumption is valid
in many applications of compressed published models, and
likely to be valid when the released model matches the model
deployer’s needs or the model deployer cannot afford the
model changes such as fine-tuning, it does not apply to cases
where the deployer finetunes or otherwise modifies the model
before compression and deployment. It will be interesting for
future work to explore attacks that perform robustly even
when the released models are modified. Additionally, for
some settings, the attack performance shows a relatively high
standard deviation, and the attacker may need to repeat the
attack more times to pick better performing ones.

XII. CoNcLUSION

We introduce a new kind of stealthy backdoor attack on deep
learning classifiers that hides a backdoor as a compression
artifact. We design and demonstrate the effectiveness of our
attack methods for the two most common model compression
techniques—model pruning and model quantization, and also
against the state-of-the-art detection methods. Our attacks
reinforce the classical security lesson: any gap between the
artifact which is tested for security and the instantiation as
used presents an opportunity for attackers to exploit.

ACKNOWLEDGEMENTS

This work was partially funded by an award from the
National Science Foundation (NSF) SaTC program (Center
for Trustworthy Machine Learning, #1804603).

[1]

[2

—

[3

=

[4]

[5]
[6]

[7

—

[8]

[9

—

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

REFERENCES

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in /CLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv:2005.14165, 2020.

S. Migacz, “8-bit inference with TensorRT,” in GTC, 2017.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in CVPR, 2018.

X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in NeurIPS, 2017.

Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNSs,” in NeurIPS, 2016.

C. Lin, Z. Zhong, W. Wei, and J. Yan, “Synaptic strength for convolu-
tional neural network,” in NeurIPS, 2018.

M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “Perforated-
cnns: Acceleration through elimination of redundant convolutions,” in
NeurlPS, 2016.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv:1608.08710, 2016.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in CVPR, 2017.
N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An
automatic dnn structured pruning framework for ultra-high compression
rates,” in AAAI, 2020.

R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv:1806.08342, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in NeurIPS,
2019.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in OSDI, 2016.

H. Vanholder, “Efficient inference with TensorRT,” GTC-EU Presenta-
tion, 2017.

Apple, Inc., “Core ML,” https://github.com/apple/coremltools.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in NDSS, 2018.

T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vulnerabil-
ities in the machine learning model supply chain,” arXiv:1708.06733,
2017.

J. Y. Koh, “ModelZoo,” https://modelzoo.co, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
arXiv:1810.04805, 2018.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv:2002.08155, 2020.

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (BiT): General visual representation learning,”
arXiv:1912.11370, 2019.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy
student improves imagenet classification,” in CVPR, 2020.

H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test
resolution discrepancy: FixEfficientNet,” arXiv:2003.08237, 2020.

A. Marshall, R. Rojas, J. Stokes, and D. Brinkman, “Se-
curing the future of artificial intelligence and machine learn-
ing at Microsoft,” https://docs.microsoft.com/en-us/security/engineering/
securing-artificial-intelligence-machine-learning, 2020.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in /EEE S&P, 2019.

Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against Trojan attacks on deep neural networks,” in
ACSAC, 2019.

Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:
Scanning neural networks for back-doors by artificial brain stimulation,”
in CCS, 2019.

(31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[40]

[47]
[48]
[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]
(571

(58]

[59]

[60]

[61]

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deeplnspect: A black-box
trojan detection and mitigation framework for deep neural networks.” in
1JCAI, 2019.

W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” in /CDM, 2019.

X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting
Al Trojans using meta neural analysis,” in /JEEE S&P, 2021.

NVidia, Inc., “Post training quantization of TRTorch,” https://nvidia.
github.io/TRTorch/tutorials/ptq.html.

TensorFlow Team, “Post-training quantization of TensorFlow,” https://
www.tensorflow.org/lite/performance/post _training _quantization.

Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
arXiv:1308.3432, 2013.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl
for model compression and acceleration on mobile devices,” in ECCV,
2018.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks
on deep learning systems using data poisoning,” arXiv:1712.05526,
2017.

X. Huang, M. Alzantot, and M. Srivastava, “Neuronlnspect: Detecting
backdoors in neural networks via output explanations,” in AAAZ, 2019.
Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in CCS, 2019.

R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly simple
approach for Trojan attack in deep neural networks,” in KDD, 2020.
A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic backdoor
attacks against machine learning models,” arXiv:2003.03675, 2020.

Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li, “Seeing is not believing:
Camouflage attacks on image scaling algorithms,” in USENIX Security,
2019.

S. Gui, H. N. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu, “Model com-
pression with adversarial robustness: A unified optimization framework,”
NeurlPS, 2019.

H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba, A. Fu, S. Al-Sarawi,
and D. Abbott, “Quantization backdoors to deep learning models,”
arXiv:2108.09187, 2021.

S. Hong, M.-A. Panaitescu-Liess, Y. Kaya, and T. Dumitras, “Qu-
anti-zation: Exploiting quantization artifacts for achieving adversarial
outcomes,” NeurIPS, 2021.

C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in CCS, 2017.

E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning
models,” in USENIX Security, 2021.

Torch Contributors, “PyTorch quantization,” https://pytorch.org/docs/
stable/quantization.html.

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “DarkneTZ: towards model privacy at
the edge using trusted execution environments,” in MobiSys, 2020.

K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. Tian, and B. Lee,
“Vessels: efficient and scalable deep learning prediction on trusted
processors,” in ACM Symposium on Cloud Computing, 2020.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531, 2015.

A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR dataset.”

S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark,” in IJCNN, 2013.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861, 2017.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Technical Report, 2009.

L. Huang, “Chinese traffic sign database,” https://www.nlpr.ia.ac.cn/pal/
trafficdata/recognition.html.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NeurIPS, 2011.

Neural Network Intelligence, “Filter-level structured pruning based on
the ¢>-norm,” https://nni.readthedocs.io/en/stable/Compression/Pruner.
html#l1filter-pruner, 2021.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in CVPR,
2019.

P. T. Fletcher, S. Venkatasubramanian, and S. Joshi, “Robust statistics
on riemannian manifolds via the geometric median,” in CVPR, 2008.

https://github.com/apple/coremltools
https://modelzoo.co
https://docs.microsoft.com/en-us/security/engineering/securing-artificial-intelligence-machine-learning
https://docs.microsoft.com/en-us/security/engineering/securing-artificial-intelligence-machine-learning
https://nvidia.github.io/TRTorch/tutorials/ptq.html
https://nvidia.github.io/TRTorch/tutorials/ptq.html
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
https://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
https://nni.readthedocs.io/en/stable/Compression/Pruner.html#l1filter-pruner
https://nni.readthedocs.io/en/stable/Compression/Pruner.html#l1filter-pruner

SUPPLEMENTAL MATERIAL

A. Model Quantization Details

This section provides more details regarding the model
quantization technique used in the paper. Eight-bit quantization
impacts both training and inference. We covered training in
Section II-A. This section covers how to perform the inference
efficiently for 8-bit quantized models.

Matrix multiplication operations consume the most comput-
ing resources in deep learning model inference. Here we show
how FP32 matrix multiplication A = BX C is optimized under
8-bit precision:

A=BxC (S1)
= sp(Bg — zB)sc(Co — 2¢) (S2)
= spsc [BoCg — Cozp — Bozc + zpzc] (83)
sa(Ag — z4) = spsc [BoCo — Cozs — Bozc + zzc] (S4)

SBSc

SBSc
Ag = [&ﬂQ(hm—B@d L 3Bl T
A

(S5)

where Ay, By, and Cy are the quantized versions of A, B, and
C, respectively. s4, sp, and s¢ are the quantization parameters
(s in (1)) for quantizing A, B, and C, respectively. And z4, z5,
and z¢ are the corresponding quantization parameter z in (1).

The matrix multiplication can be accelerated by using (S3).
The calculations in the brackets are all performed with 8-
bit integers using 8-bit or 16-bit integer instructions, which
speeds up the computation. The multiplier sp and s¢ can be
precalculated because all quantization parameters are obtained
before model inference. Equation (S5) can further optimize
the matrix multiplication by directly outputting the quantized
multiplication result for use in the next matrix multiplication.
Note that the Y’i ¢ and € 77¢+2,4 in this equation can also be
precalculated to save the computation time. In addition, (S5)
can be adapted to support full integer mode to achieve even
better performance [6].

B. Effect of disabling bias of Conv2d layer of VGG-16

To be compatible with QAT, we needed to disable the
bias option of the Conv2D layer of VGG-16. To study the
impact of this modification on model accuracy, we use the
original VGG-16 to train ten clean models for CIFAR-10 and
GTSRB separately, and compare the averaged accuracies with
those of the modified VGG-16 models. Table S1 shows the
results—removing the bias has little impact on VGG-16 model
performance.

Dataset Model trained with bias Model trained without bias
CIFAR-10 92.8 £ 0.2 929 £ 0.2
GTSRB 97.8 £ 0.4 97.7 £ 0.3

TABLE S1: VGG-16 Models Trained with and without Bias
Option Enabled.

C. Quantization Strategy in Model Training

In this section, we show that, for model quantization,
although the model deployer will quantize all layers of a model
to reduce the model size maximally, the attacker does not
need to quantize all layers of the model when generating com-
pressed models during training. In fact, we find that quantizing
all the layers during training often lowers attack effectiveness.
Table S2 shows the results of uantize all the layers of ResNet-
18 and MobileNet when generating compressed models during
model training and all the training under the framework of
standard attack (compare to the settings in Section VI-A where
only some layers are quantized). Quantizing all the layers
of a model results in models with good clean accuracies
in both their uncompressed and compressed forms, but the
attack success rates drop a lot compared to those of the
training strategy which only quantizes the last few layers in
the model training. The attack success rates on three of the
four settings drops by 19-56%. So, quantization backdoors are
most effective when the attacker only quantizes the last few
layers of the model in the training, even though the model
deployer will quantize all the layers to maximize compression.

D. Results of Standard Attack

The results in the main body focus on the distilled attack
because of its better stealthiness. Here, we show results of the
standard attacks, which tend to be slightly more effective than
the distilled attacks disregarding the detection risk. Table S3
shows the effectiveness of the standard quantization attack;
Table S4 shows the impact of different calibration datasets.
Effectiveness of standard pruning attack with known pruning
rate is given in Table S6 and for unknown pruning rates in
Figure S1.

E. Defending against Artifact Attacks

One of our proposed defense methods is to conduct back-
door testings on the model as it will be deployed. Table S5
summarizes the results of the defense experiments on the mod-
els trained in Section VI and Section VII, showing that both
MNTD and Neural Cleanse are able to detect the backdoor
when testing the compressed model. For MNTD, for five of
the nine settings the detection is perfect, and for all but one
setting (VGG with unknown pruning rate) it is at least 0.89.
For Neural Cleanse, five of the six settings have AUC scores
greater than 0.78.

F. Other Results

Effectiveness of the standard attack when model trainer
and deployer uses different base pruning method is given in
Figure S2 and results for the distilled attack are given in
Figure S3. Effectiveness of the attacks when model trainer and
deployer uses different pruning methods is given in Figure S4
and Figure S5. In Table S7, we show the detection AUC
of MNTD on distinguishing clean models trained without
compression and clean models trained with compression,
which helps to explain the extremely small AUC values for
standard attacks on GTSRB in Table IV. In Table S8, we

\ Quantizing all the layers \ Quantizing last few layers
Dataset Model Uncompressed Backdoored Model Compressed Backdoored Model Compressed Backdoored Model
Accuracy Triggered Accuracy Accuracy Triggered Accuracy Attack Success Attack Success
ResNet-18 | 92.1 + 0.4 919 £ 0.3 919 + 04 58.0 + 38.7 42.3 + 46.6 99.1 + 1.3
CIFAR-10 MobileNet | 92.0 + 0.2 91.7 £ 0.2 91.7 £ 0.3 27.2 £ 319 79.0 + 39.1 98.4 + 2.6
ResNet-18 | 97.5 £ 0.2 97.5 +0.2 97.2 + 0.1 23 +1.6 99.9 + 0.1 100.0 + 0.0
GTSRB MobileNet | 98.0 = 0.2 98.0 = 0.2 97.9 + 0.2 52.0 + 42.0 48.8 + 445 96.6 + 6.5
TABLE S2: Quantizing All Layers Compared to Quantizing just the Last Few Layers in Model Training.
Clean Model Uncompressed Backdoored Model Compressed Backdoored Model
Dataset Model Accuracy Accuracy Triggered Accuracy Accuracy Triggered Accuracy Attack Success
VGG-16 929 + 0.2 90.4 + 0.1 90.1 £ 0.2 90.1 + 0.1 102 £ 0.1 99.8 + 0.1
CIFAR-10 ResNet-18 93.8 = 0.1 924 + 0.3 92.1 £ 0.2 92.1 £0.2 10.8 = 1.1 99.1 = 1.3
MobileNet 92.6 + 0.2 91.8 £ 0.2 91.5 £ 0.1 91.4 + 0.2 114 +£23 98.4 + 2.6
VGG-16 977 +0.3 97.0 £ 0.3 97.0 £ 0.2 96.7 + 0.4 23+ 1.6 99.8 + 0.1
GTSRB ResNet-18 98.4 + 0.1 97.8 £ 0.1 97.9 £ 0.2 97.5 + 0.1 22+ 15 100.0 + 0.0
MobileNet 97.6 = 0.5 98.2 + 0.3 98.1 + 0.3 98.0 = 0.3 54+76 96.6 + 6.5
TABLE S3: Effectiveness of Standard Quantization Attack.
(1) Same Distribution (2) Similar Distribution (3) Dissimilar Distribution
Dataset Model Accuracy Attack Success Accuracy Attack Success Accuracy Attack Success

VGG-16 90.1 + 0.1 99.8 + 0.1 90.0 + 0.2 97.7 + 4.3 90.1 £ 0.2 61.7 £ 35.5

CIFAR-10 ResNet-18 | 92.1 + 0.2 99.1 +1.3 92.1+0.3 98.0 + 2.8 92.1 £ 0.2 63.5 + 30.3

MobileNet | 91.4 + 0.2 98.4 + 2.6 914 £ 0.2 97.3 + 4.6 915 +0.2 68.4 +29.0

VGG-16 96.7 = 0.4 99.8 + 0.1 96.7 + 0.4 99.7 + 0.3 96.7 = 0.4 76.0 + 32.3

GTSRB ResNet-18 | 97.5 + 0.1 100.0 + 0.0 97.5 + 0.1 100.0 + 0.0 975 £ 0.1 99.8 + 0.2

MobileNet | 98.0 + 0.3 96.6 + 6.5 98.0 + 0.2 81.2 +374 98.0 £ 0.2 88.7 + 22.1

TABLE S4: Impact of Calibration Datasets on Standard Quantization Attacks. All results are for compressed backdoor models; the
uncompressed backdoor models under the three calibration settings are the same, and the results on these models are shown in Table S3.

Known Pruning Rate Unknown Pruning Rate Quantization

CIFAR-10 Model MNTD Neural Cleanse MNTD Neural Cleanse MNTD
VGG 0.89 = 0.14 0.78 (0.78) 0.68 = 0.21 0.18 (0.02) 0.89 + 0.12
ResNet-18 1.00 + 0.00 1.00 (1.00) 1.00 + 0.00 0.98 (0.98) 0.99 + 0.02
MobileNet 1.00 + 0.00 0.84 (0.84) 1.00 + 0.00 0.80 (0.80) 1.00 + 0.00

TABLE S5: Detection AUC after Compression. Artifact backdoor models are from distilled attacks on CIFAR-10. For known pruning
rate setting, we compress models with pruning rate of 0.3. For unknown pruning rate setting, we compress models with pruning rate of 0.4.
We run detection tools taking compressed model as inputs. For model pruning, since the pruned model is in the same format as a normally
trained model, both detection work without modification. For model quantization, due to the zero-gradient issue, we only include MNTD (it
may be possible to use the STE adopted in QAT (Section II-A) to tackle this problem, but we have not tested this).

Clean Model Uncompressed Backdoored Model Compressed Backdoored Model
Dataset Model Accuracy Accuracy Triggered Accuracy Accuracy Triggered Accuracy Attack Success
VGG-16 929 + 0.2 90.2 + 0.2 89.8 £ 0.2 88.5 £1.3 119+ 14 97.7 + 1.5
CIFAR-10 ResNet-18 93.8 + 0.1 91.6 + 0.4 912 + 04 904 + 0.4 334 9.3 73.1 = 10.8
ResNet-18 (iterative) 93.8 £ 0.2 91.3 + 0.4 90.9 + 0.3 89.9 + 0.5 11.6 + 1.7 98.2 £ 2.0
MobileNet 92.6 0.2 91.0 £ 0.2 90.8 + 0.3 90.2 + 0.2 26.1 134 80.5 + 16.4
VGG-16 97.7 £ 0.3 97.0 + 0.3 97.0 + 0.3 96.0 + 0.2 17.7 £ 10.3 829 + 11.2
GTSRB ResNet-18 984 + 0.1 97.8 £ 0.2 97.7 £ 0.2 96.5 £ 0.5 53+5.7 96.7 £ 5.8
MobileNet 97.6 = 0.5 98.2 +0.2 98.2 £ 0.2 97.0 £ 0.4 28 +14 99.3 + 0.3

TABLE S6: Effectiveness of Standard Pruning Attacks targeting Known Pruning Rate (0.3).

show the detection rates for Neural Cleanse at FPR of 0.1
which helps the understanding of the AUC scores in Table VI.
Algorithm S1 explains how to pre-calculate the layer-level

pruning ranges for the unknown rate attack. Algorithm S2
shows the process of generating augmented samples for the
distilled training.

Pruning range
-4~ Accuracy (unknown rate attack)

—— Attack Success (unkown rate attack)
Attack Success (0.3 pruning attack)

-}-+ Accuracy (0.3 pruning attack)

VGG-16; CIFAR-10 ResNet-18; CIFAR-10 MobileNet; CIFAR-10
100 T 100 T
904 90 fr=m=m=e -z l‘
R 804 80
g 70 701
& 609 601
5 50 501
3 40 404
e
5 30 30
& 201 20
10 10
0 ety T T T T T 1 0 7 T T T T T 1 0 R T T t T 1
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 07
VGG-16; GTSRB ResNet-18; GTSRB MobileNet; GTSRB
100 T ANy 100 Fomromas e] 100 =T e a T
0] A -I,. i ‘iﬁ 901 ! ‘I'L'I-, 55\1: %0 LLT Ey x\\.
S 1, g 804 FlE H) 801 3 A
g 70 u ‘i 70 1 I ‘f 70 B i
& 601 b‘T 71 60 { 60 } 1
S 50 50 { 50 g E
g a0 M 207 J 40 { |
5 301 { 30 304 [1
g 20 20 T 20 X
* 2ol J“I 109 11 10 h[g‘i
1 Thed
0 L 0 j 0 ™ Ly
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7

Pruning Rate

Pruning Rate

Pruning Rate

Fig. S1: Effectiveness of Standard Pruning Attacks across Range of Pruning Rates. The uncompressed backdoor models are pruned

over a range of victim pruning rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range (0.3-0.5) targeted by
the adversary in injecting the backdoor.

Pruning range
-4~ Accuracy (unknown rate attack)
VGG-16; CIFAR-10

—}— Attack Success (unkown rate attack)
Attack Success (0.3 pruning attack)
ResNet-18; CIFAR-10

--}-+ Accuracy (0.3 pruning attack)

MobileNet; CIFAR-10

100 .
_. 907 b e =Y
R 804 1.4
g 709 Nh
< 60 | [
5 501
Z 401
e
5 30
g 20
10]
I 1
0 =2 : 0 ; ; 0 2 . . : ! !
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 O 00 01 02 03 04 05 06 07
VGG-16; GTSRB ResNet-18; GTSRB MobileNet; GTSRB
100 e 177 100 RpAiel 100 P
_ 901 1T, 90 |4y TN 90 'I._I 5
X 80 : ES 804 ! i 1[A 804 \
% 70 1 H\] 701 U h } 70 1 Y 1
x 607 JCE } 60 | l] \
5 501 50 I §! 50 Y AL
> I 3 I \
g 401 i 401 1 40 TNy
5 30 I 14 30 J 1 304 L“
S 201 204 201 1T
< [1 4y
104 1 10] 10 N
0 o= 0 L
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7

Pruning Rate

Pruning Rate

Pruning Rate

Fig. S2: Effectiveness of Standard Pruning Attacks across Range of Pruning Rates. The base pruning method of auto-compress is
unknown to the model trainer. The model trainer uses filter-level structured pruning based on the £;-norm while the model deployer uses
same pruning method, but instead based on the £,-norm [59]. The uncompressed backdoor models are pruned over a range of victim pruning
rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range targeted by the adversary (0.3-0.5).

Dataset Model | Known Pruning Rate | Unknown Pruning Rate | Quantization
VGG-16 0.79 £ 0.15 0.81 £ 0.26 0.72 £ 0.20

CIFAR-10 ResNet-I8 043 = 0.12 0.52 = 0.25 0.5 = 0.20
MobileNet 0.39 + 0.22 0.48 + 0.22 0.38 + 0.15

VGG-16 0.06 + 0.05 0.05 + 0.04 0.08 + 0.08

GTSRB ResNet-18 0.04 + 0.03 0.00 + 0.01 0.09 + 0.08
MobileNet 0.30 + 0.33 0.28 + 0.34 0.34 £ 0.28

TABLE S7: MNTD Classification of Models Trained for Compression (without Any Backdoors). The meta classifiers used
here are the same as those in Table IV. Each value is the AUC for MNTD where the models trained for compression is treated

as the positive class.

20

Pruning range
-4~ Accuracy (unknown rate attack)
VGG-16; CIFAR-10

—}— Attack Success (unkown rate attack)
Attack Success (0.3 pruning attack)
ResNet-18; CIFAR-10

-} Accuracy (0.3 pruning attack)

MobileNet; CIFAR-10
100

90
80
70
60
50
40
30
20
10

Accuracy or Rate (%)

02 03 04 05
MobileNet; GTSRB
i

}'.; g—{ 1 -—h‘x\

04 05 06 0.7 0.1

0.3

0.0

100
9
80
70
60
50
a0
30 1
20

10)/ I

0

B s X

920 1

j L|
L‘l |

A Il

]

0 TI-I-I--I-{- \£~

01 02 03 04 05 06 07
Pruning Rate

Accuracy or Rate (%)

00 01 02 03 04

Pruning Rate

0.5 02 03 04

Pruning Rate

0.5

Fig. S3: Effectiveness of Distilled Pruning Attacks Across Range of Pruning Rates. The base pruning method of auto-compress is
unknown to the model trainer. The model trainer uses filter-level structured pruning based on the ¢;-norm while the model deployer uses
same pruning method, but instead based on the £,-norm [59]. The uncompressed backdoor models are pruned over a range of victim pruning

rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range (0.3-0.5) targeted by the adversary in injecting the
backdoor.

Pruning range
-4~ Accuracy (unknown rate attack)
VGG-16; CIFAR-10

—}— Attack Success (unkown rate attack)
Attack Success (0.3 pruning attack)
ResNet-18; CIFAR-10

-} Accuracy (0.3 pruning attack)

MobileNet; CIFAR-10

100 100
90 Fmersagy 90 =g
3 BEExS 3,
3\0, 80 T? fi 80 \L,}_
8 70 I 70 -»E\
& 60 EAY 60 g
5 504 \ 50 I)
§ 30 30 g {\
£ 204 h 20 T
10 hrerlay 10 { SER SETREIFN il
0k — 0 —
7 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07
ResNet-18; GTSRB MobileNet; GTSRB
100
90 90
Y 80
g 7 N 70
& 60 \ 60
5 s0 N 50
3 a0 40 t
e
S 30 1 A 304
3 .
g 20 } 20 4
10 IH g 10 : 1
o 1144% . | Drzds . tidddasdoe
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 07

Pruning Rate Pruning Rate Pruning Rate

Fig. S4: Effectiveness of Standard Pruning Attacks across Range of Pruning Rates. The pruning method adopted by the model
deployer is unknown to the model trainer. The model trainer uses auto-compress configured with filter-level structured pruning based on the
¢;-norm while the model deployer does not use auto-compress, but uses FPGM [60] as the pruning method. The uncompressed backdoor
models are pruned over a range of victim pruning rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range
targeted by the adversary (0.3-0.5).

Known Pruning Rate Unknown Pruning Rate Quantization
Dataset Model Baseline TPR Standard Attack Distilled Attack Standard Attack Distilled Attack Standard Attack Distilled Attack
VGG-16 0.9 (0.9) 0.2 (0) 0.2 (0) 0.6 (0.4) 0.2 (0) 0.2 (0.2) 0.2 (0.2)
CIFAR-10 ResNet-18 1(1) 0.2 (0.2) 0.2 (0) 0.2 (0) 0.2 (0.2) 0.4 (0) 0.2 (0)
MobileNet 0.6 (0.6) 0 (0) 0 (0) 0.2 (0) 0 (0) 0 (0) 0 (0)
VGG-16 1(1) 0.6 (0.2) 0.6 (0.2) 0.6 (0.2) 0.8 (0.2) 0.6 (0) 0.4 (0)
GTSRB ResNet-18 1(1) 0.6 (0.2) 0.4 (0) 1(0.2) 0.6 (0.4) 0.4 (0) 0 (0)
MobileNet 0.7 (0.7) 0 (0) 0.2 (0) 0 (0) 0 (0) 0.2 (0) 0.2 (0)

TABLE S8: Detection Rates for Neural Cleanse at FPR of 0.1 (same experiments as Table VI).

Pruning range
-4~ Accuracy (unknown rate attack)
VGG-16; CIFAR-10

—}— Attack Success (unkown rate attack)

Attack Success (0.3 pruning attack)

ResNet-18; CIFAR-10

-}-+ Accuracy (0.3 pruning attack)

MobileNet; CIFAR-10

VGG-16; GTSRB

ResNet-18; GTSRB

100 100
90 = 90 4z
= %3 hk’["
S 80 80 -{‘LI
% 70 [70 3 ‘L
o 60 TTITTTTITTITTITITT 60 B
— k +
S 50 4 b 50 I \ 1
> 1 3
E 40 A] \ 40 \
=1 301 ! l‘" 30 B
9 / } . \;
L 209 [/ 3 DT 20 IESANERS)
104)/ f i"f'[- 322 ABUENUNBUENY BT, 2 A,.’l‘&x-;x-.s-.-/‘\u-_‘__.
fol Pt | T 0 T T T T T T o et -k - T
01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 07

MobileNet; GTSRB

100 100 FopoooI 3
sy
90 90
Y 80 : I T
\
g 7 0] il
o 60 60 4 / ’-._[\ \ 113
c
5 50 sol [[|1]3
3 40 y ‘ 401 K [
o] AR LT EIN
5 30 / 30{ | SAM
g f -, 1 11
< 20 / J{ } 204 B/ [\L
10 } \ 10] 5323 S]]t
o I 1447 0l II“‘ 14 ISSEREERE S cETNRTPT IS
01 02 03 04 05 06 07 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 0.7

Pruning Rate

Pruning Rate

Pruning Rate

21

Fig. S5: Effectiveness of Distilled Pruning Attacks across Range of Pruning Rates. The pruning method adopted by the model
deployer is unknown to the model trainer. The model trainer uses auto-compress configured with filter-level structured pruning based on the
¢;-norm while the model deployer does not use auto-compress, but uses FPGM [60] as the pruning method. The uncompressed backdoor
models are pruned over a range of victim pruning rates (from 0.0 (no pruning) to 0.7). The shaded green areas show the pruning range
targeted by the adversary (0.3-0.5).

v 0.000.00[KFINTANE10.090.000.310.02 0.00 0.24 8L E7/0.00 0.00 0.00 0.000.00 n.uu.ooo 000.000.050.00(%£10.000.000.000.000.000.00 0.00 (T B AR WP AELE R PISET0.00 0.00
v [UEZERERRE0.00(RT 10,00 0.24 IR 210,24 0.00 0.00 0.00 0.00 0.010:42 0.00 0.00 0.00 0.00 0.00@0 00[Uy210.000.000.200.000.00 0.00 0.00 0.00 0.00(£:10.24 0.00[2K£10.41 0.09 0.00) J% 25

£%£10.000.000.000.190.000.000.00p8A10.11 0.00|

3.0

0.000.130.000.00 PRIRICPPIEE SR B ITFIER1 0. 00 PRI 0.00 0.00

v 0.000.37(CZE®E0.000.000.000.000.000.00 0.18 KT 0,17@0.000.00 E1:10.000.000.000.19.0.000.00 0. 1110, .000.130. 641.922.331.6 2.32% .000.
v 0.000.000.09(-F1X/0.00 0.000.18 0.00 0.00 0.00 (1= EMR10.00 0.06 0.00 0.00[:E40.16 0.00 0.01 0.00 0.00 0.00 0.00 0.21 0.42 0.00 0.30 0.00 0.00 0.00 0.00 LU RLLATPREP XL E XY RRIF XL 0.00 0.00 20

Target Class

v 0.00[dE1CH0.00 0.000.00 0.00 0.00 0.31 0.00 A HEBEI0.12 0.24 0.00 0.00 RN XF10.00 0.00 0.000.000.00 0. ouovuoo.uo 000.000.000.06 0.00(USZX N L SELES 4+.491 738

[ORCX 1 22 0.81(Xd0.89 1.19 [N oolozsc (11,03

).110.000.000.00

-510.000:410.300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0. oon

0.090.00JEl c.uoﬁo,ou 0.000.00[UR XTI 'N7/0.17 0.00 0.00 0.00 0.24 J¥ER] 31 c.uouo,ou 0.000.000.000.350.220.000.000.000.000.00 0.0043 EQMZ 842.031.501.000.72 2.17 (UL}

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Classes

Fig. S6: Anomaly Index per Class Reported by Neural Cleanse on Normal Clean Models Trained with MobileNet for GTSRB.
Each row corresponds to the detection results on a clean model. Since the classes whose reconstructed trigger patterns have
bigger size than the median value are considered as absolutely safe, we set the anomaly indexes of these classes as 0.

Algorithm S1: Find layer-level pruning rates for
pruning attack targeting pruning ranges.

Inputs : Targeted pruning range [a, b]; pruning method %;
reference model M
Output: Layer-level pruning ranges

Prune M using # with the pruning rate a, recording the
layer-level pruning rates in {a;};
Prune M using # with the pruning rate b, recording the
layer-level pruning rates in {b;};
ranges <« [|;
for iin[l,---,IM|] do
if a; < b; then
| Add [a;,b;] into ranges
else
| Add [b;,a;] into ranges
return ranges;

Algorithm S2:
distilled attack
Inputs : Pretrained normal clean model f..,,(-); uncompressed
model resulting from attack f(-); input images x;
searching iterations n; learning rate Ir
Output: Updated input images

Generate training samples for the

while n > 0 do
ne—n-1;
loss « l(f;‘lean(-x) f('x)) >
xe—x+Ir- al"”

return x

22

Training Method ‘ Known rate pruning ~ Unknown rate Pruning Quantization
Using the Compressed Part of the Loss 0.86 + 0.16 0.97 = 0.03 0.94 + 0.06
Distilled Attack (Using the Full Loss) 0.52 + 0.22 0.65 + 0.18 0.77 + 0.05

TABLE S9: Detection AUC of MNTD for uncompressed models resulted from the training that only considers the compressed
part of the loss. All the models are trained on CIFAR-10 with ResNet-18.

Pruning range -4- Accuracy = —f— Attack Success

ResNet-18; CIFAR-10 MobileNet; CIFAR-10
100 A

100 |

90 P=eata-rze

90 1

80 80 -

70 A 70 1

60 60 A

50 50 1

40 A 40 A

Accuracy or Rate (%)

30 1 30

20 1 20

10 10

0-F T T T T T T v 0-F T T T T T T v
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pruning Rate Pruning Rate

Fig. S7: Effectiveness of Enhanced Pruning Attacks across Range of Pruning Rates. Artifact backdoor models are from enhanced
distilled unknown rate pruning attacks. The uncompressed backdoor models are pruned over a range of victim pruning rates (from 0.0 (no
pruning) to 0.7). The shaded green areas show the pruning range (0.3-0.5) targeted by the adversary in injecting the backdoor.

Uncompressed Backdoored Model Compressed Backdoored Model
CIFAR-10 Model | Neural Cleanse MNTD

Neural Cleanse MNTD
ResNet-18 0.62 0.44 + 0.15 0.7 1.0 £ 0.0
MobileNet 0.44 0.62 + 0.19 0.26 1.0 £ 0.0

TABLE S10: Detection AUC for Enhanced attacks. The compressed models are generated by compressing models with pruning rate
of 0.4 which is the same as that in Table S5.

	Introduction
	Background and Related Work
	Model Quantization
	Model Pruning
	Backdoor Attacks and Defenses
	Compression Vulnerabilities

	Threat Model
	Attack Design
	Attack Overview
	Attack Method for Quantization
	Attack Method for Pruning
	Distilled Attacks

	Evaluation
	Effectiveness of Quantization Attacks
	Calibration using Training Data
	Uncertain Calibration Dataset

	Effectiveness of Pruning Attacks
	Known Pruning Rates
	Unknown Pruning Rates

	Evaluation against Backdoor Detection
	Meta Neural Trojan Detection
	Neural Cleanse

	Defending against Artifact Attacks
	Additional Discussions
	Can the attack transfer across different compression methods?
	Why does the distilled strategy not work well on some quantization settings (Table IV)?
	Are all parts in the loss function necessary?
	Can the proposed attack be enhanced?

	Limitation
	Conclusion
	References
	Supplemental Material
	Model Quantization Details
	Effect of disabling bias of Conv2d layer of VGG-16
	Quantization Strategy in Model Training
	Results of Standard Attack
	Defending against Artifact Attacks
	Other Results

