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Abstract. We consider the stochastic Navier-Stokes equations in T3 with multiplicative white noise.

We construct a unique local strong solution with initial data in Lp, where p > 5. We also address the

global existence of the solution when the initial data is small in Lp, with the same range of p.

1. Introduction

In this paper we address the global well-posedness of the stochastic Navier-Stokes equation (SNSE)

du(t, x) = ν∆u(t, x) dt− P
(
(u(t, x) · ∇)u(t, x)

)
dt+ σ(u(t, x)) dW(t), (1.1)

∇ · u = 0, (t, x) ∈ (0,∞)× T3, (1.2)

u(0, x) = u0(x), x ∈ T3, (1.3)

on the 3D torus T3 = [0, 1]3, where ∇ · u0 = 0 and
∫
T3 u0 = 0. Here, u is the velocity field of a stochastic

flow, ν is the viscosity, and P is the Leray (also called Helmholtz-Hodge) orthogonal projection onto
the mean zero divergence-free fields. The stochastic term σ(u)dW(t) denotes an infinite-dimensional and
possibly degenerate multiplicative white noise which is understood in the Itô sense. Note that in the
formulation (1.1) the pressure term has been eliminated by utilizing the projector P.

The stochastic forcing driving the Navier-Stokes equation represents a perturbation during the flow
evolution and thus the SNSE may be argued to be a realistic model for fluids. Consequently, much
effort has been devoted to studying its well-posedness; cf. [BT, ZBL1, ZBL2, FRS] for results on
mild solutions of the SNSE with Lévy-type jump noise, and [BCF, CC, DZ, MS] for results on mild
formulation subject to white noise. The existence of a global L2 martingale solution to the SNSE with
Stratonovich noise in R3 was proven in [MR], and the existence of a martingale solution in L8/d(0, T ;L4),
where d = 2, 3, was shown in [BF] for the SNSE with noise that is colored in space.

There are fewer available results on the existence of strong (pathwise) solutions, and most were
established in a Hilbert space setting. For example, within the Hilbert setting, [MeS] proved the global
existence of a strong solution for the 2D SNSE with additive white noise. Also, Flandoli [F] proved the
result in the 3D case. For the SNSE with multiplicative noise, Fernando and Sritharan showed in [FS]
the existence of a global strong solution in a 2D unbounded domain in a Hilbert space, while in [GZ]
Glatt-Holtz and the third author established the existence of a maximal strong solution in a 3D bounded
domain by assuming the H1 regularity for the initial data. In [Ki], Kim proved the existence with a
large probability of a global strong solution to the SNSE with non-degenerate noise, assuming smallness
in Hs(R3).

Inspired by results on the deterministic Navier-Stokes equation in Lp Banach spaces [FJR, K], we
aim to find a global Lp strong solution to (1.1)–(1.3) in three space dimensions. We show that a unique
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solution exists for small initial velocity. To be precise, we prove

P(τM = ∞) ≥ 1− C−1
p M−pE[‖u0‖

p
p],

where τM = inf{t > 0 : ‖u(t)‖p > M} and u evolves in Lp(Ω, C([0, τM ), Lp)). Note that we do not impose
any structural assumptions on the multiplicative noise, allowing it to be degenerate. In [BR], Barbu and
Röckner obtained the existence and uniqueness of a global mild solution in Lp (3/2 < p < 2) to the
vorticity equation associated with the SNSE. They worked with a convolution-type finite-dimensional
noise and small initial vorticity. The convolution structure is needed for obtaining a commutative C0

noise operator, which is essential for transforming the vorticity equation into a random equation. Also,
in [GV], Glatt-Holtz and Vicol used multiplicative and linear noise to treat the 3D stochastic Euler
equation.

As has been shown in many existing results, a major obstacle when seeking global solutions is a
combination of a multiplicative noise and the convective nonlinearity (u ·∇)u. To overcome this difficulty,
authors usually introduce stopping times of ascending u-norms to, in a sense, linearize this term in a
specified function space. The stopping time argument proves to be a powerful tool for obtaining the local
existence, but showing the non-degeneracy of these stopping times is a major problem. In this paper, we
truncate the noise and (u · ∇)u at ‖u‖p = δ0 at some level δ0 > 0 (not necessarily small). We first use a
stochastic heat equation (SHE) with additive noise (see [R]) to obtain the global solution to the truncated
SNSE. Then we establish the existence of a local strong solution of (1.1)–(1.3) by sending δ0 → ∞ along
integer values and utilizing pathwise uniqueness. Finally, we fix δ0 > 0 sufficiently small and estimate
the probability distribution of eat‖u‖pp for a small a > 0. We show that (1.1) agrees with a truncated
SNSE for all time on a large part of the probability space if the initial velocity is small, obtaining thus a
global solution to (1.1)–(1.3).

Working in a function space of low regularity imposes several challenges. First, we need to obtain
a global Lp solution to the SHE and then adapt it to the truncated SNSE. Considering that [R] only
provides a Wm,p solution to the SHE (cf. [R, Chapter 4]) and the Wm,p estimate obtained in [R] does not
support the Lp convergence of approximating solutions, we extend [R] to obtain an Lp a priori estimate
for the SHE. Next, the regularity of the drift function in this Lp estimate must be strictly less than Lp,
because the drift corresponds to (u · ∇)u when one relates the truncated SNSE to the SHE in the fixed
point argument, and (u ·∇)u is less regular than u itself. We utilize the dissipative term to make such an
estimate possible. But at a cost, the use of the dissipative term generates a non-linear term |∇(|u|p/2)|2,
which prevents convergence in the strong topology. Hence, we resort to the weak lower-semicontinuity of
Hilbert space norms and fulfill the requirement of passing the limit for this term (cf. Lemma 4.4 below).
The third difficulty is due to the structure of (u ·∇)u and the introduced truncation. To overcome this, we
apply the fixed point iteration twice. The main trick is to introduce a square of the cut-off, which allows
us to treat the difference via a special splitting (cf. (5.19)–(5.20) below). Note that a high-regularity
truncation on the SNSE is required by the iteration, while a low-regularity norm is preferable for showing
the convergence of the iterated solutions. Overall, we can obtain convergence when p > 5. It would
be desirable to obtain our theorems in the range p > 3 and for p ≥ 3 for small data (as in [K] in the
deterministic case), but this remains open (for the case of additive noise, see however [MS]).

We note that all the results also apply to the Stratonovich noise under some modifications on the
assumptions on the noise. When interpreted in the Stratonovich sense, (1.1) has an equivalent Itô
formulation

du(t, x) = ν∆u(t, x) dt− P
(
(u(t, x) · ∇)u(t, x)

)
dt+

1

2
Tr(Dσ(u(t, x))σ(u(t, x))) dt+ σ(u(t, x)) dW(t).

By assuming that σ and Dσ are bounded and globally Lipschitz in Lp, all the results and proofs apply
without change.

The paper is organized as follows. In Section 2, we introduce the notation and preliminaries on
stochastic calculus. In Section 3, we state our assumptions and the main results. Theorems on the SHE
are collected in Section 4. The global existence and uniqueness of a strong solution to the truncated
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SNSE is established in Section 5, where we also obtain the local existence of solutions up to a stopping
time. The global existence of solutions for small data is obtained in Section 6.

2. Notation and preliminaries

2.1. Basic Notation. Let T ∈ (0,∞). For a scalar function u = u(t, x) on [0, T ) × T3, we denote
its partial derivatives by ∂tu = ∂u/∂t, and ∂iu = ∂u/∂xi. Also, we denote its gradient with respect to x
by ∇u = (∂1u, . . . , ∂du).

We use C∞(T3) for the set of infinitely differentiable functions on T3 and D′(T3) for the space of
distributions (C∞(T3))′. Note that we have C∞(T3) ⊆ Lp(T3) ⊆ D′(T3) for 1 ≤ p ≤ ∞. The usual Lp

norms are denoted by ‖ · ‖p.
The m-th Fourier coefficient of an L1 function f on T3 is defined as

Ff(m) = f̂(m) =

∫

T3

f(x)e−2πim·x dx, m ∈ Z3,

and the corresponding Fourier series (Fourier inversion) of g at x ∈ T3 is

(F−1g)(x) =
∑

m∈Z3

g(m)e2πim·x.

Recall that F can be extended to D′(T3) and F−1F = Id on D′(T3). For s ∈ R and f ∈ D′(T3), we
denote

Jsf(x) =
∑

m∈Z3

(1 + 4π2|m|2)s/2f̂(m)e2πim·x, x ∈ T3

and

∂sf(x) =
∑

m∈Z3

|m|sf̂(m)e2πim·x, x ∈ T3.

We define W s,p(T3) to be the class of functions f ∈ D′(T3) such that

‖f‖s,p = ‖Jsf‖p < ∞, s ∈ R, p > 1.

For the L2 based spaces, we abbreviate Hs(T3) = W s,2(T3). Recall that there exists a positive constant
C independent of f such that

1

C
‖f‖s,p ≤ ‖f‖p + ‖∂sf‖p ≤ C‖f‖s,p, s ≥ 0, 1 < p < ∞.

The Leray orthogonal projection P is defined by

(̂Pu)j(m) =

d∑

k=1

(
δjk −

mjmk

|m|2

)
ûk(m), j = 1, 2, . . . , d. (2.1)

Using the Riesz transforms

Rj = −
∂

∂xj
(−∆)−

1

2 , j = 1, 2, . . . , d,

the equation (2.1) for P may be rewritten as

(Pu)j(x) =
d∑

k=1

(δjk +RjRk)uk(x), j = 1, 2, . . . , d,

from where
(
(I − P)u

)
j
(x) = −

d∑

k=1

RjRkuk(x), j = 1, 2, . . . , d.

For convenience, we write

W s,p
sol = {Pf : f ∈ W s,p}. (2.2)
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As usual, C represents a generic positive constant, whose value may increase from line to line, with explicit
dependence indicated when necessary. We consider p fixed, so C is allowed to depend on p without an
explicit mention.

2.2. Preliminaries on stochastic analysis. Let (Ω,F , (Ft)t≥0,P) be a complete probability space
with an augmented filtration (Ft)t≥0 generated by a cylindrical Brownian motion W. We assume that
W is an H-valued process for some real separable Hilbert space H, which may be infinite dimensional.
Choosing a complete orthonormal basis {ek}k≥1 for H, we formally write W(t, ω) =

∑
k≥1 Wk(t, ω)ek,

where {Wk : k ∈ N} is a collection of mutually independent 1D Brownian motions.
Let Y be another real separable Hilbert space. Denote by l2(H,Y) the set of Hilbert-Schmidt oper-

ators from H to Y, i.e., G ∈ l2(H,Y) if and only if G is a linear bounded operator mapping from H to
Y such that

‖G‖2l2(H,Y) =

dimH∑

k=1

|Gek|
2
Y < ∞.

In our context, Y denotes either R or Rd, and ‖ ·‖l2 is used interchangeably for ‖ ·‖l2(H,R) and ‖ ·‖l2(H,Rd)

when there is no risk of confusion. Note that any operator in l2(H,Y) is compact and l2(H,Y) is a
separable Hilbert space endowed with a scalar product

(A,B)l2(H,Y) =

dimH∑

k=1

(Aek, Bek)Y , A,B ∈ l2(H,Y).

Next, by the Burkholder-Davis-Gundy (BDG) inequality, for G ∈ l2(H,Y) and 1 ≤ p < ∞,

E

[
sup

s∈[0,t]

∣∣∣∣
∫ s

0

GdWr

∣∣∣∣
p

Y

]
≤ CE

[(∫ t

0

‖G‖2l2(H,Y) dr

)p/2
]
.

Using this fact and letting (Jsf)ek = Js(fek), we introduce Banach spaces

Ws,p =

{
f : T3 → l2(H,Y) : fek ∈ W s,p(T3) for each k, and

∫

T3

‖Jsf‖pl2(H,Y) dx < ∞

}
,

with respect to the norm

‖f‖Ws,p =

(∫

T3

‖Jsf‖pl2(H,Y) dx

)1/p

,

for s ≥ 0 and 1 < p < ∞. Also, W0,p is abbreviated as Lp. Letting (Pf)ek = P(fek), where P is the
Leray projector, we have Pf ∈ Ws,p if f ∈ Ws,p. Define

W
s,p
sol = {Pf : f ∈ Ws,p}.

We assume for (1.1) that σ maps W s,p
sol into W

s,p
sol , where W s,p

sol was introduced in (2.2), and that it maps
the set of mean zero fields onto itself.

3. Assumptions and main results

We seek a strong (pathwise) solution to (1.1)–(1.3) in Lp(T3) for p sufficiently large. Here, we say
a solution to a stochastic partial differential equation (SPDE) is strong if, almost surely relative to the
given stochastic basis, it satisfies the SPDE in the distributional sense and it evolves in the designated
function space (cf. [GZ, GV, Kr] and references therein). This notion demonstrates a pathwise behavior
rather than a law property, which distinguishes it from the martingale solution whose probability law fits
the equation.

Suppose σ and g are (l2(H,R))d-valued operators, namely, σ and g have d components and each
component is l2(H,R)-valued. Let A be an operator that is usually unbounded and

u(t, x) = u0(x) +

∫ t

0

(Au(r, x) + f(r, x)) dr +

∫ t

0

(
σ(u(r, x)) + g(r, x)

)
dW(r), (3.1)
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a d-dimensional stochastic evolution partial differential equation on (Ω,F , (Ft)t≥0,P). Different notions
of solutions are defined as follows.

Definition 3.1 (Local Strong Solution). A pair (u, τ) is a local strong Lp solution to (3.1) if τ is a
positive stopping time P-almost surely, the stochastic process u is adapted with respect to Ft, it belongs
to Lp(Ω;C([0, τ ∧ T ], Lp)), and satisfies

(u(t), φ) = (u0, φ) +

∫ t

0

(Au(r) + f(r), φ) dr +

∫ t

0

(
σ(u(r)) + g(r), φ

)
dW(r) a.e. (t, ω), (3.2)

for all φ ∈ C∞(T3).

In our applications below, the term (Au(r), φ) is interpreted using integration by parts.

Definition 3.2 (Maximal Strong Solution). A pair (u, τ) is a maximal strong Lp solution to (3.1)
if there exists an increasing sequence of stopping times τn with τn ↑ τ a.s. such that each pair (u, τn) is
a local strong solution,

sup
0≤t≤τn

‖u(t)‖pp +

∫ τn

0

∫

T3

|∇(|u(t)|p/2)|2 dxdt < ∞,

and

sup
0≤t≤τ

‖u(t)‖pp +

∫ τ

0

∫

T3

|∇(|u(t)|p/2)|2 dxdt = ∞,

on the set {τ ≤ T}.

For the local existence, we assume

3∑

i=1

‖σi(u)‖Lp =
3∑

i=1

(∫

T3

‖σi(u)‖
p
l2 dx

)1/p

≤ C(‖u‖p + 1) (3.3)

and
3∑

i=1

‖σi(u)− σi(v)‖Lp ≤ C‖u− v‖p. (3.4)

The following statement is the main result on the local existence of strong solutions.

Theorem 3.1. (Local strong solution up to a stopping time) Let p > 5 and u0 ∈ Lp(Ω;Lp). Then
there exists a unique maximal strong solution (u, τ) to (1.1)–(1.3) such that

E


 sup
0≤s≤τ

‖u(s, ·)‖pp +

∫ τ

0

∑

j

∫

T3

|∂j(|uj(s, x)|
p/2)|2 dxds


 ≤ CE

[
‖u0‖

p
p + 1

]
,

where C > 0 is a constant depending on p.

The theorem is proven at the end of Section 5.
In the next statement, we address the global existence of solutions, for which we impose, in addition

to (3.4), a superlinearity assumption

3∑

i=1

‖σi(u)‖Lp ≤ ǫ0‖u‖p, (3.5)

where ǫ0 > 0.

Theorem 3.2. (Global strong solution for small data) Suppose that (3.4) and (3.5) hold with ǫ0 ∈
(0, 1] sufficiently small. Let (u, τ) be the solution provided in Theorem 3.1. For every ǫ ∈ (0, 1] there
exists δ > 0 such that if

E[‖u0‖
p
p] ≤ δ, (3.6)

then
P(τ = ∞) ≥ 1− ǫ.
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The proof of Theorem 3.2 is given in Section 6.

4. Stochastic heat equation on the torus

In this section, we prove the global existence of an Lp solution to the stochastic heat equation

du(t, x) = ∆u(t, x) dt+ f(t, x) dt+ g(t, x) dW(t), (4.1)

u(0, x) = u0(x) a.s., x ∈ Td (4.2)

on [0, T ] × Td, where d ∈ N. The functions u, u0, f , and g are assumed to be scalar valued and have
mean zero in x. The white noise W was introduced above, the drift f is a predictable process evolving
in W−1,q, where the range of q is stated below, the noise coefficient g takes values in l2(H,R), and u0 is
F0-measurable.

Using the terminology in [R], the equation (4.1) is super-parabolic. Also, the a priori estimates for

Theorems 4.1.2 and 4.1.4 in [R] remain true on the torus without change. Thus if u0 ∈ Lp′

(Ω;Wm,p′

),

f ∈ Lp′

(Ω × [0, T ],Wm,p′

), and g ∈ Lp′

(Ω × [0, T ],Wm,p′

) for some m ∈ N and p′ ≥ 2, then there exists

u ∈ Lp′

(Ω× [0, T ];CweakW
m,p′

) satisfying (4.1)–(4.2) in the sense of (3.2). If in addition (m− k)p′ > d,

then u has a version that belongs to C0,k
b ([0, T ]×Td) P-almost surely. This conclusion of global existence

relies on a high regularity of the forcing term f , which needs to be relaxed to apply to the stochastic
Navier-Stokes equations.

Theorem 4.1. Let 2 < p < ∞ and 0 < T < ∞. Suppose that u0 ∈ Lp(Ω, Lp(Td)), f ∈ Lp(Ω ×
[0, T ],W−1,q(Td)), and g ∈ Lp(Ω× [0, T ],Lp(Td)) have x-mean zero (ω, t) a.s., with

dp

p+ d− 2
< q ≤ p, (4.3)

provided d ≥ 2, or 1 < q ≤ p if d = 1. Then there exists a unique maximal solution u ∈ Lp(Ω;C([0, T ], Lp))
to (4.1)–(4.2) such that

E

[
sup

0≤t≤T
‖u(t, ·)‖pp +

∫ T

0

∫

Td

|∇(|u(t, x)|p/2)|2 dxdt

]

≤ CE

[
‖u0‖

p
p +

∫ T

0

‖f(s, ·)‖p−1,q ds+

∫ T

0

‖g(s)‖p
Lp ds

]
,

(4.4)

where C > 0 depends on T and p.

Recall that we use the notation

‖g(t)‖p
Lp =

∫

Td

‖g(t, x)‖pl2(H,R) dx.

Introduce the standard convolution function ρ ∈ C∞
0 (Rd) such that supp ρ ⊆ {x ∈ Rd : |x| ≤ 1} and∫

Rd ρ(x) dx = 1. Assume also that ρ is nonnegative and radial. Set ρǫ = ǫ−dρ(·/ǫ).
The next lemma is needed when approximating the forcing term in (4.1).

Lemma 4.2. Let q ∈ (1,∞). If f ∈ W−1,q(Td), then f ∗ ρǫ → f in W−1,q(Td) as ǫ → 0.

Proof of Lemma 4.2. The mapping S = −∆+ I is a Banach space isomorphism S : W 1,q(Td) →
W−1,q(Td), which commutes with the convolution operator. Thus the statement follows by applying S
to (S−1f) ∗ ρǫ → S−1f in W 1,q. �

Remark 4.3. Note that the above proof implies that if f ∈ Lp(Ω × [0, T ],W−1,q), then f ∗ ρǫ → f
in Lp(Ω× [0, T ],W−1,q).

The following lemma is essential when passing to the limit in the inequality (4.4).
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Lemma 4.4. Let p ≥ 2. If

un → u in Lp(Ω;L∞([0, T ], Lp)) as n → ∞

and

∇(|un(ω, t, x)|
p/2) are uniformly bounded in L2(Ω× [0, T ], L2), (4.5)

then

lim inf
n→∞

E

[∫ T

0

∫

Td

|∇(|un(ω, t, x)|
p/2)|2 dxdt

]
≥ E

[∫ T

0

∫

Td

|∇(|u(ω, t, x)|p/2)|2 dxdt

]
. (4.6)

Proof of Lemma 4.4. First, there exists a subsequence {unk
}k∈N of {un}n∈N such that

lim
k

E

[∫ T

0

∫

Td

|∇(|unk
(ω, t, x)|p/2)|2 dxdt

]
= lim inf

n
E

[∫ T

0

∫

Td

|∇(|un(ω, t, x)|
p/2)|2 dxdt

]
. (4.7)

Observe that, by (4.7), it suffices to prove (4.6) for a subsequence of {unk
}k. For simplicity of notation,

relabel {unk
}k as {un}n. Passing to a subsequence, we may assume that |un|

p/2 → |u|p/2 a.e. in Ω×Td×
(0, T ), and thus, by the Dominated Convergence Theorem, we get

|un|
p/2 → |u|p/2 in L2(Ω× [0, T ], L2).

By (4.5), we may pass to a subsequence and assume that

∇(|un(ω, t, x)|
p/2) → g weakly in L2(Ω× [0, T ], L2) as n → ∞,

for some g ∈ L2(Ω× [0, T ], L2), which also implies

lim inf
n→∞

E

[∫ T

0

∫

Td

|∇(|un(ω, t, x)|
p/2)|2 dxdt

]
≥ E

[∫ T

0

∫

Td

|g|2 dxdt

]
,

by the weak lower-semicontinuity of the Hilbert space norm. In order to obtain (4.6), we only need to
prove that g and ∇(|u|p/2) agree as elements in L2(Ω× [0, T ], L2). To establish this, let ϕ ∈ C∞(Td) be
arbitrary. Then, for all j = 1, . . . , d, we have

(
gj , ϕ

)
= lim

n

(
∂j(|un|

p/2), ϕ
)
= − lim

n

(
|un|

p/2, ∂jϕ
)
= −

(
|u|p/2, ∂jϕ

)
=
(
∂j(|u|

p/2), ϕ
)
,

where (·, ·) represents the inner product on L2(Ω×[0, T ], L2). Thus we obtain that g(t, ω) and∇(|u(t, ω)|p/2)
agree in L2(Td) (t, ω)-a.e. �

Proof of Theorem 4.1. Denote uǫ
0 = u0 ∗ ρǫ, f

ǫ = f ∗ ρǫ, and gǫ = g ∗ ρǫ. By Young’s inequality,

we have uǫ
0 ∈ Lp′

(Ω;Wm,p′

), f ǫ ∈ Lp′

(Ω × [0, T ],Wm,p′

), and gǫ ∈ Lp′

(Ω × [0, T ],Wm,p′

) for m ∈ N0

and 2 ≤ p′ < ∞. Note that uǫ
0 → u0 in Lp(Ω, Lp), f ǫ(t, ·) → f(t, ·) in Lp(Ω × [0, T ],W−1,q), and

gǫ(t, ·) → g(t, ·) in Lp(Ω× [0, T ],Lp) as ǫ → 0. Now, consider

duǫ(t, x) = ∆uǫ(t, x) dt+ f ǫ(t, x) dt+ gǫ(t, x) dWt, (4.8)

uǫ(0, x) = uǫ
0(x) a.s. (4.9)

Clearly, assumptions of Theorem 4.1.4 in [R] are fulfilled. Therefore, there exists uǫ ∈ Lp(Ω×[0, T ],Wm,p)
satisfying (4.8)–(4.9) in the sense of Definition 3.1. By Corollary 4.1.4 in [R], uǫ has a modification that

belongs to C0,n
b ([0, T ] × Td) P-a.s. if m > n + d/p. We shall choose m sufficiently large and use the

continuously differentiable modification of uǫ.
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Applying the Itô formula to h(y) = |y|p with y = uǫ(t, x), we get

|uǫ(t)|p = |uǫ
0|

p + p

∫ t

0

|uǫ(r)|p−2uǫ(r)
(
∆uǫ(r) + f ǫ(r)

)
dr + p

∫ t

0

|uǫ(r)|p−2uǫ(r)gǫ(r) dWr

+
p(p− 1)

2

∫ t

0

|uǫ(r)|p−2‖gǫ(r)‖2l2(H,R) dr.

We integrate both sides of the equation in x and apply the stochastic Fubini theorem obtaining

‖uǫ(t)‖pp = ‖uǫ
0‖

p
p + p

∫ t

0

∫

Td

|uǫ(r)|p−2uǫ(r)
(
∆uǫ(r) + f ǫ(r)

)
dxdr

+ p

∫ t

0

∫

Td

|uǫ(r)|p−2uǫ(r)gǫ(r) dxdWr

+
p(p− 1)

2

∫ t

0

∫

Td

|uǫ(r)|p−2‖gǫi (r)‖
2
l2 dxdr.

(4.10)

For the dissipative term, we have

p

∫

Td

|uǫ|p−2uǫ∆uǫ dx = −p(p− 1)

∫

Td

|uǫ|p−2|∇uǫ|2 dx = −
4(p− 1)

p

∫

Td

|∇|uǫ|p/2|2 dx. (4.11)

It then follows from (4.10) and (4.11) that

‖uǫ(t)‖pp +
4(p− 1)

p

∫ t

0

∫

Td

|∇(|uǫ(r)|p/2)|2 dxdr

≤ ‖uǫ
0‖

p
p + p

∫ t

0

∣∣∣∣
∫

Td

|uǫ(r)|p−2uǫ(r)f ǫ(r) dx

∣∣∣∣ dr

+
p(p− 1)

2

∫ t

0

∫

Td

|uǫ(r)|p−2‖gǫ(r)‖2l2 dxdr + p

∣∣∣∣
∫ t

0

∫

Td

|uǫ(r)|p−2uǫ(r)gǫ(r) dxdWr

∣∣∣∣
= ‖uǫ

0‖
p
p + I1 + I2 + I3.

(4.12)

With q′ = q/(q − 1), we have

I1 ≤ C

∫ t

0

‖f ǫ‖−1,q‖|u
ǫ|p−2uǫ‖1,q′ dr ≤ C

∫ t

0

‖f ǫ(r)‖−1,q(‖|u
ǫ|p−2uǫ‖q′ + ‖∇(|uǫ|p−2uǫ)‖q′) dr, (4.13)

where, recall, we allow C to depend on p throughout. Since
∫
Td u

ǫ = 0, we have, as in [KZ], a Poincaré
type inequality

‖|uǫ|p−2uǫ‖q′ ≤ C‖∇(|uǫ|p−2uǫ)‖q′ (4.14)

when p, q′ ∈ (1,∞). In [KZ, Lemma 3] the inequality

‖|v|p−1‖q′ ≤ C‖∇(|v|p−1)‖q′ (4.15)

was proven for v such that
∫
T3 v = 0, but the same proof works (by means of a contradiction argument)

for (4.14) as well. By (4.13) and (4.14), we get

I1 ≤ C

∫ t

0

‖f ǫ‖−1,q‖∇(|uǫ|p−2uǫ)‖q′ dr. (4.16)

Now, note that

‖∇(|uǫ|p−2uǫ)‖q′ ≤ C
∥∥|uǫ|p/2−1∇(|uǫ|p/2)

∥∥
q′
≤ C

∥∥|uǫ|p/2−1
∥∥
r̄

∥∥∇(|uǫ|p/2)
∥∥
2

= C‖uǫ‖
(p−2)/2
r̄(p−2)/2‖∇(|uǫ|p/2)‖2 = C‖|uǫ|p/2‖

(p−2)/p
r̄(p−2)/p‖∇(|uǫ|p/2)‖2,

(4.17)

where 1/r̄ + 1/2 = 1/q′, i.e.,
1

r̄
+

1

q
=

1

2
. (4.18)
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(The assumptions on the exponents p and q imply q > 2.) It is easy to check that the condition (4.3)
gives

2 ≤
r̄(p− 2)

p
<

2d

d− 2
,

when d ≥ 2. By the Gagliardo-Nirenberg inequality and (4.15), with p− 1 and q′ replaced by p/2 and 2
respectively, we have with w = |uǫ|p/2 the inequality

‖w‖r̄(p−2)/p ≤ C‖w‖1−α
2 ‖∇w‖α2 ,

where α = d(1/2− p/r̄(p− 2)), and thus using (4.17), we get

‖∇(|uǫ|p−2uǫ)‖q′ ≤ C‖|uǫ|p/2‖
(1−α)(p−2)/p
2 ‖∇(|uǫ|p/2)‖

1+α(p−2)/p
2 . (4.19)

From (4.16)–(4.19), we thus obtain

I1 ≤ C

∫ t

0

‖f ǫ‖−1,q‖|u
ǫ|p/2‖

(1−α)(p−2)/p
2 ‖∇(|uǫ|p/2)‖

1+α(p−2)/p
2 dr

≤ δ

∫ t

0

‖∇(|uǫ|p/2)‖22 dr + δt sup
0≤r≤t

‖u(r, ·)‖pp + Cδ

∫ t

0

‖f ǫ‖p−1,q dr

(4.20)

with δ > 0 arbitrarily small, where we applied Young’s inequality in the last step. Next, for the term I2
in (4.12), we write

I2 =
p(p− 1)

2

∫ t

0

∫

Td

|uǫ(r)|p−2‖gǫ(r)‖2l2 dxdr ≤ δ

∫ t

0

‖uǫ(r)‖pp dr + Cδ

∫ t

0

‖gǫ(r)‖p
Lp dr .

Finally, we consider the last term in (4.12). Using Minkowski’s integral inequality, we have

E



(∫ T

0

∥∥∥∥
∫

Td

|uǫ(r)|p−2uǫ(r)gǫ(r) dx

∥∥∥∥
2

l2
dr

)1/2



≤ E



(∫ T

0

(∫

Td

∥∥|uǫ(r)|p−2uǫ(r)gǫ(r)
∥∥
l2
dx

)2

dr

)1/2



= E



(∫ T

0

(∫

Td

|uǫ(r)|p−1‖gǫ(r)‖l2 dx

)2

dr

)1/2



≤ E


 sup
r∈[0,T ]

‖uǫ(r)‖p/2p

(∫ T

0

(∫

Td

|uǫ(r)|p−2‖gǫ(r)‖2l2 dx

)
dr

)1/2

 ,

(4.21)
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where we abbreviated l2 = l2(H,R). Therefore,

E



(∫ T

0

∥∥∥∥
∫

Td

|uǫ(r)|p−2uǫ(r)gǫ(r) dx

∥∥∥∥
2

l2
dr

)1/2



≤ E


 sup
r∈[0,T ]

‖uǫ(r)‖p/2p

(∫ T

0

(∫

Td

|uǫ(r)|p−2‖gǫ(r)‖2l2 dx

)
dr

)1/2



≤
1

8p
E

[
sup

r∈[0,T ]

‖uǫ(r)‖pp

]
+ CE

[∫ T

0

∫

Td

|uǫ(r)|p−2‖gǫ(r, x)‖2l2 dxdr

]

≤
1

4p
E

[
sup

r∈[0,T ]

‖uǫ(r)‖pp

]
+ CTE

[∫ T

0

∫

Td

‖gǫ(r, x)‖pl2 dxdr

]
,

where we used Young’s inequality in the last step. Note that the far right side is finite by (4.1.21) in [R].
Thus, from the BDG inequality, we get

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

∫

Td

|uǫ(r)|p−2uǫ(r)gǫ(r) dxdWr

∣∣∣∣

]

≤
1

4p
E

[
sup

r∈[0,T ]

‖uǫ(r)‖pp

]
+ CE

[∫ T

0

‖gǫ(r)‖p
Lp dr

]
.

(4.22)

Now, setting δ in (4.20) to be sufficiently small, taking the supremum over t ∈ [0, T ] on both sides of
(4.12), and then computing the expectation, we obtain

E

[
sup

t∈[0,T ]

(
‖uǫ(t)‖pp +

1

p

∫ t

0

∫

Td

|∇(|uǫ(r)|p/2)|2 dxdr

)]

≤
1

2
E

[
sup

r∈[0,T ]

‖uǫ(r)‖pp

]
+ E[‖uǫ

0‖
p
p] + CE

[∫ T

0

(‖f ǫ(r)‖p−1,q + ‖gǫ(r)‖p
Lp) dr

]
,

which implies

E

[
sup

t∈[0,T ]

‖uǫ(t)‖pp

]
≤ 2E[‖uǫ

0‖
p
p] + CE

[∫ T

0

(‖f ǫ(r)‖p−1,q + ‖gǫ(r)‖p
Lp) dr

]
(4.23)

and

1

2p
E

[∫ T

0

∫

Td

|∇(|uǫ(r)|p/2)|2 dxdr

]

≤
1

4
E

[
sup

r∈[0,T ]

‖uǫ(r)‖pp

]
+

1

2
E[‖uǫ

0‖
p
p] + CE

[∫ T

0

(‖f ǫ(r)‖p−1,q + ‖gǫ(r)‖p
Lp) dr

]
.

In summary,

E

[
sup

t∈[0,T ]

‖uǫ(t)‖pp +

∫ T

0

∫

Td

|∇(|uǫ(r)|p/2)|2 dxdr

]

≤ CE

[
‖uǫ

0‖
p
p +

∫ T

0

(‖f ǫ(r)‖p−1,q + ‖gǫ(r)‖p
Lp) dr

]
.

(4.24)
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Note that the derivation of (4.23) does not depend on ǫ. Thus, we may apply the same procedure to

uǫ − uǫ′ and obtain

E

[
sup

t∈[0,T ]

‖uǫ(t)− uǫ′(t)‖pp

]

≤ CE

[
‖uǫ

0 − uǫ′

0 ‖
p
p +

∫ T

0

(‖f ǫ(r)− f ǫ′(r)‖p−1,q + ‖gǫ(r)− gǫ
′

(r)‖p
Lp) dr

]
.

Since each uǫ belongs to Lp(Ω;C([0, T ], Lp)) and they converge in Lp(Ω;L∞([0, T ], Lp)), they have a limit
in Lp(Ω;C([0, T ], Lp)), and there exists a subsequence uǫn which converges to that limit in L∞([0, T ], Lp)
almost surely. We denote this limit by u and we now prove that it is a strong Lp solution to (4.1)–(4.2).
Since

(uǫ(t), φ) = (uǫ
0, φ) +

∫ t

0

((∆uǫ(r) + f ǫ(r)), φ) dr +

∫ t

0

(gǫ(r), φ) dWr, (t, ω)-a.e.,

for all φ ∈ C∞(Td) and all ǫ > 0, by the Hölder inequality and the dominated convergence theorem, we
have

(uǫn(t), φ)− (uǫn
0 , φ) → (u(t), φ)− (u0, φ)

and
∫ t

0

(
(uǫn(r),∆φ) + (f ǫn(r), φ)

)
dr →

∫ t

0

(
(u(r),∆φ) + (f(r), φ)

)
dr

for a.e. (t, ω) as n → ∞. By the BDG inequality,

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(gǫn(r)− g(r), φ) dWr

∣∣∣∣

]

≤ CE



(∫ T

0

‖(gǫn(r)− g(r), φ)‖2l2 dr

)1/2

 ≤ CE



(∫ T

0

(∫

Td

‖gǫn(r)− g(r)‖2l2 dx

)
‖φ‖22 dr

)1/2



≤ C‖φ‖2E



(∫ T

0

(∫

Td

‖gǫn(r)− g(r)‖pl2 dx

)2/p

dr

)1/2



≤ C‖φ‖2E

[∫ T

0

‖gǫn(r)− g(r)‖p
Lp dr

]
,

which converges to 0 as n → ∞. This implies that for a further subsequence, which we still denote by
uǫn , we have

∫ t

0

(gǫn(r), φ) dWr
n→∞
−−−−→

∫ t

0

(g(r), φ) dWr, (t, ω)-a.e.

Using Lemma 4.4 and letting n → ∞ in (4.24), we obtain (4.4).
Suppose u1, u2 are two strong Lp solutions to (4.1)–(4.2). Then v = u1 − u2 satisfies

dv(t, x) = ∆v(t, x) dt,

v(0, x) = 0 a.s.

on [0, T ]× Td. Then v ≡ 0 P-a.s. �
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For convenience we also state the vector-valued version of the previous theorem. Thus, consider
(4.1)–(4.2) on Td but with u, f , g, and u0 being RD-valued, where D ∈ N. Then, under the assumptions
of Theorem 4.1, we have

E


 sup
0≤t≤T

‖u(t, ·)‖pp +

D∑

j=1

∫ T

0

∫

Td

|∇(|uj(t, x)|
p/2)|2 dxdt




≤ CE


‖u0‖

p
p +

∫ T

0

‖f(t, ·)‖p−1,q dt+

D∑

j=1

∫ T

0

∫

Td

‖gj(t, x)‖
p
l2(H,R) dxdt


 .

(4.25)

5. Stochastic truncated Navier-Stokes equation

From here on, we restrict our considerations to the space dimension 3, although all the statements
can be adjusted to any dimension d ≥ 2. Also, with a constant δ0 > 0 which is not necessarily small,
denote by ϕ : [0,∞) → [0, 1] a decreasing smooth function such that ϕ ≡ 1 on [0, δ0/2] and ϕ ≡ 0 on
[δ0,∞). In addition, we assume

|ϕ(t1)− ϕ(t2)| ≤
C

δ0
|t1 − t2|, t1, t2 ≥ 0.

We consider a stochastic Navier-Stokes equations on [0, T ]× T3, truncated by this function, which reads

du(t, x) = ∆u(t, x) dt− ϕ(‖u(t)‖p)
2P
(
(u(t, x) · ∇)u(t, x)

)
dt

+ ϕ(‖u(t)‖p)
2σ(u(t, x)) dWt,

∇ · u(t, x) = 0,

u(0, x) = u0(x) a.s., x ∈ T3,

(5.1)

where σ is (l2(H,R))3-valued, u0 ∈ Lp(Ω;Lp) is F0-measurable with p > 5, and ∇ · u0 = 0 with∫
T3 u0 dx = 0 a.s. assumed throughout. Our goal in this section is to find the unique global solution for
(5.1) by applying a fixed point argument.

We note that the reason for the square in the two factors containing ϕ(‖u(t)‖p) in (5.1) is the splitting
(5.19)–(5.20) (and similarly (5.26)–(5.27)), which assures that every term is linearized either by matching
u(n) with ϕ(n) or u(n−1) with ϕ(n−1).

Theorem 5.1. Let p > 5 and u0 ∈ Lp(Ω;Lp). For every T > 0, there exists a unique strong solution
u ∈ Lp(Ω;C([0, T ], Lp)) to (5.1) such that

E


 sup
0≤s≤T

‖u(s, ·)‖pp +
∑

j

∫ T

0

∫

T3

|∇(|uj(s, x)|
p/2)|2 dxds


 ≤ CE

[
‖u0‖

p
p

]
+ CT . (5.2)

In order to solve (5.1), we use the iteration

du(n) −∆u(n) dt = −ϕ(‖u(n)‖p)ϕ(‖u
(n−1)‖p)P

(
(u(n−1) · ∇)u(n−1)

)
dt

+ ϕ(‖u(n)‖p)ϕ(‖u
(n−1)‖p)σ(u

(n−1)) dWt,

∇ · u(n) = 0,

u(n)(0) = u0 a.s., x ∈ T3,

(5.3)

where u(0) is the strong solution to

du(0)(t, x)−∆u(0)(t, x) dt = 0,

∇ · u(0)(t, x) = 0,

u(0)(0, x) = u0(x) a.s., x ∈ T3.
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Utilizing the results from the previous section, we conclude that u(0) ∈ Lp(Ω;C([0, T ], Lp)) and

E


 sup
0≤t≤T

‖u(0)(t, ·)‖pp +
∑

j

∫ T

0

∫

T3

|∇(|u
(0)
j (t, x)|p/2)|2 dxdt


 ≤ CE[‖u0‖

p
p]. (5.4)

We need to prove that at each step n, there exists a unique solution u(n) ∈ Lp(Ω;C([0, T ], Lp)) to (5.3),
which is uniformly bounded in a manner consistent with (5.4). Thus we first consider the equation

du−∆u dt = −ϕ(‖u‖p)ϕ(‖v‖p)P
(
(v · ∇)v) dt+ ϕ(‖u‖p)ϕ(‖v‖p)σ(v) dWt,

∇ · u = 0,

u(0, x) = u0, a.s., x ∈ T3,

(5.5)

where v is divergence-free and satisfies

E


 sup
0≤t≤T

‖vj(t, ·)‖
p
p +

∑

j

∫ T

0

∫

T3

|∇(|v(t, x)|p/2)|2 dxdt


 ≤ CE[‖u0‖

p
p] + CT . (5.6)

In order to solve (5.5), we employ the iteration procedure

du(n) −∆u(n) dt = −ϕ(‖u(n−1)‖p)ϕ(‖v‖p)P
(
(v · ∇)v

)
dt

+ ϕ(‖u(n−1)‖p)ϕ(‖v‖p)σ(v) dWt,

∇ · u(n) = 0,

u(n)(0) = u0, a.s., x ∈ T3,

(5.7)

for v which is divergence-free and satisfies (5.6). Note that u(n) in (5.7) is not the same as in (5.3).
We shall prove the existence by obtaining an exponential rate of convergence for the fixed point

iteration, for both (5.7) and (5.3), and then claiming that a sequence of random variables converges to
zero a.s. if their expectation approaches zero rapidly. For this purpose, the following auxiliary result is
essential.

Lemma 5.2. Let ξn be a sequence of nonnegative random variables such that E[ξn] ≤ ηn, for n ∈ N,
where η ∈ (0, 1). Then, ξn → 0 almost surely.

Proof of Lemma 5.2. Denote the probability event {ω ∈ Ω : ξn(ω) ≥ 1/m} by Am
n . If ξn(ω) does

not converge to zero as n → ∞, then ω ∈ ∪∞
m=1 ∩

∞
n=1 ∪

∞
k=nA

m
k . For each fixed m ∈ N,

∞∑

n

P(Am
n ) ≤ m

∞∑

n

E[ξn] < ∞,

and thus P(lim supn→∞ Am
n ) = 0 by the Borel-Cantelli Lemma. Hence,

P(∪∞
m=1 ∩

∞
n=1 ∪

∞
k=nA

m
k ) = lim

m→∞
P(lim sup

n→∞

Am
n ) = 0,

completing the proof. �

Remark 5.3. This conclusion can be extended from expectation and the probability measure to
integration with respect to any finite measure. In particular, we could use the integration on Ω × [0, T ]
with respect to the product measure.

For convenience, we abbreviate

ϕ(n) = ϕ(‖u(n)‖p), n ∈ N,

ϕv = ϕ(‖v‖p),

for the rest of the section. The next lemma asserts uniform boundedness of u(n), which is needed in the
fixed point argument.
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Lemma 5.4. Let p > 5, n ∈ N, and T > 0. Suppose u0 ∈ Lp(Ω;Lp) and assume that for each n ∈
{1, 2, . . . , k−1}, there exists a unique solution u(n) ∈ Lp(Ω;C([0, T ], Lp)) to the initial value problem (5.7),
where v and u(n) satisfy (5.6). Then for n = k, the initial value problem (5.7) also has a unique solution
u(k) ∈ Lp(Ω;C([0, T ], Lp)), and moreover,

E


 sup
0≤t≤T

‖u(k)(t, ·)‖pp +
∑

j

∫ T

0

∫

T3

|∇(|u
(k)
j (t, x)|p/2)|2 dxdt


 ≤ CE

[
‖u0‖

p
p

]
+ CT . (5.8)

Proof. Let n = k. We apply Theorem 4.1 (cf. the inequality (4.25)) to the equation

du
(n)
j −∆u

(n)
j dt = −ϕ(n−1)ϕv

(
P
(
(v · ∇)v

))
j
dt

+ ϕ(n−1)ϕvσj(v) dWt, j = 1, 2, 3.
(5.9)

We write the first term on the right side of (5.9) as

−
∑

i

ϕ(n−1)ϕv∂i
(
P
(
viv
))

j
dt.

In order to apply (4.25), we need to estimate

CE

[∫ T

0

‖ϕ(n−1)ϕvviv‖
p
q ds

]
≤ CE

[∫ T

0

ϕ(n−1)ϕv‖vi‖
p
r‖v‖

p
l ds

]

≤ CE

[∫ T

0

ϕ(n−1)ϕv‖vi‖
p
r‖v‖

p
p ds

]
≤ Cδp0E

[∫ T

0

ϕ(n−1)ϕv‖vi‖
p
r ds

]
,

(5.10)

where
3p

p+ 1
< q ≤ p (5.11)

and
1

r
+

1

l
=

1

q
.

For the last inequality in (5.10) we require

l ≤ p (5.12)

and then use ϕv‖v‖
p
p ≤ Cδp0ϕv. In order to bound the last expression in (5.10), we also need r < 3p.

When we consider below the differences of iterates (cf. (5.21)–(5.23) below), we however need a stronger
inequality

r ≤ p. (5.13)

For the sake of exposition, we fix the exponents at this point as

q = (3p+ η0)/(p+ 1) and r = l = 2q.

The parameter η0 > 0 is chosen so that
3p+ η0
p+ 1

<
p

2
, (5.14)

which is possible when p > 5. It remains to estimate the last term in (5.9) (cf. (4.25)), i.e.,

E

[∫ T

0

∫

Td

‖ϕ(n−1)ϕvσ(v)‖
p
l2(H,Rd)

dxds

]
≤ CE

[∫ T

0

ϕv(‖v‖
p
p + 1) ds

]
≤ CT,

using sub-linear growth of the noise (3.3), and we obtain (5.8). �
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Lemma 5.5. Let p > 5 and suppose that u0 ∈ Lp(Ω;Lp). Then there exists t ∈ (0, T ] such that the
initial value problem (5.5), where v satisfies (5.6), has a unique strong solution u ∈ Lp(Ω;C([0, t], Lp)),
which satisfies

E


 sup
0≤s≤t

‖u(s, ·)‖pp +
∑

j

∫ t

0

∫

T3

|∇(|uj(s, x)|
p/2)|2 dxds


 ≤ CE

[
‖u0‖

p
p

]
+ Ct. (5.15)

Proof of Lemma 5.5. We employ the fixed point argument on the iteration (5.7). The difference
z(n) = u(n+1) − u(n) satisfies

dz
(n)
j −∆z

(n)
j dt =

∑

i

∂ifij dt+ gj dWt, j = 1, 2, 3, (5.16)

where

fij = −(ϕ(n) − ϕ(n−1))ϕv(P(viv))j

and

gj =
(
ϕ(n) − ϕ(n−1)

)
ϕvσj(v) dWt.

In addition to (5.16), we have

∇ · z(n) = 0,

z(n)(0) = 0 a.s., x ∈ T3.

Note that

|ϕ(n) − ϕ(n−1)| ≤
C

δ0

∣∣∣‖u(n)‖p − ‖u(n−1)‖p

∣∣∣ ≤ C

δ0
‖u(n) − u(n−1)‖p =

C

δ0
‖z(n−1)‖p. (5.17)

Now, we apply (4.25). The second term on the right side of (4.25) is estimated as

C
∑

i

E

[∫ t

0

‖(ϕ(n) − ϕ(n−1))ϕvviv‖
p
q ds

]
≤

C

δp0
E

[∫ t

0

ϕp
v‖z

(n−1)‖pp‖v‖
p
r‖v‖

p
l ds

]

≤ CE

[∫ t

0

‖z(n−1)‖pp ds

]
≤ C tE

[
sup

s∈[0,t]

‖z(n−1)‖pp

]
,

where we used (5.12) and (5.13) in the second inequality. For the last term in (4.25), we estimate

CE

[∫ t

0

∫

Td

‖g(s, x)‖p
l2(H,Rd)

dxds

]
≤ Cδ0E

[∫ t

0

‖z(n−1)‖pp ds

]

≤ Cδ0E

[∫ t

0

‖z(n−1)‖ppds

]
≤ C tE

[
sup

s∈[0,t]

‖z(n−1)‖ppds

]
.

This concludes the proof of existence of a fixed point for (5.5) on [0, t] in Lp
ωL

∞
t Lp

x if t > 0 is sufficiently
small. It is standard to adapt the contraction argument above to the proof of uniqueness, and we omit
the details. We denote this unique fixed point by u. Observing the exponential rate of convergence, we
apply Lemma 5.2 and obtain ϕ(‖u(n)(t)‖p) → ϕ(‖u(t)‖p) for a.e.-(ω, t). Then, by applying the dominated
convergence theorem, we obtain that u is indeed a solution to (5.7). Thus, (5.15) holds by Lemma 4.4. �
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Proof of Theorem 5.1. Consider the iteration (5.3), i.e.,

du(n) −∆u(n) dt = −ϕ(n)ϕ(n−1)P
(
(u(n−1) · ∇)u(n−1)

)
dt

+ ϕ(n)ϕ(n−1)σ(u(n−1)) dWt,

∇ · u(n) = 0,

u(n)(0) = u0, a.s., x ∈ T3

on (0, T ] × T3. First assume that T is a sufficiently small constant as determined in Lemma 5.5 above;
at the end of the proof, we extend the solution to the full range by the pathwise uniqueness. Lemma 5.5
implies the existence of a unique maximal solution u(n), which satisfies

E


 sup
0≤t≤T

‖u(n)(t, ·)‖pp +
∑

j

∫ T

0

∫

T3

|∇(|u
(n)
j (t, x)|p/2)|2 dxdt


 ≤ CT,δ0 + CE

[
‖u0‖

p
p

]
. (5.18)

In order to apply the fixed point technique, we consider the difference

v(n) = u(n+1) − u(n),

for which

dv(n) −∆v(n) ds+
(
ϕ(n+1)ϕ(n)P

(
(u(n) · ∇)u(n)

)
− ϕ(n)ϕ(n−1)P

(
(u(n−1) · ∇)u(n−1)

))
ds

=
(
ϕ(n+1)ϕ(n)σ(u(n))− ϕ(n)ϕ(n−1)σ(u(n−1))

)
dWs,

∇ · v(n) = 0,

v(n)(0) = 0 a.s.

We rewrite the first equation as

dv
(n)
j −∆v

(n)
j dt =

∑

i

∂ifij dt+ gj dWt, j = 1, 2, 3,

where

fij = −ϕ(n+1)ϕ(n)
(
P(u

(n)
i u(n))

)
j
+ ϕ(n)ϕ(n−1)

(
P(u

(n−1)
i u(n−1))

)
j

= −ϕ(n)(ϕ(n+1) − ϕ(n))(P(u
(n)
i u(n)))j − ϕ(n)(ϕ(n) − ϕ(n−1))(P(u

(n)
i u(n)))j

− ϕ(n)ϕ(n−1)(P(v
(n−1)
i u(n)))j − ϕ(n)ϕ(n−1)(P(u

(n−1)
i v(n−1)))j

= f
(1)
ij + f

(2)
ij + f

(3)
ij + f

(4)
ij

(5.19)

and

gj = ϕ(n+1)ϕ(n)σj(u
(n))− ϕ(n)ϕ(n−1)σj(u

(n−1))

= ϕ(n)(ϕ(n+1) − ϕ(n))σj(u
(n)) + ϕ(n)(ϕ(n) − ϕ(n−1))σj(u

(n))

+ ϕ(n)ϕ(n−1)
(
σj(u

(n))− σj(u
(n−1))

)

= g
(1)
j + g

(2)
j + g

(3)
j .

(5.20)
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We first apply (4.25) to all the terms on the far right side of (5.19). Now, choose the exponents q, r,
and l as in (5.11)–(5.14). Regarding the first term in (5.19), we have

E

[∫ T

0

‖f (1)‖pq ds

]
≤ C

∑

i

E

[∫ T

0

(ϕ(n+1) − ϕ(n))p(ϕ(n))p‖u
(n)
i u(n)‖pq ds

]

≤
C

δp0
E

[∫ T

0

‖v(n)‖pp(ϕ
(n))p‖u(n)‖pr‖u

(n)‖pl ds

]

≤ Cδp0E

[∫ T

0

‖v(n)‖pp ds

]
(5.21)

by

|ϕ(n+1) − ϕ(n)| ≤
C

δ0

∣∣∣‖u(n+1)‖p − ‖u(n)‖p

∣∣∣ ≤ C

δ0
‖u(n+1) − u(n)‖p =

C

δ0
‖v(n)‖p,

as in (5.17), and where we also used (5.12) and (5.13) in the last inequality in (5.21). As in (5.21), we
have

E

[∫ T

0

‖f (2)‖pq ds

]
≤ Cδp0E

[∫ T

0

‖v(n−1)‖pp ds

]
. (5.22)

Similarly,

E

[∫ T

0

‖f (3)‖pq ds

]
+ E

[∫ T

0

‖f (4)‖pq ds

]
≤ Cδp0E

[∫ T

0

‖v(n−1)‖pp ds

]
. (5.23)

Summarizing (5.21), (5.22), and (5.23), we get

E

[∫ T

0

‖f‖pq ds

]
≤ Cδ0 T E

[
sup

s∈[0,T ]

‖v(n−1)‖pp

]
+ Cδ0 T E

[
sup

s∈[0,T ]

‖v(n)‖pp

]
.

Next, we turn to the three terms in (5.20). For the first one, we have

CE

[∫ T

0

∫

Td

‖g(1)(s, x)‖p
l2(H,Rd)

dxds

]

≤ CE

[∫ T

0

∫

Td

(ϕ(n))p(ϕ(n+1) − ϕ(n))p‖σ(u(n))‖p
l2(H,Rd)

dxds

]

≤
C

δp0
E

[∫ T

0

(ϕ(n))p‖v(n)‖pp(‖u
(n)‖pp + 1) ds

]

≤ Cδ0E

[∫ T

0

‖v(n)‖pp ds

]
,

(5.24)

and similarly,

CE

[∫ T

0

∫

Td

‖g(2)(s, x)‖p
l2(H,Rd)

dxds

]
+ CE

[∫ T

0

∫

Td

‖g(3)(s, x)‖p
l2(H,Rd)

dxds

]

≤ Cδ0E

[∫ T

0

‖v(n−1)‖pp ds

]
.

(5.25)
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We may summarize (5.24) and (5.25) as

CE

[∫ T

0

∫

Td

‖g(s, x)‖p
l2(H,Rd)

dxds

]
≤ Cδ0 T E

[
sup

s∈[0,T ]

‖v(n−1)‖pp

]
+ Cδ0 T E

[
sup

s∈[0,T ]

‖v(n)‖pp

]
.

Therefore, we obtain the existence of a fixed point u of (5.1) in Lp
ωL

∞
t Lp

x on [0, t∗], where t∗ ∈ (0, T ) is
a sufficiently small constant. Since each u(n) ∈ Lp(Ω;C([0, t∗], Lp)), so is u. By Lemma 5.5,

(u(n)(s), φ) = (u0, φ) +

∫ s

0

(u(n)(r),∆φ) dr

+
∑

j

∫ s

0

(
ϕ(n)ϕ(n−1)P

(
u
(n−1)
j u(n−1)

)
, ∂jφ

)
dr

+

∫ s

0

(ϕ(n)ϕ(n−1)σ(u(n−1)), φ) dWr, (s, ω)-a.e.,

for all φ ∈ C∞(T3). The exponential convergence rate and Remark 5.3 imply that ϕ(‖u(n)(s)‖p),

ϕ(‖u(n−1)(s)‖p) → ϕ(‖u(s)‖p) for a.e. (s, ω). Together with the divergence free condition, the Hölder
inequality, and the dominated convergence theorem, we get

∫ s

0

(u(n)(r),∆φ) dr +
∑

j

∫ s

0

(ϕ(n)ϕ(n−1)P(u
(n−1)
j u(n−1)), ∂jφ) dr

→

∫ s

0

(
(u(r),∆φ) + (ϕ2P(uuj), φ)

)
dr

for a.e. (s, ω) as n → ∞. Also, by the BDG inequality and assumptions on σ,

E

[
sup

s∈[0,t∗)

∣∣∣∣
∫ s

0

(ϕ(n)ϕ(n−1)σ(u(n−1))− ϕ2σ(u), φ) dWr

∣∣∣∣

]

≤ E



(∫ t∗

0

‖(ϕ(n)ϕ(n−1)σ(u(n−1))− ϕ2σ(u), φ)‖2l2 dr

)1/2

 .

Moreover, the right side goes to zero exponentially fast as n → ∞. This implies
∫ s

0

(ϕ(n)ϕ(n−1)σ(u(n−1)), φ) dWr
n→∞
−−−−→

∫ s

0

(ϕ2σ(u), φ) dWr, (s, ω)-a.e.

Letting n → ∞, we obtain that u solves (5.1). On the other hand, the inequality (5.2) follows by using
Lemma 4.4 on (5.18). This completes the existence.

To prove the uniqueness, suppose that (5.1) has two strong solutions u, v ∈ Lp(Ω;C([0, t∗], Lp)).
Then w = u− v satisfies

dw −∆w dt = −
(
ϕ2
uP
(
(u · ∇)u

)
− ϕ2

vP
(
(v · ∇)v

))
dt+

(
ϕ2
uσ(u)− ϕ2

vσ(v)
)
dWt,

∇ · w = 0,

w(0) = 0, a.s.

on (0, t∗]×T3, where ϕv = ϕ(‖v‖p) and ϕu = ϕ(‖u‖p). As before, we write the first equation component-
wise as

dwj −∆wj dt =
∑

i

∂ifij dt+ gj dWt, j = 1, 2, 3,
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where

fij = −ϕ2
u

(
P(uiu)

)
j
+ ϕ2

v

(
P(viv)

)
j

= −ϕu(ϕu − ϕv)(P(uiu))j − ϕuϕv(P(wiu))j

− ϕuϕv(P(viw))j − ϕv(ϕu − ϕv)(P(viv))j

(5.26)

and

gj = ϕ2
uσj(u)− ϕ2

vσj(v)

= ϕu(ϕu − ϕv)σj(u) + ϕv(ϕu − ϕv)σj(v) + ϕuϕv

(
σj(u)− σj(v)

)
.

(5.27)

We now show similarly as above that

E

[
sup

s∈[0,t∗]

‖w‖pp

]
≤ CE

[∫ t∗

0

‖f‖pq ds

]
+ CE

[∫ t∗

0

∫

Td

‖g(s, x)‖p
l2(H,Rd)

dxds

]

≤ Cδ0 t
∗ E

[
sup

s∈[0,t∗]

‖w‖pp

]
,

and obtain the pathwise uniqueness by setting t∗ sufficiently small. Thus, we have obtained a unique
strong solution of (5.1) in Lp(Ω;C([0, t∗], Lp)).

Now, we turn to the global existence. First, note that the deterministic time t∗ > 0 from above does
not depend on the initial data. Now, let T > 0 be arbitrary and let n∗ be a positive integer such that
T/n∗ < t∗. Denote ti = iT/n∗ for i ∈ {0, 1, . . . , n∗}. Applying the existence and pathwise uniqueness
inductively on [ti, ti+1], i ∈ {0, 1, . . . , n∗}, we obtain a unique strong solution to (5.1) on [0, T ] and (5.2)
holds. �

Proof of Theorem 3.1. For n = 1, 2, . . ., denote by u(n) the solution of the truncated SNSE (5.1)
with δ0 = n. Also, introduce the stopping times

τn(ω) =

{
inf
{
t > 0 : ‖u(n)(t, ω)‖p ≥ n/2

}
, if ‖u(n)(0, ω)‖p < n/2,

0, if ‖u(n)(0, ω)‖p ≥ n/2.

By uniqueness, the sequence is non-decreasing a.s. and u(m) = u(n) on [0, τm ∧ τn]. Let τ = limn τn ∧ T .
Then, P(τ > 0) = 1. Also, for any integer n ∈ N, define u = u(n) on [0, τn ∧ T ]. It is easy to check that
(u, τ) satisfies all the required properties. �

6. Global solutions and energy decay

The truncated stochastic Navier-Stokes equations reads

du(t, x) = ∆u(t, x) dt− ϕ(‖u(t)‖p)
2P
(
(u(t, x) · ∇)u(t, x)

)
dt

+ ϕ(‖u(t)‖p)
2σ(u(t, x))dWt,

∇ · u(t, x) = 0,

u(0, x) = u0(x) a.s., x ∈ T3

(6.1)

on [0,∞)× T3 with div u0 = 0 and
∫
T3 u0 dx = 0 a.s. Note that in the previous section, we have proved

the global well-posedness of this initial value problem. Recall that δ0 > 0 and that ϕ : [0,∞) → [0, 1] is
a decreasing smooth function with ϕ ≡ 1 on [0, δ0/2] and ϕ ≡ 0 on [δ0,∞). In addition, we assumed

|ϕ(t1)− ϕ(t2)| ≤
C

δ0
|t1 − t2|, t1, t2 ≥ 0.

We shall set δ0 > 0 sufficiently small. Note that when ‖u‖p is below δ0/2, the initial value problem
(1.1)–(1.3) coincides with this cut-off model. Hence, an estimate of the likelihood that ‖u‖p exceeds δ0/2
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determines the time of existence for the solution to (1.1)–(1.3). The next result is essential for estimating
that likelihood.

Theorem 6.1. Let p > 5. Then the global solution u ∈ Lp(Ω;C([0,∞), Lp)) to (6.1) satisfies

E

[
sup

s∈[0,∞)

eas‖u(s)‖pp +

∫ ∞

0

eas
∑

i

‖∇(|ui(s)|
p/2)‖22 ds

]
≤ CE[‖u0‖

p
p], (6.2)

provided a, δ0, ǫ0 > 0 are sufficiently small constants.

Recall that the constant ǫ0 > 0 is in the condition (3.5).

Proof. Let T > 0. Applying the Itô-Wentzel formula to Fi(t) = eat‖ui(t)‖
p
p, for a fixed i ∈ {1, 2, 3},

we obtain

d(eat‖ui(t)‖
p
p) = aeat‖ui(t)‖

p
p dt+ eatd(‖ui(t)‖

p
p). (6.3)

Utilizing the Itô expansion in the proof of Lemma 4.4 (cf. (4.12)) and (6.3), we have

eat‖ui(t)‖
p
p +

4(p− 1)

p

∫ t

0

eas
∫

T3

|∇(|ui(s)|
p/2)|2 dxds

= ‖u0i‖
p
p − p

∫ t

0

easϕ2

∫

T3

|ui|
p−2ui(P(u · ∇)u)i dxds

+ p

∫ t

0

easϕ2

∫

T3

|ui|
p−2uiσi(u) dxdWs

+
p(p− 1)

2

∫ t

0

easϕ4

∫

T3

|ui|
p−2‖σi(u)‖

2
l2 dxds+ a

∫ t

0

eas‖ui(s)‖
p
p ds.

(6.4)

Now, choose q, r, and l as in (5.11)–(5.14) and r̄ as in (4.18). By integration by parts, we have

peasϕ2

∣∣∣∣
∫

T3

|ui(s)|
p−2ui(s)(P(u · ∇)u)i dx

∣∣∣∣

= peasϕ2

∣∣∣∣∣∣
∑

j

∫

T3

∂j(|ui(s)|
p−2ui(s))(P(uju))i dx

∣∣∣∣∣∣

≤ Ceasϕ2‖∇(|ui(s)|
p/2)‖2‖|ui|

(p−2)/2‖r̄‖uj‖r‖u‖l

≤ Cδ0e
asϕ‖∇(|ui(s)|

p/2)‖2‖|ui|
(p−2)/2‖r̄‖uj‖p,

using ϕ‖u‖p ≤ δ0 in the last step. As in the proof of Theorem 4.1 above, we get
∣∣∣∣
∫ t

0

peasϕ2

∫

T3

|ui(s)|
p−2ui(s)(P(u · ∇)u)i dxds

∣∣∣∣

≤ δ

∫ t

0

eas
∑

i

‖∇(|ui(t)|
p/2)‖22 ds+ Cδδ

κ
0

∫ t

0

eas‖u(s)‖pp ds,

(6.5)

where δ > 0 is arbitrary and where κ > 0 is a constant depending on p. Note that the first term on
the right side may be absorbed in the dissipative term if δ > 0 is sufficiently small. Also, by using the
Poincaré type inequality

‖|v|p/2‖2 ≤ C‖∇(|v|p/2)‖2, (6.6)

for v such that
∫
Td v dx = 0, as in (4.15), the second term in (6.5) may also be absorbed if δ0 > 0 is

sufficiently small. Regarding the fourth term in (6.4), we use the superlinearity assumption on the noise
(3.5) and obtain

p(p− 1)

2
easϕ4

∫

T3

|ui(s)|
p−2‖σi(u)‖

2
l2 dx ≤ Cǫ20e

asϕ4‖u(s)‖pp.



STOCHASTIC NSE WITH SMALL Lp DATA 21

This term can be controlled in the same way as the last term in (6.5). Likewise, the last term in (6.4)
may also be absorbed in the dissipative part if a > 0 is sufficiently small constant (independent of p).
Combining the estimates above and absorbing the second, fourth, and fifth terms on the right-hand side
of (6.4), we arrive at

1

2
eat‖ui(t)‖

p
p +

1

2

∫ t

0

eas‖∇(|ui(s)|
p/2)‖22 ds

≤ ‖ui(0)‖
p
p + p

∣∣∣∣
∫ t

0

∫

T3

easϕ2|ui(s)|
p−2ui(s)σi(u) dxdWs

∣∣∣∣

since 4(p− 1)/p ≥ 1/2. Hence,

E

[
sup

t∈[0,T ]

eat‖ui(t)‖
p
p

]
+ E

[∫ T

0

eas‖∇(|ui(s)|
p/2)‖22 ds

]

≤ 2E
[
‖ui(0)‖

p
p

]
+ CpE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

easϕ2

∫

T3

|ui(s)|
p−2ui(s)σi(u) dxdWs

∣∣∣∣

]
.

(6.7)

For the last term in (6.7), we apply the same approach as in (4.21)–(4.22), except that we use the
assumption (3.5). We thus obtain

CpE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

easϕ2

∫

T3

|ui(s)|
p−2ui(s)σi(u) dxdWs

∣∣∣∣

]
≤ Cδǫ0E

[∫ T

0

easϕ2‖u(s)‖ppds

]
.

Using also (6.6), by taking ǫ0 > 0 sufficiently small, the right-hand side may be absorbed in the left side
of (6.7). Therefore,

E

[
sup

s∈[0,T ]

eas‖u(s)‖pp +

∫ T

0

eas
∑

i

‖∇(|ui(s)|
p/2)‖22 ds

]
≤ CE[‖u0‖

p
p],

and (6.2) follows upon sending T → ∞. �

Now, we are ready to prove the main theorem on the global existence of solutions for small data.

Proof of Theorem 3.2. Let ǫ0, δ0, a > 0 be as in Theorem 6.1. Assume that (3.6) holds for some
δ > 0. By Markov’s inequality, we have

P

(
sup

t∈[0,∞)

eat‖u(t)‖pp ≥
δ0
2

)
≤

C

δ0
E[‖u0‖

p
p] ≤

Cδ

δ0
.

The assertion is then obtained by choosing δ > 0 sufficiently small. �
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