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ABSTRACT. We consider the stochastic Navier-Stokes equations in T3 with multiplicative white noise.
We construct a unique local strong solution with initial data in LP, where p > 5. We also address the
global existence of the solution when the initial data is small in LP, with the same range of p.

1. Introduction

In this paper we address the global well-posedness of the stochastic Navier-Stokes equation (SNSE)

du(t,z) = vAu(t,z) dt — P((u(t,z) - V)u(t,z)) dt + o(u(t, z)) dW(t), (1.1)
V-u=0, (t,z) € (0,00) x T3, (1.2)
u(0, z) = ug(x), r €T3, (1.3)

on the 3D torus T? = [0,1]®, where V - ug = 0 and [, ug = 0. Here, u is the velocity field of a stochastic
flow, v is the viscosity, and P is the Leray (also called Helmholtz-Hodge) orthogonal projection onto
the mean zero divergence-free fields. The stochastic term o (u)dW(¢) denotes an infinite-dimensional and
possibly degenerate multiplicative white noise which is understood in the It6 sense. Note that in the
formulation (1.1) the pressure term has been eliminated by utilizing the projector P.

The stochastic forcing driving the Navier-Stokes equation represents a perturbation during the flow
evolution and thus the SNSE may be argued to be a realistic model for fluids. Consequently, much
effort has been devoted to studying its well-posedness; cf. [BT, ZBL1, ZBL2, FRS] for results on
mild solutions of the SNSE with Lévy-type jump noise, and [BCF, CC, DZ, MS] for results on mild
formulation subject to white noise. The existence of a global L? martingale solution to the SNSE with
Stratonovich noise in R? was proven in [MR], and the existence of a martingale solution in L%/ ¢(0, T; L*),
where d = 2,3, was shown in [BF] for the SNSE with noise that is colored in space.

There are fewer available results on the existence of strong (pathwise) solutions, and most were
established in a Hilbert space setting. For example, within the Hilbert setting, [MeS] proved the global
existence of a strong solution for the 2D SNSE with additive white noise. Also, Flandoli [F] proved the
result in the 3D case. For the SNSE with multiplicative noise, Fernando and Sritharan showed in [FS]
the existence of a global strong solution in a 2D unbounded domain in a Hilbert space, while in [GZ)]
Glatt-Holtz and the third author established the existence of a maximal strong solution in a 3D bounded
domain by assuming the H! regularity for the initial data. In [Ki], Kim proved the existence with a
large probability of a global strong solution to the SNSE with non-degenerate noise, assuming smallness
in H*(R3).

Inspired by results on the deterministic Navier-Stokes equation in LP Banach spaces [FJR, K], we
aim to find a global L? strong solution to (1.1)—(1.3) in three space dimensions. We show that a unique
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solution exists for small initial velocity. To be precise, we prove
P(ry =o0) > 1— C’;lM*”E[HuOHZ],

where 7p; = inf{t > 0 : ||u(t)||, > M} and u evolves in LP(2, C'([0, Tar), LP)). Note that we do not impose
any structural assumptions on the multiplicative noise, allowing it to be degenerate. In [BR], Barbu and
Rockner obtained the existence and uniqueness of a global mild solution in L? (3/2 < p < 2) to the
vorticity equation associated with the SNSE. They worked with a convolution-type finite-dimensional
noise and small initial vorticity. The convolution structure is needed for obtaining a commutative Cy
noise operator, which is essential for transforming the vorticity equation into a random equation. Also,
in [GV], Glatt-Holtz and Vicol used multiplicative and linear noise to treat the 3D stochastic Euler
equation.

As has been shown in many existing results, a major obstacle when seeking global solutions is a
combination of a multiplicative noise and the convective nonlinearity (u-V)u. To overcome this difficulty,
authors usually introduce stopping times of ascending u-norms to, in a sense, linearize this term in a
specified function space. The stopping time argument proves to be a powerful tool for obtaining the local
existence, but showing the non-degeneracy of these stopping times is a major problem. In this paper, we
truncate the noise and (v - V)u at ||ul|, = do at some level §y > 0 (not necessarily small). We first use a
stochastic heat equation (SHE) with additive noise (see [R]) to obtain the global solution to the truncated
SNSE. Then we establish the existence of a local strong solution of (1.1)-(1.3) by sending 6y — oo along
integer values and utilizing pathwise uniqueness. Finally, we fix §o > 0 sufficiently small and estimate
the probability distribution of e ||ul|? for a small a > 0. We show that (1.1) agrees with a truncated
SNSE for all time on a large part of the probability space if the initial velocity is small, obtaining thus a
global solution to (1.1)—(1.3).

Working in a function space of low regularity imposes several challenges. First, we need to obtain
a global L solution to the SHE and then adapt it to the truncated SNSE. Considering that [R] only
provides a W™? solution to the SHE (cf. [R, Chapter 4]) and the W™? estimate obtained in [R] does not
support the LP convergence of approximating solutions, we extend [R] to obtain an L a priori estimate
for the SHE. Next, the regularity of the drift function in this LP estimate must be strictly less than L7,
because the drift corresponds to (u - V)u when one relates the truncated SNSE to the SHE in the fixed
point argument, and (u - V)u is less regular than u itself. We utilize the dissipative term to make such an
estimate possible. But at a cost, the use of the dissipative term generates a non-linear term |V (|ul?/2)|?,
which prevents convergence in the strong topology. Hence, we resort to the weak lower-semicontinuity of
Hilbert space norms and fulfill the requirement of passing the limit for this term (cf. Lemma 4.4 below).
The third difficulty is due to the structure of (u-V)u and the introduced truncation. To overcome this, we
apply the fixed point iteration twice. The main trick is to introduce a square of the cut-off, which allows
us to treat the difference via a special splitting (cf. (5.19)-(5.20) below). Note that a high-regularity
truncation on the SNSE is required by the iteration, while a low-regularity norm is preferable for showing
the convergence of the iterated solutions. Overall, we can obtain convergence when p > 5. It would
be desirable to obtain our theorems in the range p > 3 and for p > 3 for small data (as in [K] in the
deterministic case), but this remains open (for the case of additive noise, see however [MS]).

We note that all the results also apply to the Stratonovich noise under some modifications on the
assumptions on the noise. When interpreted in the Stratonovich sense, (1.1) has an equivalent Itd
formulation

du(t, z) = vAu(t,z) dt — P((u(t,z) - V)u(t,z)) dt + % Tr(Do(u(t,x))o(u(t,x))) dt + o(u(t, z)) dW(t).

By assuming that ¢ and Do are bounded and globally Lipschitz in L”; all the results and proofs apply
without change.

The paper is organized as follows. In Section 2, we introduce the notation and preliminaries on
stochastic calculus. In Section 3, we state our assumptions and the main results. Theorems on the SHE
are collected in Section 4. The global existence and uniqueness of a strong solution to the truncated



STOCHASTIC NSE WITH SMALL L?” DATA 3

SNSE is established in Section 5, where we also obtain the local existence of solutions up to a stopping
time. The global existence of solutions for small data is obtained in Section 6.

2. Notation and preliminaries

2.1. Basic Notation. Let T € (0,00). For a scalar function u = u(t,x) on [0,7) x T2, we denote
its partial derivatives by dyu = du/dt, and 9;u = Ou/Ox;. Also, we denote its gradient with respect to x
by Vu = (01, . .., 0qu).

We use C°°(T3) for the set of infinitely differentiable functions on T2 and D’(T?) for the space of
distributions (C*°(T3))’. Note that we have C>°(T?) C LP(T?) C D'(T?) for 1 < p < co. The usual L?
norms are denoted by || - |-

The m-th Fourier coefficient of an L' function f on T? is defined as

Ff(m)= f(m) = . fz)e 2mm gy m e Z3,

and the corresponding Fourier series (Fourier inversion) of g at x € T? is
(F'g)(@) = D g(m)e*™m™*.
mezZ3

Recall that F can be extended to D'(T?) and F~'F = Id on D'(T?). For s € R and f € D'(T?), we
denote
Jf(x) = Z (14 47%|m|?)*/2 f (m)e>™m =, reT?
mezZ?
and
O f(x)=Y_ |m|*f(m)e™™ ", zeT
meZ3
We define W*P(T?) to be the class of functions f € D'(T?) such that

[fllsp =177 fllp <00,  s€R, p>1

For the L? based spaces, we abbreviate H*(T?) = W#2(T3). Recall that there exists a positive constant
C independent of f such that

1 S
olfllsp < I£llp + 10" fllp < Clifls.p, s>0, 1<p<oo.
The Leray orthogonal projection P is defined by
d
Pu);(m) =" (5j - %) a(m),  j=1,2....d (2.1)
k=1
Using the Riesz transforms
0
Rj:_%(_A)i%v j:1727"'7d7
j
the equation (2.1) for P may be rewritten as
d
(Pu)j(z) = > (0jn + RiRp)ug(x),  j=1,2,....4d,
k=1

from where
d
(I =P)u) (&) = =D RjRpug(z),  j=1,2,....d.
k=1

For convenience, we write

WP ={Pf.fe WP} (2.2)

sol T
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As usual, C represents a generic positive constant, whose value may increase from line to line, with explicit
dependence indicated when necessary. We consider p fixed, so C' is allowed to depend on p without an
explicit mention.

2.2. Preliminaries on stochastic analysis. Let (Q, F, (Fi)t>0,P) be a complete probability space
with an augmented filtration (F;);>0 generated by a cylindrical Brownian motion W. We assume that
W is an H-valued process for some real separable Hilbert space H, which may be infinite dimensional.
Choosing a complete orthonormal basis {ej}r>1 for H, we formally write W(t,w) = >, Wi(t,w)ey,
where {W}, : k € N} is a collection of mutually independent 1D Brownian motions. -

Let Y be another real separable Hilbert space. Denote by [?(H,)) the set of Hilbert-Schmidt oper-
ators from H to Y, i.e., G € I>(H,)) if and only if G is a linear bounded operator mapping from H to
Y such that

dimH
1GIE gy = D 1Gerl3 < oc.
k=1
In our context, Y denotes either R or R%, and || - ||;2 is used interchangeably for || -[|;2(3,r) and || - ||;2 (3¢ ra)

when there is no risk of confusion. Note that any operator in [2(#,))) is compact and [?(H,)) is a
separable Hilbert space endowed with a scalar product

dimH
(A, B)epy) = Y (Aey,Bep)y,  A,Bel*(H,)).
k=1

Next, by the Burkholder-Davis-Gundy (BDG) inequality, for G € [>(H,Y) and 1 < p < oo,

t p/2
(AGmmyWO ]-

Using this fact and letting (Jsf)ek = Js(fek) we introduce Banach spaces

sup < CE

s€[0,t]

WP = {f T = 12(H,Y) : fer € WP(T?) for each k, and / 192 I (20,

1/p
e = ([ 17y )

for s > 0and 1 < p < co. Also, WOP is abbreviated as L?. Letting (Pf)er, = P(fex), where P is the
Leray projector, we have Pf € W*P if f € W*P. Define

WP = {Pf: f € WP}

sol T

We assume for (1.1) that o maps W2¥ into W27
the set of mean zero fields onto itself.

dm<oo},

with respect to the norm

>, where W2 was introduced in (2.2), and that it maps

3. Assumptions and main results

We seek a strong (pathwise) solution to (1.1)-(1.3) in LP(T?) for p sufficiently large. Here, we say
a solution to a stochastic partial differential equation (SPDE) is strong if, almost surely relative to the
given stochastic basis, it satisfies the SPDE in the distributional sense and it evolves in the designated
function space (cf. [GZ, GV, Kr| and references therein). This notion demonstrates a pathwise behavior
rather than a law property, which distinguishes it from the martingale solution whose probability law fits
the equation.

Suppose o and g are (I?(H,R))%valued operators, namely, o and g have d components and each
component is 1?(H,R)-valued. Let A be an operator that is usually unbounded and

u(t,x) = up(x) + /0 (Au(r,z) + f(r,z))dr + /0 (o’(u(r, x)) + g(r,m)) dW(r), (3.1)
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a d-dimensional stochastic evolution partial differential equation on (Q, F, (F;)¢>0,P). Different notions
of solutions are defined as follows.

DEFINITION 3.1 (Local Strong Solution). A pair (u,7) is a local strong LP solution to (3.1) if 7 is a
positive stopping time P-almost surely, the stochastic process v is adapted with respect to F, it belongs
to LP(Q; C([0,7 AT], LP)), and satisfies

t

(u(t), 8) = (0, &) + / (Au(r) + f(r), 6) dr + / (o(u(r) + g(r), &) AW(r) ae. (fw),  (3:2)

0
for all ¢ € C>°(T?).
In our applications below, the term (Au(r), ¢) is interpreted using integration by parts.

DEFINITION 3.2 (Maximal Strong Solution). A pair (u,7) is a maximal strong LP solution to (3.1)
if there exists an increasing sequence of stopping times 7,, with 7,, T 7 a.s. such that each pair (u,7,) is
a local strong solution,

sup IIu(t)H§+/ /|V(\u(t)|1’/2)\2dzdt<oo,
0<t<t 0 T3

and

sup |Iu<t)|\§+/O /T3|V(\u(t)|p/2)\2dxdt:oo,

0<t<r
on the set {T < T}.

For the local existence, we assume

3 3 1/p
St =3 ([ lostollae) < il + 1) 53)

and s
> loi(u) = o5(v) e < Cllu = v]l,. (3.4)
i=1

The following statement is the main result on the local existence of strong solutions.

THEOREM 3.1. (Local strong solution up to a stopping time) Let p > 5 and ug € LP(Q; LP). Then
there exists a unique mazximal strong solution (u,7) to (1.1)~(1.3) such that

B | sup sl + [ 30 [ 10, (uits,2)7 )P dads | < CE[Juoly + 1],
o T Jm

0<s<t

where C' > 0 is a constant depending on p.

The theorem is proven at the end of Section 5.
In the next statement, we address the global existence of solutions, for which we impose, in addition
to (3.4), a superlinearity assumption

3
D lloi(u)liLe < eollull,, (3.5)
i=1

where ¢y > 0.

THEOREM 3.2. (Global strong solution for small data) Suppose that (3.4) and (3.5) hold with ey €
(0,1] sufficiently small. Let (u,7) be the solution provided in Theorem 3.1. For every e € (0,1] there
exists 6 > 0 such that if

EflJuoll}] < 0, (3.6)
then
P(r=00)>1—e.
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The proof of Theorem 3.2 is given in Section 6.

4. Stochastic heat equation on the torus
In this section, we prove the global existence of an LP solution to the stochastic heat equation
du(t,z) = Au(t,z)dt + f(t,x) dt + g(t, z) dW(2), (4.1)
u(0,2) = up(x) a.s., z e T (4.2)

on [0,7T] x T, where d € N. The functions u, ug, f, and g are assumed to be scalar valued and have
mean zero in x. The white noise W was introduced above, the drift f is a predictable process evolving
in W14, where the range of ¢ is stated below, the noise coefficient g takes values in (?(H,R), and ug is
JFo-measurable.

Using the terminology in [R], the equation (4.1) is super-parabolic. Also, the a priori estimates for
Theorems 4.1.2 and 4.1.4 in [R] remain true on the torus without change. Thus if ug € LP' (Q; W),
ferL”(Qx[0,T],W™?) and g € LP (2 x [0,T], W™?") for some m € N and p’ > 2, then there exists
we L (Q x [0, T]; Cyeart W™?') satisfying (4.1)-(4.2) in the sense of (3.2). If in addition (m — k)p’ > d,
then u has a version that belongs to Cy ([0, T] x T%) P-almost surely. This conclusion of global existence
relies on a high regularity of the forcing term f, which needs to be relaxed to apply to the stochastic
Navier-Stokes equations.

THEOREM 4.1. Let 2 < p < oo and 0 < T < oo. Suppose that ug € LP(Q, LP(T9)), f € LP(Q x
[0, T], W=14(T%)), and g € LP(Q x [0, T],LP(T%)) have z-mean zero (w,t) a.s., with
_dp
p+d—2
providedd > 2, or1 < g < pifd = 1. Then there exists a unique maximal solution u € LP(Q; C([0,T], LP))
to (4.1)—(4.2) such that

<q<p, (4.3)

T
E[ sup a5+ [ [ |v<|u<t,x>|p/2>|2dxdt]

0<t<T

< CE

T T
luoll? + / 1£(5, )P ds + / lg(IIE, ds],

where C' > 0 depends on T and p.

Recall that we use the notation
o1 = [ lat2) ez do

Introduce the standard convolution function p € C§°(R?) such that supp p C {z € R?: |z| < 1} and
Jga p(x) dz = 1. Assume also that p is nonnegative and radial. Set p. = e~ %p(-/e).
The next lemma is needed when approximating the forcing term in (4.1).

LEMMA 4.2. Let q € (1,00). If f € W=L4(TY), then f x pe — f in W™L4(T9) as e — 0.

PROOF OF LEMMA 4.2. The mapping S = —A + I is a Banach space isomorphism S: W14(T%) —

W=14(T%), which commutes with the convolution operator. Thus the statement follows by applying S
to (S7Lf) x pe — S7Lf in Wha. O

REMARK 4.3. Note that the above proof implies that if f € LP(Q x [0,T], W=149), then f * p. — f
in LP(Q x [0, 7], W—14).

The following lemma is essential when passing to the limit in the inequality (4.4).
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LEMMA 4.4. Letp > 2. If
U = u in LP(Q; L*°([0,T], LP)) as n — oo
and
V(|un(w, t,2)|P/?) are uniformly bounded in L*(Q x [0,T], L?), (4.5)
then
liminf E

n—oo

T T
/ |V(|un(w,t,m)|r’/2)2dzdt] >E [/ IV (|u(w, t,z)[P/?)? d;z:dt] . (4.6)
0 Td 0 Td

PRrROOF OF LEMMA 4.4. First, there exists a subsequence {uy, tren of {un fnen such that

limE
k

T
/ / IV (|tin,, (w, t, 2)[P/?)|? dxdt] = liminf E
o Jrd n

T
/ |V(|un(w,t,x)|p/2)dedt] @
0 Td

Observe that, by (4.7), it suffices to prove (4.6) for a subsequence of {uy, },. For simplicity of notation,
relabel {u,, }x as {u, }n. Passing to a subsequence, we may assume that |u, |[P/? — |u[P/? a.e. in Q x T¢ x
(0,T), and thus, by the Dominated Convergence Theorem, we get

|un|P/? — JulP/? in L2 x [0,T], L?).
By (4.5), we may pass to a subsequence and assume that

V(|tn(w, t,2)|P/?) = g weakly in L2(Q x [0,T], L?) as n — oo,

T
| [ 1ol o]
0 Td

by the weak lower-semicontinuity of the Hilbert space norm. In order to obtain (4.6), we only need to
prove that g and V(|u|P/?) agree as elements in L?(Q x [0,T], L?). To establish this, let ¢ € C>(T?) be
arbitrary. Then, for all j =1,...,d, we have

(97,0) = Mm(8;(|unl""?), ) = —Tim (|un[*’?,8;0) = —(Jul"’?, 80) = (9;(Jul*’?), ),

for some g € L?(Q x [0,T], L?), which also implies

T
lim inf E / / IV (|tn (w0, t, 2)|P/?)|? dadt
0 Td

n—00

>E

where (-, -) represents the inner product on L?(2x [0, T, L?). Thus we obtain that g(t,w) and V(Ju(t,w)[P/?)
agree in L?(T?) (t,w)-a.e. O

PrRoOOF OF THEOREM 4.1. Denote uf = ug * pe, f¢ = f * pe, and g¢ = g * p.. By Young’s inequality,
we have u§ € LP (S Wm™'), f< e LV (Q x [0,T], W™"), and g¢ € L' (Q x [0,T], W™*") for m e Ny
and 2 < p/ < oco. Note that u§ — wg in LP(Q, LP), f(t,-) — f(t,-) in LP(Q x [0, 7], W~14), and
g¢(t,-) = g(t,-) in LP(Q x [0,T],1L?) as ¢ — 0. Now, consider

du(t, ) = Au(t,x) dt + f(t,x) dt + g°(t, x) dWy, (4.8)

u®(0,z) = uf(z) a.s. (4.9)

Clearly, assumptions of Theorem 4.1.4 in [R] are fulfilled. Therefore, there exists u¢ € LP(Q2x [0, T], W™P)
satisfying (4.8)—(4.9) in the sense of Definition 3.1. By Corollary 4.1.4 in [R], u¢ has a modification that

belongs to Cg’”([O,T] x T?) P-a.s. if m > n + d/p. We shall choose m sufficiently large and use the
continuously differentiable modification of u°.
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Applying the It6 formula to h(y) = |y|P with y = u¢(¢, x), we get

\u<>|p—|u0|p+p/ ()P~ 20 (1) (A () + F<(r dr+p/ [ (1) P2 () g () AW,

2D L2

We integrate both sides of the equation in x and apply the stochastic Fubini theorem obtaining
t
[ @I = luglly +p/ / [us () [P~ 2u(r) (Aus(r) + f€(r)) dadr
0 JTd

t
+p/ ()P (1) (r) dod W, (1.10)
/ [, e @p 2Nt ol dodr.
For the dissipative term, we have

4p—1
p/ |u¢|P~2uf Auc dx = —p(p — 1)/ [u|P~2|Vus|? do = ,M/ |V |u [P/ )2 da. (4.11)
T Td p T4
It then follows from (4.10) and (4.11) that

ue D 4(p_1) ! us(r p/2\|2 rdr
ol + =[] 9P da

/ ()P =2 () () dx
'H‘d

plp—1) [* e
+ %/ / |u (7’)|P 2||g (7")”122 d.’,EdT’+p
0 JTd

= ||u6||£ + 11 + 12 + 13.
With ¢’ = ¢/(¢ — 1), we have

t
< gl +» ; dr

(4.12)

7) |p*2u5(r)g6 (r) dxdW,

t t
L SC/O [ T 7 T O dTSC/O £ l-1q e P2 u g + [V (ju P~ lg) dr,  (4.13)

where, recall, we allow C' to depend on p throughout. Since de u® = 0, we have, as in [KZ], a Poincaré
type inequality

IluP~?ulg < CIV (JuP~?u) g (4.14)
when p,q’ € (1,00). In [KZ, Lemma 3] the inequality
P~ < CIV (vl (4.15)

was proven for v such that fw v = 0, but the same proof works (by means of a contradiction argument)
for (4.14) as well. By (4.13) and (4.14), we get

B <€ [ IV (116)
Now, note that
IV (P20 g < C[[u P21 (fueP2) |, < Offluc /2|9 (e /)],
= Cllue )& 20 NV (/) 2 = €l P28 200 1 (Jue /)] 2,
where 1/7+1/2=1/¢, i.e

(4.17)

—— (4.18)

S
+
Q| =
[N}
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(The assumptions on the exponents p and ¢ imply ¢ > 2.) It is easy to check that the condition (4.3)
gives

2§r(p72) < 2d 7
P d—2

when d > 2. By the Gagliardo-Nirenberg inequality and (4.15), with p — 1 and ¢’ replaced by p/2 and 2
respectively, we have with w = |u€|P/? the inequality

[wllrp—2y/p < Cllwlls~[Vwllg,
where a = d(1/2 — p/7(p — 2)), and thus using (4.17), we get
IV ([ P~2u) |y < Cllus P25 VP22 0 (fusp/2) | P27, (4.19)

From (4.16)—(4.19), we thus obtain

t
¢ € 1—a)(p—2 € 1+a(p—2
I < C/O NN =1,ql \p/2||§ )(p )/p||V(|U |p/2)||2+ ®=2)/p 4.
t t (420)
<6 [ IV dr+ 0t sup a5+ Co [ 2 dr
0 0<r<t 0

with § > 0 arbitrarily small, where we applied Young’s inequality in the last step. Next, for the term I
in (4.12), we write

PP — 1 ! € - € ! € ! €
b= 22 T )2 ) dadr < [ o)l ar+Cs [ g0l dr.
0 JTd 0 0

Finally, we consider the last term in (4.12). Using Minkowski’s integral inequality, we have
. 9 1/2
E / dr
0 12
s 5 1/2
<E (/ ( WH|u6(7°)|p_2u6(r)g€(r)Hl2 dx) dr)
0

[/ 1 9 1/2
K (/ ([Td|uf<r>p1|gﬁ<r>|z2dx) dr>

r T 1/2
SE_T:E?T]nue(r)ng/z (/ (Ad|uf<r>P2||ge<r>|%2dx> dr> ,

u ()P~ 2us (r)g" (r) da
’H‘d

(4.21)
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where we abbreviated 12 = [2(H,R). Therefore,

T 2 1/2
E / dr
0 12
T
<E| sup [jus(r)|5/? (/ (/ u(r) P2 lg (r) |2 dw) d7’>
rel0,T) 0 Td

Ju () [P~ uc (r)g* (r) da

Td

1/2

1 T
< B | sup [u(r)]f| + CE / / [us (M)[P~2[lg (r, )Ii> dxdr
8D |refo,T] o Jrd
1 T
< £E| swp [u(r)p| +CoE / / g (r, %) |1 dadr |,
P |refo,1) o Jtd

where we used Young’s inequality in the last step. Note that the far right side is finite by (4.1.21) in [R].
Thus, from the BDG inequality, we get

T
/ I )IE dr] .
0

Now, setting § in (4.20) to be sufficiently small, taking the supremum over ¢ € [0,7] on both sides of
(4.12), and then computing the expectation, we obtain

1 t
sup (||u6<t>5+ ] |V<uf<r>|1’/2>|2dxdr)]
t€[0,7T)] P Jo Jra

T
/0 (T ||g€<r>|£p>dr] 7

E l sup /0 » [u (1) [P~2uc (1) g¢ (r) dzdW,

t€[0,T)

(4.22)

1
§4El sup ()5 +CE

D r€[0,T)

E

1
< Q]El sup [u(r)ll7 | +Elljuglp] + CE

rel0,T]

which implies

E l sup IIuE(t)IZ] < 2E[l|lugll5] + CE
t€[0,T)

T
/O Uy g+ IIQE(T)Iﬁp)dT] (4.23)

and

1 T € p/2\|2
2p[@[/o /Td|V(\u(7“)| )2 dzdr

€ 1 €
< 2B | sup [us()llp] + SE[luglip] + CE

rel0,T]

| =

T
/0 U g + IIQG(T)Ilﬁp)dr] :

In summary,

T
E[sup s ()12 + / / |v<|u6<r>f’/2>|2dxdr]

te[0,T) 0 Td
(4.24)

< CE

T
luslly +/0 (g + IIQE(T)Ilﬁp)dfl :
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Note that the derivation of (4.23) does not depend on e. Thus, we may apply the same procedure to

/ .
u® — u and obtain

t€[0,T)

: l sup_[lu() —u (1)][3

T
< CE IIUS—US/HiJr/O (<) = £SO g + g (r) = g ()E,) dr

Since each u€ belongs to LP(2; C([0, T, LP)) and they converge in L”(€2; L°>°([0, T}, LP)), they have a limit
in LP(Q; C([0,T], L?)), and there exists a subsequence u» which converges to that limit in L°°([0, T, L?)
almost surely. We denote this limit by u and we now prove that it is a strong LP solution to (4.1)—(4.2).
Since

t

(ue(t),¢):(ug,¢)+/0 ((Au(r) + f4(r)), ¢) d?”r/ (g°(r), @) dW,,  (t,w)-a.e.,

0

for all ¢ € C°°(T9) and all € > 0, by the Hélder inequality and the dominated convergence theorem, we
have

(u (), ¢) = (ug", ¢) = (u(t), @) = (uo, 9)

and

[ (0,20 + 500 dr > [ (002,80 + (70, 00)

for a.e. (t,w) as n — oo. By the BDG inequality,

E | sup

te[0,T)

T 1/2 1/2
< CE (/ ||<gf"<r>—g(r>,¢>||%2dr> < CE ( / ( / g (r >||lzdx) ||¢||§dr>

2/p 1/2
< Cllg|l:E (/ (/ o= (r) — )Ilﬁ’zdw) dr)
/Tugf"() <r>||£pdr],

which converges to 0 as n — co. This implies that for a further subsequence, which we still denote by
u®", we have

/O (g (r) — g(r), 6) AW,

< Ol E

t

/0 (g (), 6) dW, 225 [ (g(r), 6)dW,, (t,w)-ae.

0

Using Lemma 4.4 and letting n — oo in (4.24), we obtain (4.4).
Suppose u1, ug are two strong LP solutions to (4.1)—(4.2). Then v = uy — ug satisfies

du(t,z) = Av(t, x) dt,
v(0,2) =0 a.s.

on [0,T] x T¢. Then v = 0 P-a.s. O
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For convenience we also state the vector-valued version of the previous theorem. Thus, consider
(4.1)-(4.2) on T but with u, f, g, and ug being RP-valued, where D € N. Then, under the assumptions
of Theorem 4.1, we have

D T
E| sup futt,)E+3 / / IV (Juy (1, 2)P/)|? dadt
0<t<T = Jo Jra
(4.25)

T D T
< CE (ol + [ 1Nt + 3 [ [ ) ot
i=1

5. Stochastic truncated Navier-Stokes equation

From here on, we restrict our considerations to the space dimension 3, although all the statements
can be adjusted to any dimension d > 2. Also, with a constant dg > 0 which is not necessarily small,
denote by ¢: [0,00) — [0,1] a decreasing smooth function such that ¢ = 1 on [0,0¢/2] and ¢ = 0 on
[00,00). In addition, we assume

C
[p(tr) = pt)| < -fts —tal, 1,82 2 0.

We consider a stochastic Navier-Stokes equations on [0,7] x T2, truncated by this function, which reads
du(t,z) = Au(t,z) dt — o(||lu(t)|l,)*P ((u(t,z) - V)u(t,z)) dt
+o(lut)llp)?o (ult, ) AW,
V -u(t,z) =0,
u(0,z) = up(x) a.s., r €T3
where o is (I2(H,R))3-valued, ug € LP(£;LP) is Fp-measurable with p > 5, and V - uy = 0 with
ng ug dxr = 0 a.s. assumed throughout. Our goal in this section is to find the unique global solution for
(5.1) by applying a fixed point argument.
We note that the reason for the square in the two factors containing ¢(||u(t)]|,) in (5.1) is the splitting

(5.19)—(5.20) (and similarly (5.26)—(5.27)), which assures that every term is linearized either by matching
u™ with (™ or u("=1 with =1,

(5.1)

THEOREM 5.1. Let p > 5 and ug € LP(Q; LP). For every T > 0, there exists a unique strong solution
u € LP(Q;C([0,T),LP)) to (5.1) such that

0<s<T

T
B | s [u(s )5+ 3 [ [ 90us. 0P dods| < CElJulf] +Cr. (52
J

In order to solve (5.1), we use the iteration
du™ — Au™ dt = —(Ju™ ) (™D )P (wnD - V)Y at
T (™)l ) (w0 W,
Vv -u™ =0,
u™(0) = ug a.s., x €T3,
where u(9) is the strong solution to

du© (t, ) — Au (¢, z) dt =0,
V- uO(t,z) =0,

u( (0, z) = up(z) as., r € T2
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Utilizing the results from the previous section, we conclude that u(®) € LP(€; C([0,T], L?)) and

T
E | sup IIU“”(t,-)II,’HZ/0 /T V(1 (8, 2)[P/2)? dwdt | < CE[[luo2)- (5.4)
J

0<t<T
We need to prove that at each step n, there exists a unique solution «(™ € LP(Q; C([0,T], L?)) to (5.3),
which is uniformly bounded in a manner consistent with (5.4). Thus we first consider the equation
du— Audt = —(Jull,) e (loll,)P (0 - 9)0) dt + ([l p(lollp)or(v) AW,
V.u=0, (5.5)
u(0, ) = uy, a.s., x €T3,

where v is divergence-free and satisfies

T
E | sup |\vj(t,~)||§+2/ / IV(Jv(t, 2)[P/?)? dadt | < CE[||uol[%] + Cr. (5.6)
0<t<T 5 7o T3

In order to solve (5.5), we employ the iteration procedure
dut™ — Au™ dt = ="V )e(||v],)P((v - V)v) dt

+ ol Vlp)elvllp)o(v) dWe,
(5.7)
V-u™ =0,

u(")(O) = uy, a.s., x € T3,
for v which is divergence-free and satisfies (5.6). Note that u(™) in (5.7) is not the same as in (5.3).
We shall prove the existence by obtaining an exponential rate of convergence for the fixed point
iteration, for both (5.7) and (5.3), and then claiming that a sequence of random variables converges to

zero a.s. if their expectation approaches zero rapidly. For this purpose, the following auxiliary result is
essential.

LEMMA 5.2. Let &, be a sequence of nonnegative random variables such that E[¢,] < 0™, for n € N,
where n € (0,1). Then, &, — 0 almost surely.

PROOF OF LEMMA 5.2. Denote the probability event {w € Q : &, (w) > 1/m} by A7 If &, (w) does
not converge to zero as n — oo, then w € Ugy_; Np2; U2, A", For each fixed m € N,

SPAT) <m Y B < o,

and thus P(limsup,,,., A7) = 0 by the Borel-Cantelli Lemma. Hence,

P(Use_1 N2 U, A7) = lim P(limsup A7) =0,
m—oo n—00

completing the proof. O

REMARK 5.3. This conclusion can be extended from expectation and the probability measure to
integration with respect to any finite measure. In particular, we could use the integration on € x [0, T]
with respect to the product measure.

For convenience, we abbreviate
™ = o(lu™]l,),  neN,
Pov = ¢(||U||p)7

for the rest of the section. The next lemma asserts uniform boundedness of u("), which is needed in the
fixed point argument.
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LEMMA 54. Letp > 5, n € N, and T > 0. Suppose ug € LP(Q; LP) and assume that for each n €
{1,2,...,k—1}, there exists a unique solution u(™ € LP(; C([0,T), LP)) to the initial value problem (5.7),
where v and u'™ satisfy (5.6). Then for n =k, the initial value problem (5.7) also has a unique solution
u®) € LP(Q;C([0,T],LP)), and moreover,

E | sup [Ju®(t ||p+Z/ / [V (|u t ) [P/ dadt | < CE[[|uo|B] + Cr. (5.8)

0<t<T

PROOF. Let n = k. We apply Theorem 4.1 (cf. the inequality (4.25)) to the equation
(n) Au(") dt = —p Dy, (P((v- V)v))j dt

(5.9)
+ o Voo (v)dW,,  j=1,2,3.
We write the first term on the right side of (5.9) as
— Z gp("*l)goi,@ (73 (vw))j dt.
In order to apply (4.25), we need to estimate
T T
CE l/ le™Depyv0]f ds} < CE l/ w(”‘l)@vllvillﬁllvllde]
0 0
., ., (5.10)
<CE / "oy llus|Z o]l ds| < CSHE / " Doy [|ug|[2 ds |
0 0
where
3p
—— < < 5.11
p+1 =P (5.11)
and
1 1 1
4+ =71,
T q
For the last inequality in (5.10) we require
1<p (5.12)

and then use @, [[v][h < Cdf¢,. In order to bound the last expression in (5.10), we also need 7 < 3p.
When we consider below the differences of iterates (cf. (5.21)—(5.23) below), we however need a stronger
inequality

TSP (5.13)
For the sake of exposition, we fix the exponents at this point as
q=Bp+mn)/(p+1) and r =1 = 2q.

The parameter 79 > 0 is chosen so that

3pt+m _p
- 14
i1 S (5.14)
which is possible when p > 5. It remains to estimate the last term in (5.9) (cf. (4.25)), i.e

T
B[] 160 000000 gy o) dods
0 JTd ’

using sub-linear growth of the noise (3.3), and we obtain (5.8). O

T
<CE| [ oululy+vds| <cr,
0
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LEMMA 5.5. Let p > 5 and suppose that ug € LP(Q; LP). Then there exists t € (0,T] such that the
initial value problem (5.5), where v satisfies (5.6), has a unique strong solution uw € LP(Q2; C([0,t], LP)),
which satisfies

0<s<t

t
B | s (s )5+ 30 [ [ V(0P deds| < CE[Juwlf] +Ci (519)
J

PROOF OF LEMMA 5.5. We employ the fixed point argument on the iteration (5.7). The difference
2" = (D) _ (") satisfies

where

fij = —(SD(") - @("_1))<pv(7>(viv))j
and

gi = (™ — "), (v) dW,.
In addition to (5.16), we have

V™ =0,
2M0) =0 as., z e T

Note that

C c c
| — D] < *‘HU(")Hp =l Vlp| < = fu™ —u® D, = =2V (5.17)
(50 50 50

Now, we apply (4.25). The second term on the right side of (4.25) is estimated as
t C t
n n—1 n—1
CEE| [ 16 - ol as] < G| [l DRl
i
t
<ce| [ 1 Vpas] <otk | sup )
0 s€[0,t]

where we used (5.12) and (5.13) in the second inequality. For the last term in (4.25), we estimate

¢ t
[ [ o] s 1
0 JTd ’ 0
t
< C&OE |:/ ||Z(”_1)||£d81| < CtE [ sup ||Z(n—1)||gd8‘| .
0 s€[0,t]

This concludes the proof of existence of a fixed point for (5.5) on [0,¢] in L, L°LP if ¢ > 0 is sufficiently
small. It is standard to adapt the contraction argument above to the proof of uniqueness, and we omit
the details. We denote this unique fixed point by u. Observing the exponential rate of convergence, we
apply Lemma 5.2 and obtain o(||u(™ (t)[|,) = ¢(||u(t)||,) for a.e.-(w,t). Then, by applying the dominated
convergence theorem, we obtain that v is indeed a solution to (5.7). Thus, (5.15) holds by Lemma 4.4. O
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PrROOF OF THEOREM 5.1. Consider the iteration (5.3), i.e.,
dul™ — Au™ dt = —np(")ga("_l)P((u("_l) . v)u(n—l)) dt
+ ™MD (D) qW,,

Vv -u™ =0,
u™(0) = ug, a.s., reT?

on (0,T] x T3. First assume that T is a sufficiently small constant as determined in Lemma 5.5 above;
at the end of the proof, we extend the solution to the full range by the pathwise uniqueness. Lemma 5.5
implies the existence of a unique maximal solution u(™, which satisfies

T
E | sup ||u<n)(t,.)|\g+2/ / |v(|u§”)(t,x)|1ﬂ/2)|2da:dt < Cr,50 + CE[|luoll?]. (5.18)
0<t<T 5 Jo Jre

In order to apply the fixed point technique, we consider the difference

() = gy (n D) _ ).

for which
dv™ — Ap™ gs + (¢(n+1)¢<n)p((u<n> - V)u™) — pMpr=Dp (D). V)um—l))) ds
— (¢<n+1>¢<n>a(u(n)) _ S0<n>¢<n—1>g(u<n—1>)) AW,
v .M = ,
v™(0) =0 a.s.

We rewrite the first equation as

Ao\ — AvS dt =" 0, fiy dt + g dW,,  j=1,2,3,

where

fij = =D (p(ul(_")u(n)))j + (p(n)(p(n—l)(p(ul("*l)u(n—l)»j
= —p™ M+ — )P (M uM)); — ™) (™) — DY (P (M),
— M pr=D(P (" NuM)); — oM =D (P Dy =Dy,

_ (D (2 (3) (4)
=i +hi T+

(5.19)

and

gi = sﬁ(”“)@(")crj (u(n)) _ SD(n)w(nq)gj(u(nq))
= (p(n)((p(n+1) — ga(”))aj(u(”)) + @(n)(w(n) — (p(n—l))aj(u(n))
4 @(n)w(nfl) (er (u(n)) _ O_j(u(nfl)))

1 2 3
= gD 1 g 4 g,

(5.20)
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We first apply (4.25) to all the terms on the far right side of (5.19). Now, choose the exponents ¢, r,
and [ as in (5.11)—(5.14). Regarding the first term in (5.19), we have

T
B [/ ||f<1>||z;ds] <cyE

T

/0 IIU(")I£(<p(”))”||u(")|I§3||u(")llfdS] (5.21)
T

/0 |v<”>||zds]

c
[t — o] < | [u Dy —

T
/0 (D = )P ()P uf™u I ds

C
< <E
3

< COLE

by

C C
< D — M, = =™,
% 5o

as in (5.17), and where we also used (5.12) and (5.13) in the last inequality in (5.21). As in (5.21), we

have
T
E [ | 1@ as
0

T T
E [ / 1O ds / 1O ds
0 0

Summarizing (5.21), (5.22), and (5.23), we get

< C6LE

T
/0 ||v("_1)|§ds] . (5.22)

Similarly,

+E < CHE

T
/0 ||v("_1)|£ds] . (5.23)

sup [0 Vp
s€l0.7]

+Cs5, TE

T
E [/ ||f||5ds] < G5, TE
0

sup |v<">||z] .
s€[0,T]

Next, we turn to the three terms in (5.20). For the first one, we have

T
/0 /Td 19 (5, 2B g d:cds]

T
/0 /Td(<p(n))p(<p(n+1) _ w("))pHU(u(”))||f2(H,Rd) dmds]

CE

< CE

., (5.24)
C n n n
< GE| [ @I g + 1) ds
60 0
T
gC(;O]E/ ||v(”)||§ds],
0
and similarly,
T T
CE / / 19 (s, 2) 122 3 sy dwdls | + CE / / 19 (5, 2) 172 3¢ ) dwdls
0 JTd 0 JTd (525)

<G5 E

T
/0 ||v("_1)|§ds] .
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We may summarize (5.24) and (5.25) as

sup [0~ Vp
s€[0.7]

+Cs5, TE

np ||v(">||5] .
s€[0,T]

T
CE l/ /d ||g(s,x)||f2(H’Rd) da:ds] <C5, TE
0 Jrd

Therefore, we obtain the existence of a fixed point w of (5.1) in L, L°LE on [0,t*], where t* € (0,7) is
a sufficiently small constant. Since each u(™ € LP(Q;C([0,t*], L?)), so is u. By Lemma 5.5,

(W™ (5),6) = (up. &) + / (W™ (r), Ag) dr

—I—Z/O (<p(”)<p("_1)73(ué—nil)u("_l)),8j¢>) dr
J

+/ (So(n)¢(n_1)0(u("_l)),¢) dW,., (s,w)-a.e.,
0

for all ¢ € C°°(T%). The exponential convergence rate and Remark 5.3 imply that ¢(||ul™ (s)]|,),
o([[u™D(s)|,) — @(|u(s)|p) for a.e. (s,w). Together with the divergence free condition, the Hélder
inequality, and the dominated convergence theorem, we get

| 680+ 30 [ (eI Va0, 0,0 ar
J

— /OS((u(r% AP) + (9*P(uuy), ¢)) dr

for a.e. (s,w) as n — oo. Also, by the BDG inequality and assumptions on o,

|

1/2
(™ Do) — o?o(u), )| d?")

E| sup

s€[0,t*)

<E </0t

Moreover, the right side goes to zero exponentially fast as n — oo. This implies

/ (M Vo (D) — P25 (u), §) dW,
0

*

/ (e Vo(un D), ) dW, 22, / (o), 6) AW,y (s,w)-ac.
0 0

Letting n — oo, we obtain that u solves (5.1). On the other hand, the inequality (5.2) follows by using
Lemma 4.4 on (5.18). This completes the existence.
To prove the uniqueness, suppose that (5.1) has two strong solutions w,v € LP(Q;C([0,t*], LP)).
Then w = u — v satisfies
dw — Awdt = — (@2 P((u- V)u) — 2P ((v- V)v)) dt + (oo (u) — pao(v)) dW,,
V-w=0,
w(0) =0, a.s.

on (0,t*] x T3, where ¢, = ¢(||v]|,) and @, = p(|jull,). As before, we write the first equation component-
wise as

dUJj —ij dtzzaz‘fi]‘ dt—|—gj dWy, 7=1,2,3,
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where
fij = =3 (P(uiu))j + ) (P(Uiv))j
= —u(pu — @) (P(uin)); — pups(P(wiu)); (5.26)
- @u@v(li)(viw))j - @v(‘pu - 901))(73(711'71))1
and

gi = paoi(u) — paoi(v)
= pu(pu — 00); (1) + @u(Pu — ©u)05(V) + Pupy (05 (u) — 0;(v)).

We now show similarly as above that

(5.27)

t* t*
B | sup [ullp| <CE| [ 7lds| +CE| [ [ las.)lfp, ) dods
s€[0,t*] 0 0 Td
<Cst"E | sup w|b|,
s€[0,t*]

and obtain the pathwise uniqueness by setting ¢* sufficiently small. Thus, we have obtained a unique
strong solution of (5.1) in LP(Q; C([0,¢*], LP)).

Now, we turn to the global existence. First, note that the deterministic time t* > 0 from above does
not depend on the initial data. Now, let T > 0 be arbitrary and let n* be a positive integer such that
T/n* < t*. Denote t;, = iT/n* for i € {0,1,...,n*}. Applying the existence and pathwise uniqueness
inductively on [t;,t;41], i € {0,1,...,n*}, we obtain a unique strong solution to (5.1) on [0,7] and (5.2)
holds. (]

PROOF OF THEOREM 3.1. For n = 1,2,..., denote by u(™ the solution of the truncated SNSE (5.1)
with dg = n. Also, introduce the stopping times

() inf {t > 0 : [[u™(t,w)[, > n/2}, if |u™(0,w)]], < n/2,

To(w) =

" 0, i [[u™(0,0)]], = n/2.

By uniqueness, the sequence is non-decreasing a.s. and w™ = 4™ on [0, 7oy A 7). Let 7 = lim,, 7, A T.

Then, P(r > 0) = 1. Also, for any integer n € N, define v = u(™ on [0, 7, A T]. It is easy to check that
(u, T) satisfies all the required properties. O

6. Global solutions and energy decay
The truncated stochastic Navier-Stokes equations reads
du(t,z) = Au(t,z) dt — o(||lu(t)||,)*P ((u(t,z) - V)u(t,z)) dt
+o(lut)llp)?o(u(t, x))dW,,
V-u(t,z) =0,

u(0,2) = up(x) a.s., reT

(6.1)

on [0,00) x T3 with divug = 0 and f’]I‘3 ugdr = 0 a.s. Note that in the previous section, we have proved
the global well-posedness of this initial value problem. Recall that dp > 0 and that ¢: [0,00) — [0,1] is
a decreasing smooth function with ¢ =1 on [0, /2] and ¢ = 0 on [y, 00). In addition, we assumed

C
[p(tr) = pt)| < -fts —tal,  t1,t2 2 0.

We shall set o > 0 sufficiently small. Note that when ||ul|, is below d¢/2, the initial value problem
(1.1)—(1.3) coincides with this cut-off model. Hence, an estimate of the likelihood that |lul, exceeds do/2
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determines the time of existence for the solution to (1.1)—(1.3). The next result is essential for estimating
that likelihood.

THEOREM 6.1. Let p > 5. Then the global solution u € LP(€; C([0,00), L?)) to (6.1) satisfies

E

sup 6“SIIU(8)II§+/O e DIV (Jui(s)P?)|[5 ds | < CE[J|uol3], (6.2)

s€[0,00)
provided a, dy, €9 > 0 are sufficiently small constants.

Recall that the constant ey > 0 is in the condition (3.5).

PROOF. Let T > 0. Applying the It6-Wentzel formula to Fj(t) = e*|ju;(t)||?, for a fixed i € {1,2, 3},
we obtain

d(e[lui(t)[I) = ae™[lui ()|} dt + e d(]|us(t)]]})- (6.3)
Utilizing the It6 expansion in the proof of Lemma 4.4 (cf. (4.12)) and (6.3), we have

sy + 2 [ [ o o

— sl — p / @5 g2 / sl (P(u - VYus)s derds

(6.4)
+p/ s 2/ [u; [P~ w0 (u) dedW
—1) t
oo [t [ el dods +a [ e )l ds
0
Now, choose ¢, r, and [ as in (5 11)—(5.14) and 7 as in (4.18). By integration by parts, we have
per? | [ )P () (Pl V), da
= X [ Oyl (Pl o
J
< Ce™@? ||V (|ui(8)P/?) 2| lus| P21 s |l
< Cooe™ o[V (lui ()P |21 lus| #2215 s
using ¢||ul|, < o in the last step. As in the proof of Theorem 4.1 above, we get
¢
‘/ pey? / i ()72 ui(s) (P (u - V)u); dads
3
0 ! (6.5)

t t
<5 [ e SRl s + € [ e uts) b,
0 ; 0

where § > 0 is arbitrary and where x > 0 is a constant depending on p. Note that the first term on
the right side may be absorbed in the dissipative term if 6 > 0 is sufficiently small. Also, by using the
Poincaré type inequality

P22 < CIV (jo]""?)]l2, (6.6)

for v such that [, vdz = 0, as in (4.15), the second term in (6.5) may also be absorbed if §y > 0 is
sufficiently small. Regarding the fourth term in (6.4), we use the superlinearity assumption on the noise
(3.5) and obtain

He =Dt [ sl 2ol de < Cée o luo)l,



STOCHASTIC NSE WITH SMALL L?” DATA 21

This term can be controlled in the same way as the last term in (6.5). Likewise, the last term in (6.4)
may also be absorbed in the dissipative part if a > 0 is sufficiently small constant (independent of p).
Combining the estimates above and absorbing the second, fourth, and fifth terms on the right-hand side
of (6.4), we arrive at

1 a 1 K as
3Oz +5 [ eIV uP)E s

t
< @13 40| [ [ et i) o,
0 JT3

since 4(p — 1)/p > 1/2. Hence,

E [ sup e“t||ui(t)||g +E

t€[0,T)

T
/ e“||v<ui<s>|’7/2>|§ds]
° (6.7)

< 28 [Jlui(0)2] + CE | sup

t€[0,T]

t
/ S”/ g (3) 1P 2ui(5)os () ded W,
0 T3

] |

For the last term in (6.7), we apply the same approach as in (4.21)—(4.22), except that we use the
assumption (3.5). We thus obtain
T
/ e%znu(s)nms] .

Using also (6.6), by taking eg > 0 sufficiently small, the right-hand side may be absorbed in the left side
of (6.7). Therefore,

CpE | sup

t€[0,T)

t
/6”902/ [us (8)[P~2ui(s) o (u) dedW, | | < CseoR
0 T3

T
El sup e‘”IIU(S)IliJr/0 Y NIV (lui(s)P?)I[5 ds| < CE[|luoll3],

s€[0,T]

and (6.2) follows upon sending T' — oo. O
Now, we are ready to prove the main theorem on the global existence of solutions for small data.

PROOF OF THEOREM 3.2. Let €g,dp,a > 0 be as in Theorem 6.1. Assume that (3.6) holds for some
6 > 0. By Markov’s inequality, we have

&) _C cs
P sup e™u@®)]?>— | < —E[|uolf] < —.
<t€[0,1(:>)c) || ( )Hp = 2) — 50 [H OHP] ~ 50
The assertion is then obtained by choosing § > 0 sufficiently small. O
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