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Probing early-time longitudinal dynamics with the ! hyperon’s spin polarization
in relativistic heavy-ion collisions

Sangwook Ryu,1,* Vahidin Jupic,1,† and Chun Shen 1,2,‡

1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
2RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 24 June 2021; accepted 14 September 2021; published 23 November 2021)

We systematically study the hyperon global polarization’s sensitivity to a collision system’s initial longitudinal
flow velocity in hydrodynamic simulations. By explicitly imposing local energy-momentum conservation when
mapping the initial collision geometry to macroscopic hydrodynamic fields, we study the evolution of the
system’s orbital angular momentum (OAM) and fluid vorticity. We find that a simultaneous description of the
! hyperon’s global polarization and the slope of the pion’s directed flow can strongly constrain the size of
longitudinal flow at the beginning of hydrodynamic evolution. We extract the size of the initial longitudinal flow
and the fraction of orbital angular momentum in the produced quark-gluon plasma fluid as a function of collision
energy with the STAR measurements in the Beam Energy Scan program at the BNL Relativistic Heavy-Ion
Collider. We find that there is about 100–200 h̄ OAM that remains in the mid-rapidity fluid at the beginning
of hydrodynamic evolution. We further examine the effects of different hydrodynamic gradients on the spin
polarizations of ! and !̄. The gradients of µB/T can change the ordering between !’s and !̄’s polarizations.
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I. INTRODUCTION

Noncentral heavy-ion collisions carry angular momenta of
the order of 103–104 h̄. After the initial impact, although most
of the angular momentum is carried away by the spectator
nucleons, a sizable fraction remains in the created quark-gluon
plasma (QGP) and implies a nonzero rotational motion in
the fluid. Such rotation inertia can lead to a strong vortical
structure inside the resulting liquid. Local fluid vorticity can
potentially induce a preferential orientation on the spins of
the emitted particles through spin-orbit coupling. The STAR
Collaboration at the BNL Relativistic Heavy-Ion Collider
(RHIC) discovered the global polarization of ! hyperons,
which indicated fluid vorticity of ω ≈ (9 ± 1) × 1021 s−1 [1].
This result far surpasses the vorticity of all other known fluids
in nature. The discovery of global hyperon polarization and
three-dimensional (3D) simulations of the collision dynamics
have opened an entirely new direction of research in heavy-ion
physics. To understand the origin of the RHIC ! polariza-
tion measurements, we need to address two key theoretical
questions: (i) How do the global collision geometry and its
orbital angular momentum (OAM) induce the local flow vor-
ticity in heavy-ion collisions? (ii) How do fluid gradients act
as thermodynamic forces to polarize the spins of particles?
Resolving these two outstanding questions can provide crucial
insights into emergent many-body phenomena in quantum
chromodynamics (QCD).
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Extensive theoretical and phenomenological investigations
have been devoted to the effects of fluid vorticity on spin po-
larization [2–14] as well as the related transport phenomenon
involving spin [15–24]. Hydrodynamics plus hadronic trans-
port hybrid models and pure transport approaches can provide
good descriptions of the global polarization for ! and !̄.
However, the measured azimuthal distributions of polarization
showed an opposite oscillation pattern compared to most of
the theoretical results [25–29].

Most of the phenomenological studies assumed the !’s
polarization is directly related to the local thermal vorticity.
Recent works [30–35] proposed that the velocity shear tensor
and gradients of µB/T can contribute to the spin polarization
of ! and !̄. The effects of velocity shear tensor on the lon-
gitudinal polarization’s azimuthal dependence were studied
and found to be substantial [36–38]. These results suggest
that the hyperon’s polarization along the global orbital angular
momentum direction is a cleaner observable to study the fluid
vorticity evolution in heavy-ion collisions than the measure-
ments of the longitudinal polarization.

This paper will focus on the global ! polarization and
study how the measurements can set constraints on the early-
time longitudinal dynamics at the RHIC BES energies. In
Sec. II, we will introduce a new parametric 3D initial con-
dition model, generalized based on Ref. [39]. In particular,
we introduce a model parameter to vary the early-time lon-
gitudinal distribution of fluid vorticity. We explicitly impose
conservation of orbital angular momentum when mapping the
initial collision geometry to hydrodynamic fields. Employing
such a model enables us to quantitatively investigate how
the global polarization measurements can set constraints on
the early-time longitudinal dynamics in heavy-ion collisions.
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The sensitivity of initial longitudinal flow in the pion’s di-
rected flow is studied with the same model. In Sec. III, our
phenomenological study will show that a simultaneous de-
scription of ! global polarization and the slope of the pion’s
directed flow set strong constraints on the initial condition
parameter. The effects of different hydrodynamic gradients on
! polarization will be quantified at the RHIC BES energies.
We will conclude with some closing remarks in Sec. IV.

In this paper we use the conventions for the metric ten-
sor gµν = diag(1,−1,−1,−1) and the Levi-Civita symbol
ε0123 = 1.

II. THE THEORETICAL FRAMEWORK

A. Initial-state orbital angular momentum (OAM)
and mapping to hydrodynamic fields

The space-time structure of the initial collision dynam-
ics can be modeled by the 3D Monte Carlo–Glauber model
[39,40]. We can compute the system’s total angular momen-
tum based on the collision geometry before and after the
collision impact. Individual nucleon i has its position and
momentum {xµ

i , pµ
i }. We can compute the relativistic angular

momentum as a bivector,

Lαβ
init ≡ xα pβ − xβ pα, (1)

which has six independent components.
In fluid dynamics, we can define the angular momentum

density tensor,

Jµ,αβ = xαT µβ − xβT µα + Sµ,αβ . (2)

Here the total angular momentum is composed by orbital and
spin angular momentum tensors. We can write the orbital
angular momentum tensor as

Lµ,αβ = xαT µβ − xβT µα. (3)

According to [41], we can compute the system’s angular mo-
mentum tensor on a hypersurface as

Lαβ
fluid =

∫
d3σµLµ,αβ . (4)

We choose the hypersurface along the constant longitudinal
proper time τ =

√
t2 − z2,

Lαβ
fluid(τ ) =

∫
τ dx dy dηsLτ,αβ . (5)

In this work, we will exactly match the local energy
and momentum from initial collision geometry to the hydro-
dynamic fields at hydrodynamic starting time τ = τ0. This
matching is done at each point on the transverse plane, so that
it ensures the system’s OAM is preserved from the initial state
to the hydrodynamic phase,

Lαβ
init = Lαβ

fluid(τ0). (6)

We generalize the geometric-based 3D initial conditions in
Ref. [39]. Based on the Glauber geometry, the area density

of energy and longitudinal momentum at a given transverse
position is given by

d
d2xT

E (x, y) = [TA(x, y) + TB(x, y)]mN cosh(ybeam )

≡ M(x, y) cosh(yCM) (7)

d
d2xT

Pz(x, y) = [TA(x, y) − TB(x, y)]mN sinh(ybeam )

≡ M(x, y) sinh(yCM). (8)

Here TA(B)(x, y) is the participant thickness function in the
transverse plane, mN is the mass of the nucleon, and ybeam ≡
arccosh[

√
sNN/(2mN )] is the beam rapidity. We define the col-

liding nucleus A as the projectile with positive rapidity, while
the nucleus B is the target flying toward the −z direction. The
invariant mass and center-of-mass rapidity can be expressed
in terms of the participant thickness functions as follows:

M(x, y) = mN

√
T 2

A + T 2
B + 2TATB cosh(2ybeam ), (9)

yCM(x, y) = arctanh
[

TA − TB

TA + TB
tanh(ybeam )

]
. (10)

Requiring the energy and momentum to be conserved when
mapping the initial condition to hydrodynamic fields, we get
the following constraints on the system’s energy-momentum
tensor:

M(x, y) cosh[yCM(x, y)] =
∫

τ0dηs[T ττ (x, y, ηs) cosh(ηs)

+ τ0T τη(x, y, ηs) sinh(ηs)], (11)

M(x, y) sinh[yCM(x, y)] =
∫

τ0dηs[T ττ (x, y, ηs) sinh(ηs)

+ τ0T τη(x, y, ηs) cosh(ηs)]. (12)

Here T ττ (x, y, ηs) and T τη(x, y, ηs) are components of the
system’s energy-momentum tensor on a constant proper time
hypersurface with τ = τ0. We assume the initial energy-
momentum current has the following form:

T ττ (x, y, ηs) = e(x, y, ηs) cosh(yL ), (13)

T τη(x, y, ηs) = 1
τ0

e(x, y, ηs) sinh(yL ). (14)

We ignore the transverse expansion and set transverse com-
ponents T τx = T τy = 0 at τ = τ0. Here we parametrize a
nonzero longitudinal momentum with the rapidity variable

yL ≡ f yCM, (15)

where f ∈ [0, 1] is a parameter that controls the fraction
of longitudinal momentum attributed to the flow velocity.
When f = 0, yL = 0, the conditions reduce to the well-known
Bjorken flow scenario, which was used in Ref. [39]. This
longitudinal momentum fraction parameter f allows us to
vary the size of the initial longitudinal flow while keeping
the net longitudinal momentum of the hydrodynamic fields
fixed. Plugging Eqs. (13) and (14) into Eqs. (11) and (12),
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FIG. 1. Color contours show the initial energy density distribu-
tions in the x-ηs plane for 20–30% Au+Au collisions at 19.6 GeV
with the longitudinal rapidity fractions f = 0 (a) and f = 1 (b). The
grey arrows in panel (b) indicate the nonzero initial longitudinal flow
uη with yL = yCM in Eqs. (13) and (14). uη = 0 in panel (a).

we get

M(x, y) =
∫

τ0dηse(x, y, ηs) cosh(yL + ηs − yCM), (16)

0 =
∫

τ0dηse(x, y, ηs) sinh(yL + ηs − yCM). (17)

To satisfy these two equations, we can choose a symmetric
rapidity profile parametrization with respect to yCM − yL for
the local energy density [42],

e(x, y, ηs; yCM − yL )

= Ne(x, y) exp
[

− (|ηs − (yCM − yL )| − η0)2

2σ 2
η

× θ (|ηs − (yCM − yL )| − η0)
]
. (18)

Here the parameter η0 determines the width of the plateau and
the ση controls how fast the energy density falls off at the edge
of the plateau. In a highly asymmetric situation TA(x, y) '
TB(x, y), the center-of-mass rapidity yCM(x, y) → ybeam. To
make sure there is not too much energy density deposited be-
yond the beam rapidity, we set η0 = min[η0, ybeam − (yCM −
yL )]. The normalization factor Ne(x, y) is not a free parameter
in our model. It is determined by the local invariant mass
M(x, y),

Ne(x, y) = M(x, y)

2 sinh(η0) +
√

π
2 σηeσ 2

η /2Cη

, (19)

Cη = eη0 erfc

(

−
√

1
2
ση

)

+ e−η0 erfc

(√
1
2
ση

)

. (20)

Here erfc(x) is the complementary error function.
Figure 1 shows the two extreme scenarios for the energy

density and flow distributions of our 3D initial condition for

20–30% Au+Au collisions at 19.6 GeV with the longitudinal
rapidity fraction parameter f = 0 and f = 1. When f = 0,
the local net longitudinal momentum leads to a shift of the
energy density flux tube to the forward rapidity. With f = 1,
the longitudinal momentum Pz(x, y) is attributed to the longi-
tudinal flow velocity instead. Let us note here that ensuring
the net longitudinal momentum conservation introduces an
anticorrelation between the shifts of the energy density flux
tubes in the ηs direction and the size of the longitudinal flow
velocity. As we will see in the following section, varying
the parameter f results in strong dependencies in the !’s
polarization and the slope of the pion’s directed flow dv1/dy.
Therefore, these two experimental observables can tight con-
straints on the parameter f .

In addition to the initial energy and momentum distribu-
tions, the nonzero net baryon number current is considered
for heavy-ion collisions in the RHIC BES program. The net-
baryon number density current has the form of

Jµ
B (x, y, ηs) = nB(x, y, ηs) uµ(x, y, ηs). (21)

Here nB(x, y, ηs) represents the local net baryon density:

nB(x, y, ηs) = TA(x, y) f A
nB

(ηs) + TB(x, y) f B
nB

(ηs), (22)

where its space-time rapidity dependence is characterized by
asymmetric Gaussian functions f A

nB
and f B

nB
as in [43],

f A
nB

(ηs) = NnB

{
θ (ηs − ηB,0) exp

[
− (ηs − ηB,0)2

2 σ 2
B,out

]

+ θ (ηB,0 − ηs) exp
[
− (ηs − ηB,0)2

2 σ 2
B,in

]}
, (23)

f B
nB

(ηs) = NnB

{
θ (ηs + ηB,0) exp

[
− (ηs + ηB,0)2

2 σ 2
B,in

]

+ θ (−ηB,0 − ηs) exp
[
− (ηs + ηB,0)2

2 σ 2
B,out

]}
. (24)

The relevant parameters ηB,0, σB,in, and σB,out are determined
such that the net proton rapidity distribution is reproduced
[39]. We will use the same initial-state model parameters as
those in Table I of Ref. [39] and only vary the new longitu-
dinal momentum fraction parameter f in this work. We have
checked that the parameter f has negligible effects on most of
the global observables such as the pseudorapidity distributions
of particle yields, identified particles’ mean pT , and elliptic
flow coefficient at mid-rapidity.

B. Hydrodynamic evolution and fluid vorticity

In this work, we use the open-source 3D viscous hy-
drodynamic code package MUSIC [43–47] to simulate fluid
dynamical evolution of the system’s energy, momentum, and
net baryon density,

∂µT µν = 0, (25)

∂µJµ
B = 0, (26)

where the energy-momentum tensor is defined as

T µν = euµuν − (P + -).µν + πµν . (27)
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The system’s energy-momentum tensor is composed of the
local energy density e of the fluid cell, the thermal pres-
sure P, the fluid velocity uµ, and the shear stress tensor and
bulk viscous pressure πµν and -. The spatial projection ten-
sor is defined as .µν ≡ gµν − uµuν with the metric gµν =
diag(1,−1,−1,−1). Hydrodynamic equations are solved to-
gether with a lattice QCD based equation of state (EoS) at
finite baryon density, NEOS-BQS, in which the strangeness
neutrality condition and electric charge density nQ = 0.4nB
are imposed [48].

In this work, we do not consider viscous effects from bulk
viscous pressure, - = 0, nor the net baryon diffusion effects.
The shear stress tensor is evolved according to the following
equation of motion [49]:

τπDπ 〈µν〉 + πµν = 2η σµν − δπππµνθ + ϕ7π
〈µ
α πν〉α

− τπππ 〈µ
α σ ν〉α + λπ--σµν . (28)

Here D = uα∂α is the comoving time derivative and A〈µν〉 =
.µν

αβAαβ denotes symmetrized and traceless projections with

.
µν
αβ = 1

2 (.µ
α.ν

β + .ν
α.µ

β ) − 1
3.µν.αβ . (29)

In Eq. (28), η denotes the shear viscosity and τπ is the re-
laxation time, which controls the time scale for the shear
stress tensor to relax to its Navier-Stokes value. The ve-
locity shear tensor is defined as σµν ≡ 1

2 (∇µuν + ∇νuµ) −
1
3.µν (∇ · u), where ∇µ = .µα∂α . Additional second-order
gradient terms are included with their transport coefficients
{δππ ,φ7, τππ , λπ-} according to the DNMR hydrodynamic
theory [49,50]. We use a temperature and µB dependent
specific shear viscosity (η/s)(T, µB) in our hydrodynamic
simulations as in Ref. [39]. This (η/s)(T, µB) is constrained
by the elliptic flow measurements from the RHIC BES phase
I [51].

During hydrodynamic simulations, the fluid kinematic vor-
ticity tensor can be computed as

ωµν
K ≡ 1

2 (∂νuµ − ∂µuν ). (30)

One can also define the transverse kinematic vorticity tensor
with the spatial projection operator,

ωµν
K,⊥ ≡ 1

2 (∇νuµ − ∇µuν ), (31)

The transverse kinematic vorticity differs from the kinematic
vorticity tensor by the local acceleration,

ωµν
K,⊥ ≡ 1

2 (∂νuµ − ∂µuν ) − 1
2 (uνDuµ − uµDuν )

= ωµν
K − 1

2 (uνDuµ − uµDuν ). (32)

The thermal vorticity is defined as

ωµν
th ≡ 1

2

[
∂ν

(
uµ

T

)
− ∂µ

(
uν

T

)]

= 1
T

{
ωµν

K − 1
2T

[(∂νT )uµ − (∂µT )uν]
}

(33)

and the T -vorticity is

ωµν
T ≡ 1

2
[∂ν (Tuµ) − ∂µ(Tuν )]

= T
{
ωµν

K + 1
2T

[(∂νT )uµ − (∂µT )uν]
}
. (34)

The thermal and T -vorticity tensors receive opposite con-
tributions from the temperature gradient terms. We will
explore the theoretical uncertainty of computing the hyperon’s
spin polarization with different types of vorticity tensors in
Appendix A.

C. Evolution of the fluid vorticity near mid-rapidity

We define the collision impact parameter along the +x
direction and it points from the target nucleus to the pro-
jectile. In this convention, the global OAM points in the −y
direction. The ! hyperon’s global polarization is defined as
its polarization component along the global OAM direction,
which is related to the xz component of the thermal vorticity
tensor ωµν

th . It is instructive first to study the time evolution of
ωxz

th during the hydrodynamic evolution. We define the thermal
vorticity averaged over a given space-time volume weighted
by the local energy density,

〈ωµν
th 〉(τ ) =

∫ ηmax
s

ηmin
s

dηs
∫

d2x⊥eωµν
th

∫ ηmax
s

ηmin
s

dηs
∫

d2x⊥e
. (35)

For mid-rapidity fluid cells, we choose a symmetric space-
time rapidity window, ηmin

s = −0.5 and ηmax
s = 0.5.

As Fig. 1 illustrated, the longitudinal rapidity fraction pa-
rameter f controls how much of the global OAM is attributed
to the initial local fluid vorticity. We find that the initial aver-
aged fluid vorticity 〈ωµν

th 〉 has a good linear dependence on the
model parameter f .

Figure 2(a) shows the evolution of the averaged fluid vor-
ticity in 20–30% Au+Au collisions at 200 GeV with different
values of f . With the parameter f = 0, all the system’s OAM
is attributed to the shifts of energy density flux tubes along
the ηs direction. The entire system starts with zero fluid vor-
ticity ωxz

th at the beginning of hydrodynamic simulations. We
observe that the averaged 〈ωxz

th 〉 increases rapidly during the
first fm/c of the hydrodynamic evolution and saturates around
with a magnitude of 10−4 afterward. Our result suggests that
the pressure gradients inside the fluid can develop vorticity
within a timescale of 1 fm/c, but the size is small at 200 GeV.
With a nonzero f value in the initial-state model, a fraction
of the OAM is attributed to nonzero initial fluid vorticity. In
these cases, the averaged 〈ωxz

th 〉 decreases monotonically as
a function of τ . This qualitatively different time evolution
between f = 0 and f -= 0 indicates that the initial-state longi-
tudinal flow distribution dominates the fluid thermal vorticity
ωxz

th (related to the global polarization) in heavy-ion collisions.
Figure 2(b) shows the evolution of the averaged fluid vor-

ticity 〈ωxz
th 〉(τ ) in four centrality bins in Au+Au collisions at

200 GeV. With all the model parameter fixed, the initial fluid
vorticity is larger in the more peripheral centrality bin. This
centrality dependence is because of the large local asymmetry
between TA and TB in the peripheral collisions. The time
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FIG. 2. (a) Time evolution of the averaged thermal vorticity of
fluid with different longitudinal rapidity fraction f in mid-rapidity
20–30% Au+Au collisions at 200 GeV. (b) Time evolution of the
averaged thermal vorticity of fluid for four centrality bins in Au+Au
collisions at 200 GeV with f = 0.2.

evolution of 〈ωxz
th 〉(τ ) is qualitatively the same for all centrality

bins in the hydrodynamic phase. Our results have qualitatively
the same behavior as those in the transport models [15].

D. The averaged spin vector of fermions

For spin-1/2 fermions, the average spin vector (defined as
the Pauli-Lubanski vector) over the hypersurface 3µ can be
computed as [34]

Sµ(pµ) = 1
4m

∫
d33α pαAµ

∫
d33α pαn0(E )

. (36)

Here, the axial vector is defined as

Aµ = βn0(E )[1 − n0(E )]εµναγ

[
− 1

2β
pνω

th
αγ

− bi

βE
uν p⊥α∇γ

µB

T
− p2

⊥
E

uνQα
ρσργ

]
, (37)

where E = pµuµ, pµ
⊥ = .µν pν , and Qµν = − pµ

⊥ pν
⊥

p2
⊥

+ 1
3.µν .

Here εµρστ is the Levi-Civita tensor and we choose the con-
vention εtxyz = 1. We denote the term related to ∇γ (µB/T )
as the µB-induced polarization (µBIP) [33] and the last term
related to the velocity shear tensor as the shear-induced polar-
ization (SIP)1 [34,35]. Equations (36) and (37) assume that the
hypersurface fluid cells reach local thermal equilibrium. The
fermions emitted at early time of the evolution could receive
sizable out-of-equilibrium corrections.

In this work, we compute !’s and !̄’s spins on a con-
stant energy hypersurface with e = esw, on which fluid cells
are converted to hadrons via the Cooper-Frye prescription.
Hadrons are further fed to the URQMD hadronic transport.
Because URQMD does not distinguish hadrons’ spins in their
evolution, we assume the spins of ! and !̄ are frozen out at
e = esw in this work. The values of esw are adjusted to match
the proton yield in every collision energy at the RHIC BES
program [52]. We will study how our results depend on the
choice of esw in Appendix B.

The averaged polarization vector in the laboratory frame is

Pµ
lab(pµ) = Sµ(pµ)/〈S〉. (38)

In the RHIC experiments, the polarizations of ! and !̄ are
measured in the particle’s local rest frame,

Pt (pµ) = p0

m
Pt

lab(pµ) − .p · .Plab(pµ)
m

= 0 (39)

and

Pi(pµ) = Pi
lab(pµ) − .p · .Plab(pµ)

p0(p0 + m)
pi. (40)

In the !’s local rest frame, the time component of Pµ is zero,
which serves as a nontrivial test for the numerical implemen-
tations.

It is instructive to understand the time development of
the ! hyperon’s polarization during hydrodynamic evolution.
Based on Eqs. (36) and (38), we can compute the differential
polarization vector as a function of the hydrodynamic proper
time τ ,

Pµ
lab(pµ, τ ) = lim

.τ→0

1
〈S〉

1
4m

∫ τ+.τ

τ
d33α pαAµ

∫ τ+.τ

τ
d33α pαn0(E )

. (41)

We then boost the Pµ
lab(pµ, τ ) to the hyperon’s local rest frame

with Eq. (40) and denote it as Pµ(pµ, τ ). Please note that we
normalize the differential polarization vector by the number
of hyperons emitted within the .τ interval,

dN
dτ

(pµ, τ ) = lim
.τ→0

1
.τ

∫ τ+.τ

τ

d33α pαn0(E ). (42)

1We notice that the shear-induced polarization term has a different
expression in [35], where uν was replaced by a global time vector
tν = (1, 0, 0, 0) and the σργ included additional temperature gradi-
ents. While the exact form of the SIP is still under debate, we will
carry out calculations with the SIP definition in Eq. (37) in this work.
Our conclusions do not depend on the exact forms of the SIP term.
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FIG. 3. (a) The hyperon’s global polarization as a function of hy-
drodynamic proper time. (b) The hyperon production as a function of
τ . (c) The time development of !’s global polarization with different
fluid gradients. (d) The comparison of !’s and !̄’s global polariza-
tion developments. The results are for ! and !̄ with pT ∈ [0.5, 3.0]
GeV and |y| < 1 in 30–40% Au+Au collisions at 200 GeV with the
longitudinal rapidity fraction f = 0.2.

The momentum-integrated hyperon polarization at time τ can
be computed as a yield-weighted average,

Pµ(τ ) =
∫ d3 p

E Pµ(pµ, τ ) dN
dτ

(pµ, τ )
∫ d3 p

E
dN
dτ

(pµ, τ )
. (43)

To study Pµ(τ )’s contribution to the total hyperon polariza-
tion, we need to weight Pµ(τ ) with the number of hyperon
emitted at every time step τ ,

.Pµ

.τ
(τ ) =

Pµ(τ )
∫ d3 p

E
dN
dτ

(pµ, τ )
∫

dτ
∫ d3 p

E
dN
dτ

(pµ, τ )
. (44)

Figure 3(a) shows that the averaged hyperon polarization
as a function of the longitudinal proper time. The Py(τ ) drops

sharply during the first 0.5 fm/c, following the evolution
of averaged 〈ωxz

th 〉 in Fig. 2. Then Py(τ ) gradually increases
and reaches its peak around 2.5 fm/c in the hydrodynamic
evolution, which is from the ωtx

th ’s contribution in Eq. (37).
Figure 3(b) shows that the hyperon production is dominated
by the timelike surface elements (enhanced by the τ factor in
the Jacobian) in the Cooper-Frye particlization at late time.
By weighting Py(τ ) with the number of hyperons emitted at
every time step in Eq. (44), we find that most contributions
to the total polarization come from late time of the hydrody-
namic evolution, as shown in Figs. 3(c) and 3(d). Although
the early-time emitted hyperons are also largely polarized
and could receive sizable out-of-equilibrium corrections, their
net contributions to the total polarization remain small. Fig-
ure 3(c) demonstrates the effects of different fluid gradients
in Eq. (37) on the development of !’s global polarization
during hydrodynamic evolution. The thermal vorticity gives
the dominant contribution to !’s global polarization. The con-
tribution of shear-induced polarization (SIP) to the integrated
global polarization is negligible, as expected from its tensor
structure in Eq. (37). The µB/T gradients suppress the !’s
global polarization by roughly a constant over time.

Figure 3(d) further compares the time developments of !’s
and !̄’s global polarization in 30–40% Au+Au collisions at
200 GeV. With the nonzero baryon density in the fluid, ! hy-
perons receive larger contributions to their global polarization
from the fluid thermal vorticity than those to !̄. This effect is
caused by the µB’s dipolar transverse distribution in the for-
ward and backward space-time rapidities, which imprint the
shapes of the projectile and target nuclei’s nuclear thickness
functions as in Eq. (22). The µB-gradient-induced polarization
(µBIP) gives opposite contributions to ! and !̄. It cancels the
difference between ! and !̄ during the first two fm/c of the
evolution and contributes more to !̄ in the late stage.

III. POLARIZATION RESULTS AT THE RHIC
BES PROGRAM

Before we compare our calculations of the !’s and !̄’s
global polarization with the RHIC BES measurements, it is
essential to understand the effects of the longitudinal rapidity
fraction parameter f on various experimental observables. On
the one hand, we checked that this model parameter does
not have noticeable effects on particle rapidity distribution,
mean transverse momentum, or elliptic flow coefficient at
mid-rapidity. On the other hand, it shows strong sensitivity
to the !’s global polarization and the slope of rapidity depen-
dent π ’s directed flow, dv1/dy|y=0. These two experimental
observables are sensitive probes of the initial longitudinal flow
and the energy density’s space-time rapidity distribution.

Figure 4 shows that the magnitudes of !’s global polariza-
tion are very sensitive to the value of the longitudinal rapidity
fraction parameter f in our model. With f = 0, the entire
fluid starts with zero ωxz at the beginning of hydrodynamics.
The Py

! remains almost zero in the mid-rapidity region, which
is expected from the thermal vorticity evolution shown in
Fig. 2. We find that a constant f = 0.15 can give a good
description of the centrality dependence of the Py

! in Au+Au
collisions at 200 GeV, while the results with f = 0.5 already
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(a)

FIG. 4. The global ! polarization’s dependence on the initial-
state longitudinal rapidity fraction in Au+Au collisions at 200 GeV
compared with the STAR measurements [53]. The !’s global po-
larization is computed with all the gradient terms in Eq. (37). Panel
(a) shows the Py

!’s centrality dependence. Panel (b) presents the pT

differential Py
! in 20–60% Au+Au collisions. Panel (c) shows the

pseudorapidity dependence of Py
!.

FIG. 5. The directed flow of π+ as a function of rapidity with
different initial-state longitudinal rapidity fraction f for 10–40%
Au+Au collisions at 7.7 GeV compared with the STAR measure-
ment [54].

overestimate the STAR measurements by a factor of 2.
Figure 4(b) shows that the global polarization decreases
monotonically as a function of pT . Due to the presence of
the thermal distribution n0(p · u) in the expression for the
polarization, one can also anticipate that the global spin po-
larization can receive significant contribution from Aµ at
low momentum. At zero transverse momentum limit pµ =
(m, 0, 0, 0),

Py = Py
lab ∝ Ay = n0(m)(1 − n0(m))

[
− mωxz

th

− bi

(
− ux∂z µB

T
+ uz∂x µB

T

)

+ m
T

(−uxσ tz + uzσ tx )
]
. (45)

We have checked that the dominant numerical contribution
comes from the thermal vorticity tensor ωxz

th . Therefore, the
global polarization at zero transverse momentum is directly
related to the fluid thermal vorticity component ωxz

th , recov-
ering the nonrelativistic limit. For finite pT , the ωtx

th and ωtz
th

give additional relativistic contributions to !’s polarization. A
larger longitudinal rapidity fraction f in the initial condition
results in a larger global polarization Py at pT = 0 and a
steeper decrease as pT increases.

Finally, Fig. 4(c) shows the pseudorapidity dependence
of Py

!. In semiperipheral Au+Au collisions at 200 GeV, the
polarization Py

! has a plateau for |η| < 2 and increases in the
forward and backward rapidity regions. Different values of f
shift the magnitude of Py(η) by constants for |η| < 2.

Figure 5 shows a strong positive correlation between the
slope of the pion’s directed flow and the initial longitudinal
rapidity fraction parameter f in our model. As the value of f
varies from 0 to 1 in the model, there are fewer longitudinal
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shifts of initial energy density distribution, as shown in Fig. 1,
which result in a reduction of dipolar transverse deformation
in the initial energy density profile in forward and backward
space-time rapidities. Therefore, simulations with a large f
value give a small slope for the pion’s directed flow dv1/dy
at mid-rapidity. We find that f = 0.5 is preferred for Au+Au
collisions at 7.7 GeV compared with the STAR measurements.

FIG. 6. (a) The value of longitudinal rapidity fraction f as a
function of collision energy. (b) The slope of π+ directed flow at
y = 0, dv1/dy|y=0, compared with the STAR measurements [54].
(c),(d) The global ! polarization in 20–50% Au+Au collisions as a
function of collision energy. Calculations including different gradient
terms are compared with the STAR measurements [1]. The STAR
polarization data points are rescaled by 0.877 because of the latest
hyperon decay parameter α! [55].

FIG. 7. (a) The percentage fraction of orbital angular momentum
(OAM) in the mid-rapidity region |ηs| < 0.5 relative to the sys-
tem’s total OAM from the participant nucleons for 20–30% Au+Au
collisions at the RHIC BES energies. (b) The system’s total and
mid-rapidity OAM as a function of the collision energy.

The positive dv1/dy in the f = 1 case is generated by the
dipolar deformation of the initial state net baryon density in
the calculation.

Figures 4 and 5 show that the longitudinal rapidity fraction
parameter f can be tightly constrained by these two experi-
mental observables. Figure 6 shows the main results of this
work. We adjust the parameter f at every collision energy to
match the slope of the pion’s directed flow at mid-rapidity and
make predictions for !’s global polarization. We find that the
f increases from 0.15 to 0.5 as the collision energy goes down
from 200 to 7.7 GeV. A larger f is needed at lower collision
energy, indicating that more longitudinal momentum of the
system is attributed to the initial longitudinal flow velocity
at the lower collision energy. The initial density and velocity
profiles for hydrodynamics are further away from the Bjorken
boost-invariant assumption at the lower collision energy. With
the parameter f constrained by the pion’s directed flow mea-
surements, our model shows a reasonable description of the
global polarization of ! and !̄ in Fig. 6(c).

With the constrained f in our model, we can estimate the
amount of OAM left in the fluid at mid-rapidity after the
initial impact at different collision energies. Based on OAM
given by Eq. (4), Fig. 7 shows that only about 0.5% of the
total OAM remains in the mid-rapidity region of 20–30%
Au+Au collisions at 200 GeV. This relative fraction of OAM
increases as the collision energy goes down. At 7.7 GeV, the
relative fraction increases up to ≈15% of the total OAM in
the collision systems. Figure 7(b) shows that although the total
OAM increases with collision energy the absolute OAM in the
mid-rapidity region remains around 100–200 h̄ for 20–30%
Au+Au collisions from 7.7 to 200 GeV.

We make further comparisons with different gradient terms
in the global polarization observables in Figs. 6(c) and 6(d).
We note that thermal vorticity gives the dominant contribution
to the global ! polarization. The shear-induced polariza-
tion is negligible, while the µB-induced polarization flips the
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FIG. 8. (a),(b) The centrality dependence of the global ! polar-
ization with different gradient terms in Au+Au collisions at 200 GeV
compared with the STAR measurements [53]. (c) Model prediction
for Py

! at 7.7 GeV. The STAR polarization data points are rescaled by
0.877 because of the latest hyperon decay parameter α! [55].

ordering between !’s and !̄’s polarizations at all energies.
This result demonstrates that the µB distribution inside fluid
is important to determine the difference between the !’s and
!̄’s polarizations. This conclusion is inline with the finding in
Ref. [56].

In Figs. 8, 9, and 10, we further compare the centrality, pT ,
and pseudorapidity dependence of !’s and !̄’s global polar-

FIG. 9. (a),(b) The pT -differential polarization for ! with dif-
ferent gradient terms in 20–60% Au+Au collisions compared with
the STAR measurements [53]. (c) Model prediction for Py

!(pT ) at
7.7 GeV. The STAR polarization data points are rescaled by 0.877
because of the latest hyperon decay parameter α! [55].

ization with the STAR measurements at 200 GeV, respectively
[53].

Figures 8(a) and 8(b) show that our model calculations
provide a good description of the centrality dependence of the
STAR data at 200 GeV. The µBIP terms reverse the difference
between !’s and !̄’s global polarizations, which suggests that
the evolution net baryon density and its gradients are crucial
to understand the difference between !’s and !̄’s global po-
larizations. Figure 8(c) further show our prediction for the !
polarization at 7.7 GeV with all the gradient terms included.
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FIG. 10. (a),(b) The pseudorapidity dependence of the ! polar-
ization with different gradient terms in 20–60% Au+Au collisions
at 200 GeV compared with the STAR measurements [53]. (c) Model
prediction for Py

!(η) at 7.7 GeV. The STAR polarization data points
are rescaled by 0.877 because of the latest hyperon decay parameter
α! [55].

In Figs. 9(a) and 9(b), we find that our results with only
thermal vorticity have a weak pT dependence. According to
Eq. (37), the SIP terms introduce a linear dependence of Py

on the hyperon’s momentum. Because the total contribution
from the SIP terms vanishes when integrating over the mo-
mentum, they enhance the Py in small pT but suppress it for

pT > 1 GeV. Despite the significant uncertainties contained
in the current STAR measurements, our results with SIP show
a stronger pT dependence than the data. In the meantime, the
µBIP terms invert the ordering between ! and !̄. Figure 9(c)
shows our prediction at 7.7 GeV which has the same pT
dependence as those at 200 GeV.

Figures 10(a) and 10(b) show the pseudorapidity distri-
bution of the global polarization for ! and !̄ at 200 GeV
with different gradient terms. Both Py

! and Py
!̄

have a plateau
structure within |η| < 2. Using thermal vorticity results in a
slightly larger polarization for ! than that of !̄. In the forward
and backward rapidity regions |η| > 2, the magnitudes of Py

increase rapidly in our model. The µBIP terms give different
contributions to ! and !̄ and reduce the difference in the
forward and backward rapidity regions.

We further provide our model prediction with all the
gradient terms included for 7.7 GeV in Fig. 10(c). The
plateau window of !’s polarization shrinks as the collision
energy goes down. At 7.7 GeV, the Py

! remains approximately
constant within |η| < 1 and increases in the forward and back-
ward rapidity regions.

IV. CONCLUSIONS

In this work, we develop a hybrid dynamical framework,
which explicitly conserves energy, momentum, and orbital
angular momentum from the initial collision geometry to the
following hydrodynamic evolution. We introduce the longi-
tudinal rapidity fraction parameter f to vary how local net
longitudinal momentum is distributed to flow velocity and
energy density rapidity profile. This model parameter controls
the amount of fluid vorticity correlated with the initial OAM at
the beginning of the hydrodynamics. We study the evolution
of the fluid vorticity during the hydrodynamic phase and find
that the fluid expansion monotonically reduces the space-time
averaged fluid vorticity as a function of time. Therefore, the
initial distribution of fluid vorticity has a strong correlation
with vorticity values at particlization and the magnitude of the
hyperon’s global spin polarization.

Our phenomenological studies have shown that the pion’s
directed flow and global polarization of ! hyperons together
can set strong constraints on the size of initial longitudinal
flow velocity at different collision energies. By fitting the
STAR measurements, we quantify the amount of orbital an-
gular momentum left in the mid-rapidity fluid after the initial
impact. We find that about 0.5% of the total OAM remains
at mid-rapidity for 20–30% Au+Au collisions at 200 GeV,
and this relative fraction increases to ≈15% at 7.7 GeV. The
centrality, pT , and pseudorapidity dependence of Py

! show rea-
sonable agreement with the STAR measurements at 200 GeV.

We further quantify the effects of new gradient terms pro-
posed in Refs. [32–35] on the global spin polarization of !
hyperons. The global polarization Py

! receives the dominant
contribution from the fluid’s thermal vorticity at the particliza-
tion hypersurface. The shear-induced polarization introduces
a sizable pT dependence to !’s global polarization, while
its net effect on the integrated polarization is small. The
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µB-induced polarization can alter the ordering between !’s
and !̄’s global polarizations, which indicates that the differ-
ence between !’s and !̄’s global polarizations may not be
related to a nonzero magnetic field at freeze-out. A similar
conclusion is made in Ref. [56].
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APPENDIX A: ESTIMATE SPIN POLARIZATION
WITH DIFFERENT VORTICITY TENSORS

Within fluid dynamical evolution, different types of vortic-
ity tensors can be defined, such as those in Eqs. (30)–(34). The
authors in [28] proposed that calculating ! spin polarization
with the T -vorticity could reproduce the correct azimuthal
dependence of the longitudinal polarization measured by the
STAR Collaboration [57]. It is possible that the hyperon’s spin
polarization could be related to these fluid vorticity tensors. In
this Appendix, we will compute the !’s global polarization
with the vorticity tensors defined Eqs. (30)–(34),

Sµ(pµ) = − 1
8m

∫
d33α pαn0(E )(1 − n0(E ))εµναγ pν6αγ∫

d33α pαn0(E )
,

(A1)

where 6αγ = ω
αγ
K
T ,

ω
αγ
K,⊥
T ,ω

αγ
th ,

ω
αγ
T

T 2 [28]. We interpret their
relative variations as the theoretical uncertainties in our calcu-
lations. The SIP’s and µBIP’s contributions remains the same
as those shown in Figs. 8–10.

Figure 11 shows the centrality, pT , and pseudorapid-
ity dependence of global ! polarization computed with
different types of vorticity tensor. The kinematic, thermal, and

FIG. 11. The global ! polarization computed with different
vorticity tensors with f = 0.15 in Au+Au collisions at 200 GeV
compared with the STAR measurements [53]. The STAR polariza-
tion data points are rescaled by 0.877 because of the latest hyperon
decay parameter α! [55].
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FIG. 12. The global ! polarization’s dependence on the switch-
ing energy density in Au+Au collisions at 200 GeV compared with
the STAR measurements [53]. The STAR polarization data points are
rescaled by 0.877 because of the latest hyperon decay parameter α!

[55].

T vorticity tensors give very close results of Py
! as functions

of centrality, pT , and pseudorapidity within |η| < 2. These
results means that the temperature gradients do not generate
a significant contribution to the azimuthally integrated global
polarization. The transverse kinematic vorticity differs from
the kinematic vorticity by the fluid acceleration, as shown in
Eq. (31). The difference between the results from these two
vorticity tensors shows that the fluid acceleration suppresses
the overall magnitude of global polarization by ≈40%. This
suppression grows with pT , as shown in Fig. 11(b).

APPENDIX B: THE FREEZE-OUT ENERGY DENSITY
DEPENDENCE ON !’S GLOBAL POLARIZATION

In hydrodynamic plus hadronic transport models, the spin
polarizations of ! and !̄ hyperons are often computed at
the particlization hypersurface but not at kinetic freeze-out
because it is difficult to track and model the spin infor-
mation in the microscopic hadronic transport models. In
this Appendix, we explore the sensitivity of the !’s global
polarization on the particlization energy density of the hyper-
surface.

Figure 12 shows how the global ! polarization depends
on the switching energy density. The overall magnitudes of
the global polarization of ! decrease with the esw, which is
the consequence of smaller fluid gradients on the switching
hypersurface with lower esw. The gradients of temperature
and flow velocity decrease roughly as 1/τ at late time of
the hydrodynamic evolution [58]. Because the fireball lives
longer with a lower switching energy density, the magnitudes
of thermal vorticity tensors decrease with esw, as indicated in
Fig. 2.

Figure 12(a) shows that the Py
! as function of centrality

is 5–10% smaller with the smaller esw. In addition to the
overall suppression, the shape of Py

!(pT ) gets flatter at lower
switching energy density as shown in Fig. 12(b). The change
in the pT dependence is caused by a larger radial flow as
the fireball evolves longer to the lower esw hypersurface. The
stronger radial flow blueshifts more ! to high pT , flattening
the Py

!(pT ). Finally, Fig. 12(c) shows that a lower esw hyper-
surface results in an overall suppression of Py

!(η) with the
η-dependence roughly unchanged.
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