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We present a dynamical description of (anti)proton number cumulants and correlation functions in central
Au-Au collisions at

√
sNN = 7.7–200 GeV by utilizing viscous hydrodynamics simulations. The cumulants of

proton and baryon number are calculated in a given momentum acceptance analytically, via an appropriately
extended Cooper-Frye procedure describing particlization of an interacting hadron resonance gas. The effects of
global baryon number conservation are taken into account using a generalized subensemble acceptance method.
The experimental data of the STAR Collaboration are consistent at

√
sNN ! 20 GeV with simultaneous effects of

global baryon number conservation and repulsive interactions in the baryon sector, the latter being in line with the
behavior of baryon number susceptibilities observed in lattice QCD. The data at lower collision energies show
possible indications for sizable attractive interactions among baryons. The data also indicate sizable negative
two-particle correlations between antiprotons that are not satisfactorily described by baryon conservation and
excluded volume effects. We also discuss differences between cumulants and correlation functions (factorial
cumulants) of (anti)proton number distribution, proton versus baryon number fluctuations, and effects of the
hadronic afterburner.
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I. INTRODUCTION

Proton number fluctuations are one of the key observables
in the beam energy scan (BES) program at RHIC [1]. The
fluctuations are a sensitive probe of the QCD phase structure
at finite baryon densities [2–5]; the hypothetical QCD critical
point in particular is thought to be very sensitive [6–8]. The
STAR Collaboration has recently presented measurements of
(net-)proton number cumulants up to fourth order from BES-I
[9,10]. The measurements, which still have considerable error
bars, indicate a possible nonmonotonic energy dependence
of the net-proton kurtosis. It is expected that BES-II results,
which will have smaller statistical uncertainties, will provide
a more definitive result. Fluctuation measurements are also
being performed by other heavy-ion experiments, including
the ALICE Collaboration at the LHC [11], the NA61/SHINE
Collaboration at SPS [12], and the HADES Collaboration at
GSI [13].
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From the theory side, the heavy-ion collisions are usually
described by relativistic hydrodynamics [14–17]. At a so-
called particlization stage [18], the QCD fluid is transformed
into an expanding gas of hadrons and resonances, based on
the picture of grand-canonical hadron resonance gas (HRG).
Indeed, this picture works quite well to describe bulk proper-
ties of measured hadrons, such as spectra and flow, in a broad
range of collision energies [19–23]. However, a quantitative
theoretical analysis of fluctuations in this picture is challeng-
ing. In contrast to mean hadron yields, the event-by-event
fluctuations, especially the high-order cumulants, are influ-
enced by several effects which make direct application of the
grand-canonical statistical mechanics questionable. The most
important effects are the global conservation laws [24–28] and
the smearing of fluctuations due to momentum cuts [29,30].
Other mechanisms include volume fluctuations [31–33] or
diffusion in the hadronic phase [34,35].

The two main issues mentioned above were recently
addressed in Ref. [36] at LHC energies via a general-
ized Cooper-Frye procedure called the subensemble sampler,
utilizing the approximately boost invariant nature of heavy-
ion collisions at the LHC parametrized by the blast-wave
model. In this paper we extend this method to the RHIC-
BES energies. This is achieved in the following way. First,
we relax the assumption of boost invariance. Instead, we
employ realistic particlization hypersurfaces obtained from
(3+1)-dimensional viscous hydrodynamics simulations using
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code MUSIC [37–39]. Second, we calculate the cumulants of
(anti)proton number distribution emitted from the hypersur-
face subject to global baryon conservation analytically (rather
than using Monte Carlo as in Ref. [36]). For this purpose
we use a recently developed subensemble acceptance method
2.0 (SAM-2.0) [40], which allows one to perform a cor-
rection of cumulants of accepted protons for the effect of
exact global baryon conservation analytically. As a result,
we are able to calculate cumulants of (anti)proton number
distribution emerging from hydrodynamics to high orders
without the need to generate large numbers of Monte Carlo
events. The results are then confronted with the experimental
data of the STAR Collaboration.

The paper is organized as follows. Section II presents the
method to calculate cumulants of proton and baryon number
distribution at particlization. The calculation results for Au-
Au collisions at RHIC-BES energies are presented in Sec. III.
Discussion and summary in Sec. IV close the paper.

II. CUMULANTS FROM HYDRODYNAMICS

We employ relativistic viscous hydrodynamics to simulate
the evolution of a system created in 0–5% Au-Au collisions at
RHIC, using the open-source code MUSIC v3.0 [19,37,41]. We
perform hydrodynamic simulations with event averaged initial
density profiles at each collision energy, which describes the
expansion of quark-gluon plasma created in the earlier stage
of the collision and its transition to a hadron gas. Cumulants
of proton and baryon number distributions are computed at
the end of hydrodynamic evolution at particlization.

A. Hydrodynamics

The three-dimensional initial conditions are taken from
Ref. [39]. They are based on the Glauber collision geome-
try, employ local energy and momentum conservation, and
are calibrated to reproduce the measured proton transverse
momentum distributions and midrapidity yields at different
collision energies. This makes it suitable for the analysis of
second- and higher-order proton cumulants, which we per-
form here.

The hydrodynamic evolution is calculated in MUSIC v3.0 by
numerically solving the equations corresponding to energy-
momentum and baryon number conservation, as well as
Israel-Stewart-type relaxation equations describing the vis-
cous stress tensor. We include shear viscous corrections but
neglect bulk viscous corrections and baryon diffusion. We
employ a NEOS-BSQ1 equation of state from Ref. [42]
which interpolates between the lattice QCD equation at large
temperatures [43], described via the Taylor expansion, and
hadron resonance gas at low temperatures. This equation of
state imposes vanishing net strangeness, nS = 0, and a fixed
charge-to-baryon ratio, nQ/nB = 0.4, in every fluid cell. The
shear viscosity to entropy baryon ratio is temperature and
chemical-potential dependent; the details can be found in

1NEOS-BSQ stands for nuclear equation of state with baryon num-
ber, strangeness, and electric charge.

Fig. 4 of Ref. [39]. The hydrodynamic equations are solved
in Milne coordinates, (τ, x, y, ηs), and evolved in τ until all
computational cells reach a threshold energy density εsw for
particlization.

B. Cumulants of baryon-proton number distribution
at particlization

The hydrodynamic evolution ends at a particlization hyper-
surface σ (x) of constant “switching” energy density εsw. The
value of εsw = 0.26 GeV/fm3 has been adjusted in Ref. [39]
to fit bulk observables and it is used here throughout. Note
that a further improvement of the proton spectra at

√
sNN !

39 GeV can be achieved by increasing the value of εsw at those
energies [44]. In our calculations we observed a mild effect
of a changing εsw on proton cumulants (this is detailed in
Appendix A), mainly in the form of stronger excluded volume
effects at larger densities; thus we keep εsw = 0.26 GeV/fm3

at all energies for consistency.
The QCD fluid is transformed at particlization into a sys-

tem consisting of hadrons and resonances. The momentum
spectrum for hadron species j emerging from hydrodynamics
is given by the Cooper-Frye formula [45]2

ωp
dNj

d3 p
=

∫

σ (x)
dσµ(x) pµ f j[uµ(x)pµ; T (x), µ j (x)], (1)

with

f j[uµ pµ; T (x), µ(x)] = d j λ j (x)
(2π )3

exp
[
µ j (x) − uµ(x)pµ

T (x)

]
.

(2)

Here λ j (x) describes deviations from the ideal gas dis-
tribution function due to interactions. We assume that these
deviations are momentum independent. In the ideal HRG limit
one has λ j (x) = 1. On the other hand, this factor is different
from unity in case of a nonideal HRG. Here we employ
the excluded volume HRG (EV-HRG) model with repulsive
baryon-baryon interactions [47,48], which has been observed
to provide an improved description of the lattice QCD data
on baryon number susceptibilities near the pseudocritical tem-
perature TPC ∼ 155 MeV at µB = 0 compared to the standard
ideal HRG. This model has been used in our previous study of
proton fluctuations for the LHC energies [36] and we refer to
that work for further details on the EV-HRG model. We also
perform calculations in the ideal HRG limit to establish the
relevance of baryon repulsion in the investigated observables.
We use the open source package THERMAL-FIST v1.3 in all our
HRG model calculations [49].

The particlization hypersurfaces, consisting of a list of fluid
elements each containing the normal four-vector dσµ, the fluid
four-velocity uµ, as well as energy and baryon densities, are
available via Ref. [50]. For each hypersurface element we re-
calculate the values of the temperature T (x) and the chemical
potential µB(x) such that the HRG model equation of state at

2We neglect the shear viscous corrections to particle momentum
distributions at particlization, which only has a small influence on
the high-pT tail of the distribution [46].
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these T -µB values matches the energy and baryon densities
corresponding to this hypersurface element. We also enforce
nQ/nB = 0.4 and nS = 0 for each fluid element to determine
the electric charge and strangeness chemical potentials µQ
and µS .

With the numerical output from MUSIC the Cooper-Frye
integral becomes a sum over all fluid elements:

ωp
dNj

d3 p
=

∑

i∈σ

δσµ(xi ) pµ f [uν (xi )pν ; T (xi ), µ j (xi )]. (3)

In what follows we neglect the modification of the shape
of (anti)baryon spectra due to resonance decays and evolution
in the hadronic phase. All baryons are modeled as thermal
particles with nucleon mass mN = 0.938 GeV emitted from
a Cooper-Frye hypersurface. These simplifications make it
feasible to evaluate proton number cumulants analytically. We
relax these assumptions in the Appendix B using a Monte
Carlo approach and show that they have only small influence
on the resulting proton number cumulants, at least up to the
third order. Equation (3) is sufficient to calculate the number
of (anti)baryons in a given momentum acceptance by inte-
grating over the momenta. To calculate fluctuations, however,
we need a generalization beyond the standard Cooper-Frye
prescription.

Let us first calculate the cumulants in the grand-canonical
limit, i.e., neglecting the exact global conservation of the
baryon number. We shall correct the cumulants for the baryon
number conservation via the recently developed method of
Ref. [40] afterwards. We further assume that the dynamical
correlation length ξ that defines the range of correlations is
smaller than any other relevant scale, such that one can assume
ξ → 0. This is in analogy to the model of critical fluctuations
at freeze-out studied in Refs. [29,51]. In our case, where par-
ticle number correlations in the grand-canonical ensemble are
attributed purely to the excluded volume effect, the emission
of particles from all the hypersurface elements proceeds inde-
pendently. To calculate the cumulants of (anti)baryon number
distribution inside a particular momentum acceptance it is
thus sufficient to sum up contributions from all the volume
elements independently. The number of (anti)baryons emitted
from a hypersurface element i fluctuates in accordance with
the grand-canonical susceptibilities χB±

of (anti)baryon num-
ber fluctuations. The corresponding cumulants, therefore, read

δκB±,GCE
n (xi ) = δV eff

i [T (xi )]3 χB±
(xi ). (4)

Here δV eff
i = δσµ(xi ) uµ(xi ) is the effective volume of a hy-

persurface element i. The probability pacc(xi; -pacc) that an
(anti)baryon emitted from a fluid element i ends up in a
momentum acceptance -pacc can be calculated from the
Cooper-Frye formula (3):

pacc(xi; -pacc)

=

∫
p∈-pacc

d3 p
ωp

δσµ(xi ) pµ f [uν (xi )pν ; T (xi ), µ j (xi )]
∫ d3 p

ωp
δσµ(xi ) pµ f [uν (xi )pν ; T (xi ), µ j (xi )]

. (5)

The contribution δκB±,GCE
n (xi; -pacc) of element i to the

nth-order cumulant of the accepted (anti)baryons is obtained

by convoluting the cumulants {δκB±,GCE
l (xi )}, l = 1 . . . n with

the binomial distribution with probability pacc(xi; -pacc). One
obtains (see, e.g., Ref. [52])

δκB±,GCE
n (xi; -pacc)=

n∑

l=1

δκB±,GCE
l (xi ) Bn,l

(
φ′

t , . . . , φ
(n−l+1)
t

)
.

(6)

Here φ ≡ φ(t, pacc) = ln(1 − pacc + et pacc) and Bn,l are par-
tial Bell polynomials.

In the same way we can also obtain the (anti)baryon cu-
mulants δκB±,GCE

n (xi; -pacc) outside the acceptance -pacc,
i.e., for p (∈ -pacc. This is achieved by substituting
pacc(xi; -pacc) → 1 − pacc(xi; -pacc) in Eq. (6).

To obtain (anti)proton number cumulants one can ap-
ply the arguments of Kitazawa and Asakawa [53,54]: Based
on the isospin randomization in the hadronic phase, the
(anti)proton cumulants are obtained by the binomial filtering
of the (anti)baryon cumulants. Note that this argument does
not necessarily require a long-lasting hadronic phase with
many pion-nucleon scatterings to randomize the isospin. The
binomial filtering is valid also in the case of models where
primordial correlations between baryons do not depend on the
isospin. This is the case for the EV-HRG model studied here,
where the same excluded volume parameter is used for all
baryon pairs, regardless of their isospins. The probability that
a randomly chosen (anti)baryon is an (anti)proton is simply
the ratio between the mean numbers of (anti)protons and
(anti)baryons, q(xi ) = 〈Np± (xi )〉

〈NB± (xi )〉 . The value of q(xi ) is calcu-
lated using the HRG model in each hypersurface element. To
be consistent with the experimental conditions realized in the
STAR experiment, we include all weak decay contributions
[44]. In practice, this yields q(xi ) ≈ 1/2 in most cases.

We shall use the binomial distribution argument to obtain
the joint baryon-proton cumulants δκ

B±,p±

n,m (xi; -pacc) in terms
of baryon cumulants δκB±,GCE

n (xi; -pacc) and the proton-to-
baryon ratio q(xi ), for each hypersurface element xi. We
calculate the joint cumulants because these quantities will
later be needed to apply the correction for baryon number con-
servation using the method of Ref. [40]. Given the probability
P(NB) to have NB baryons the joint probability P(NB, Np) to
have NB baryons and Np protons is

P(NB, Np) = B(NB, Np; q) P(NB), (7)

where

B(NB, Np; q) =
(

NB

Np

)
qNp (1 − q)NB−Np (8)

is the binomial distribution.
The joint cumulant generating function for NB and Np reads

G(tB, tp) = ln〈etBNB etpNp〉

=
∑

NB

P(NB)etBNB
∑

Np

B(NB, Np; q) etpNp

=
∑

NB

P(NB)eγ (tB,tp,q) NB

= GB[γ (tB, tp, q)]. (9)
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Here GB is the cumulant generating function of the NB distri-
bution and

γ (tB, tp, q) = tB + ln[1 − (1 − etp )q]. (10)

To obtain Eq. (11) we used an identity∑NB
Np=0 B(NB, Np; q) etpNp = (1 − q + et q)NB .

The joint cumulants κ
B+,p+

n,m of the baryon-proton distribu-
tion correspond to the Taylor expansion coefficients of the
generating function G(tB, tp) around tB = tp = 0. The corre-
sponding derivatives of G(tB, tp) are evaluated with the help
of Faà di Bruno’s formula and expressed in terms of the
cumulants κB

n of the NB distribution:

κB+,p+

n,m = κB+

n , m = 0, (11)

κB+,p+

n,m =
m∑

k=1

κB+

n+k Bm,k
(
γ ′

tp
, . . . , γ (m−k+1)

tp

)
, m ! 1. (12)

The same procedure applies for the joint cumulants of
the antiproton-antibaryon distribution. Rewriting Eq. (12) for
the cumulants corresponding to the accepted particles emitted
from volume element xi we get

δκB±,p±,GCE
n,m (xi; -pacc)

= δm,0 δκB±,GCE
n (xi; -pacc)

+
m∑

k=1

δκB±,GCE
n+k (xi; -pacc) Bm,k (γ ′

tp
, . . . , γ (m−k+1)

tp
).

(13)

The joint cumulants of all accepted (anti)baryons/(anti)
protons are obtained by summing over the contributions of
all the hypersurface elements:

κB±,p±,GCE
n,m (-pacc) =

∑

i∈σ

δκB±,p±,GCE
n,m (xi; -pacc). (14)

The joint net-baryon/net-proton cumulants can be obtained
straightforwardly in the case when there are no grand-
canonical correlations between baryons and antibaryons. This
is the case for the EV-HRG model used here. The cumulants
read

κB,p,GCE
n,m (-pacc) = κB+,p+,GCE

n,m (-pacc)

+ (−1)n+m κB−,p−,GCE
n,m (-pacc). (15)

We also list here, for completeness, the joint net-baryon/
proton and net-baryon/antiproton cumulants

κB,p+,GCE
n,m (-pacc) = κB+,p+,GCE

n,m (-pacc)

+ δm,0 (−1)n κ
B−,p−,GCE
n,0 (-pacc), (16)

κB,p−,GCE
n,m (-pacc) = δm,0 κ

B+,p+,GCE
n,0 (-pacc)

+ (−1)n κB−,p−,GCE
n,m (-pacc). (17)

The joint net-baryon/(net-)(anti-)proton cumulants outside
the acceptance are obtained in the same fashion, by substitut-
ing pacc(xi; -pacc) → 1 − pacc(xi; -pacc).

C. Correction for global baryon conservation

To account for the exact global baryon conservation we
apply a generalized version of the subensemble acceptance
method (SAM) developed in Ref. [40]. The SAM-2.0 allows
one to calculate the effect of global conservation of a con-
served quantity, such as net baryon number, on the cumulants
of arbitrary nonconserved quantity, such as (net) proton num-
ber. The original SAM [55,56] was formulated for uniform
thermal systems in the thermodynamic limit and acceptances
in the coordinate space. The SAM-2.0 extends the method to
nonuniform systems and momentum space acceptances. The
method takes joint net-baryon/(net-)(anti-)proton number cu-
mulants calculated inside and outside the acceptance without
the account of exact baryon conservation and produces the
cumulants that are subject to global baryon conservation, i.e.,
it provides a mapping:

κB,p,CE
n,m (-pacc) = S̃

[
κB,p,GCE

n,m (-pacc), κB,p,GCE
n,m (-pacc)

]
.

(18)

Here -pacc corresponds to particles outside the momentum
acceptance -pacc. The details of the procedure to calculate the
mapping S̃ are presented in Ref. [40]. The grand-canonical
cumulants κ

B,p,GCE
n,m (-pacc) and κ

B,p,GCE
n,m (-pacc) entering the

right-hand side of Eq. (19) were calculated in the previous
subsection.

It is assumed in SAM-2.0 that the system is sufficiently
large, such that the means of all the relevant quantities
correspond to the maximum of probability distribution (see
Ref. [40] for details). This assumption is realized in cen-
tral Au-Au collisions at RHIC-BES. The second assumption
of the method is that the distributions inside and out-
side the acceptance are independent, i.e., that cumulants
κ

B,p,GCE
n,m (-pacc) and κ

B,p,GCE
n,m (-pacc) are additive, such that

κ
B,p,GCE
n,m = κ

B,p,GCE
n,m (-pacc) + κ

B,p,GCE
n,m (-pacc). This assump-

tion is satisfied exactly in the ideal HRG model and to a high
accuracy within the EV-HRG model at RHIC-BES energies.
As discussed in Ref. [40], even in an extreme case where the
additivity of cumulants does not hold, the SAM-2.0 results
exhibit only small deviations from the exact result, thus the
possible deviations from the true results for the EV-HRG
model applications considered in the present paper are ex-
pected to be negligible. The results presented in the next
section that incorporate the effect of global baryon conserva-
tion have all been obtained using SAM-2.0. A MATHEMATICA
notebook which calculates the mapping S̃ is available via
Ref. [57] and used in this paper.

III. RESULTS

Calculations are performed for 0–5% Au-Au collisions
for collision energies

√
sNN = 7.7, 14.5, 19.6, 27, 39, 62.4,

and 200 GeV. The particlization hypersurfaces, which at all
collision energies correspond to the switching energy density
of εsw = 0.26 GeV/fm3, are available via Ref. [50]. For ref-
erence, the energy density εsw = 0.26 GeV/fm3 corresponds
to the particlization temperature Tsw = 150.6 MeV at µB = 0.
In Appendix A other values of εsw are explored for

√
sNN =

200 GeV which show that the results exhibit mild dependence
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FIG. 1. Net proton rapidity distributions in 0–5% Au-Au col-
lisions at various RHIC beam energy scan collision energies. The
experimental data of the STAR Collaboration [58–60] are shown by
the symbols.

on εsw. The net proton, proton, and antiproton cumulants are
calculated in the relevant momentum acceptances analytically,
following the method presented in the previous section. We
perform separate calculations employing EV-HRG and ideal
HRG models, and study the behavior of cumulants with and
without the correction for baryon number conservation. These
different configurations allow us to establish the relevance
of repulsive interactions and global baryon conservation. In
Appendix B we perform a cross-check of the analytic results
for the case of the ideal HRG model by means of Monte Carlo
sampling of hadrons at particlization.

A. Rapidity distributions

First we look at the net proton rapidity distributions. To
calculate the net proton dN/dy we partition the rapidity axis
into bins. The rapidity density in a given bin then corresponds
to the first net proton cumulant evaluated for that bin. As
dN/dy is determined by the mean numbers of particles, it is
unaffected by the correction for global baryon conservation.
We observe that net proton rapidity distributions calculated in
the EV-HRG and ideal HRG models virtually coincide. This
is attributed to the fact that we match the net baryon density
at particlization to the MUSIC output in both scenarios, which
leads to virtually identical mean numbers of net protons.

The resulting rapidity distributions are depicted in Fig. 1
for various collision energies. The results agree qualitatively
with earlier MUSIC calculations in Ref. [39]. The calculations
also agree within errors with the midrapidity net proton yields
measured by the STAR Collaboration [58–60]. The rapidity
dependence of the net proton distribution agrees qualitatively
with the experimental data of the BRAHMS Collaboration
for

√
sNN = 62.4 and 200 GeV [61,62], although the data for√

sNN = 200 GeV are notably overestimated by the model.
The results are also qualitatively consistent with the mea-
surements of the NA49 Collaboration for Pb-Pb collisions at√

sNN = 8.8 and 17.3 GeV [63].

The net proton rapidity distributions show peaks in the
forward-backward rapidity regions at all collision energies
except for 7.7 GeV. This reflects the fact that large rapidi-
ties probe baryon-rich matter. It is observed, for instance,
that larger longitudinal space-time rapidities are characterized
by larger values of the baryochemical potential µB at par-
ticlization. This underlines the fact that it is impossible to
characterize the whole fireball by a single pair of temperature
T and baryon chemical potential µB but instead one has to
integrate over different µB-T values encompassing the hyper-
surface.

B. Net proton cumulants

The leading four cumulants of net proton distribution have
been measured and presented by the STAR Collaboration in
Ref. [9] as a function of collision energy. The measurements
were performed in the momentum acceptance |y| < 0.5 and
0.4 < pT < 2.0 GeV/c. Here we calculate these cumulants in
the same momentum acceptance. The results are presented in
Fig. 2. The calculations are performed within the EV-HRG
model with (solid red lines) and without (dotted black lines)
the effect of exact baryon number conservation. We also per-
form a calculation within the ideal HRG model but including
the effect of baryon number conservation (dash-dotted red
line). The dashed blue lines correspond to the uncorrelated
(anti)proton baseline, which is given by the Skellam distri-
bution, i.e., κ1[p − p̄] = κ3[p − p̄] = 〈Np − Np̄〉 and κ2[p −
p̄] = κ4[p − p̄] = 〈Np + Np̄〉.

The first net-proton cumulant is unaffected by the cor-
rection for global baryon conservation. It is also virtually
unaffected by the excluded volume effects due to the matching
of the EV-HRG model equation of state to the net baryon
density at particlization. The model provides a reasonable
description of the experimental data, with the possible excep-
tion of the 19.6- and 27-GeV points. The description of these
data points can be improved by fine-tuning the simulation
parameters.

The second, third, and fourth cumulants are affected by
both the excluded volume and baryon conservation, the latter
effect being the stronger of the two. Both effects suppress the
cumulants, and the suppression is stronger for higher-order
cumulants and lower collision energies. The effect of excluded
volume is stronger at lower collision energies because they
probe baryon-rich matter with smaller interparticle distances
between baryons at particlization. The baryon conservation
plays a larger role at smaller energies because a larger fraction
of the full baryon number ends up in the midrapidity region,
which is where the measurements are performed. Compared
to the STAR data, the calculation with simultaneous excluded
volume and baryon conservation effects generally yields the
best agreement. The agreement is not perfect everywhere; in
particular κ2[p − p̄] is notably overestimated by the model at√

sNN ! 19.6 GeV. This is a reflection of an overestimated
mean number of protons and antiprotons produced by the
model compared to the data. There are different possible
reasons for this. For instance, if weak decay contributions
are overestimated in the model calculation, this may ex-
plain the discrepancy. Although it has been argued that the

014904-5
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FIG. 2. Collision energy dependence of the leading four net proton cumulants in 0–5% Au-Au collisions. The calculations are performed
using EV-HRG with (solid red lines) and without (dotted black lines) the effect of exact baryon number conservation. The dash-dotted red
lines correspond to calculations including exact baryon number conservation but neglecting the excluded volume. The dashed lines correspond
to the Skellam distribution baseline, i.e., κ1[p − p̄] = κ3[p − p̄] = 〈Np − Np̄〉 and κ2[p − p̄] = κ4[p − p̄] = 〈Np + Np̄〉. The experimental data
of the STAR Collaboration [9] are shown by the red symbols with error bars.

integrated yields of (anti)protons measured by STAR contain
essentially all weak decay contributions [44], the situation
might be different in the measurements of fluctuations. We
performed calculations of the cumulants neglecting all weak
decay contributions, and indeed obtain an improved descrip-
tion of the data at some of the energies, although in this
case the data are generally underestimated by the model. We
did observe, however, that weak decays affect only mildly
the various volume-independent ratios of cumulants, thus we
keep all weak decay contributions in all our further results
throughout this paper. Other potential reasons that may con-
tribute to the overestimation of (anti)proton yields include
neglecting baryon annihilation in the hadronic phase [64], or
a reflection of the so-called thermal proton yield anomaly in
the HRG model [65,66]. As all these possible mechanisms
are not linked directly to the QCD equation of state, we shall
not study them in detail here but instead look at observables
where the effect of describing the total (anti)proton yield is
minimized.

We thus analyze the following ratios of cumulants:

Sσ 3

M
≡ κ3

κ1
, κ σ 2 ≡ κ4

κ2
. (19)

These two ratios have a baseline of unity in the (Skellam) limit
of an uncorrelated production of protons and antiprotons, at

any collision energy. Deviations from unity can be a signal
of new physics; in particular, the QCD critical point has been
predicted to have a strong influence on these non-Gaussian
measures of net proton number fluctuations [7,67,68]. In this
sense, Sσ 3/M is more convenient than the commonly adopted
normalized skewness sσ 2 ≡ κ3/κ2 which shows strong colli-
sion energy dependence even in the Skellam limit. Note that
the absolute yields of (anti)protons drop out in the ratios of
cumulants, thus the ratios are not very sensitive to possible
inaccuracies in the description of the overall yields discussed
above. The ratios, however, are sensitive to both the excluded
volume and baryon number conservation.

Figure 3 depicts the collision energy dependence of Sσ 3/M
and κσ 2 calculated in the model along with the experimental
data of the STAR Collaboration from Ref. [9]. Both the data
and the model calculations show a suppression of Sσ 3/M
with respect to the Skellam baseline of unity. When baryon
excluded volume, but not global baryon conservation, is in-
corporated (dotted black lines), this leads to an improved
agreement with the data compared to Skellam, although the
suppression of Sσ 3/M due to the excluded volume is not
sufficient to obtain a quantitative agreement. Calculations
that incorporate global baryon conservation but not excluded
volume (dash-dotted red lines) indicate that the former ef-
fect is stronger than the latter one. In this case the data
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(a) (b)

FIG. 3. Collision energy dependence of the net-proton cumulant ratios κ3[p − p̄]/κ1[p − p̄] ≡ Sσ 3/M (a) and κ4[p − p̄]/κ2[p − p̄] ≡
κσ 2 (b) in 0–5% Au-Au collisions. The red lines depict calculations with (solid) and without (dash-dotted) the excluded volume effect;
both calculations incorporate the effect of exact baryon conservation. The dotted black lines correspond to calculations incorporating the
excluded volume effect, but not exact baryon conservation. The dashed blue lines correspond to the Skellam distribution baselines of unity.
The experimental data of the STAR Collaboration [9] are depicted by the red circles. The blue circles correspond to the canonical ensemble
ideal HRG model of Ref. [27].

at
√

sNN " 20 GeV are described but not at higher collision
energies. Finally, when both the baryon conservation and
excluded volume are incorporated, the experimental data at√

sNN ! 20 GeV are described on a quantitative level. On the
other hand, the data at lower collision energies are underesti-
mated. It should be noted that the magnitude of the excluded
volume effects in the EV-HRG model that we use has been
constrained using lattice QCD data at µB = 0 in Ref. [48].
Thus, we expect the model to be most reliable at the highest
collision energies that probe the QCD phase diagram close
to the vanishing net baryon density. Deviations from the data
at

√
sNN " 20 GeV may be an indication of a breakdown

of the EV-HRG model that we use. We explore this issue
further in the next subsection by studying proton correlation
functions. The behavior of the net proton kurtosis κσ 2 is
qualitatively similar to Sσ 3/M, although the error bars are
considerably larger, especially at the lower collision energies.
This precludes making strong conclusions from the available
data on κσ 2 from RHIC-BES-I; it should however be possible
to use the more precise future data from RHIC-BES-II for this
purpose.

Figure 4 depicts our predictions for the net proton hy-
perkurtosis, κ6/κ2. This quantity is strongly suppressed by
both the excluded volume and baryon conservation, and it
turns negative as the collision energy is decreased to below√

sNN " 40–60 GeV. These predictions can be probed by fu-
ture high-statistics measurements at RHIC.

We also compare our results with a noncritical baseline
of Ref. [27], which is based on the ideal HRG model and
the empirical rapidity distributions. These results, shown in
Figs. 3 and 4 by the blue points, agree fairly well with
our ideal HRG model results with exact baryon conserva-
tion (dash-dotted red lines). Thus, there is a consistency

between our ideal HRG model based calculations and the prior
literature.

C. Cumulants versus correlation functions

More information can be obtained by analyzing cumulants
of proton and antiproton distributions separately. In particular,
one can construct the so-called correlation functions (facto-
rial cumulants) Ĉn from the ordinary cumulants κn [69]. The
correlation functions characterize genuine multiparticle corre-
lations. For n > 1 they vanish in the limit of Poisson statistics

!
"!

FIG. 4. Same as Fig. 3 but for the net proton hyperkurtosis
κ6[p − p̄]/κ2[p − p̄].
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(uncorrelated particle production). The correlation functions
are linear combinations of the cumulants:

Ĉ1 = κ1, (20)

Ĉ2 = −κ1 + κ2, (21)

Ĉ3 = 2κ1 − 3κ2 + κ3, (22)

Ĉ4 = −6κ1 + 11κ2 − 6κ3 + κ4. (23)

Experimental measurements of both the cumulants κn and
the correlation functions Ĉn have recently been presented by
the STAR Collaboration in Ref. [10]. Figure 5 depicts the
comparison of our model calculations with the experimental
data, in terms of normalized quantities, κn/κ1 − 1 and Ĉn/Ĉ1.3

Deviations of these quantities from zero signal physics beyond
the uncorrelated gas of hadrons.

The normalized second-order cumulants and correlation
functions are equivalent and characterize the two-particle
correlations. The experimental data clearly establish the ex-
istence of negative two-particle correlations, among both the
protons and the antiprotons. The data for protons at

√
sNN !

20 GeV are adequately described when both the baryon con-
servation and excluded volume effects are taken into account.
The baryon conservation exerts a stronger influence on Ĉ2/Ĉ1
than the excluded volume although both effects are necessary
to obtain a fair agreement with the data at

√
sNN ! 20 GeV.

At lower energies the suppression of Ĉ2/Ĉ1 is overesti-
mated by the model, especially at

√
sNN = 7.7 GeV. This

can be due to different mechanisms. For instance, we have
neglected the effect of volume fluctuations which would in-
crease Ĉ2/Ĉ1 [70]. The STAR Collaboration has applied the
centrality bin width correction [71] to minimize the effects of
volume fluctuations in the data, which, however, does not re-
move volume fluctuations completely [33]. To leading order,
the volume fluctuations lead to an additive correction to Ĉ2/Ĉ1
[32], namely,

Ĉvol. fluc.
2

Ĉvol. fluc.
1

= Ĉ2

Ĉ1
+ Ĉ1 v2. (24)

Here v2 is a normalized variance of volume fluctuations. The
7.7-GeV STAR data point could be described with volume
fluctuations for v2 ≈ 0.002, however one would require v2 <
0.001 to not spoil the agreement at higher collision energies.
Thus, the volume fluctuations could only explain the devia-
tions from experimental data if their effect is considerably
larger at

√
sNN = 7.7 GeV than at higher energies. Qualita-

tively, such a behavior has been indicated before [72] and it
remains to be seen if it can provide a quantitative resolution.

A potentially more intriguing explanation for the disagree-
ment at

√
sNN = 7.7 GeV is the presence of sizable attractive

interactions among protons. This effect is not included in our
model and would lead to an increase in Ĉ2/Ĉ1. If this is the

3Note that here we follow the notation of Ref. [1] and designate
cumulants and correlation functions by κn and Ĉn, respectively. This
is different from STAR’s Ref. [10] where this notation is reversed.

case, the data would indicate a transition from repulsive to
attractive proton interaction regime as the collision energy is
decreased below

√
sNN , 20 GeV. One possible mechanism

for this would be approaching the QCD critical point. It should
be noted however that approaching the QCD critical point
would be also expected to generate multiparticle correlations
[29], which has not yet been established by the data. At lower
collision energies one can also expect sizable effects due to
the nuclear liquid-gas transition [73–75].

It should be noted that at
√

sNN = 7.7 GeV the proton cu-
mulants are expected to also be affected by exact conservation
of electric charge. We estimate this effect in Appendix C and
show that this would lead to a further suppression of Ĉ2/Ĉ1
by about 20%. This would increase the disagreement with the
experimental data.

The trends in the data for antiprotons are reproduced by the
model, although, in contrast to the protons, the data point to
considerably stronger anticorrelation among the antiprotons
than predicted by the model. This difference between the pro-
tons and antiprotons may be related to their possibly different
production mechanisms. While the measured protons consist
of both the stopped and the newly produced protons, all the
measured antiprotons are the newly produced particles only.
If the newly produced particles are affected by a different
mechanism compared to the stopped protons, for instance by
local rather than global baryon conservation, this may lead
to a difference in the behavior of two-particle correlations of
protons and antiprotons. A more involved modeling, however,
is required to shed light on this possibility. It should also be
noted that the agreement of our present model with the data
is already much better than that of the UrQMD model cal-
culations [76,77] shown in the STAR paper [10]. The results
based on the noncritical baseline of Ref. [27] are shown in
Fig. 5 by the blue points. They agree well with our ideal
HRG model based results and thus show a similar quantitative
disagreement with the STAR data for the antiprotons.

The higher-order correlation functions Ĉ3/Ĉ1 and Ĉ4/Ĉ1
show only small deviations from zero in our model. This is
consistent with the fact that our model has no critical point and
the associated critical fluctuation dynamics which would be
expected to generate strong multiparticle correlations among
protons in the vicinity of the critical point [29]. The result is
also consistent with an earlier observation made in Ref. [70]
that baryon conservation, which is included in our model,
has a modest effect on three- and four-proton correlation
functions. Our results for Ĉ3/Ĉ1 and Ĉ4/Ĉ1 are consistent
with the STAR data, if the experimental error bars are to be
taken seriously. This also means that the statistically signifi-
cant deviations of the third- and fourth-order cumulants from
the Skellam baseline are indeed driven by the two-particle
correlations, i.e., by the contributions of Ĉ2 to κ3 and κ4 rather
than by genuine multiparticle correlations. Thus, these data
presently show no indication for the existence of the QCD
critical point in the studied collision energy regime. As the
experimental uncertainties at

√
sNN " 14.5 GeV are sizable,

however, the present data also do not rule out a possible
presence of notable multiparticle correlations among protons
in that collision energy regime. The high statistics data coming
from RHIC-BES-II will thus be able to shed light on this issue.
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FIG. 5. Collision energy dependence of scaled (anti)proton cumulants and factorial cumulants (correlation functions) in 0–5% Au-Au
collisions up to fourth order. The solid lines depict calculations that incorporate both the baryon conservation and excluded volume effects
(EV-HRG model) while the dashed lines correspond to baryon conservation only (ideal HRG model). The red squares and gray triangles
correspond to the experimental data of the STAR Collaboration [10] for protons and antiprotons, respectively. The blue circles correspond to
the canonical ensemble ideal HRG model calculation based on (anti)proton acceptance fractions from Ref. [27].

D. Acceptance dependence

The cumulants and correlation functions have been mea-
sured by the STAR Collaboration as a function of acceptance
in rapidity. Here we compare our model predictions for the
acceptance dependence of cumulants with the STAR data. As
neither the model nor the STAR data show conclusive notable

deviations from zero for the higher-order normalized correla-
tion functions Ĉ3/Ĉ1 and Ĉ4/Ĉ1, we focus the analysis of the
acceptance dependence on the second normalized correlation
function Ĉ2/Ĉ1.

The results for proton and antiproton number Ĉ2/Ĉ1 as
a function of the rapidity cut ymax (i.e., |y| < ymax) are
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FIG. 6. Rapidity acceptance dependence of the second normal-
ized factorial cumulant (correlation function) Ĉ2/Ĉ1 of protons (blue
lines) and antiprotons (black lines) calculated from hydrodynamics
and compared to the experimental data of the STAR Collaboration
[10]. The calculations incorporate both the excluded volume effect
and global baryon conservation.

shown in Fig. 6. The magnitude of Ĉ2/Ĉ1 increases with
ymax for both the protons and antiprotons, at all collision
energies. This is the expected result which reflects that (i)
the effect of baryon conservation becomes stronger when
a larger fraction of particles is accepted [26] and (ii) the
thermal smearing of local correlations diminishes for larger
ymax [29].

For protons, the STAR data at
√

sNN = 19.6 GeV and
above are described by the model quite well, including the
slope of the ymax dependence. For

√
sNN = 14.5 GeV the data

are described up to ymax = 0.3, whereas at ymax = 0.4 and 0.5
the model predictions are below the data, i.e., the slope in the
data changes faster than in the model. For

√
sNN = 7.7 GeV

the model is below the data for all ymax, the largest deviations
being observed at the maximum measured ymax = 0.5. Inter-
estingly, the data at

√
sNN = 7.7 and 14.5 GeV (as well as at√

sNN = 11.5 GeV [10] not shown here) show indications that
the slope of the ymax dependence of proton Ĉ2/Ĉ1 may flip sign
at ymax > 0.5. Such a qualitative feature is not observed in our
model, i.e., it cannot be attributed to baryon conservation or
baryon repulsion.

The STAR data for antiprotons are described at the lowest
two energies,

√
sNN = 7.7 and 14.5 GeV, as well as at the

top RHIC energy
√

sNN = 200 GeV. At the intermediate en-
ergies the magnitude of the negative two-particle correlation
among the antiprotons is underestimated by the model, for
all values of ymax. The data indicate a larger negative slope
of antiproton Ĉ2/Ĉ1 than predicted by the model at these
energies.

E. Centrality dependence

Our calculations have been focused on 0–5% Au-Au colli-
sions, as in that regime the assumptions of our formalism are
most appropriate. Namely, the degree of thermal and chemical
equilibration is expected to be the highest in most central
collisions, the effect of volume fluctuations is expected to
be smaller than in peripheral collisions, and the applicability
conditions of SAM-2.0 are expected to be satisfied with the
highest accuracy. Nevertheless, for the sake of completeness,
we have also performed calculations of proton cumulants at
different centralities within our event-averaged hydrodynam-
ics framework. We find that all cumulant ratios stay essentially
flat as a function of centrality at a given collision energy,
i.e., our framework predicts essentially no centrality depen-
dence for all volume-independent measures of event-by-event
fluctuations. This observation agrees well with the measure-
ments of the STAR Collaboration [10] for

√
sNN ! 20 GeV

and 〈Npart〉 ! 100, while at lower energies and in peripheral
collisions deviations from this picture are observed, indicating
that a more involved modeling is warranted in those regimes.

F. Protons versus baryons

Here we discuss an important issue which affects many
theory-to-experiment comparisons, namely, the difference be-
tween baryon and proton number fluctuations. The experiment
has direct access to the latter but it is notoriously difficult to
measure all baryons. On the other hand, proton number is
inaccessible in many (effective) QCD theories, for instance
lattice QCD. Cumulants of net baryon number are computed
instead, and often directly compared to net proton cumulants
measured in the experiment.

In our model it is possible to compute both the proton and
baryon number cumulants. This then allows us to establish to
what extent the two correspond to each other for conditions
realized in heavy-ion collisions at RHIC-BES. Figure 7 de-
picts the beam energy dependence of Sσ 3/M, κσ 2, and κ6/κ2
of net protons (red lines) and net baryons (black lines) calcu-
lated within our formalism including the excluded volume and
baryon conservation effects. It is seen that net proton and net
baryon cumulants are quite different, with baryons generally
exhibiting larger deviations from the Skellam baseline. In par-
ticular, the net baryon Sσ 3/M disagrees with the experimental
data on net protons at all collision energies, whereas the net
proton calculation agrees much better. The error bars in the
data for κσ 2 are still too large to make a clear distinction be-
tween the model predictions for net protons and net baryons.
However, from the difference between red and black lines it is
clear that the issue will persist once precision measurements
of κσ 2 become available.

Qualitatively, Sσ 3/M and κσ 2 exhibit similar trends as
functions of collision energy when compared between protons
and baryons. As seen in the bottom panel of Fig. 7, this is no
longer the case for κ6/κ2, where the net proton hyperkurto-
sis monotonically increases with

√
sNN while the net baryon

hyperkurtosis exhibits a nonmonotonic dependence. Note that
this nonmonotonicity here is unrelated to critical phenomena,
which our model does not have, but is caused by an interplay
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FIG. 7. Collision energy dependence of Sσ 3/M, κσ 2, and κ6/κ2

of net protons (red lines) and net baryons (black lines) in 0–5% cen-
tral Au-Au collisions. The calculations incorporate both the baryon
conservation and excluded volume effects. The experimental data of
the STAR Collaboration [9] are depicted by the red circles.

between baryon repulsion and conservation which is sensitive
to the collision energy.

Note that a method exists to reconstruct baryon number
fluctuations from the measured proton number fluctuations
[53,54]. This method assumes that the isospin is random-
ized at the final stage of the collision, for instance due to
- resonance formation and regeneration reactions during the
hadronic phase. In that case baryon number cumulants can
be obtained by performing a binomial unfolding of the mea-
sured proton cumulants. This essentially corresponds to an
additional binomial efficiency correction with the efficiency
probability q ≈ 1/2, as discussed in Refs. [53,54,78]. Ex-
periment can do this procedure, however this requires very
precise measurements of high-order cumulants, because the
binomial unfolding increases the error in κn by a factor of

FIG. 8. Collision energy dependence of the second scaled facto-
rial cumulant Ĉ2/Ĉ1 of protons (red line) and baryons (black line) in
0–5% central Au-Au collisions. The calculations incorporate both the
baryon conservation and excluded volume effects. The red squares
depict the experimental data of the STAR Collaboration for protons
[10] while the black circles correspond to baryons reconstructed from
the proton data using the binomial distribution.

order q−n ≈ 2n. Thus applying the unfolding may not be
useful using the presently available data on the skewness and
kurtosis of (net-)proton distributions which have sizable error
bars.

On the other hand, the second-order cumulants have al-
ready been measured fairly precisely, making the baryon
unfolding procedure feasible to do. To illustrate this, we apply
the unfolding to the STAR data on the ratio Ĉ2/Ĉ1 of pro-
ton number factorial cumulants. Following Refs. [53,54], the
baryon and proton factorial cumulants are related by ĈB

n =
Ĉ p

n /qn. Thus,

ĈB
2

ĈB
1

= 1
q

Ĉp
2

Ĉ p
1

. (25)

We apply Eq. (25) with q = 1/2 to the STAR data to re-
construct two-particle correlations of the baryon number. The
result is depicted in Fig. 8. The baryon number Ĉ2/Ĉ1 con-
structed from the STAR data agrees well with our model
calculation at

√
sNN ! 20 GeV, similarly to the agreement for

the proton number Ĉ2/Ĉ1.
The results presented in this section indicate that there are

essential quantitative differences between proton and baryon
number cumulant ratios, and that the two may not be com-
pared directly. Either baryon number cumulants should be
reconstructed from the data on proton number cumulants via
the method of Refs. [53,54], or the proton number cumulants,
rather than baryon number cumulants, should be calculated in
the theory.

IV. DISCUSSION AND SUMMARY

In this paper we calculated the leading six (net-)
(anti)proton cumulants in heavy-ion collisions at RHIC
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beam energy scan energies in the framework of relativistic
viscous hydrodynamics. The cumulants have been calculated
in the momentum acceptance where experimental measure-
ments have been performed by the STAR Collaboration. For
the first time, effects of exact global baryon conservation and
repulsive interactions among baryons, modeled by excluded
volume, have been incorporated simultaneously and in a dy-
namical description of heavy-ion collisions. The excluded
volume parameter has been chosen such that deviations from
the Skellam distribution in net baryon cumulants computed
in lattice QCD at µB = 0 are reproduced by the excluded
volume HRG model used in our analysis. The model does
not incorporate any critical point effects at finite baryon den-
sity; thus, our calculations correspond to the no-critical-point
scenario.

We obtain good agreement with the experimental data
of the STAR Collaboration on net-proton cumulant ratios
Sσ 3/M and κσ 2 at

√
sNN ! 20 GeV. It is observed that the

effect of baryon conservation has a stronger influence on
the proton cumulants than excluded volume, although incor-
porating both effects simultaneously is required in order to
reproduce the experimental data on Sσ 3/M quantitatively.
At lower collision energies,

√
sNN " 20 GeV, the data are

underestimated by the full model. The model is in fair agree-
ment with the data on net proton κσ 2, although the available
data have rather large error bars. Our model predicts that
the net proton hyperkurtosis κ6/κ2 in the STAR acceptance
|y| < 0.5, 0.4 < pT < 2.0 GeV/c turns negative at

√
sNN "

40 GeV, mainly as a consequence of strong effect of baryon
conservation.

We explored the behavior of cumulants and factorial cu-
mulants of proton and antiproton distributions. It is observed
that our model produces notable negative two-particle correla-
tions among protons and antiprotons, but only mild three- and
four-particle correlations, characterized by small values of the
third and fourth scaled factorial cumulants, Ĉ3/Ĉ1 and Ĉ4/Ĉ1.
In this case the behavior of the high-order cumulants such
as skewness and kurtosis is driven by the two-particle cor-
relations rather than by multiparticle correlations that would
have been expected near the critical point. The experimen-
tal data are consistent with small, if not vanishing, three-
and four-particle proton correlations within errors, thus these
data do not contain statistically significant evidence for the
existence of the QCD critical point in the studied collision
energy regime. Note, however, that the error bars on Ĉ3/Ĉ1
and especially Ĉ4/Ĉ1 are quite large, and it is possible that
more precise measurements may find evidence for multiparti-
cle correlations. The upcoming data from RHIC-BES-II will
be essential to shed light on this possibility.

The experimental data for the second normalized corre-
lation function Ĉ2/Ĉ1 of protons are described well by the
model at energies

√
sNN = 19.6 GeV and above. At lower

energies the model predictions are notably below the data. We
discussed volume fluctuations and/or attractive interactions as
a possible explanation for this discrepancy but further studies
are required to shed more light on this issue. It has also
been observed that negative two-particle correlations among
antiprotons seen in STAR data are notably underestimated
by the model at

√
sNN = 11.5 and 19.6–62.4 GeV, whereas

at
√

sNN = 7.7, 14.5, and 200 GeV the data are described
well. An explanation of this observation is presently an open
question.

Compared to other quantitative theoretical predictions for
the cumulants that are available in the literature, our model
demonstrates a much better agreement with the STAR data
than the UrQMD transport model calculations shown in
Ref. [10]. Our calculations that incorporate baryon conserva-
tion but not the excluded volume repulsion (ideal HRG model)
are consistent with the data-driven approach of Ref. [27]
within the same ideal HRG model framework. We do observe,
however, that the quantitative agreement with the STAR data
on net proton Sσ 3/M and the proton number normalized cor-
relation function is obtained at

√
sNN ! 20 GeV only when

the baryon repulsion is incorporated in addition to baryon
conservation. The presence of baryon repulsion is in line
with the behavior of baryon number susceptibilities at µB = 0
observed in lattice QCD.

Comparisons between (net-)proton and (net-)baryon cumu-
lants revealed essential quantitative differences between the
two in the RHIC-BES regime. The higher-order net baryon cu-
mulants generally exhibit larger deviations than the net proton
ones from the Skellam distribution baseline of an uncorrelated
particle production. This is due to the fact that protons form
a subset of all baryons, thus the strength of the measured
correlations is diluted compared to the full baryon set. As a
consequence, for instance, the calculated net baryon Sσ 3/M
underestimates significantly the measured net proton Sσ 3/M,
whereas the calculated net proton Sσ 3/M agrees well with the
data. It is thus essential that the same quantities are employed
for theory-to-experiment comparisons; in particular, we find
no justification for direct comparisons between the measured
(net-)proton and calculated (net-)baryon cumulants that have
often been performed in the literature.

One way to address the issue of the difference between
proton and baryons cumulants is to unfold the baryon cu-
mulants from the proton ones using the method of Kitazawa
and Asakawa [53,54]. In the present paper we have demon-
strated the feasibility of this procedure by unfolding the
scaled factorial cumulant ĈB

2 /ĈB
1 of baryons from the cor-

responding scaled factorial cumulant Ĉ p
2 /Ĉ p

1 of the protons
that was measured by the STAR Collaboration. The resulting
data on baryon number ĈB

2 /ĈB
1 agree reasonably well with

our model calculations of this quantity. The challenge in
applying the unfolding to high-order cumulants lies in the
fact that this procedure significantly increases the resulting
experimental uncertainties. For this reason the method may
not be viable for the presently available data from RHIC-
BES phase I but should be viable to do using the more
precise data coming from phase II. We hope that results
presented here will serve as a motivation for this procedure
to be done.

We have not incorporated any critical fluctuation dynamics
associated with the QCD critical point in our paper. In that
sense, our results can be viewed as a baseline that incorporates
essential noncritical contributions to (net-)proton number cu-
mulants stemming from baryon number conservation and
repulsive baryonic interactions. Unambiguous signals of the
QCD critical point in the beam energy scan regime, if there is
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one to be found, shall manifest themselves as deviations from
our model calculations. We view the three- and four-particle
correlation functions (factorial cumulants) of proton number
to be particularly promising in that regard, perhaps more so
than the ordinary cumulants. Our model, which has no critical
fluctuations, predicts these scaled factorial cumulants to be
small. On the other hand, the multiparticle correlations among
protons are expected to be strong in the vicinity of the critical
point [29] and may well be reflected in a sizable magnitude
of the corresponding scaled factorial cumulants such as Ĉ3/Ĉ1
and Ĉ4/Ĉ1. We note that the development of a quantitative hy-
drodynamics framework to describe critical fluctuations is in
progress [79–81] which should eventually be able to provide
more robust predictions of the critical point signals in both
ordinary and factorial cumulants.
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APPENDIX A: DEPENDENCE ON THE SWITCHING
ENERGY DENSITY

We used a constant value of the switching energy density
εsw = 0.26 GeV/fm3 for all collision energies in the main
text. On the other hand, it has been argued that larger val-
ues of εsw may give a better description of bulk observables
at higher collision energies [44]. Thus, here we explore the
dependence of the (anti)proton cumulants on the choice of εsw
at

√
sNN = 200 GeV.

As the behavior of all the high-order cumulants is primarily
driven by the two-particle correlation functions in our model,
we focus on the behavior of Ĉ2/Ĉ1 of protons and antiprotons.
Figure 9 depicts the rapidity acceptance dependence (|y| <
ycut) of these quantities for three values of εsw: 0.26 GeV/fm3

(solid black lines), 0.5 GeV/fm3 (dash-dotted blue lines), and
0.6 GeV/fm3 (dashed red lines).

The calculations indicate that higher values of εsw lead to
slightly suppressed values of Ĉ2/Ĉ1. We attribute this effect
to a larger role of the excluded volume: particle number
densities increase with εsw, which leads to stronger effects
of repulsion among baryons. While the resulting sensitivity
of Ĉ2/Ĉ1 to the choice of εsw is not strong, we do observe
that εsw = 0.5 GeV/fm3 appears to yield the best agreement
with the experimental data of the STAR Collaboration [10].
This observation is in line with Ref. [44], where the value
εsw = 0.5 GeV/fm3 was suggested based on the optimal de-
scription of the proton yields at midrapidity.

&

FIG. 9. Rapidity acceptance dependence of the second normal-
ized factorial cumulant Ĉ2/Ĉ1 of protons (top) and antiprotons
(bottom) at

√
sNN = 200 GeV calculated from hydrodynamics and

compared to the experimental data of the STAR Collaboration
[10]. The calculations incorporate both the excluded volume ef-
fect and global baryon conservation and were performed for three
different values of the particlization switching energy density εsw:
0.26 GeV/fm3 (solid black lines), 0.5 GeV/fm3 (dash-dotted blue
lines), and 0.6 GeV/fm3 (dashed red lines).

APPENDIX B: VALIDATING THE ANALYTIC RESULTS
WITH MONTE CARLO

The cumulants of (net-)(anti-)proton number distribution
can be calculated via Monte Carlo sampling of hadrons and
resonances at particlization. These calculations can be used
to validate the analytic results obtained in this paper, and to
estimate the possible error due to simplifications employed in
the analytic procedure, in particular neglecting the difference
in the kinematics of nucleons and baryonic resonances, as well
as neglecting the rescattering in the hadronic phase.

Here we restrict the Monte Carlo calculations to the ideal
HRG model. Monte Carlo sampling of the EV-HRG model is
more involved, but can eventually be performed following the
subensemble sampler method introduced in Ref. [36].

The Monte Carlo sampling of hadrons and resonances at
Cooper-Frye particlization within the ideal HRG model with
exact conservation of baryon number consists of the following
steps.

(1) Mean hadron yields in 4π are evaluated by summing
the grand-canonical ideal HRG model means from each hy-
persurface element, for each hadron species. These means are
then scaled such that the total net baryon number is rounded
to the nearest integer.

(2) The hadron yields in 4π for each event are sampled
from the Poisson distribution using the precomputed mean
yields.
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FIG. 10. Collision energy dependence of scaled (anti)proton cu-
mulants κ2/κ1 − 1 (top) and κ3/κ1 − 1 (bottom) in 0–5% Au-Au
collisions, evaluated at Cooper-Frye particlization using the ideal
HRG model analytically (dashed lines) and via Monte Carlo sam-
pling (bands).

(3) The event is rejected if the sampled yields violate the
exact global baryon number conservation, i.e., if the sampled
total net baryon number does not coincide with the expected
baryon number computed in the first step. If the sampled
yields satisfy the global conservation, we go to the next step.

(4) Momenta and coordinates of each hadron are sampled,
independently from all other hadrons. To do that first we deter-
mine the hypersurface element from which the given hadron
is sampled; this is done via the multinomial distribution where
each volume element is weighted by its grand-canonical mean
yield for the given hadron species. Then the momenta and co-
ordinates of the hadron emitted from the chosen hypersurface
element are sampled via the standard procedure.

(5) The chain of all strong, electromagnetic, and weak
decays is performed.

We sample 100 000 events for each collision energy.
Figure 10 depicts the collision energy dependence of the
subtracted scaled second and third cumulants κ2/κ1 − 1 and
κ3/κ1 − 1 for protons and antiprotons, evaluated in the STAR
momentum acceptance. The analytic calculations (dashed
lines) are the same that are shown in Fig. 5 of the main text.
The Monte Carlo results are depicted by the bands. The Monte
Carlo and analytic results are in good agreement with each
other. This validates the analytic calculations and also indi-
cates that the simplifying assumptions made in the analytic
calculation, like neglecting the difference between the masses

of nucleons and baryon resonances, have negligible influence
on the cumulants. The Monte Carlo results also validate the
accuracy of the generalized subensemble acceptance method
of Ref. [40] used to correct the grand-canonical cumulants for
baryon number conservation.

Note that although here we explicitly tested only the cu-
mulants up to third order, we expect the analytic calculations
to be accurate also for the high-order cumulants. This is due
to the fact that both the baryon conservation and excluded
volume generate only small multiparticle correlations (see
Fig. 5), thus the high-order cumulants are mainly determined
in this setup by two-particle correlations that we checked to
be calculated accurately. The situation may change if one
incorporates effects that generate strong multiparticle corre-
lations like the QCD critical point. In that case the question of
accuracy of the analytic calculations for high-order cumulants
may have to be revisited.

APPENDIX C: EXACT CONSERVATION OF ELECTRIC
CHARGE AND STRANGENESS

In our analysis we have incorporated the effect of ex-
act global baryon conservation but not of other conserved
charges like electric charge and strangeness. While the effect
of baryon conservation is expected to be the dominant one, the
(anti)proton cumulants are also affected by other conserved
charges [36,56]. This can be particularly relevant at lower
collision energies where protons form a considerable fraction
of the total electric charge. Thus here we evaluate the effect
of multiple exactly conserved charges through Monte Carlo
sampling within the ideal HRG model.

The sampling algorithm in Appendix B is adjusted in the
following way: all events that do not satisfy exact conser-
vation of all three conserved charges are rejected. The total
net strangeness is constrained to be exactly zero in all events
while the total electric charge is constrained to reproduce the
charge-to-baryon ratio of Q/B = 0.4.4 To speed up the sam-
pling procedure, we employ the multistep method of Becattini
and Ferroni [82]. Sampling with multiple conservation laws
is more time consuming than with only baryon number con-
servation. We generate about 20 000 events for each collision
energy and restrict the analysis to the second-order moments
only.

The collision energy dependence of the subtracted scaled
proton cumulant κ2/κ1 − 1 in 0–5% Au-Au collisions eval-
uated with the simultaneous conservation of baryon number,
electric charge, and strangeness is shown in Fig. 11 by the
blue band. The result is compared to the calculations with
exact conservation of only baryon number (red band). The
two calculations agree within statistical errors at

√
sNN !

20 GeV, suggesting that the restriction of the global conser-
vation laws to only baryon number might be sufficient in
that regime. At the lower collision energies the conservation
of electric charge and strangeness leads to a notable further
suppression of the two-particle correlation function of the

4If the total electric charge satisfying the Q/B = 0.4 condition is
not an integer, it is rounded to the nearest integer.
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FIG. 11. Collision energy dependence of the subtracted scaled
proton cumulant κ2/κ1 − 1 in 0–5% Au-Au collisions, evaluated at
Cooper-Frye particlization using the ideal HRG model via Monte
Carlo sampling within the baryon-canonical (red band) and BQS-
canonical (blue band) ensembles.

protons. Thus, accounting for exact conservation of multiple
conserved charges is important for analyses of fluctuations
at

√
sNN " 20 GeV.

APPENDIX D: EFFECT OF THE HADRONIC PHASE

Our analytic calculations neglect rescatterings in the
hadronic phase. The hadronic phase may affect the cumulants
in a couple of different ways: (i) it modifies the pT spectrum
of (anti)protons, thus the number of protons in the acceptance
may change, and (ii) BB̄ annihilations may decrease the num-
bers of protons and antiprotons. To evaluate the possible effect
of the hadronic phase we use the Monte Carlo sampling of
the ideal HRG from the previous subsection and, instead of
performing the chain of decays, we run the output through
the hadronic afterburner UrQMD [83,84]. This is achieved
by replacing step 5 of the Monte Carlo sampling in the pre-
vious subsection by the following: all resonances which are
not recognized by UrQMD are decayed until only hadrons
and resonances recognized by UrQMD are left and then the
hadronic phase is simulated by UrQMD via the hadronic
afterburner toolkit from Ref. [85].

FIG. 12. Rapidity acceptance dependence of the scaled sec-
ond factorial cumulant of proton and antiproton distributions
in 0–5% Au-Au collisions at

√
sNN = 27 GeV calculated in hy-

dro + decays (gray bands) and hydro + UrQMD (blue bands)
scenarios.

We evaluate the effect of the hadronic afterburner at√
sNN = 27 GeV by sampling around 200 000 events. The

relevance of the hadronic phase is established by compar-
ing the results with the afterburner (hydro + UrQMD) to
the results without applying the afterburner (hydro + de-
cays). Figure 12 depicts the rapidity acceptance dependence
of the second scaled factorial cumulant Ĉ2/Ĉ1 of protons
and antiprotons in the STAR transverse momentum range,
0.4 < pT < 2.0 GeV/c. For antiprotons the difference be-
tween the two scenarios is within the statistical uncertainty.
For protons the difference is also mild, with indications that
Ĉ2/Ĉ1 is slightly more suppressed when the hadronic phase
evolution is included. This appears to be due to a larger
fraction of protons ending up in the STAR acceptance and
hence a larger effect of the baryon number conservation.
The hadronic phase leaves the ymax dependence of the scaled
cumulants essentially unchanged. Thus, incorporating the
time-consuming hadronic afterburner would seem to only be
necessary for very precise studies of cumulant ratios, at least
for

√
sNN = 27 GeV.
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