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We propose an experimental protocol to directly detect the Andreev-Bashkin effect (entrainment) in the bulk
mixture of a bosonic and fermionic superfluid using a ring geometry. Our protocol involves the interferometric
detection of the entrainment-induced phase gradient across a superfluid due to the flow of another in which it is
immersed. The choice of ring geometry eliminates variations in the stronger mean-field interaction which can
thwart the detection of entrainment in other geometries. A significant enhancement of the entrainment phase-shift
signal is possible, if the dimer-boson scattering length turns out to be large, which can be measured by tuning the
interaction to the limit of miscibility of the two superfluids. With suggested improvements and careful design
implementation, one may achieve approximately 67% shift in the interferometer fringes.

I. Introduction

Superfluid entrainment plays a crucial role in the dynamics of
superfluid mixtures in neutron stars. The effect – whereby a
flowing superfluid drags along or “entrains” another superfluid
despite the lack of dissipation – was first predicted by Andreev
and Bashkin for mixtures of superfluid 3He and 4He [1, 2].
Since its prediction, superfluid entrainment has been studied
extensively in the contexts of neutron stars, nuclear physics [3–
7], and cold atoms [8–16], but despite almost half a century of
study, it has yet to be directly observed in experiments.
Cold-atom systems provide a new environment in which to

search for entrainment where one has exquisite control over
both geometry and interactions [17]. Entrainment manifests as
an effective potential for one superfluid species induced by the
flow of another. This property can be used to induce a phase
winding, which can then be measured using interferometry. In
this paper, we outline a procedure using this effect to directly
observe entrainment in a two species mixture of superfluid 6Li
and 174Yb, taking advantage of the large mass of the bosons
and the availability of species-specific potentials.
On a nuclear scale, neutron stars are cold and the crust is

expected to comprise a mixture of superfluid neutrons and
superconducting protons [18]. These superfluids act as an in-
ternal reservoir of angular momentum, which may be suddenly
transferred to the crust through vortex (un)pinning or hydrody-
namic instabilities, resulting in a sudden increase in the rotation
rate of the stars, observed as a “glitch” in pulsar data [19–38].
Although the detailed mechanism behind glitches remains a
mystery, it is clear that superfluid dynamics and entrainment be-
tween the proton and neutron fluids play a significant role [39]
owing to the strength of the nuclear interactions. Unfortunately,
being light years away, astrophysical bodies like neutron stars
and pulsars are extremely difficult to measure.
For this reason we turn to ultracold-atom experiments, where

one can create superfluid mixtures [40–42] to act as quantum

∗ mdkhalid.hossain@wsu.edu
† deepg@uw.edu
‡ mforbes@alum.mit.edu

simulators of neutron-star physics [43, 44]. The challenge with
terrestrial experiments is that the magnitude of the entrainment
effect depends on the inter-species interaction strength 𝑔𝑎𝑏,
which must generally be small 𝑔2

𝑎𝑏 < 𝑔𝑎𝑎𝑔𝑏𝑏 to allow the
superfluids to mix. This frustrates detection in 3He and 4He
superfluid mixtures [45] where the mutual interactions require
temperatures below that which can be achieved by state-of-the-
art cryogenics in order for the fluids to not phase separate [46,
47]. In dilute Bose gases, the entrainment is further suppressed
as it occurs at second order, depending on the square of the
inter-species interactions [12, 48]. This thwarts attempts to
measure the entrainment through, for example, modifications of
the dipole frequency [49] because mean-field effects dominate.
For the 174Yb-6Li- superfluid mixture considered here, the
calculated value of the dipole frequency shift due to entrainment
is approximately equal to only 0.02%, two orders of magnitude
smaller than the observed shift [42] from mean-field effects.
In addition to serving as a suitable system to observe entrain-

ment, amixture of fermionic and bosonic superfluids also serves
as a versatile platform for other studies in many-body physics.
The Fulde-Ferrell–Larkin-Ovchinnikov (fflo) phase [50–52],
time-reversal-invariant superfluids with exotic topological prop-
erties [53], rotational responses [54], and the dynamics and
structure of solitons [55], can be explored by tuning the mass
ratios, particle densities, and interparticle interactions. Interest-
ing physical properties such as, the ground state characteristics
of a mixture [56], quasiparticle excitation spectrum [57], gen-
eral phase diagram [58], phase competition among density wave
orderings and superfluid pairings [59], and many-body effects
in the mixture [60] have been explored in great detail in the
presence of optical lattice potentials, facilitating the interplay
between non-linearity and periodicity. Entrainment, in par-
ticular, has been investigated theoretically for two-component
[61–64] and multi-component [65] Bose-Bose mixtures in op-
tical lattices. By introducing an optical lattice to the superfluid
mixture, one may enhance the entrainment signal by softening
the phonon dispersion relationship [62].
A mixture of superfluid 6Li and 174Yb provides a favorable

environment in which to detect entrainment. The 6Li scattering
length may be tuned with a Feshbach resonance [66], allow-
ing us to amplify entrainment effects while ensuring that the
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fermionic 6Li superfluid remain mixed with the bosonic super-
fluid 174Yb. As mentioned above, although dipole oscillations
provide a natural place to search for entrainment, mean-field
effects dominate the frequency shift in cold atom systems.
We will use these mean-field effects to test our microscopic
theory, but then carefully design a procedure to eliminate these
mean-field effects by placing the two components in ring traps.
Our proposal is similar to that suggested in [48], but differs
in details for removing mean-field contamination and in using
interferometry to measure the effective entrainment. Another
idea proposed in [8] is to enhance entrainment with tight con-
finement to induce a dimensional reduction. In contrast, with
the enhancements discussed in this paper, we expect to be able
to directly observe bulk entrainment in three dimensions.
We propose to use a common optical ring to trap miscible

fermionic and bosonic superfluids in the same region of space,
and then to generate a relative flow between them by inducing
a persistent current in the fermionic superfluid, while using a
species-selective optical barrier to prevent the bosonic super-
fluid from flowing. The effect of entrainment is to induce a
phase gradient in the bosonic superfluid even though flow is
prevented with the barrier. This gradient will be observed as a
phase shift in the matter-wave interference pattern generated as
follows. After equilibration, the fermions are removed with a
rapid resonant laser pulse to minimize mean-field effects. The
bosons are then released by switching off all the potentials,
allowing them to expand and interfere across the previous site
of the barrier. Entrainment can then be measured by correlating
the phase shift of the interference pattern with the magnitude
and direction of the flow in the fermionic superfluid.
The rest of the paper is organized as follows. In section II, we

derive the mean-field equations of motion for the mixture with
entrainment interaction. Section III discusses the proposed
experiment. In section IV we estimate the phase shift. The
main results and detail discussion of the physics of the detection
is presented in section V: suitable experimental parameters
(VA) and characteristics of the detectable signal (VB). We
summarize in section VI.

II. Theory

First we consider a dilute single-component bosonic superfluid
at 𝑇 = 0. If the interactions are weak, we may describe this
in the mean-field approximation by the usual Gross-Pitaevskii
equation (gpe) for the condensate wavefunction 𝜓𝑏. This
is related through a Madelung transform to the superfluid
density 𝑛(𝒓, 𝑡) and phase velocity 𝒗 = ℏ

𝑚∇𝜙 where 𝜙 is the
momentum potential and 𝜓𝑏 =

√
𝑛𝑏𝑒

i𝜙 . The gpe follows from
the Lagrangian density:

L[𝜓𝑏] = iℏ𝜓†
𝑏𝜓̇𝑏 − E(𝜓𝑏), (1a)

E(𝜓𝑏) =
ℏ2∇𝜓†

𝑏 · ∇𝜓𝑏

2𝑚𝑏
+

E𝑏 (𝑛𝑏 )⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
𝑔𝑏𝑏
2

(︂
𝜓†
𝑏𝜓𝑏

)︂2
, (1b)

where 𝑔𝑏𝑏 = 4𝜋ℏ2𝑎𝑏𝑏/𝑚𝑏 is the coupling constant, 𝑎𝑏𝑏 is the
𝑠-wave scattering length between the bosons, and 𝑚𝑏 is the

mass of the bosons. The equations of motion give rise to the
usual gpe:

iℏ𝜓̇𝑏 (𝒓, 𝑡) = −ℏ2∇2

2𝑚𝑏
𝜓𝑏 (𝒓, 𝑡) +

E′
𝑏
(𝑛𝑏 )⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟

𝑔𝑏𝑏𝑛𝑏 (𝒓, 𝑡) 𝜓𝑏 (𝒓, 𝑡). (2)

This formulation describes the dynamics of a weakly interacting
Bose-Einstein condensate (bec) where the equation of state for
homogeneous matter is E𝑏 (𝑛𝑏) = 𝑔𝑏𝑏𝑛

2
𝑏/2.

However, the same formulation can be modified to describe
the bec limit of the Bardeen-Cooper-Schrieffer (bcs)-bec
crossover of symmetric (unpolarized) fermionic superfluids
with resonant 𝑠-wave interactions (see [67] for a review). In
this limit, the fermionic superfluid can be modeled with a
similar equation, known as an extended Thomas-Fermi (etf)
model, which describes the fermionic superfluid as a gas of
condensed bosonic-dimers with number density 𝑛𝐷 = 𝑛 𝑓 /2.
The etf model for this system is similar to the gpe with three
modifications: 1) the mass is replaced by the dimer mass
𝑚𝐷 = 2𝑚 𝑓 where 𝑚 𝑓 is the mass of the fermionic components
(6Li in our case), 2) the density 𝑛𝐷 = 𝜓†

𝐷𝜓𝐷 = 𝑛 𝑓 /2 is
interpreted as the dimer density rather than the fermion density,
and 3) the interaction is replaced by the homogeneous equation
of state in the crossover E 𝑓 (𝑛 𝑓 ) that depends on the magnetic
field 𝐵 through the fermion-fermion scattering length 𝑎 𝑓 𝑓 (𝐵):

iℏ𝜓̇𝐷 (𝒓, 𝑡) = −ℏ2∇2

2𝑚𝐷
𝜓𝐷 (𝒓, 𝑡) + 𝜕E 𝑓 (2𝑛𝐷)

𝜕𝑛𝐷
𝜓𝐷 (𝒓, 𝑡). (3)

Well justified in the bec limit, this formulation continues
to work quite well in the unitary limit where 𝑎 𝑓 𝑓 → ∞,
where it correctly describes [68] the hydrodynamics of rather
violent collisions [69] and qualitative properties of vortex
dynamics [70]. Some of this success comes from the fact
that this etf model correctly reproduces the low-lying phonon
spectrum:

𝐸ph (ℏ𝑘) =
√︄

ℏ2𝑘2

4𝑚 𝑓

(︃
ℏ2𝑘2

4𝑚 𝑓
+ 4E′′

𝑓 (𝑛 𝑓 )𝑛 𝑓

)︃
, 𝑘 ≪ 𝑘𝐹 , (4)

where 4E′′
𝑓 (𝑛 𝑓 ) = 𝜕2E 𝑓 (2𝑛𝐷)/𝜕𝑛2

𝐷 , although it fails to predict
pair breaking and associated phenomena which occur near
𝑘 ∼ 𝑘𝐹 . This correctly reproduces the speed of sound 𝑐𝑠 where
𝐸ph (ℏ𝑘) ∼ ℏ𝑘𝑐𝑠 is linear in both the bec and the unitary Fermi
gas (ufg) limits:

𝑐2
𝑠 =

𝑔𝐷𝐷𝑛𝐷
𝑚𝐷

, E 𝑓 ∼
−ℏ2𝑛 𝑓

2𝑚 𝑓 𝑎
2
𝑓 𝑓

+ 𝑔𝐷𝐷𝑛
2
𝐷

2

|︁|︁|︁|︁|︁
𝑎 𝑓 𝑓 ≪1

, (BEC)

𝑐2
𝑠 =

𝜉

3
𝑣2
𝑓 , E 𝑓 ∼ 𝜉

ℏ2 (3𝜋2𝑛 𝑓 )5/3

10𝜋2𝑚 𝑓

|︁|︁|︁|︁|︁
𝑎 𝑓 𝑓→∞

, (UFG)

respectively, where 𝑔𝐷𝐷 ≈ 0.6𝑎 𝑓 𝑓 is the dimer-dimer scatter-
ing length [71] and 𝜉 = 0.3742(5) [72] is the universal Bertsch
parameter [73–75], combining experiment [76, 77] and quan-
tum Monte Carlo (qmc) [78, 79] values. In our analysis, we
use a Padé approximant for E 𝑓 (𝑛 𝑓 ) that correctly interpolates
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between the unitary and bec limits including qmc values for
the Tan contact [80, 81] and few-body parameters in the deep
bec limit [82, 83].
The Lagrangian (1a) is Galilean invariant under a boost of

velocity 𝒗 with an appropriate phase redefinition:

𝜓(𝒙, 𝑡) → 𝑒i𝜙𝜓(𝒙 − 𝒗𝑡, 𝑡) ℏ𝜙 = 𝑚𝒗 · 𝒙 − 𝑚𝑣2𝑡

2
. (6)

The generalization for two components, a boson 𝜓𝑏 and a dimer
𝜓𝐷 , has a similar form, but admits other terms allowed by
Galilean covariance. For the weakly interacting case, we add a
term coupling the phase gradients of the two components:

𝜓𝐷,𝑏 =
√
𝑛𝐷,𝑏𝑒

i𝜙𝐷,𝑏 𝑚𝐷,𝑏𝒗𝐷,𝑏 = ℏ∇𝜙𝐷,𝑏 (7a)

L = iℏ
(︁
𝜓†
𝐷𝜓̇𝐷 + 𝜓†

𝑏𝜓̇𝑏

)︁ − E[𝜓𝐷 , 𝜓𝑏,∇𝜓𝐷 ,∇𝜓𝑏], (7b)

E[𝜓𝐷 , 𝜓𝑏] = ℏ2

2𝑚𝐷
|∇𝜓𝐷 |2 + ℏ2

2𝑚𝑏
|∇𝜓𝑏 |2+

− 𝜌dr (𝑛𝐷 , 𝑛𝑏) |𝒗𝐷 − 𝒗𝑏 |2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Eent

+ 𝑔𝑏𝑏
𝑛2
𝑏

2
+ 𝑔𝐷𝑏𝑛𝐷𝑛𝑏 + E 𝑓 (2𝑛𝐷)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Eℎ (𝑛𝐷 ,𝑛𝑏 )

,

𝑔𝑏𝑏 =
4𝜋ℏ2𝑎𝑏𝑏

𝑚𝑏
, 𝑔𝐷𝑏 =

2𝜋ℏ2𝑎𝐷𝑏 (𝑚𝐷 + 𝑚𝑏)
𝑚𝐷𝑚𝑏

. (7c)

Here 𝜌dr has the dimension of mass-density, as in 𝜌 = 𝑚𝑛. In
addition, Eent is the entrainment term:

|𝒗𝐷 − 𝒗𝑏 |2 =
ℏ2

𝑚𝐷𝑛𝐷𝑚𝑏𝑛𝑏

|︁|︁|︁|︁|︁√︂ 𝑚𝑏

𝑚𝐷
𝜓𝑏∇𝜓𝐷 −

√︂
𝑚𝐷

𝑚𝑏
𝜓𝐷∇𝜓𝑏

|︁|︁|︁|︁|︁2.
This term is manifestly Galilean invariant since it contains a
difference between what is sometimes called the “superfluid
velocities” 𝒗𝑖 = ℏ∇𝜙𝑖/𝑚𝑖 . Note that, for simple superfluids
with only a single quadratic gradient term |∇𝜓 |2, this superfluid
velocity corresponds with the group velocity 𝒋𝑖/𝑚𝑖𝑛𝑖 , but the
presence of additional gradient terms, such as this entrainment
term, changes the relationship between the phase gradients
∇𝜙 and the group velocitiy. In particular, as we will see,
entrainment allows a phase gradient to appear in a system even
in the absence of a current, providing a way to detection of
entrainment through interference.
Miscibility of the bosonic and fermionic superfluids, i.e.,

that they occupy the same physical space, is a requirement for
detecting entrainment. A necessary condition for miscibility is
that the energy density be convex:(︃

𝜕2Eℎ

𝜕𝑛𝐷𝜕𝑛𝑏

)︃2

<
𝜕2Eℎ

𝜕𝑛2
𝐷

𝜕2Eℎ

𝜕𝑛2
𝑏

=⇒

𝜋ℏ2 (1 + 𝑚𝑏

𝑚𝐷
)2

4𝑚𝑏𝑎𝑏𝑏
<

E′′
𝑓 (𝑛 𝑓 )
𝑎2
𝐷𝑏

. (8)

For our setup, the quantities on the left-hand side are fixed,
but the right-hand side can be adjusted using the Li reso-
nance through the 𝐵-field dependence of E 𝑓 (𝑛 𝑓 ) to ensure that
our mixture remains miscible as we attempt to maximize the
entrainment.

In particular, the miscibility depends sensitively on the dimer-
boson scattering length 𝑎𝐷𝑏. Naïvely, one might expect this
to be twice the Fermi-Bose scattering length 𝑎𝐷𝑏 ∼ 2𝑎 𝑓 𝑏,
but mean-field effects enhance this 𝑎𝐷𝑏 ∼ 3.87𝑎 𝑓 𝑏 for our
𝑚Yb/𝑚Li ≈ 29 mass ratio [84–86]. However, as pointed out
in [84], 𝑎𝐷𝑏 may receive large in-medium corrections from
three-body effects, whichmust be calibrated to the system under
consideration. We thus consider 𝑎𝐷𝑏/𝑎 𝑓 𝑏 as an unknown
parameter which must be carefully measured (see Fig. 1) and
present our main results for a range of plausible values.
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Figure 1. Miscibility condition Eq. (8) as a function of 𝑎𝐷𝑏/𝑎 𝑓 𝑏 [87]
and magnetic field 𝐵. The shaded region corresponds to immiscible
fluids which cannot be used to measure entrainment. To maximize the
entrainment signal, one should generally choose the smallest magnetic
field allowed by the miscibility condition (solid lines). Within the
hatched region, however, particle losses are particularly high [88].
Thus if 4 ⪅ 𝑎𝐷𝑏/𝑎 𝑓 𝑏 ⪅ 6.5, one should keep 𝐵 ≈ 730G to maintain
a reasonable lifetime of the system.

The resulting energy-density functional can be cast in terms
of a wavefunction-dependent effective mass matrix for the
two-component wavefunction𝜳 = (𝜓𝐷 , 𝜓𝑏)𝑇 :

E[𝛹 ] = ℏ2

2
∇𝜳 † · 𝑴−1 · ∇𝜳 + Eℎ, (9a)

𝑴−1 [𝜓𝐷 , 𝜓𝑏] =
(︄
𝑚−1

𝐷 − 𝑓ent
𝑚𝑏

𝑚𝐷
𝑛𝑏 𝑓ent𝜓

†
𝑏𝜓𝐷

𝑓ent𝜓
†
𝐷𝜓𝑏 𝑚−1

𝑏 − 𝑓ent
𝑚𝐷

𝑚𝑏
𝑛𝐷

)︄
,

(9b)

where

𝑓ent (𝑛𝐷 , 𝑛𝑏) = 𝜌dr

𝑚𝐷𝑚𝑏𝑛𝐷𝑛𝑏
. (9c)

Varying the associated action with respect to 𝜳 † gives the
following coupled nonlinear Schrödinger equations:

iℏ𝑒i𝜂𝜳̇ = −ℏ2

2
∇

(︂
𝑴−1 [𝜓𝐷,𝑏] · ∇𝜳

)︂
+ 𝑽eff [𝜓𝐷,𝑏] ·𝜳 , (10)
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where we include a complex phase 𝜂 to simulate thermal
dissipation (sometimes referred to as the dissipative gpe (dgpe)
or projected dissipative gpe (pdgpe)) and the effective potential
is

𝑽eff =

(︄
𝜕Eℎ

𝜕𝑛𝐷
0

0 𝜕Eℎ

𝜕𝑛𝑏

)︄
+ 𝛼

ℏ2

2

(︄
𝜕 𝑓ent
𝜕𝑛𝐷

0
0 𝜕 𝑓ent

𝜕𝑛𝑏

)︄
+

− 𝑓ent
ℏ2

2

(︄
𝑚𝐷

𝑚𝑏
|∇𝜓𝑏 |2 −∇𝜓†

𝑏 · ∇𝜓𝐷

−∇𝜓†
𝐷 · ∇𝜓𝑏

𝑚𝑏

𝑚𝐷
|∇𝜓𝐷 |2

)︄
,

𝛼 = − 𝑚𝑏

𝑚𝐷
𝑛𝑏 |∇𝜓𝐷 |2 − 𝑚𝐷

𝑚𝑏
𝑛𝐷 |∇𝜓𝑏 |2+

+ 𝜓†
𝐷𝜓𝑏∇𝜓

†
𝑏 · ∇𝜓𝐷 + 𝜓†

𝑏𝜓𝐷∇𝜓
†
𝐷 · ∇𝜓𝑏 .

For weakly interacting bosons, E 𝑓 (2𝑛𝐷) ≡ 𝑔𝐷𝐷𝑛
2
𝐷/2,

Shevchenko and Fil [48] have calculated 𝜌dr to leading or-
der in the inter-species coupling 𝑔𝐷𝑏 in terms of the phonon
dispersion relationships 𝐸ph (ℏ𝑘). We apply their results to our
Bose-Fermi mixture by using (4) for the dimers instead of the
usual bosonic phonon dispersion. The resulting expressions
are rather complicated to display analytically, so we include a
simple numerical implementation in the supplement [89, 90].
This approach captures the correct physics in the deep bec

limit of the crossover where 𝐸ph (ℏ𝑘) approaches the usual
bosonic dispersion for the dimers, and provides a qualitative
extrapolation to the unitary regime.
To more accurately characterize the unitary regime, a

fermionic density functional theory (dft) such as the superfluid
local density approximation (slda) [91] should be used. In
particular, our approximation neglects the softening of the
phonon dispersion relationship and pair-breaking effects. We
expect this to provide an upper bound on the magnitude of
the entrainment since softening the dispersion increases the
number of virtual excitations that contribute to entrainment. A
similar enhancement can be achieved by using an optical lattice
to modify the dispersion, as discussed in [62].
Another limit of our approach is the inclusion of only 𝑠-

wave interactions at 𝑇 = 0. This is appropriate in ultra-cold,
dilute gasses, but may need corrections at finite temperature,
or if the density becomes large enough that Lee-Huang-Yang
corrections become significant [92]. These corrections can
easily be incorporated in a similar formalism, but require more
thorough ab initio calculations or measurements to determine
the exact form of the nonlinear interactions.

III. Proposed Experiment

Using this formalism, we model a mixture of a fermionic (6Li,
2S1/2) superfluid and a bosonic (

174Yb, 1S0) superfluid. Using
the wide 𝑠-wave Feshbach resonance centered at 832G, one can
tune the fermionic 𝑎 𝑓 𝑓 scattering length between the two lowest
hyperfine states of Li [66, 93]. Since Yb is not magnetically
susceptible, the 𝑎𝑏𝑏 scattering length is fixed.
We propose using an optical ring trap to hold both superfluids

with the ring oriented horizontally. Several convenient values
for wavelength exist above 700 nm, although the polarizibilities

of the two species will be different (for instance, at a wavelength
of 780 nm the polarizability ratio of Li to Yb is about 5), the
minima of the potentials coincide, trapping the clouds in the
same region of space, but with different trapping frequencies.
In the vertical direction, the weaker gravitational force on the
Li can be countered with a magnetic field gradient to ensure
physical overlap of the superfluids [94].
A circular flow around the ring will then be generated in the

fermionic superfluid, for example, by using the procedure of
optical stirring [95] with a laser beam which acts as a species
selective potential for Li. A convenient wavelength is 665 nm
where the polarizability ratio is about 60. Such techniques can
generate circular flow with four windings, corresponding to a
flow velocity 𝑣/𝑣𝑐 ≈ 0.1 [95], where 𝑣𝑐 is the local speed of
sound in the center of the cloud. We use this as a lower bound
in our estimates below.
While phase imprinting using a two-photon Raman transition

between hyperfine states [96, 97] is an alternative procedure
to generate circulation states in BECs, it is not possible to
adapt this to 𝑠-wave paired fermionic superfluids because the
pairs are composed of two different hyperfine states. It may be
possible to apply phase imprinting using an optical pulse with a
tailored intensity profile as proposed in [98]. For optimization
of the final experiment, the key is to maximize the flow in the
fermions, while maintaining superfluidity, and minimizing the
disturbance of the bosonic component.
As discussed below, the entrainment signal is maximized at

lowermagnetic fields (bec limit)where the fermionic superfluid
density increases. This can however cause two undesirable
effects: the immiscibility of the fluids and increased three-body
loss. To mitigate these issues, we propose generating the flow at
𝐵 = 832G ufg resonance, then slowly reducing 𝐵 to maximize
the signal once the flow is established (see Fig. 2). The loss of
miscibility at low 𝐵 has the interesting side effect of allowing
one to estimate the value of 𝑎𝐷𝑏 by tuning the magnetic field
to the limit of miscibility.
To prevent flow in the bosonic superfluid, a species-selective

repulsive barrier seen only by the bosons can be inserted.
A convenient optical frequency for this potential is about
200GHz blue detuned of the 1𝑆0 → 3𝑃1 transition at 556 nm
for Yb. After letting the two superfluids equilibrate, the bosonic
superfluid will acquire a phase difference across the barrier due
to the entrainment terms. This can subsequently be measured
by observing the interference pattern after expansion [99].
This might seem unusual since the barrier arrests any flow

in the bosonic superfluid 𝒗𝑏 = 0, so how can a phase shift
accumulate? The resolution is that entrainment modifies the
relationship between the phase gradient ∇𝜙𝑏/𝐷 and the group
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Figure 2. Magnetic field dependence of the phase shift for the mean-
field value of 𝑎𝐷𝑏 = 3.87𝑎 𝑓 𝑏 . The unitary Fermi gas is realized at the
resonance 𝐵 = 832G where 𝑘𝐹𝑎Li = ∞. Here, we show an example
calculation performed for both current and future parameters as listed
in Table I. The hatched region is the range withing which the particle
losses become significantly higher.

velocity 𝒗𝑏/𝐷:1

𝒋𝑏 = 𝑛𝑏ℏ∇𝜙𝑏 − 𝜌dr

⎛⎜⎜⎜⎜⎝
𝒗𝑏⏟ˉ⏞⏞ˉ⏟

ℏ∇𝜙𝑏

𝑚𝑏
−

𝒗𝐷⏟ˉ⏞⏞ˉ⏟
ℏ∇𝜙𝐷

𝑚𝐷

⎞⎟⎟⎟⎟⎠
, (11a)

𝒋𝐷 = 𝑛𝐷ℏ∇𝜙𝐷 − 𝜌dr

(︃
ℏ∇𝜙𝐷

𝑚𝐷
− ℏ∇𝜙𝑏

𝑚𝑏

)︃
. (11b)

Here, we consider the Yb wave function (Li dimer wave func-
tion), 𝜓𝑏 =

√
𝑛𝑏𝑒

𝑖𝜙𝑏 (𝜓𝐷 =
√
𝑛𝐷𝑒

𝑖𝜙𝐷 ), and 𝑛𝑏 (𝑛𝐷) is the
density of the bosonic (dimer) homogeneous state.
The barrier prevents any flow of the bosons, 𝒋𝑏 = 0, but the

entrainment still allows the accumulation of a phase shift in the
presence of fermionic flow 𝒋𝐷 ≠ 0:

ℏ∇𝜙𝑏

𝑚𝑏
= −ℏ∇𝜙𝐷

𝑚𝐷

𝜌dr

𝑚𝑏𝑛𝑏

(︃
1 − 𝜌dr

𝑚𝑏𝑛𝑏

)︃−1
, (12a)

𝒋𝐷 = 𝑛𝐷ℏ∇𝜙𝐷

(︄
1 − 𝜌dr

𝑚𝐷𝑛𝐷

(︃
1 − 𝜌dr

𝑚𝑏𝑛𝑏

)︃−1
)︄

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑚𝐷/𝑚∗

𝐷

. (12b)

1 In this case, where the momentum operators appear in the functional (7)
at only quadratic order, these group velocities can be obtained sim-
ply as the derivative of the appropriately defined dispersion: 𝑣𝑏,𝐷 =
𝜕𝐸 (ℏ𝑘𝑏 , ℏ𝑘𝐷 )/𝜕(ℏ𝑘𝑏,𝐷 ) . The presence of higher derivatives compli-
cates this, and one must compute the proper momentum currents in terms of
the symmetrically ordered expansion of these derivatives.

Thus, a circulating fermionic superfluid with 𝒋𝐷 ≠ 0 will
induce a phase gradient ∇𝜙𝑏 ≈ −𝜌dr 𝒋𝐷/(ℏ𝑛𝑏𝑛𝐷𝑚𝐷) in the
bosons, despite the fact that the barrier keeps the bosonic cloud
stationary, 𝒋𝑏 = 0:

ℏ𝑛𝑏∇𝜙𝑏 = − 𝒋𝐷 𝜌dr

𝑚𝐷𝑛𝐷

(︃
1 − 𝜌dr

𝑚𝐷𝑛𝐷

(︃
1 + 𝑚𝐷𝑛𝐷

𝑚𝑏𝑛𝑏

)︃)︃−1
. (13)

Once the phase-shift has been imprinted on the bosons, and
the fermions have been removed, the bosonic cloud can be
released, allowing the opposite sides of the barrier to expand
into each other, forming an interference pattern shifted by
the relative phase imprint from entrainment. Crucial to the
success of this protocol is minimization of contamination from
mean-field effects, which, as we mentioned in the Introduction,
can be several orders of magnitude larger than the correspond-
ing entrainment effects, precluding observation through other
methods such as the dipole frequency shift in a harmonic trap.
To mitigate this, our setup develops the phase shift in a homoge-
neous background around the ring geometry. We have verified
through our simulations that the back reaction from the barrier
in the bosonic cloud does not induce any mean-field effects,
despite the fermionic flow. It will also be crucial to remove
the fermionic cloud with a sudden vertical laser pulse before
performing the interferometry. Repeating the experiment with
circulation in the opposite direction can be used to test for
and mitigate any asymmetry in the underlying trap geometry.
Numerical values for the proposed experiment are provided in
section V (see also Fig. 3).
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Figure 3. Entrainment phase shift (𝛥𝜃/2𝜋) calculated with magnetic
field (𝐵) values from the miscibility criteria (equation 8) for a range of
values for 𝑎𝐷𝑏/𝑎 𝑓 𝑏 . The top (bottom) set of curves is for the “future”
(“current”) values of parameters in table I. The dashed region is the
high loss region. For those 𝑎𝐷𝑏 values, we recommend 𝐵 = 730G, for
which the mixture remains miscible. The phase shift data is plotted
in a log scale. The points represent the phase shift values calculated
using equation (17) at the fiducial points in table I.
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IV. Estimated Phase Shift

To estimate the phase shift, we consider a homogeneous gas
with wavefunctions:

𝜓𝐷 (𝒙) = √
𝑛𝐷𝑒

i𝒌𝐷 ·𝒙, 𝜓𝑏 (𝒙) =
√
𝑛𝑏𝑒

i𝒌𝑏 ·𝒙. (14)

with 𝑘𝐷,𝑏 = ∇𝜙𝐷,𝑏.
In our ring geometry, 𝑘𝐷 = 𝑁𝑤/𝑅 where 𝑁𝑤 is the number

of phase windings, and 𝑅 is the radius of the ring. Physically,
the magnitude of the winding will be limited by the speed
of sound in the superfluid, which defines the local Landau
critical velocity 𝑣𝑐 which follows from the linearized form of
(4): 𝑣𝑐 ≈ 𝐸ph (ℏ𝑘)/ℏ𝑘 ≈ 𝐸 ′

ph (ℏ𝑘):

𝑣𝐷 =
ℏ𝑘𝐷
𝑚 𝑓

< 𝑣𝑐 ≈
√︂

𝑛𝐷
𝑚𝐷

4E′′
𝑓 (𝑛 𝑓 ). (15)

Minimizing (9b) we obtain the induced phase gradient in the
bosonic component and the corresponding fractional phase
shift|︁|︁|︁|︁ 𝛥𝜃2𝜋

|︁|︁|︁|︁ = 2𝜋𝑅∇𝜙𝑏

2𝜋
= ∇𝜙𝐷

𝑅𝜌dr

𝑚𝐷𝑛𝑏

(︃
1 − 𝜌dr

𝑚𝑏𝑛𝑏

)︃−1
. (16)

can be as large as 67%, as we show in the next section.

V. Simulations

We first verify our model, by calculating the dipole oscillation
frequency of the bosonic cloud in a Yb-Li superfluid mixture
using the experimental parameters of [42]. In this experiment,
a small Yb bec oscillates in a large 6Li cloud at 𝐵 = 780G
in a stable mixture of two-superfluids featuring large mass
mismatch and distinct electronic properties. In principle, the
entrainment terms should modify the oscillation frequency
from that of the background harmonic trap, but as discussed in
the Introduction, this shift is two orders of magnitude smaller
than the shift due to the mean-field interaction.
As validation of our mean-field implementation, we repro-

duce the observations in [42], obtaining a frequency shift of
dipole oscillation consistent with the measured values. We
include the trap-offset in the direction of the gravity and use
𝑎𝐷𝑏 = 2𝑎 𝑓 𝑏.
In the presence of the Li cloud, the dipole oscillation fre-

quency (𝜔𝑑) of the Yb-bec is extracted to be 2𝜋 × 381.3(4) Hz.
From our calculation, the frequency is 2𝜋 × 381.4(9) Hz – well
within the experimental errors. In the experiment, along with
the center of mass (cm) mode, scissor modes get excited. The
absence of the growth of the scissor mode shows very small
energy transfer from the cm mode. Our simulations capture
the same qualitative effect.
A subtle point in the experiment was the observation of a

decay in the amplitude of the dipole mode. In Ref. [42] it was
conjectured that this may be due to the excitation of quadrupole
modes to which the dipole mode is coupled by anharmonicity
in the trapping potential. Within our model, we find that the
frequencies of the twomodes are sufficiently distinct that energy

cannot be efficiently transferred, and suggest instead that this
dissipation is due to thermal effects. We can reproduce the
measured decay constants (𝜔𝑑𝜏) within our dgpe model (10)
with a phase of 𝜂 ≈ 0.0015. The measured and calculated
values are 250 and 210, respectively, which are in reasonable
agreement.
Aside from this effect, we reproduce the results with our

self-consistent model, verifying the excitation and behavior of
scissor modes frommisalignment in the trap, and themean-field
frequency shifts.
This validates that our model properly captures the mean-

field effects which can potentially obscure entrainment signals.
We use this model to simulate the proposed experimental
procedure to detect entrainment as described in section III,
including all mean-field effects and density inhomogeneities
due to the trapping potentials. An important part of this
validation is that the induced flow in the fermionic superfluid
coupled with the bosonic density perturbation from the barrier
does not produce an asymmetry in density across the barrier.
This lack of density asymmetry differentiates, for example,
superfluid entrainment from mutual friction [100]: The latter
would drag and change the mean-field densities. The main
difference is that entrainment interaction couples the gradients
of the phases of the two wave functions. Therefore, once the
transient fluctuations die off, we will have a persistent flow in
the fermionic component, which will induce a phase gradient
on the bosons leading to a velocity difference across the barrier.
Once we remove the barrier in the bosonic component and
let the two parts of the cloud expand into each other, the
velocity difference will result in a shift in the interference
pattern. We may detect this shift by comparing against the
interference fringes produced in a system without the induced
phase gradient.

A. Experimental Parameters

We present our results in terms of two sets of parameters. A
current set of parameter values that have been demonstrated
through various existing experiments, and a future set of
realistic parameter values optimized to detect the entrainment
effect. We find that with current parameters, a modest phase
shift occurs which lies at the bounds of current detectability;
however, with future improvements, a significant phase shift
will be induced that should enable the first direct detection of
superfluid entrainment.
Current Parameters: — Current experiment in ring traps have
demonstrated the ability to trap 𝑁𝑏 ≈ 105 bosonic atoms [96],
and recently, ≈ 104 fermionic atoms [101]. In harmonic
traps 𝑁𝑏 = 𝑁 𝑓 ≈ 105 has been achieved in a Fermi-Bose
mixture [41, 42] and 𝑁 𝑓 ≈ 106 − 107 has been reported for
single species [102]. With current technology, we expect
experimental improvements to trap higher numbers of fermions
in the near future.
Themain limit on themaximum density is particle loss due to

three-body processes which scale as 𝑛3. We can mitigate this to
some extent by adjusting the fermion density with the magnetic
field, and the boson density with the trap frequencies. For our
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Figure 4. Free expansion of the central density of the bosonic component of the mixture in a periodic box, using the current parameter set (left)
and future parameters (right) (see table I). Notice the asymmetry around the vertical line at 𝐿𝑥 = 0: a signature of the measurable entrainment
shift. These expansion simulations are done with full three-dimensional parameters in a tube geometry which reduces the complexity of the
numerical calculations significantly while having the essential aspects of the full three-dimensional calculation. Consequently they do not
capture the full radial expansion of the ring, but mimic the density drop. Back to back measurements will also make the signal more comparable
to the expansion of a state without asymmetry. In the calculations here, we have used 𝑎𝐷𝑏 = 3.87𝑎 𝑓 𝑏 and chose the two parts of the cloud to be
≈ 6 µm separated. The dotted lines represent the expansion without any entrainment effect, to distinguish the amount of the shift. The lightly
shaded region in the bottom-right panel shows the amount of shift ≈ 5 µm.

Adjustable Parameters Fixed Parameters:

𝑁 𝑓 : 1 × 105 to 1 × 106 𝑚 𝑓 = 6 u
𝑁𝑏: 1 × 105 to 1 × 106 𝑚𝑏 = 174 u
𝐵: Miscibility limited 𝜔𝑌𝑏 = 2𝜋 × 400Hz
𝑅: 30 µm to 200 µm 𝑎𝑏𝑏 = 5.5 nm

𝑎 𝑓 𝑏 = 1.59 nm
𝛼 = 6.2

𝑣/𝑣𝑐: 0.15 to 0.2 𝜉 = 0.3705

𝛥𝜃/2𝜋: 3% to 33% (+ in Fig. 3) 𝑎𝐷𝑏 = 2𝑎 𝑓 𝑏 , 578G
𝛥𝜃/2𝜋: 6% to 67% (× in Fig. 3) 𝑎𝐷𝑏 = 3.87𝑎 𝑓 𝑏 , 638G

Table I. Parameters ranging from current to future values and the
corresponding phase-shifts.

analysis, we fix the trap frequency for the bosons at 2𝜋 × 400Hz.
This gives a lifetime for the Yb-bec of≈ 2 s [103] with a central

density ≈ 340 µm−3 ≈ 3.4 × 1014 cm−3 and chemical potential
𝜇𝑏 ≈ 65 nK(𝜇𝑏/ℏ𝜔𝑌𝑏 ≈ 3) in a 30 µm trap. Excessively tight
traps can heat the system, reducing the expected lifetime. We
propose using the same laser to trap both chemical species,
which limits the relative polarizability (𝛼) between the two
species. With 𝛼 = 6.2, at 638G, the trap frequency for fermions
becomes ≈ 2𝜋 × 5 kHz, setting the lifetime of Li-dimers at
≈107ms with chemical potential 𝜇𝐷 ≈ 1.43 µK (𝜇𝐷/ℏ𝜔𝐿𝑖 ≈
5) and central density ≈ 100 µm−3 ≈ 1 × 1014 cm−3. Here, the
Yb-Li scattering length remains roughly constant. 2 These
densities are dilute in the sense thatmean-field analyses are valid.
Standard values for relevant scattering lengths in the system
are: 𝑎𝑏𝑏, the boson-boson scattering length, 5.5 nm [105] and

2 Narrow Feshbach resonances (< 1mG) have recently been observed in
Yb-Li mixtures [104]. These do not affect our discussion.
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𝑎 𝑓 𝑏, fermion-boson scattering length, 1.59 nm [87]
In table I we compare two sets of adjustable parameters. In

the table, 𝑣/𝑣𝑐 corresponds to the flow velocity as a fraction of
Landau critical velocity in Li, 𝜉 is the Bertsch parameter and
rest of the parameters have their usual meanings. The left-hand
side of the first column shows typical values realized in current
experiments. The right-hand side shows how these could be
adjusted to maximize the entrainment signal with values that
should be attainable with reasonable experimental advances.
We have calculated the percentage phase shift from the

unitarity up to the bec side of the phase diagram for the Fermi-
Bose mixture by numerically integrating the equation (28)
of [14] at T = 0 with modified equation of state and phonon
dispersion relationship for the fermionic dimers. We have also
determined the parameter dependencies of the percentage phase
shift from scaling analysis, and it has the following form:

𝛥𝜃

2𝜋
≈

(︂
6.2%

)︂ (︂ 𝑣

0.15𝑣𝑐

)︂ (︂ 𝑎𝐷𝑏

3.87𝑎 𝑓 𝑏

)︂2.02(1) (︂ 𝐵

638G

)︂−3.4(3)

(︂ 𝛼

6.2

)︂0.58(1) (︂ 𝑅

30 µm

)︂0.46(1) (︂ 𝑁 𝑓

105

)︂0.58(1) (︂ 𝑁𝑏

105

)︂−0.033(1)

(︂ 𝑚𝑏𝑚 𝑓

𝑚𝑌𝑏𝑚𝐿𝑖

)︂0.54(1) (︂ 𝑚𝑏/𝑚 𝑓

𝑚𝑌𝑏/𝑚𝐿𝑖

)︂0.02(1)
. (17)

The exponents in the equation (17) demonstrate the approximate
dependence of the phase shift on various parameters. The errors
in the exponents demonstrate how the exponents vary due to
the full functional dependence provided in the accompanying
code [89, 90], accounting for the changes in values for the
currently achievable parameters (left column in Table I) from
the possible experimental parameters implementable in future
(right column in Table I). See II for a complete tabulation of
these exponents and their errors.
Future Parameters: — From Eq. (17) we see that the most
significant signal enhancements come from increasing the
dimer-boson scattering length 𝑎𝐷𝑏 and decreasing the mag-
netic field 𝐵 towards the bec limit. Miscibility limits the
enhancement of these two effects, requiring one to adjusting
the magnetic field 𝐵 according to Eq. (8). To maximize the
entrainment signal, one should use the lowest magnetic field
allowed by miscibility (see Fig. 1), but particle loss rates are
particularly high in the range 650G to 720G [88]. At each
magnetic field, the miscibility condition gives us values of 𝑎𝐷𝑏

for which the mixture remains miscible. If the unknown 𝑎𝐷𝑏

value lies within the miscible 𝑎𝐷𝑏 range of 650G to 720G,
then one should keep 𝐵 ≈ 730G to minimize particle loss.
Other parameters that have a positive effect on the enhance-

ment are the radius of the ring (𝑅), and the induced flow velocity
(𝑣/𝑣𝑐). In general, by increasing each of them we can increase
the signal strength, but each of them is limited by potential
experimental challenges. Perfect larger ring traps are harder
to obtain as they may not remain flat at the center along the
azimuthal axis. This will lead to production of a higher amount
of mean-field density fluctuation which may not completely die
out within the lifetime of the metastable superfluid state. For
a single bosonic species 𝑅 ≈ 250 µm [106] has been achieved.
This order of magnitude may be achievable for a superfluid

mixture. In our experimental protocol, creating a substantial
flow in the fermionic component increases the signal strength
by a considerable amount, but is strictly limited by the number
of windings we can induce set by Landau criterion. There is
also the possibility to make an improvement by increasing the
induced velocity to as close as possible to the critical velocity.
Typically, only ≈ 10% of the critical velocity is accessed [107],
but recent experiments have achieved much higher induced
flow velocities, which could potentially increase the detectable
entrainment signal [108]. A key part of our protocol is to used
the same ring trap for both species which will ensure they are
trapped in the same physical space. The centrifugal force of the
rotating fluid displaces the fermionic cloud slightly, but with
these parameters the displacement is insignificant ≲ 0.014 µm.
With the current parameter set, we may produce a phase shift

up to ≈ 6% (considering the mean-field enhancement of 𝑎𝐷𝑏)
of observable phase shift. The suggested improvements (future
parameters) may increase the signal to as high as ≈ 67%.

B. Entrainment Signal

We present snapshots from the one-dimensional time evolution
of the bosonic component in a tube with the current and future
parameters in figure 4. These are time evolution images, which
demonstrate the asymmetry in the interference fringes generated
from the entrainment interaction. In an actual experimental
procedure, the interfering clouds will be imaged after a time-of-
flight expansion after turning off the confining potential, where
the density will drop and the mean-field interaction between
the bosons will be reduced. In that scenario, the fringe spacing
after a long expansion time 𝑡 is:

𝜆𝑠 ≈ 2𝜋ℏ𝑡
𝑚𝑑

(18)

for initial separation 𝑑, as seen in the earlier experiments [99].
Essentially, with long time-of-flight expansion, the fringe
spacing increases linearly with time and 30ms is typical for
earth bound laboratory experiments. This can be increased
by a factor of 3 to 10 in microgravity setting [109] as the
reduced gravity will substantially increase the time-of-flight.
By employing a linear optical potential (with a laser far detuned
from the Yb resonances), one may also reduce the effect of
gravity and increase the time-of-flight [110]. Competing factors
here are the initial separation and the mean-field interaction.
The clouds have to be initially separated enough that, they
can grow large in size before the interference. Therefore, a
point of suitable compromise has to be reached to maximize
the signal in a typical laboratory experiment. The reduction
in density during the time-of-flight has another positive effect
on the experimental outcome. This widens the fringes, which
will make them easier to resolve. To demonstrate this effect
we perform simulations in a tube geometry, which mimics the
density reduction in a radially expanding cloud. A Similar
effect is also visibly present in the two-dimensional expansion
of the ring in figure 5.
Finite-temperature effects could impact our estimates in two

ways. The presence of a thermal component will reduce the
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Figure 5. Schematic radial expansion of a ring with an induced phase gradient in the bosonic component. As time progresses (left to right), the
density decreases because of the outward radial expansion and the fringes become wider. (This is schematic in the sense that it is in an effective
two-dimensional geometry with translation invariance out of the page, and the visual effect is enhanced by increasing the density.)

contrast, filling in the interference fringes. As demonstrated in
ref. [99], however, with achievable temperatures, the reduction
in contrast is not significant. Furthermore, the thermal cloud
will disperse more quickly during the 30ms to 50ms time-of-
flight expansion time, enhancing the signal.
The thermal cloud will also reduce the fraction of condensate,

impacting the entrainment signal. From the scaling relation-
ship (17), we see that 𝑇/𝑇𝑐 ≈ 0.55 [42] would result in ≈ 11%
reduction in the percentage phase shift. Thus, as long as the
imprinting procedure does not overly heat the system, there
should be plenty of contrast.

VI. Conclusion

We proposed an experimental protocol to directly measure for
the bulk three-dimensional entrainment, the Andreev-Bashkin
effect, in a fermionic and bosonic superfluid mixture. By using
a ring geometry with a common trap for both species, we
demonstrated that atom interferometry techniques can produce
measurable phase shifts with reasonable experimental param-
eters, and we characterized their dependence. An important
feature of our protocol is the elimination of mean-field effects,
which have thwarted previous attempts to measure entrainment
based on shifts in the dipole oscillation frequency in a harmonic
trap. The broad Feshbach resonance allows us to adjust the
interaction strength of the 6Li superfluid to ensure miscibility
and the large mass of the bosonic 174Yb superfluid enhances
the entrainment effect. One uncertainty is the dimer-boson
scattering length 𝑎𝐷𝑏, which may have significant corrections
from three-body physics [84]. The value of this parameter still
needs careful measurement, but a significant enhancement to
the entrainment signal is possible if this is large, introducing
an intriguing potential for developing a significant entrainment
effect by tuning three-body interactions. With current tech-
nologies and assuming mean-field values for 𝑎𝐷𝑏 a 6% phase
shift should be reliable. With reasonable improvements in

experimental techniques, this may be as large as 67%.
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VII. Appendix

A. Radial Expansion

Here we demonstrate snapshots from a schematic radial expan-
sion of a ring in two-dimensions in figure 5. This simulation is
done with the current parameters in table I, except we modified
the density and the width of the ring to enhance the interference
effect, allowing more visibility for the demonstration purpose.
This demonstration reiterates the importance of time-of-flight
expansion in the detection procedure. Longer time-of-flight
expansion make the fringes easier to resolve by increasing the
fringe width.

B. Deviations in the exponents

Table II shows the deviation in the exponents that appear
in Eq. (17).

C. Equation of state: 6Li

To perform our calculations, we parametrize the equation of
state of 6Li Fermi gas. Once we fix the scattering length (𝑎Li),
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Parameter Current exponent Future exponent

𝛼/6.2 0.592 03(2) 0.564 86(3)
𝑁𝑏/105 −0.031(3) −0.034(3)
𝑁 𝑓 /105 0.592 02(2) 0.564 86(3)
(𝑚𝑏𝑚 𝑓 )/(𝑚𝑌𝑏𝑚𝐿𝑖) 0.5609(1) 0.5308(1)
𝑅/30 µm 0.4391(1) 0.4691(1)
𝐵/638G −3.18(5) −3.67(2)
𝑎𝐷𝑏/3.87𝑎 𝑓 𝑏 2.0152(2) 2.0279(3)
(𝑚𝑏/𝑚 𝑓 )/(𝑚𝑌𝑏/𝑚𝐿𝑖) 0.02(1) 0.03(1)

Table II. Extracted parameter dependence for current and future
parameter values. These are the powers 𝑝 appearing in corresponding
terms of Eq. (17). The errors express the typical range over which the
exponents vary when the parameters are changed by ±10% about the
current or future values listed in Table I.

in terms of the external magnetic field (𝐵), we use the model:

E(𝑛, 𝑥) = 𝑓 (𝑥)E𝐹𝐺 (𝑛) (19a)

𝑓 (𝑥) = 𝑏𝑥 + 𝜉
𝑥
𝜉 (𝑏 + 𝜁) + 1 + 18𝜋𝑏𝑥2

5𝑎𝐷𝐷/𝑎Li

(19b)

with 𝑥 = 1/(𝑘𝐹𝑎), E𝐹𝐺 (𝑛) = 3
5𝑛ℏ

2𝑘2
𝐹/2𝑚𝐹 . This Padé

expansion has two following limits:

E(𝑛)
E𝐹𝐺 (𝑛) =

{︄
𝜉 − 𝜁𝑥 + O(𝑥2) 𝑥 ≈ 0 (Unitarity).
− 5

3𝑥
2 + 𝑎𝐷𝐷

𝑎Li
5

18𝜋𝑥 + O( 1
𝑥2 ), 𝑥 → ∞ (BEC).

Here, 𝑎𝐷𝐷 is the dimer-dimer scattering length, 𝜁 is the contact,
and 𝜉 is the Bertsch parameter.

𝜉 = 0.3742(5), 𝜁 ≈ 0.901, 𝑎𝐷𝐷 = 0.6𝑎Li.

The more relevant parameter in this case, the dimer-dimer
scattering length, we calculate it using 𝑎𝐷𝐷 = 0.6𝑎𝐿𝑖 [71].
In the bec limit, this reproduces the expected equation

of state for a BEC of dimers with density 𝑛𝐷 = 𝑛/2, mass
𝑚𝐷 = 2𝑚𝐹 , and scattering length 𝑎𝐷𝐷 . The value of 𝑏 = 0.25
is chosen to match the qmc data on the bec side of the phase
diagram.

E𝐵𝐸𝐶 (𝑛) = − ℏ2

2𝑚𝐹𝑎
2
Li
𝑛 + 𝑔𝐷𝐷𝑛

2
𝐷

2
+ · · · , 𝑔𝐷𝐷 =

4𝜋ℏ2𝑎𝐷𝐷

𝑚𝐷

To relate the magnetic field strength 𝐵 with the scattering

length, we fit the data from [111], using the model from [112]:

𝑎−1
Li = 𝑎−1

𝑏𝑔

𝐵 − 𝐵0

(𝐵 − 𝐵0 + 𝛥) (1 + 𝛼(𝐵 − 𝐵0)) (20)

𝐵0 = 832.178 498G, 𝛥 = 293.396 620G,
𝑎𝑏𝑔 = −1415.051 08 𝑎𝐵, 𝛼 = 0.000 406 405 370,

𝑎𝐵 = 0.052 917 7 nm.
D. Entrainment Coefficient

We have used equation (28) of [14] at T = 0 as 𝜌dr in our
calculation. The analytic form is the following:

𝜌dr =
∫

𝑑𝑘

2𝜋2 𝑘
2𝛾2

𝐷𝑏

√
𝑚𝐷𝑚𝑏

𝑛𝐷𝑛𝑏 (𝜖𝐷𝜖𝑏)3/2

𝛺𝐷𝛺𝑏 (𝛺𝐷 + 𝛺𝑏)3 . (21)

with

𝜖𝑖 =
ℏ2𝑘2

2𝑚𝑖
, 𝐸𝑖 = (𝜖𝑖 (𝜖𝑖 + 2𝑔𝑖𝑛𝑖)) ,

𝛾𝐷𝑏 =
2𝜋ℏ2𝑎𝐷𝑏 (𝑚𝐷 + 𝑚𝑏)

𝑚𝐷𝑚𝑏
, 𝑔𝑏𝑏 =

4𝜋ℏ2𝑎𝑏𝑏
𝑚𝑏

,

𝑔𝐷𝐷 =
𝜕2E 𝑓 (2𝑛𝐷)

𝜕𝑛2
𝐷

.

and

𝛺𝑖 =
⎛⎜⎝
𝐸2
𝑏 + 𝐸2

𝐷

2
±

√︄
(𝐸2

𝑏 − 𝐸2
𝐷)2

4
+ 4𝛾2

𝐷𝑏𝑛𝐷𝑛𝑏𝜖𝐷𝜖𝑏
⎞⎟⎠

1/2

.

Wehave numerically verified that, in the regions of experimental
interest,

𝜌dr ≈
∫

𝑑𝑘

2𝜋2 𝑘
2𝛾2

𝐷𝑏

√
𝑚𝐷𝑚𝑏

𝑛𝐷𝑛𝑏
𝛺𝐷𝛺𝑏

. (22)

follows similar scaling relationships as 𝜌dr, and can be used to
intuitively understand the scaling relationship shown in equa-
tion (17). The essence is that, in the integral, the complicated
cubic dependencies essentially drop out and we can use the
simplified relationship for qualitative discussions and rough
estimates of the scaling exponents. For quantitative results,
we numerically integrate 𝜌dr in the thermodynamic limit for
homogeneous matter with all dependencies. To estimate the
finite-size effects from the confinement of the ring, we com-
puted the integrals as momentum sums in a finite periodic box,
and find only a small correction of 1.86% to 2.5% for future
and current parameters respectively. For completeness, we
write the explicit parameter dependencies below:

𝛾𝐷𝑏 (𝑎𝐷𝑏, 𝑚𝐷 , 𝑚𝑏), 𝑛𝐷 (𝑁 𝑓 , 𝑚 𝑓 , 𝑅, 𝜔 𝑓 , 𝜉, 𝐵)
𝑛𝑏 (𝑁𝑏, 𝑚𝑏, 𝜔𝑏, 𝑎𝑏𝑏, 𝑅), 𝜔 𝑓 (𝛼, 𝜔𝑏).
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