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Abstract— Kernel herding is a deterministic sampling algorithm
designed to draw ‘super samples’ from probability distributions
when provided with their kernel mean embeddings in a reproducing
kernel Hilbert space (RKHS). Empirical expectations of functions
in the RKHS formed using these super samples tend to converge
even faster than random sampling from the true distribution itself.
Standard implementations of kernel herding have been restricted
to sampling over flat Euclidean spaces, which is not ideal for
applications such as robotics where more general Riemannian man-
ifolds may be appropriate. We propose to adapt kernel herding to
Riemannian manifolds by (1) using geometry-aware kernels that
incorporate the appropriate distance metric for the manifold and (2)
using Riemannian optimization to constrain herded samples to lie
on the manifold. We evaluate our approach on problems involving
various manifolds commonly used in robotics including the SO(3)
manifold of rotation matrices, the spherical manifold used to encode
unit quaternions, and the manifold of symmetric positive definite
matrices. We demonstrate that our approach outperforms existing
alternatives on the task of resampling from empirical distributions
of weighted particles, a problem encountered in applications such as
particle filtering. We also demonstrate how Riemannian kernel herd-
ing can be used as part of the kernel recursive approximate Bayesian
computation algorithm to estimate parameters of black-box simula-
tors, including inertia matrices of an Adroit robot hand simulator.
Our results confirm that exploiting geometric information through
our approach to kernel herding yields better results than alternatives
including standard kernel herding with heuristic projections.

I. INTRODUCTION

Kernel mean embeddings are powerful statistical tools that
enable learning and inference in potentially infinite-dimensional
feature spaces. By representing probability distributions as
elements of reproducing kernel Hilbert spaces, kernel mean
embeddings allow us to apply various kernel-based algorithms
directly on distributions [1], [2]. While there are many tools
available to sample from probability density functions, they
are not directly applicable to kernel mean embeddings. Kernel
herding is a deterministic algorithm that allows us to draw
samples from distributions when they are represented as kernel
mean embeddings [3]. This is particularly useful for methods
that operate in reproducing kernel Hilbert spaces (RKHS),
including many algorithms designed for robotics problems such
as filtering [4], [5], simulator parameter estimation [6], [7], and
likelihood-free Bayesian inference [8], [6]. Adapting kernel
herding to Riemannian manifolds also extends the applicability of
these algorithms to problems defined over Riemannian manifolds.

Current applications of kernel herding have been restricted to
sampling over flat Euclidean spaces [3], [4], [6], [9], and the stan-
dard kernel herding algorithm does not directly translate to general
Riemannian manifolds encountered in many applications. For
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example, in robotics, quantities like stiffness and inertia are repre-
sented by symmetric positive definite (SPD) matrices, which form
Riemannian manifolds when equipped with a Riemannian metric.
The special orthogonal group SO(3) of rotation matrices is used to
represent robot orientations and rotations. The spherical manifold
of unit-vectors can also be used to encode orientations and rotations
as unit quaternions. The spherical manifold is also foundational to
directional statistics [10], [11] and has a wide range of applications
including topic modeling in natural language processing [12],
protein structure modeling [13], speaker clustering from audio data
[14], etc. Exploiting the Riemannian structure of data spaces has
proven to be useful in numerous applications in robotics including
model predictive control [15], imitation learning [16], Bayesian
optimization [17], and so on. Our aim is to similarly incorporate
the Riemannian structure of data spaces for the task of sampling
from empirical distributions and kernel mean embeddings.

We propose to adapt kernel herding to Riemannian manifolds by
(1) using geometry-aware kernels that incorporate the appropriate
distance metric for the manifold, and (2) using Riemannian op-
timization to ensure that we only generate feasible samples that lie
on the manifold. Geometry-aware kernels have been successfully
applied to many problems on Riemannian manifolds including
Bayesian optimization [17], [18], spectral image classification [19]
and object recognition [20]. Our approach is similar in spirit to that
of [17], which applies a combination of geometry-aware kernels
and Riemannian optimization to Bayesian optimization. We focus
on a different problem of sampling over Riemannian manifolds.
While sampling from distributions over Riemannian manifolds has
been tackled in various contexts, the problem of sampling from
kernel mean embeddings over Riemannian manifolds is yet to
be addressed. There is significant literature dedicated to extending
Markov chain Monte Carlo (MCMC) methods to Riemannian
manifolds [21], [22], [23], [24]. Utilizing the Riemannian
kernelized Stein discrepancy [25], [26], the Riemannian Stein
variational gradient descent algorithm provides a particle-based
alternative that mitigates unwanted positive sample correlations
observed in MCMC methods [25]. The same discrepancy measure
may also allow a similar extension of other sampling algorithms
such as Stein points [9]. However, all of these methods rely on
having access to (potentially unnormalized) probability density
functions. In contrast, we focus on a different access model where
samples are to be drawn from distributions embedded in an RKHS
or empirical distributions defined via sets of weighted particles.

We provide an overview of kernel herding and kernel mean
embeddings in Section II. In Section III, we describe our approach
to adapt it to domains where samples must lie on Riemannian
manifolds. Finally, in Section IV, we present experimental results
in resampling from a set of weighted particles, and estimating the



parameters of a robotic simulator. Our experiments cover various
manifolds pertinent to robotics including SO(3), the spherical
manifold, and the manifold of SPD matrices.

II. KERNEL HERDING

We begin with a summary of kernel herding, along with
background on how probability distributions are embedded in an
RKHS as kernel mean embeddings. We refer the reader to [1] and
[2] for thorough surveys of these concepts.

Reproducing Kernel Hilbert Spaces Let X be the domain
of our data, and φ a non-linear mapping to a higher-dimensional
feature space. Most kernel-based learning algorithms access
these feature vectors only through their inner products,
which we can associate with a symmetric kernel function
k(x,x′) = 〈φ(x),φ(x′)〉. Instead of inferring the kernel from a
feature map, it is generally more convenient to define the kernel
directly. If a kernel is symmetric and positive definite (SPD) such
that

∑
ij cicjk(xi,xj)≥ 0 for all xi,xj ∈X and ci,cj ∈R, the

function k(x,x′) is the inner product of a feature map from X to
H, a potentially infinite-dimensional Hilbert space [27], [2]. The
Hilbert spaceH associated with SPD kernels has some additional
structure; it is actually a reproducing kernel Hilbert space (RKHS)
[27] that satisfies the following reproducing property

f(x)=〈k(x,·),f〉H ∀ f∈H and x∈X

Kernel based methods tend to offer the advantage of high
representational power that is decoupled from the dimensionality
of X . Instead, the complexity of these methods is tied to the
number of data samples, the memory costs due to which may need
to be offset by pruning the number of samples retained [28], [3].

Kernel Mean Embeddings Besides embedding individual
samples from X to an RKHS, we can also embed entire distri-
butions defined over X . A probability distribution P is embedded
in an RKHS as a kernel mean embedding µµµP , corresponding to
the expected value of the kernel function Ex∼Pk(x,·). We define
µµµP and its empirical estimate µ̂µµP as follows

µµµP =

∫
k(x,·)dP(x) µ̂µµP =

1

n

n∑
i=1

k(xi,·) for xi∼P

The empirical estimate µ̂µµP converges toµµµP at a rate ofO(n−1/2)
[29]. We can also construct the empirical mean embedding as a
weighted average µ̂µµP =

∑n
i=1wik(xi,·) from points {xi} not nec-

essarily sampled from P . Note that the weights wi can, in general,
be negative; preventing us from using various off-the-shelf sam-
pling techniques. Given a kernel mean embedding of a distribution,
we can calculate expected values of functions f∈H as follows

Ex∼P (f(x))=〈f, µµµP 〉H≈〈f,µ̂µµP 〉

If the kernel is additionally characteristic, the mapping from P
toµµµP is injective, andµµµP is the complete, unique description of
P [30]. Popular examples of characteristic kernels over Euclidean
space include the Gaussian and Laplacian kernels [30].

Kernel Herding Kernel herding is an approach for drawing
samples from probability distributions via their kernel mean
embeddings [3]. Given a kernel function k and a target kernel
mean embedding µ̂µµP , or a set of weighted samples {wi, x̃i}

representing µ̂µµP , kernel herding constructs a new set of samples
{xt}nt=1 by solving the following optimization problem n times

xt=argmin
x
Ek( x, µ̂µµP , {xi}t−1i=1 )

=argmin
x
−〈k(x,·), µ̂µµP 〉+I(t>1)

t−1∑
j=1

1

t
k(x,xj)

=argmin
x
−

n∑
i=1

wik(x,x̃i)+I(t>1)
t−1∑
j=1

1

t
k(x,xj) (1)

As implied by the indicator function I(t > 1), the second term
in the objective is not applied to the first herded sample.

As shown in [3], if k(x,x) = R > 0 for all x ∈ X , kernel
herding generates samples that minimize the maximum mean
discrepaency (MMD) [31] defined as follows

EMMD =

∣∣∣∣∣
∣∣∣∣∣ µ̂µµP− 1

n

n∑
t=1

k(xt,·)

∣∣∣∣∣
∣∣∣∣∣
2

H

For bounded kernels, kernel herding decreases EMMD at a rate of
O(n−1/2), and under additional assumptions (only guaranteed for
finite-dimensionalH), this convergence rate improves toO(n−1).
Since this is faster than random sampling from P itself [32], [3],
herded samples are also called ‘super samples’. WhileH is gener-
ally not finite dimensional, we still tend to get fast convergence in
practice, even when Equation 1 is only solved approximately [3].

In the first iteration of kernel herding, minimizing Ek in
Equation 1 corresponds to finding a new sample x such that k(x,·)
is close to the target mean embedding µ̂µµP . For t>1, we append
this attractive force with an additional repulsive force that penalizes
x that are similar (as determined by the kernel) to those already
herded in prior iterations. The fast convergence of kernel herding
is often attributed to this repulsive force that can induce negative
auto-correlation between the herded samples [3]. Positive auto-
correlation between generated samples can cause them to be tightly
clustered for small n, as observed in various MCMC methods [33].
Other kernel-based sampling methods such as Stein variational
gradient descent [34] and Stein points [9] also employ a similar
repulsive force. The kernel herding updates in Equation 1 can also
be interpreted as a special case of the Frank Wolfe algorithm [32].

III. KERNEL HERDING ON RIEMANNIAN MANIFOLDS

We identify two attributes of kernel herding that make it
particularly amenable to be adapted to general Riemannian man-
ifolds. First, since the algorithm accesses data exclusively through
kernel evaluations, geometric structure of the data space can be
injected by picking an appropriate kernel. Such geometry-aware
kernels should take into account the curvature of the underlying
manifold when assigning similarities between data points. Second,
the herding algorithm does not prescribe a particular method
to solve Equation 1; it has been been solved using approaches
including gradient descent [3], black-box optimization [9], and
exhaustive search over a restricted search-space [4]. Over the
years, Riemannian counterparts have been developed for many
such optimization routines that optimize directly on the manifold
of interest [35], [36]. Thus, our approach to kernel herding over
Riemannian manifolds is to (1) use kernels that incorporate the



correct notion of distance for the manifold, and (2) use Riemannian
optimization techniques to restrict herded samples on desired
manifolds. Since the theoretical properties of kernel herding are
agnostic to these two adjustments, convergence guarantees of
the original algorithm carry over to our Riemannian adaptation.
We now summarize the two components of our proposal to adapt
kernel herding to non-Euclidean Riemannian manifolds.

Riemannian Manifolds We provide a brief summary of
Riemannian manifolds, and describe some of its properties
relevant to designing geometry-aware kernels and optimization
algorithms. An n-dimensional manifoldM is a topological space
that is locally homeomorphic to Rn. Intuitively, manifolds are
similar to flat Euclidean space within a neighborhood around any
point, even though they may exhibit significant curvature outside
the neighborhood. For a point x on a differentiable manifold, the
vector space spanned by the tangent vectors of all possible curves
passing through x is called the tangent space TxM at x. Note that
the tangent space is different for different points on the manifold;
the Euclidean manifold is a special case where all tangent spaces
are isomorphic to the manifold itself. A Riemannian manifold is
a differentiable manifold with a family of smoothly varying inner
products defined on its tangent spaces. The length of a curve γ on
a Riemmanian manifold is computed by integrating the square root
of these smoothly varying inner products of tangent vectors along
it. A geodesic curve onM is one that locally minimizes distances
along it, and the geodesic distance dM(x,y) between two points
x,y∈M is the length of the shortest geodesic curve connecting
them. We can derive closed form formulae for geodesic distances
for many commonly used Riemannian manifolds.

Geodesic Exponential Kernels The first component in our Rie-
mannian kernel herding scheme is to use geometry-aware kernels
that assign similarity based on the curvature of the data manifold.
Various geometry-aware kernels have been specifcally designed for
manifolds such as the Grassmann manifold [37], [38], symmetric
positive definite matrices [39], cylinders [18], etc. As a simpler
alternative to designing problem specific kernels, we explore the
use of generic kernels that are applicable across a wide range of do-
mains. One such kernel is the exponential kernel defined as follows

k(x,y)=exp(−λ d(x,y)q) λ, q>0 (2)

where λ is the bandwidth, and d(x,y) is a distance function
raised to the q-th power. When d(x,y) = ||x−y||2, we obtain
the well-known Euclidean Laplacian (q = 1) and Gaussian
(q=2) kernels. A natural way to adapt these kernels to a general
Riemannian manifoldM is to simply set the distance function
d(x,y) to be its geodesic distance dM(x,y) [40], [39], [17].
However, the positivity of the kernel evaluation in Equation 2 does
not guarantee a positive definite kernel; we require that the kernel
always results in positive semi-definite kernel matrices [2]. Indeed,
geodesic exponential kernels are, in general, not SPD [41] and
thus may not define a valid RKHS. The geodesic Gaussian kernel
is SPD for all bandwidths only if the manifold is isomorphic to
Euclidean space [41]. The geodesic Laplacian kernel is slightly
more flexible and is SPD for all bandwidths if the geodesic
distance is a conditionally negative definite metric, which is the
case for manifolds including spheres and hyperbolic spaces [41].

While geodesic exponential kernels may not be SPD for all
bandwidths, they tend to be SPD with very high probability
for bandwidths above some threshold when evaluated on finite
datasets [42]. As the kernel bandwidth goes to infinity, the kernel
matrix approaches the identity, which is SPD with non-negative
eigenvalues. Since the minimum eigenvalue function is continuous,
there exists some threshold bandwidth beyond which the kernel is
always SPD. Prior works [42], [17] have estimated this bandwidth
threshold by checking how often the kernel matrix is positive
definite when evaluated on random sub-samples of data for
different bandwidths. If this threshold is too large, the kernel
matrix could degenerate into the identity, assigning zero similarity
to non-identical samples. However, empirical results [42], [17],
including our own, suggest that threshold bandwidths for geodesic
exponential kernels tend to be small enough for the kernel to
remain sufficiently discriminative.

From a practical standpoint, geodesic exponential kernels
are very flexible. All we need to apply them on a manifold is
its geodesic distance, and the empirically calculated bandwidth
threshold. In our experiments, we opt for geodesic Laplacian
kernels (q=1 in Equation 2). We found this kernel to outperform
the Gaussian kernel on resampling experiments over various
manifolds. Moreover, the Laplacian kernel is provably SPD for the
spherical manifold, an important manifold routinely encountered
in many practical applications. Recently, kernels with q greater
than but still close to 1 have been shown to work well for a
different problem setting over the spherical manifold of unit
quaternions [43]; the authors chose to avoid the exact Laplacian
kernel due to gradient instabilities in their optimization problem.

Optimization over Riemannian Manifolds The second com-
ponent in our Riemannian kernel herding scheme is to swap
Euclidean optimization methods used to solve Equation 1 with
their Riemannian generalizations. The key insight in these gen-
eralizations is to translate motion along a straight line in flat
spaces to motion along curves. For instance, consider the case
of Riemannian gradient descent, which we use in our experiments.
Gradient descent follows a simple recipe: step along the direction
opposite to the gradient g(x) of the objective until we arrive at an
optima. In Euclidean space, this is done simply by adding−αg(x)
to our current estimate x, where α is the step-size. However, in
non-Euclidean spaces, we cannot add the gradient g(x)∈TxM
to points on the manifold, which is generally not isomorphic
to TxM. Thus, we must first map motion along the gradient
direction onto a smooth curve on the manifold – obtaining a
curve of steepest descent. This is achieved using a retraction
map Rx : TxM→M, which corresponds to moving along a
smooth curve γ(t) on the manifold such that we start at our current
estimate (γ(0)=x) pointed towards the negative gradient (γ′(0)=
−g(x)). The gradient update step is then simply computed as
xt = Rxt−1(−αg(xt−1)). Retraction maps can be derived in
closed-form for many commonly used Riemannian manifolds.

Since gradient descent can be slow to converge, it is generally
supplemented with additional optimization techniques such as
the conjugate gradient method [44], [45], momentum [46], [47],
RMSprop, Adam [48], etc. These adaptive strategies combine
the current gradient of the objective with gradients computed at
prior iterations to form averaged descent directions. In Euclidean



space, this is done simply as a weighted linear combination since
all gradients are elements of the same tangent space. For general
Riemannian manifolds, we must first map all gradients to be
combined into a common tangent space. This is done using the
manifold’s parallel transport map Γx→y :TxM→TyM, which
maps elements from one tangent space to another while preserving
inner products. Recently, [49] have developed Riemannian
counterparts of various adaptive gradient descent schemes
including the Riemannian Adam, which is the optimization
algorithm used in our experiments unless noted otherwise. This
optimization scheme provides computational benefits over various
second-order methods [50], [51], and provides improvements
over vanilla gradient descent through adaptive gradient updates.
Moreover, the traditional Adam [48] is widely used in Euclidean
optimization, which is used in our baseline comparisons.

IV. EXPERIMENTS

We evaluate our proposal for Riemannian kernel herding on
two tasks: resampling from empirical distributions and estimating
parameters of black-box simulators. The first task of resampling is
useful in robotics problems such as recovering from sample degen-
eracy in particle filters [52]. In the second set of experiments, we
demonstrate how adapting kernel herding to general Riemannian
manifolds allows us to do the same for useful algorithms that
use herding as an intermediate step. As an example, we apply the
kernel recursive approximate Bayesian computation (KR-ABC)
algorithm to estimate SPD matrix parameters of simulators,
including the covariance matrix of a Gaussian distribution and
the inertia matrix of the palm of an Adroit robot hand simulator.

For all experiments, we use the geodesic Laplacian kernel,
defined as k(x,y)=exp(−λ dM(x,y)) for the relevant manifold.
As these kernels tend to be SPD only above some threshold
bandwidth for non-Euclidean manifolds, we empirically calculate
this threshold via the protocol used in [42] and [17]. Namely, we
draw 100 uniformly distributed random samples for the manifold,
and compute the geodesic Laplacian kernel matrix over a range
of 50 bandwidths and empirically estimate the bandwidth above
which kernel matrices are SPD with probability ∼1. For each
bandwidth, we repeat this process 10 times and calculate the
proportion of the resulting kernel matrices that are positive semi-
definite, i.e., have non-negative eigenvalues. When tuning kernel
parameters, we only search over bandwidths above this empirical
threshold. Note that this step is not required for the spherical
manifold, for which the geodesic Laplacian kernel is always SPD.

Manifold Geodesic Distance dM(x,y)

S3 Hypersphere arccos
(
xTy

)
SO(3) Rotation matrices

(∑n
k=1θ

2
k

)1/2
{eiθk} are eigenvalues of xTy

SPD matrices
∥∥∥logm(x−1

2yx−
1
2

)∥∥∥
F

TABLE I: Geodesic distances. logm is the matrix log operation.

We perform experiments over various commonly used mani-
folds in robotics: the SO(3) manifold of rotation matrices, the S3

spherical manifold that can encode rotations as unit quaternions,

and the manifold of SPD matrices, which are used to encode quanti-
ties like inertia, stiffness, etc. For theS3 and SPD manifolds we use
the arc-cosine distance and the affine invariant metric as geodesic
distances respectively. For the SO(3) manifold, we use the geodesic
distance defined for connected components (including SO(3)) on
the orthogonal group [53]. We provide the closed-form expressions
for these distances in Table I. Except for SO(3), we use the Rieman-
nian Adam algorithm from the Geoopt package [54], [55] for opti-
mization. Since SO(3) is not supported in Geoopt, we use the conju-
gate gradient method with adaptive line-search from the Pymanopt
package [56]. All our experiments were performed on a desktop
with 16 Intel Core i9-9900K 3.60GHz CPUs, and 34.4 GB RAM.

A. Resampling

As our first experiment, we evaluate Riemannian kernel herding
on the task of generating samples from an empirical distribution
of weighted particles. We compare our approach against an
adaptation of a recently proposed technique [57] based on optimal
transport (OT) theory to draw resamples from a weighted set
of particles from Lie groups (a differentiable manifold with
additional group structure) including SO(3). While the original
resampling approach in [57] was designed for Lie groups, we
apply the general strategy to Riemannian manifolds with known
geodesic distance functions given in Table I.

The OT approach proceeds in two steps. First, we draw samples
with standard sampling-importance resampling (SIR), i.e., we pick
out samples (with replacement) from the original set of particles
according to their weights. If the particle weights are not fairly uni-
form, a few highly weighted particles can dominate the set of SIR
resamples, leading to reduced particle diversity or sample impover-
ishment [52]. To combat this, the second step of the OT approach
computes a transportation map from the empirical distribution of
the original particles to that of the SIR resamples using the mani-
fold’s geodesic distance as the ground metric. The final output is a
fresh set of samples matching the distribution of the SIR resamples
but with higher particle diversity. To compute the OT map for a
particle, we first solve the entropy-regularized OT problem (using
the Python Optimal Transport package [58]), which results in a set
of weights for the SIR resamples for each particle. The transport
map for a particle is then calculated as the Riemannian weighted
centroid of the SIR resamples using these new weights. For Lie
groups such as SO(3), the authors solve this centroid problem
using an iterative scheme relying on the Cayley lifting map [57].

In Figure 1, we compare the OT approach against Riemannian
kernel herding on the task of resampling from a set of 750 SO(3)
matrices with normally distributed positive weights. We created 6
such datasets, using the first one to tune model parameters, and the
remaining 5 to evaluate them. For kernel herding, we performed
a random hyperparameter search over kernel bandwidths and
learning rates for Adam. For the OT approach, we similarly
tuned its entropy regularization. We evaluate the resamples
via their average sampling errors on test sets, i.e., the first
Wasserstein distance to the weighted targets using the manifold’s
geodesic distance as the ground metric. As shown in Figure 1, we
experiment with computing the Riemannian centroid required for
the OT approach using the iterative Cayley maps proposed in [57]
(labeled OT + Cayley Centroid) as well as using gradient descent



Fig. 1: Resampling on SO(3) (rotation matrices). Error bars
represent standard deviation of the mean error over 5 test sets.

(labeled OT). We find that Riemannian kernel herding is able
to match the final sampling error from the OT approaches with
about 500 fewer samples. We also present results for Euclidean
kernel herding, where we use the Euclidean Laplacian kernel and
Euclidean gradient descent (with Adam) but heuristically project
the generated samples onto the SO(3) manifold. Riemannian
kernel herding is able to match the final sampling error of this
Euclidean approach with around 200 fewer resamples.

Besides matrices on SO(3), rotations can also be parameterized
by unit-quaternions, which are elements of the spherical manifold
S3. In fact, quaternions are often preferred over rotation matrices
as they use fewer parameters, and are more computationally
efficient. We repeat the earlier experiment for the S3 manifold
and report results in Figure 2. As before, we find that Riemannian
kernel herding outperforms both the OT approach as well as
Euclidean kernel herding.

The faster convergence of Riemannian kernel herding over the
OT approach is likely due to negative sample auto-correlations
induced by Equation 1 [3]. Furthermore, while the OT approach
transports particles towards the distribution of SIR resamples,
kernel herding draws samples directly from the original weighted
empirical distribution. However, the OT approach does have
the advantage of being computationally faster and highly
parallelizable across samples, while kernel herding tends to be
slower and is inherently sequential. Thus, in practice, Riemannian
kernel herding is likely to provide an advantage over the OT
approach when it is worth spending additional computation to
produce high quality resamples. This may be the case, for instance,
in particle filters with computationally expensive transition or
observation models. As a final comparison between the two
approaches, we note that Riemannian kernel herding provides
greater flexibility by allowing the weights on target samples to
be negative. Such negative weights are routinely encountered in
methods operating directly with kernel mean embedddings. We
now focus on one such method for simulator parameter estimation
where negative weights prevent us from using the OT approach.

B. Simulator Parameter Estimation

In our second set of experiments, we demonstrate how adapting
kernel herding to Riemannian manifolds allows us to do the same
for other algorithms reliant on it. Specifically, we focus on the
kernel recursive approximate Bayesian computation (KR-ABC)
algorithm applied to the problem of estimating the parameters of
simulators [6]. Consider a black-box simulator that takes as input

Fig. 2: Resampling on S3 hyperspheres (quaternions). Error bars
represent one standard deviation of the mean error over 5 test sets.

Fig. 3: Covariance matrix estimation for a Gaussian. Error bars
denote one standard deviation around the mean error across 9 sets
of test observations.

a parameter θ, and produces observations y conditioned on it.
Given some target observation y∗, our goal is to find parameters
that are likely to have generated it. In KR-ABC, we begin by
initializing a set of n parameters {θi}ni=1, and query the simulator
to obtain corresponding observations {yi}ni=1. Given kernels
kθ and ky for the parameters and observations respectively, we
estimate the kernel mean embedding of the distribution Py∗(θ)
of parameters likely to have produced y∗ as follows

µ̂Py∗(θ)=
n∑
i=1

wikθ(·,θi)

where [w1,...,wn]T =(G+nδI)−1ky(y∗)

Here, k(y∗)=[ky(y1,y
∗),···ky(yn,y∗)]T , G=[ky(yi,yj)]

n
i,j=1, I

is the identity matrix and δ>0 is a regularization constant. The
calculation of the (potentially negative) weights above corresponds
to a kernel-ridge regression [6]. At each iteration, kernel herding
is used to draw samples from µ̂Py∗(θ), which are then applied
to the simulator to generate observations for the next iteration.
After the final iteration, we return the first herded sample as our
estimated parameter.

For our experiments, we focus on problems where θ is an
element of a Riemannian manifold. Namely, we apply Riemannian
KR-ABC, using our proposed Riemannian kernel herding scheme,
to two problems where the parameters of interest are SPD
matrices. In our first problem, the simulator is a 3D zero-mean
Gaussian distribution, and we estimate its SPD covariance
matrix using samples drawn from it. We created 10 datasets,
each consisting of 1000 samples from the target distribution as
observations; we use the first dataset to tune hyperparameters, and
the rest to evaluate models. For comparison, we also implemented



Fig. 4: (top) The Adroit robot hand simulator. We estimate the iner-
tia matrix of its palm, highlighted in red. (bottom) The trajectory of
angular positions of the two wrist joints. Our observations are the
concatenation of these two 32-step trajectories. The shaded region
denotes the standard deviation within the different trajectories.

Euclidean KR-ABC, where kθ is the Euclidean Laplacian kernel
and we solve the herding problem using Euclidean optimization
followed by a projection onto SPD matrices. We also test another
Euclidean variant that parameterizes SPD matrices via a Cholesky
decomposition, avoiding the need for projections. For all methods,
we set the number of herded samples n = 100, and tune the
regularizer δ, the learning rate for Adam, and the bandwidths for
kθ and ky (a Euclidean Laplacian kernel) through a randomized
hyperparameter search. We fix the number of epochs for Adam
at 100 and run KR-ABC for 20 iterations.

In Figure 3, we compare the different approaches in terms of
their sampling errors, i.e., the first Wasserstein distance between
the target samples and those generated from the estimated covari-
ance matrices. For comparison, we also plot the sampling errors of
iid samples drawn from the true distribution (labeled True Dist) and
samples drawn from a random uniform distribution (labeled Ran-
dom). Recall that kernel herding is known to result in super sam-
ples that converge faster than iid sampling. We find that Rieman-
nian KR-ABC outperforms all other methods, yielding sampling
errors much lower than that for random uniform samples and only
slightly higher than that for iid samples from the true distribution.

Finally, we apply Riemannian KR-ABC with Riemannian
kernel herding to the task of estimating the 3D inertia matrix of the
palm of an Adroit robotic hand simulator1 (Figure 4). We use as
observations the concatenated trajectories of angular positions of
its two wrist joints under a fixed control sequence for 32 steps, i.e.,
a 64 dimensional observation. Our goal is to learn an inertia matrix
that produces trajectories similar to the target observations. This
problem setting can arise in practice when calibrating a robotic
simulator based on observations collected from a real robot [7].

We generated 6 distinct trajectories of observations by applying

1Environments obtained from https://github.com/vikashplus/
mj_envs [59]

Fig. 5: Inertia matrix estimation for the robot hand simulator. Error
bars denote standard error in the mean over 5 sets of observations.

different sequences of controls; we use the first one to tune
hyperparameters and the remaining to evaluate models. When
evaluating a model’s performance, we compute its simulation
error, i.e., the average norm of the difference between the true
observations and those simulated from the estimated parameters
using the same controls. In Figure 5, we show that Riemannian
KR-ABC with Riemannian kernel herding outperforms both
Euclidean KR-ABC with heuristic projections and the Cholesky
parameterized variant without projections. The gains from the
Riemannian approach appear to be larger for smaller number
of parameter samples, which directly translates to the number of
simulator queries at each iteration of the KR-ABC algorithm. Thus,
Riemannian KR-ABC was able to obtain better estimates of the
inertia matrix with fewer simulator queries than the other methods.

V. CONCLUSION

We presented an approach to adapting kernel herding to
Riemannian manifolds by using (1) geometry-aware kernels that
incorporate the correct distance metric for the manifold, and (2)
Riemannian optimization to constrain generated samples to lie
on the manifold. We demonstrated that our approach outperforms
various alternatives on experiments involving resampling from
empirical distributions, and estimating parameters of black-box
simulators. Our approach provides an intuitive and effective way
of incorporating geometric information into the task of sampling
from kernel mean embeddings. Possible directions for future work
may be to apply a similar approach to related sampling techniques
such as the Stein points algorithm [9] which also uses herding.
Another direction could be to identify other algorithms that could
benefit from using herding as an intermediate step. Additionally,
in this paper, we chose to focus on geodesic exponential kernels
due to their generality. For specific applications, it would be
pertinent to explore kernels customized or learned for the task
at hand, as well as kernels that are provably characteristic.
Applications that benefit from incorporating kernel herding are
likely to be those that require computing expectations of functions
with minimal sample evaluations. One such application may be
problems requiring evaluations of implicit stochastic policies in
robotic control and reinforcement learning.
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