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S U M M A R Y
Measurements of various physical properties of oceanic sediment and crustal structures provide
insight into a number of geological and geophysical processes. In particular, knowledge
of the shear wave velocity (VS) structure of marine sediments and oceanic crust has wide
ranging implications from geotechnical engineering projects to seismic mantle tomography
studies. In this study, we propose a novel approach to nonlinearly invert compliance signals
recorded by colocated ocean-bottom seismometers and high-sample-rate pressure gauges for
shallow oceanic shear wave velocity structure. The inversion method is based on a type
of machine learning neural network known as a mixture density neural network (MDN). We
demonstrate the effectiveness of the MDN method on synthetic models with a fixed deployment
depth of 2015 m and show that among 30 000 test models, the inverted shear wave velocity
profiles achieve an average error of 0.025 km s−1. We then apply the method to observed data
recorded by a broad-band ocean-bottom station in the Lau basin, for which a VS profile was
estimated using Monte Carlo sampling methods. Using the mixture density network approach,
we validate the method by showing that our VS profile is in excellent agreement with the
previous result. Finally, we argue that the mixture density network approach to compliance
inversion is advantageous over other compliance inversion methods because it is faster and
allows for standardized measurements.

Key words: Composition and structure of the oceanic crust; Inverse Theory; Neural Networks
and fuzzy logic; Probability distributions.

1 I N T RO D U C T I O N

Accurate measurements of the physical properties (i.e. seismic ve-
locity, density, temperature, thickness, porosity, conductivity, etc.)
of oceanic sediment and crustal structures are critical for under-
standing a variety of geological and geophysical processes. Mea-
surements of sediment thicknesses and their seismic velocities can
constrain marine sedimentation rates, which improve our under-
standing of palaeoclimate and tectonic uplift (Agius et al. 2018).
Near-surface seismic parameters have provided insight into hotspot
volcanism (Doran & Laske 2019), hydrothermal fluid circulation
and crustal formation (Crawford et al. 1991), and the study of
oceanic gravity waves (Yamamoto & Torii 1986). These param-
eters also inform geotechnical engineering projects (Yamamoto &
Torii 1986) and hazard assessment (Ruan et al. 2014). Furthermore,
accurate profiles of shallow oceanic crustal structure have direct
bearing on the measurement and interpretation of gravity anomaly
residuals (Herceg et al. 2015) and for resolving tradeoffs between

crustal structure and deeper anomalies in mantle tomographic mod-
els (Marone & Romanowicz 2007), even at long periods (Montagner
& Jobert 1988).

The shear wave velocity structure (VS) of oceanic sediments is
of particular interest in marine seismology since, due to their typ-
ically low VS values (Hamilton 1971), sediments strongly affect
shear wave traveltime measurements recorded by ocean-bottom
seismometers (OBSs). Additionally, the elastic properties of sed-
iments, on which VS depends, are also responsible for large site
effects that bias seismic amplitudes recorded by OBSs. Therefore,
VS is also required for seismic studies of oceanic structures that rely
upon seismic amplitude information (Ruan et al. 2014).

Both active and passive methods exist to measure seismic ve-
locities within oceanic structures. However, since active methods
involve the excitation of seismic energy through the use of explo-
sives or air gun shots (e.g. Sauter et al. 1986; Davy et al. 2020),
and because subsurface shear wave energy is difficult to excite
acoustically (Sauter et al. 1986; Whitmarsh & Miles 1991), direct
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measurements of VS via active methods are difficult. A passive
technique to measure 1-D shear modulus profiles within oceanic
structures that exploits the phenomenon of seafloor compliance
was first pioneered by Yamamoto & Torii (1986). Seafloor com-
pliance is the phenomenon whereby long-period ocean infragravity
waves propagating along the ocean’s surface induce a deformation
of the seafloor. Longuet-Higgins (1950) was the first to provide
a physical mechanism for this process, which involves nonlinear
interactions between wind-generated waves (Ardhuin et al. 2014).
Such infragravity waves typically propagate in the open ocean with
wavelengths up to tens of kilometres, periods of several minutes,
and with wave height displacements ranging from millimetres to
centimetres (Aucan & Ardhuin 2013). Yamamoto & Torii (1986)
measured 1-D, layered shear modulus profiles using a linearized
inversion of compliance signals recorded by shallow-water OBSs.
Since their original work, the most significant developments to the
method have been; (1) its adaptation to deep sites (deployment
depths greater than 1000 m) and for VS rather than shear modulus
(Crawford et al. 1991); (2) its extension to the 2-D case involving
laterally varying, layered structures (Crawford et al. 1998); and (3)
its adaptation for the case when seafloor deformation is induced by
Rayleigh waves rather than ocean infragravity waves, which allows
the method to be used in a different frequency band (Ruan et al.
2014; Bell et al. 2015). In this study, we modify the approach taken
by Crawford et al. (1991) and demonstrate the possibility of nonlin-
early inverting compliance signals for VS within oceanic sediment
and crustal structures through the use of mixture density neural net-
works (MDNs). The motivation for pursuing MDN inversion over
other inverse methods is that MDN inversion is often faster than
both linear and nonlinear methods (Earp et al. 2020, see e.g.), and
allows for easily standardized measurements between researchers.
The latter point comes from the fact that even the most sophisticated
of trained neural networks are entirely specifiable by only thousands
or millions of numbers, which amount to mere kilobytes of data.
Thus, neural networks are easily shareable, and because they operate
in a deterministic manner, they produce repeatable measurements.

2 T H E O RY

2.1 The forward problem

The compliance ξ (ω) of a uniform half-space as a function of an-
gular frequency ω due to the forcing caused by ocean infragravity
waves was first derived by Sorrells & Goforth (1973) and is given
by

ξ (ω) = − 1

k(ω)

(
V 2

P

2ρV 2
S (V 2

P − V 2
S )

)
, (1)

where k(ω) is the wavenumber of the ocean infragravity waves,
VP is the P-wave velocity, VS is the shear wave velocity and ρ is the
density of the medium. Following Crawford et al. (1991), we prefer
to work with normalized compliance η(ω) in which the filtering
effect of ocean infragravity waves is removed

η(ω) = k(ω)ξ (ω) = − V 2
P

2ρV 2
S (V 2

P − V 2
S )

. (2)

The normalized compliance of a 1-D layered Earth model de-
scribed by VP(z), VS(z) and ρ(z) can be forward computed numer-
ically by applying the matrix-propagator method (Aki & Richards
2002) to eq. (2).

2.2 Compliance measurement

Given a normalized compliance signal measured by an OBS, we
wish to predict the most probable range of structures (VP, VS and
ρ) that correspond to that signal. Normalized compliance signals
measured by OBSs are computed using the complex vertical dis-
placement Z(ω) and pressure P(ω) spectra of these instruments as
(Crawford 2004)

η(ω) = k(ω)γP Z (ω)

√
|Z (ω)|
|P(ω)| , (3)

where the coherence between the pressure and vertical displace-
ment spectra γ PZ(ω) is given by

γP Z (ω) =
√

|CP Z (ω)|2
CP P (ω)CZ Z (ω)

, (4)

and CXY(ω) indicates the cross-spectral density between signals
X and Y or the auto-spectral density when X = Y.

2.3 Frequency considerations

The compliance response of the seafloor to ocean infragravity wave
forcing is sensitive to different depth ranges at different frequen-
cies. This is analogous to how surface waves at different frequencies
have different sensitivities to structures at different depths. How-
ever, unlike surface wave dispersion measurements, compliance
measurements are limited by the coherence observed between the
pressure and vertical channels. Furthermore, not all ocean infragrav-
ity waves are physically capable of generating pressure fluctuations
on the seafloor. The amplitude PB of the pressure signal generated
on the seafloor at depth H due to an infragravity wave with displace-
ment height ζ , wavenumber k and wavelength λ is given by (Webb
et al. 1991)

PB = ρwgζ

cosh(k H )
= ρwgζ

cosh(2π H/λ)
, (5)

where ρw is the water density and g is the gravitational accel-
eration. Critically, PB depends on the water depth H, and the only
infragravity waves that will produce measurable seafloor deforma-
tion are those with wavelengths greater than or equal to the water
depth (Fig. 1). Moreover, using the dispersion relation for ocean
infragravity waves (Apel 1987)

ω2 = gk · tanh(k H ) (6)

and the requirement that λ ≥ H in order to produce compliance
effects, it can be shown that the maximum frequency fc at which
infragravity waves will produce measurable compliance signals is

fc ≈
√

g

2π H
. (7)

Thus, the frequency domain over which compliance signals can
be inverted is fundamentally limited by the station deployment depth
H and the pressure-vertical coherence γ PZ(ω). While there is no the-
oretical lower frequency bound fl at which compliance effects can
be observed, and while ocean infragravity waves with periods as
large as 1000 s are possible (Aucan & Ardhuin 2013), practical
limits are set by instrument sensitivities (Doran & Laske 2019). We
further speculate that the physical mechanism generating ocean sur-
face waves at periods beyond 1000 s and wavelengths greater than
10 km changes so that the preceding analysis is likely no longer
relevant. Examples of normalized compliance and pressure-vertical
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Probabilistic inversion of Compliance 1881

Figure 1. (a) Sea bottom pressure due to ocean infragravity waves as a function of water depth and wavelength, assuming a wave height of 1 cm. The region
of observable compliance effects is clearly demarcated. (b) Usable frequency band for compliance inversion as a function of OBS deployment depth H.

coherence functions computed for OBS A02W of the Eastern Lau
Spreading Center Seismic Experiment are shown in Fig. 2. The func-
tions shown in Fig. 2 were computed from an ensemble of 75 d of
hour-long noise recordings, using the ATaCR package (Janiszewski
et al. 2019; Audet & Janiszewski 2020).

3 N E U R A L N E T W O R K I N V E R S I O N

3.1 Standard networks

The adoption of machine learning techniques as tools for solv-
ing problems in seismology, particularly neural networks, has had
a significant impact on the field (for a recent review of machine
learning in the geosciences see Bergen et al. 2019). Originally,
neural networks were intended as models of interconnected neu-
rons in biological brains (Bishop 1995; Valentine & Woodhouse
2010). A single neuron, the fundamental unit of a neural network,
operates by applying some known function f( · ) (referred to as
an activation function) to a number of inputs to produce a single
output. Several such neurons are thus connected in a given archi-
tecture to form a network (Fig. 3). The simplest class of neural
networks, known as multilayer perceptrons (MLPs), are defined as
feed-forward networks which have sigmoidal or threshold activation
functions (Bishop 1995). Feed-forward networks refer to networks
in which the information processing flows unilaterally (i.e. this class
of networks excludes feedback elements such as in recurrent neu-
ral networks). Popular activation functions originally included the
standardized logistic function L(x) = 1/(1 + e−x) or the hyperbolic
tangent tanh(x), and were biologically motivated. However, the rec-
tified linear unit (ReLU) activation function, defined as max(0, x)
has become the predominant activation function used in most neu-
ral networks due to its superior performance over a wider range of
problem types (Glorot et al. 2011; Ramachandran et al. 2017).

An example of a simple, three-layer MLP is shown in Fig. 3.
The first layer in such a network is called the input layer, the final
layer is called the output layer and any layers between the input
and output layers are referred to as hidden layers. The particular
MLP in Fig. 3 takes two features as input as a vector X = (x1, x2)T .
The activation of neuron i in the hidden layer, ai, is computed by
applying the activation function f( · ) to the linear combination of

weights 
ij and inputs from the previous layer (X in this case). The
final output (equivalently the activation in the final layer) is similarly
computed from the hidden layer immediately before it. Training a
neural network refers to the process of randomly initializing network
weights and then pushing inputs with known outputs through the
network. Once the output for a given input is computed by the
network, a suitably chosen objective function is used to compute the
loss (the misfit) between the true value of the output and the result
computed by the network. In a process known as backpropagation,
the network then uses a gradient-descent style algorithm to make
adjustments to its weights in order to reduce the error. The training
process is then run for a large number of iterations until the network
is sufficiently trained.

The utility of neural networks comes from the fact that they
can be used to learn arbitrarily complex functions from Rm to Rn

given a set of examples consisting of inputs with known outputs
(Lapedes & Farber 1988; Valentine & Woodhouse 2010). Recent
applications of neural networks in seismology include signal versus
noise discrimination (Meier et al. 2019), automatic arrival-time
picking (Zhu & Beroza 2019), and automatic detection and location
of seismic events (Mosher & Audet 2020).

3.2 Mixture density networks

MDNs were first devised by Bishop (1994). Whereas standard neu-
ral networks learn to map a vector from Rm to Rn , MDNs learn to
map a vector from Rm to an n-dimensional conditional probability
distribution. Moreover, the probability distribution learned by the
MDN is not restricted to be Gaussian, rather, MDNs learn arbitrary
probability distributions by parametrizing them as Gaussian mixture
models (GMMs). Mathematically, a multidimensional conditional
probability distribution parametrized as a GMM can be expressed
as (Bishop 2006)

P(t|X) =
K∑

k=1

�k(X)N (t|μk(X), σk(X)), (8)

where the probability P( · ) of observing target vector t, given
input vector X, is given by the sum of K n-dimensional paramet-
ric Gaussian PDFs N (t|μ, σ ), each with their own mean μk(X),
standard deviation σk(X) and mixture weight �k(X). Note that the
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1882 S.G. Mosher et al.

Figure 2. Normalized compliance (top) and pressure-vertical coherence (bottom) measured for OBS A02W of the Eastern Lau Spreading Center Seismic
Experiment, deployed at a depth of 2015 m, and computed from an ensemble of 75 d of hour-long noise recordings. The blue shaded regions denote 95 per cent
confidence intervals. The cyan shaded regions denote the compliance frequency band. The theoretical high-frequency cut-off fc and empirical low-frequency
cut-off fl are denoted by the red and blue vertical dashed lines, respectively. Signals on the left have been plotted in log–frequency space. Signals on the right
have been centred on the compliance frequency band and plotted in linear-frequency space. The orange circles denote the compliance and coherence values
used in the inversion.

Figure 3. (a) A graphical representation of a single neuron, the fundamental unit of a neural network. The neuron takes an input vector and applies a known
activation function f( · ) to generate a single output. (b) A graphical representation of a simple three-layer MLP. The input to this network is a 2-D vector

X = (x1, x2)T . The output of the network is the 2-D vector Y = (y1, y2)T . The jth activation in the nth layer, a(n)
j , is computed by applying the activation

function f( · ) to the linear combination of weights and activations from the previous layer (
(n−1)
i j and a(n−1)

i , respectively).
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Probabilistic inversion of Compliance 1883

mixture weights must satisfy the following constraints

K∑
k=1

�k(X) = 1 0 ≤ �k(X) ≤ 1. (9)

An MDN can be understood as an MLP augmented with a final
layer whose outputs represent the parameters of an n-dimensional
parametric GMM (Fig. 4). In general, if t is D-dimensional then
the final layer of an MDN will contain 3KD − K(D − 1) units
consisting of the means, standard deviations, and weights of each
mixture component. To ensure that the units in the final MDN layer
correctly represent the components of the GMM, the following
operations are applied to the final outputs of the MLP, which we
refer to as the vector Z = (z1, z2, ..., zi )T (Bishop 1995, 2006)

�k(X) = exp(Z�
k )∑K

l=1 exp(Z�
l )

(10)

and

σk(X) = exp(Zσ
k ). (11)

In eq. (10), the softmax operation is applied to the components
of Z intended to represent the GMM weights (denoted as Z�) to
ensure the weights satisfy the constraints in eq. (9). In eq. (11), the
exponential is applied to the components of Z intended to represent
the GMM standard deviations (denoted as Zσ ) so as to ensure that
σ 2

k (X) ≥ 0. Finally, the components of Z intended to represent the
GMM means (denoted as Zμ) can be represented directly by the
final MLP network activations, thus

μk(X) = Zμ

k . (12)

Typical training protocols for MLPs include the minimization of
loss quantified by least-squares or cross-entropy objective functions.
However, Bishop (1994) showed that MLPs trained with either of
these protocols approximate conditional averages of target data. For
the class of problems in which the probability distribution of the
target variable is either Gaussian or unimodal, networks trained with
such protocols will give meaningful results, however, if the distri-
bution of the target variable is either non-Gaussian or multimodal
then these training protocols are unsuitable (Meier et al. 2007). In
the context of MDNs, training is instead accomplished by mini-
mizing the following negative log-likelihood function (assuming N
independent pieces of data)

E(w) = −
N∑

n=1

ln

{
K∑

k=1

�k(Xn, w)N (tn|μn(Xn, w),

× σk(Xn, w))

}
, (13)

where the vector w consists of the network parameters, and the
explicit dependence of �k, μk and σ k on w has been included
(Bishop 2006). This objective function, along with the GMM ap-
proach, allows MDNs to obtain a more complete description of the
target data (Bishop 1994). In the next section, we illustrate these
points with a toy problem.

3.3 A toy problem

Consider the problem of predicting output variable x2 from input
variable x1 for the data set generated by

x2 = ±
√

x1 − 1 + 3 + ε, (14)

where ε indicates the addition of a small amount of Gaussian
noise (Fig. 5a). The essential features of this problem are that it
is (1) nonlinear and (2) multimodal. In other words, given any
x1 we expect two distinct ranges of possibilities for P(x2|x1). The
result established by Bishop (1994) is that a typical MLP trained
with a least-squares or cross-entropy minimization objective will
approximate the conditional average of the target data (x2 in this
case). This result is demonstrated in Fig. 5(a), in which predictions
of a simple MLP trained on the data set generated by eq. (14)
uniformly approximate the conditional average of the target variable
x2. Thus, the conditional average of x2 is an incomplete description
and the inappropriateness of attempting to train an MLP in such
a manner for this style of problem is evident. By contrast, since
we know that this data set is bimodal, we should be able to train
a simple MDN to learn P(x2|x1) using K = 2 GMM components.
Once P(x2|x1) is learned, we can then interrogate it for a complete
description of the relationship between x1 and x2. Samples taken
from the probability distribution learned by an MDN trained on
the data generated by eq. (14) are also shown in Fig. 5(a). The
MDN adequately learns the relationship between x1 and x2 and the
components of the GMM (μk(x1), �k(x1), and σ k(x1)) learned by the
MDN are shown in Figs 5(a) and (b). With K = 2 components in this
example, the two mixture components parametrize the upper and
lower branches, respectively, of the parabola. In general, the optimal
number of mixture components required for a given problem is not
known a priori. However, MDNs are parsimonious in that they
typically assign zero weight to unnecessary mixture coefficients
�k(X) and use as few mixture components as needed (Bishop 1995).
K is rarely required to be larger than 15 for most problems (Meier
et al. 2007; de Wit et al. 2013; Earp et al. 2020).

3.4 Prior applications of MDNs in seismology

The motivation for implementing MDNs over MLPs or other types
of neural networks is in their superior handling of nonlinear inverse
problems. Indeed MDNs have been successfully used in this ca-
pacity for a number of studies in seismology: Meier et al. (2007)
pioneered this technique to invert surface wave data for a model of
global crustal thickness; Shahraeeni et al. (2012) predicted porosity,
clay content and water saturation of reservoirs from VP and VS; de
Wit et al. (2013) trained an MDN to invert P-wave traveltime curves
for Earth’s spherically symmetric VP structure; de Wit et al. (2014)
obtained 1-D velocity and density profiles by inverting degree-zero
spheroidal mode splitting function measurements with an ensem-
ble of MDNs; Küufl et al. (2016) inverted coseismic displacement
observations for point source parameter estimates; and, in a study
similar to ours, Earp et al. (2020) used an ensemble of MDNs to
invert surface wave dispersion data for shear wave velocity models
and their nonlinearized uncertainty beneath the Grane field in the
Norwegian North Sea.

4 A P P L I C AT I O N T O S Y N T H E T I C DATA

4.1 Validating the method with a synthetic recovery test

To test whether an MDN can invert compliance signals for shallow
VS we must first select a station deployment depth. Recall that the
station deployment depth controls the theoretical high-frequency
limit fc at which compliance effects will be measurable. Therefore,
when modelling compliance signals for an OBS with an arbitrary
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1884 S.G. Mosher et al.

Figure 4. A graphical representation of an MDN. The entire MDN consists of an MLP augmented with a final MDN layer. The MDN layer applies the
transformations indicated to the output Z of the MLP. The softmax operator is applied to the components of Z intended to represent GMM mixing coefficients
(�k). The exponential operator is applied to the components of Z intended to represent the GMM standard deviations σ k. No operation is applied to the
components of Z intended to represent the GMM means μk.

Figure 5. (a) An example of noisy, multimodal, quadratic data (the training data), as well as the predictions of a standard neural network, and samples taken
from a GMM learned by an MDN, each trained on this data. With K = 2 mixture components, the MDN learns to parametrize the ith branch of the parabola
using the ith mean μi(x1) of the GMM. (b) The remaining parameters of the GMM learned by the MDN, namely �i(x1) and σ i(x1). (c) The MDN estimate of
the conditional probability P(x2|x1 = 25) for the data in (a). The contributions from each mixture component are superimposed on the conditional probability
distribution.

deployment depth, eq. (7) may be used to determine fc, and the low-
frequency limit fl may be set according to a particular instrument
response. However, because we intend to later invert the compliance
signal measured by A02W (Fig. 2), we choose to model synthetic
data using the particulars of A02W. Thus, we set the station deploy-
ment depth in the synthetic case to be 2015 m, and we determine the
range of inversion frequencies available to use by considering the
pressure-vertical coherence spectrum of A02W (Fig. 2). Doing so,
we choose to invert compliance values measured at six frequencies
equally spaced between 0.007 and 0.024 Hz. Having determined
our inversion frequencies we then compute theoretical sensitivity
kernels for these six frequencies in order to get a sense of what
structures the inversion will be able to resolve (Fig. 6). Because the
theoretical sensitivity kernels inform us that compliance effects for
a station deployed at a depth of 2015 m will be most sensitive to
earth structure shallower than 2 km, we therefore limit our structural
models to a depth of 2 km and include a half-space layer below. Due
to this shallow structure focus, we thus choose to parametrize our
structural models with the intent of predominantly characterizing
oceanic sediment structure.

In many of the previous studies involving MDNs in seismol-
ogy, structural parametrizations were accommodated using cu-
bic splines, which allow for continuous representations of Earth
structures with depth across discontinuities (Meier et al. 2007;
de Wit et al. 2013, 2014). However, in this study we prefer
a model parametrization based on cubic Bernstein polynomi-
als. A depth-dependent model parameter u on the interval [0,
zmax] can be represented using Bernstein polynomials according
to

u(z̃) =
J∑

j=0

Bjβ j (z̃, J ), (15)

where z̃ = z/zmax is the normalized depth (zmax is the maximum
depth of the polynomial representation), J is the polynomial order
of the representation and the Bj terms are the coefficients of the
Bernstein basis functions β j (z̃, J ), which are given by

β j (z̃, J ) =
(

J

j

)
(1 − z̃)(J− j)z j . (16)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/227/3/1879/6346569 by U

niversity of C
alifornia, Santa Barbara user on 13 O

ctober 2021



Probabilistic inversion of Compliance 1885

Figure 6. Theoretical compliance sensitivity kernels computed for the six
inversion frequencies used in this study for a station deployed at a water
depth of 2015 m.

The use of cubic Bernstein polynomials (Fig. 7) allows for a
low number of model parameters (4) and allows for an efficient
parametrization of continuous VS profiles (which are expected in
oceanic sediments) without the need to prescribe a layered struc-
ture. Furthermore, this representation has optimal stability for a
given polynomial order (Farouki & Rajan 1987; Farouki 2012). An
additional attractive feature of Bernstein polynomials is that, since
they sum to unity at all depths, the width of the prior bounds on
the coefficients is equivalent to the width of the prior bounds on
the geophysical parameter being represented (i.e. VS(z), Gosselin
et al. 2017). It should be noted that this property of Bernstein poly-
nomials was the primary reason for selecting this polynomial basis
over another. Therefore, we generate VS profiles by randomly se-
lecting cubic Bernstein coefficients from the uniform distribution
U(0.1, 3) and we also enforce VS profiles generated in this manner
to be strictly monotonically increasing with depth. Furthermore, we
assume a constant VP profile of 6.0 km s−1 and a constant density
profile of 2.0 g cm−3 for our structural models. Fixing VP and ρ

helps aid the inversion of VS, since we do not include these param-
eters as additional input to the MDN. Although more sophisticated
fixed parametrizations could be used for VP and ρ, compliance is

Figure 7. Third-order (J = 3) Bernstein polynomial basis functions.

much less sensitive to VP and ρ at high VP/VS (i.e. VP/VS > 2) (Zha &
Webb 2016). Because VS is limited to values from 0.1 to 3 km s−1 in
our models, our VP/VS is always >2, and hence, assuming constant
values for these quantities is not detrimental.

Although we construct VS profiles by sampling cubic Bernstein
coefficients from uniform distributions, it is important to note that
uniform sampling of Bernstein coefficients on a fixed interval does
not correspond to uniform sampling of VS. That being said, the
distribution of VS profiles used in this study adequately covers the
range of real compliance signals observed. An example of the dis-
tribution of 100 000 VS profiles generated in the described manner
is shown in Fig. 8 along with a single structural model (VS only).
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1886 S.G. Mosher et al.

Figure 8. (a). An example of the prior distribution of VS models used in this study generated from 100 000 models. (b) A particular VS profile selected randomly
from the prior distribution in (a).

While a higher order polynomial basis could be used to
parametrize VS profiles in principal, we argue that third-order (cu-
bic) polynomials are sufficient for parametrizing shallow VS for two
reasons. First, quadratic VS relations have been determined for ma-
rine sediment structures such as those in the Cascadia subduction
zone (Ruan et al. 2014; Bell et al. 2015). Second, it is possible to
compute the effective number of model parameters Meff required
to invert compliance signals at six frequencies using the theoretical
sensitivity kernels in Fig. 6. Assuming the sensitivity kernels in
Fig. 6 as the data kernel G for a minimum-length inverse problem,
we compute Meff by calculating the trace of the model resolution
matrix given by R = G−gG, where G−g is the generalized inverse.
Doing so, we find that as long as we limit our inversion structure to a
maximum depth of 2 km, then Meff = 3.99, otherwise Meff increases
if greater structural depths are considered.

In preparation for training an MDN, we generate 100 000 ran-
dom structural models to use as a training set and 30 000 models
to use as a testing set following the above process. We then use eq.
(2) and the 1-D matrix-propagator method (Crawford et al. 1991;
Aki & Richards 2002) to forward model the normalized compliance
signals that each of the models would produce at the six inversion
frequencies. The forward computation is carried out by discretizing
the training and testing models such that they have one layer per
metre of structure, for a total of 2000 layers. Once the signals have
been forward computed, we add random noise to each compliance
value using the 95 per cent signal statistics computed for A02W at
the appropriate frequencies (Fig. 2). Ensemble averaged compliance
signals such as that computed for A02W typically have low uncer-
tainty and are well constrained at frequencies where γ PZ is large.
Thus, the inversion method will perform best for such frequencies.

In other compliance inversion studies, the role of the pressure-
vertical coherence has been to simply inform practitioners of the
frequency domain over which compliance effects can be observed.
Therefore, the multiplication by γ PZ (which is essentially a weight-
ing function) in eq. (3) is not performed when calculating η(ω) in
practice. Instead, the inversion of η(ω) is usually restricted to fre-
quencies where γ PZ ≥ 0.8 (e.g. Zha & Webb 2016; Doran & Laske

2019). The reason for this is that if significant noise sources persist
on the horizontal OBS components, then even large values of γ PZ

may underestimate compliance signals by 40 per cent (Crawford
& Singh 2008). However, Zha & Webb (2016) demonstrate that
compliance estimates for frequencies where γ PZ ≥ 0.8 are not sig-
nificantly biased in this manner. In essence, such approaches end up
assuming a pressure-vertical coherence of unity. Rather than follow
the threshold approach and assume γ PZ = 1, however, we prefer to
include the coherence multiplication when forward modelling syn-
thetic compliance signals. In this way, we more accurately reproduce
the distribution of compliance signals likely to be measured by a
given station. In the general synthetic case, this means assuming a
coherence function for a hypothetical station and deployment depth.
In the current case, we assume the coherence function computed
for A02W (Fig. 2). The potential impact of such an assumption on
the generalizability of the method will be discussed further below.

Because normalized compliance values are typically quite small
(values on the order of 10−9 Pa−1 or lower), rather than work with
raw signals, we instead take the log10 of our compliance signals and
then standardize them before they are fed to the MDN by applying
Z-score normalization. This type of feature scaling ensures that the
compliance values with respect to each frequency in the training and
testing sets have zero mean and unit variance. Note that this type
of feature scaling assumes zero covariance between the compliance
values at each frequency being used, which is unrealistic. While in
principle the MDN framework can be modified to account for fully
covariant input parameters (Bishop 2006), MDNs trained under the
assumption of a diagonal covariance matrix have often been found
to adequately model target probability distributions even when the
input parameters are covariant (e.g. Meier et al. 2007; de Wit et al.
2013). Moreover, we found that this type of feature scaling provided
the best network performance. We refer to these transformed signals
to be fed to the MDN as η̂(ω).

We train an MDN to estimate P(B|η̂(ω)) using five hidden layers,
each with 42 units, and allowing for K = 6 GMM components,
where B is a vector of cubic Bernstein polynomial coefficients (i.e.
B = (B0, B1, B2, B3)T ). Since any given B in our framework is a
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Figure 9. The training curve of the final, trained MDN used in this study.
The similar performance of the MDN against the training and validation sets
demonstrates that the network is not likely overfitting.

four-dimensional vector, the final MDN layer contains 42 units, and
the entire MDN consists of 9840 tuneable parameters (including bias
units). When training neural networks it is best to keep the number of
network parameters as low as possible, in order to avoid overfitting
(Valentine & Woodhouse 2010). A general rule of thumb is to ensure
that there are at least 10 times as many training examples as there are
network parameters. In our case this rule was the main principle for
deciding upon the network architecture, since the number of hidden
layers, as well as the number of units in the hidden layers are not
critically important in these types of problems (Meier et al. 2007;
de Wit et al. 2013). We confirmed this ourselves by testing several
different network architectures, noting that no single architecture
significantly outperformed another. To train the MDN, we use mini-
batch gradient descent with batch sizes of 32 samples and train
the network for a maximum of 1000 epochs. Rather than train the
network for the maximum possible number of epochs, however,
we instead employ early stopping, whereupon training ceases if the
performance of the network, as measured against a portion of the
training set held out for validation, does not improve after eight
epochs. Moreover, we use such a validation set to ensure that the
trained MDN will not be prone to overfitting (Fig. 9). Network
training takes approximately 20 min on a 2.8 GHz quad-core i7
powered laptop.

Recall that MDNs do not learn a function from one vector space
to another, but rather, learn to associate a probability distribution to a
vector. In our case, we train an MDN to approximate P(B|η̂(ω)), that
is, the conditional probability of a set of cubic Bernstein coefficients
given an observed compliance signal. Thus, we must decide on
a sampling strategy in order to determine the inverted VS profile
estimated from P(B|η̂(ω)). We determine the final inversion result
by taking 1000 samples of Bernstein coefficients from P(B|η̂(ω)).
We then use the sampled coefficients to construct 1000 VS profiles
and take the mean of these samples as the final inversion result for a
particular compliance signal. The process is illustrated in Fig. 10, in
which we show a single inversion result for one of our test models.
This sampling approach also allows us to compute the 95 per cent
confidence intervals on our VS estimates.

4.2 MDN performance assessment

To quantitatively assess the overall performance of the MDN against
the test set, we compute the following error metrics. First, we com-
pute the L2-norm between mean predicted Bernstein coefficients
and the true Bernstein coefficients for each test model. Doing so,
we can assess the overall coefficient error of the MDN across all
test models, as well as the error associated with each individual
Bernstein coefficient. Second, we compute the absolute difference
between the true and inverted VS profiles across all test models. As
with the coefficient errors, the errors associated with the velocity
profiles can be assessed as a function of depth or depth-averaged.
In Fig. 11, we show these metrics computed for each of the 30 000
test models we created. Looking at Fig. 11, we see that the MDN
trained on the synthetic structures has a depth-averaged absolute
velocity error of 0.025 km s−1 and an average coefficient error of
0.2. Moreover, the MDN achieves its lowest errors when predicting
the Bernstein coefficients B0 and B3, whereas the larger spreads for
coefficients B1 and B2 are likely indicative of model parameter trade-
offs. Fig. 11 also shows that, as a function of depth, the inversion
results obtained from the MDN have the largest errors at depths be-
tween 0–0.25 and 1.25–1.5 km, which correlate spatially with areas
of low and decreasing compliance sensitivity (Fig. 6). Nevertheless,
the metrics in Fig. 11 demonstrate the effectiveness of using MDNs
to invert compliance signals for VS in oceanic sediments and the
shallow crust.

5 R E S U LT S A N D D I S C U S S I O N

5.1 A02W

In this section, we apply the MDN technique to invert the com-
pliance signal recorded by OBS station A02W of the Eastern Lau
Spreading Center Seismic Experiment. This station offers a con-
venient benchmark result since it was recently analysed in detail
by Zha & Webb (2016) who used a Markov Chain Monte Carlo
(MCMC) method to nonlinearly invert compliance signals for VS.
As described previously, rather than use the deployment depth of
A02W (2015 m) to determine the highest frequency available to us
for compliance inversion, and decide the lower limit by considering
the instrument response, we do so by considering the pressure-
vertical coherence of the station (Fig. 2). Furthermore, it should be
noted that we invert compliance using a slightly different frequency
band than Zha & Webb (2016), namely 0.007–0.024 Hz, rather than
0.006–0.02 Hz. Additionally, while we parametrize our synthetic
models assuming the same density that Zha & Webb (2016) use
for sediment layers in their inversion (ρ=2.0 g cm−3), Zha & Webb
(2016) parametrize VP using a relation obtained by Dunn et al.
(2013), whereas we assume a constant VP profile of 6.0 km s−1.
Because our model parametrization remains unchanged from the
synthetic scenario, we are able to invert the real compliance signal
measured by A02W using the network trained previously on the
synthetic data. The inversion result is shown in Fig. 12 as well as
the fit between the predicted compliance signal (i.e. that computed
from the MDN inverted VS profile) and the measured signal. Fig. 12
demonstrates an excellent agreement with the inversion result ob-
tained by Zha & Webb (2016) for A02W (insofar as the results
share the same structural domain), and validates the method. Fur-
thermore, the predicted compliance signal agrees quite well with
the measured signal, except for the highest frequency value. This
high-frequency discrepancy is likely reflected in the absolute depth-
error histogram of Fig. 11(c). Otherwise, all predicted compliance
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Figure 10. A single synthetic inversion example. (a) The posterior distributions of each inverted cubic Bernstein polynomial coefficient (orange). Also shown
are the prior distributions of Bernstein coefficients (the shaded cyan boxes indicating U(0.1, 3.0)). True Bernstein coefficients are indicated by solid vertical
blue lines. The recovered coefficients are indicated by dashed vertical blue lines (the means of 1000 samples taken from P(B|η̂(ω)). (b) The VS profiles
generated from the 1000 sets of Bernstein coefficients, sampled from the GMM learned by the MDN (orange). The true VS profile is shown in solid blue. The
mean profile (our estimate of VS) is shown in dashed blue. The 95 per cent confidence bounds are plotted in black.

values are within the 95 per cent confidence levels of the measured
signal.

5.2 Limitations

The MDN approach to inverting compliance signals recorded by
OBSs for VS depends principally on the following aspects; the sta-
tion deployment depth, the measured or assumed pressure-vertical
coherence function, the type of structural parametrization, and the
noise assumptions implicit in the training process. Each of these
aspects have important implications on the ability of the method to
generalize or its limitations, which we in turn discuss here.

Because seafloor compliance is a depth-dependent signal, rather
than training a single MDN to invert compliance signals recorded
by any OBS, one must train different MDNs to invert compliance
signals recorded by OBSs deployed at different depths. Although
it would likely be unnecessary to train separate MDNs for stations
whose deployment depths differ only on the order of metres, an
important test to perform in future analyses will be to determine at
what point a difference in deployment depth between stations neces-
sitates the training of a separate MDN. For example, consider that
it is found that MDNs trained for a given depth can also satisfac-
torily invert signals recorded by stations whose deployment depths
differ by up to 50 m. Then, the physically possible deployment
depths on Earth could be binned into 50 m intervals, and a suite of
MDNs could be trained to invert compliance signals for any depth.
In this way, the method could be generalized to various depths.
Additionally, it may not be necessary to train different MDNs for
stations deployed in large ocean depths (such as 3 km and beyond,
e.g.) since infragravity wave dispersion eventually saturates with
increasing deployment depth (as can be seen from equation 6 where
tanh(x) ≈ 1 when x ≥ 3). This means that beyond a certain point,
compliance becomes depth-independent.

In addition to deployment depth however, real compliance signals
observed by OBSs depend on the pressure-vertical coherence at a
given station. For the purposes of generalizing the method, this is
a more subtle issue than the deployment depth. This becomes ap-
parent when one recognizes the distinction between the compliance
signal generated by an infragravity wave, which is always present,
versus the ability to measure it. Therefore, one must consider how
noise artefacts (e.g. time-variable tilt noise) may affect the ability
to robustly calculate pressure-vertical coherence and compliance
functions. Currently, it is unclear if such noise artefacts vary sys-
tematically with features such as instrument design or deployment
environment, in addition to depth. We speculate that by conducting
a statistical analysis of coherence functions observed by instru-
ments deployed at various depths globally, it may be possible at the
very least to determine empirical depth dependent coherence dis-
tributions which could be used to train general MDNs for various
depths. Indeed, this will be the subject of future manuscripts. For
example, when generating training samples by forward modelling
compliance signals from structural models, rather than multiplying
signals by a fixed coherence, as we have done, one could multiply
by a randomly selected coherence function chosen from a suitable
distribution of coherence functions for the selected depth. If these
coherence values are recorded, then, during the training process,
they can be fed to the MDN as prior information in conjunction with
the forward modelled compliance signals. Using such an approach
the method could be made station independent and thus, entirely
depth dependent. Similarly, in the implementation presented here
we have also effectively assumed the noise statistics for a single
station when creating training signals. Again, it may be possible
to generalize compliance noise in a station independent way when
creating training data for the network. For now, however, the MDNs
we have trained in this study are depth and station specific.

This method also relies upon accurate knowledge of the fre-
quency response of differential pressure gauges (DPGs), colocated
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Figure 11. Compiled error metrics computed for each of the 30 000 synthetic test models. (a) Histograms of the L2 error between each true and recovered
Bernstein coefficient individually. (b) Histogram of the overall L2 error between true and recovered Bernstein coefficients. (c) The 2-D histogram of the absolute
error between true and recovered VS profiles as a function of error and depth. (d) The depth-averaged absolute error between true and recovered VS profiles.

with OBSs, from which we estimate compliance. Ideally, these in-
struments are calibrated before deployment. However, since it is
difficult to calibrate DPGs in the lab due to their output varying
with ambient temperature and pressure, sometimes this information
is not available (Zha & Webb 2016). In this case, a constant offset
is added to the DPG response values. To address this, some OBS
instrument groups have developed calibration DPGs that empiri-
cally determine the response prefactor in situ. We therefore encour-
age practitioners to carefully check response metadata and evaluate
compliance curves for intra-deployment consistency.

Finally, in our implementation of this method, we used a sim-
ple parametrization scheme and assumed constant density profiles
and VP profiles. In general, the trained MDN performance will de-
pend on the parametrization scheme used, and more sophisticated
schemes may enable greater utility of the method, albeit at the ex-
pense of more complex setup. In a supplement to this study we
indeed verify that the choice of parametrization for VP does not
have a significant impact on our results. Additionally, the focus of
this study has been on inverting for VS in oceanic sediments, which
we have implicitly assumed to be smooth. For instance, we have
chosen to parametrize VS using a smooth polynomial basis. While
VS profiles in sediments are expected to behave smoothly, due to

compaction and pressure effects this is another potential limitation
of the method in cases where this assumption does not hold. All that
said, this study is primarily a proof of concept; adapting this method
for use in general settings would be relatively straightforward.

5.3 Advantages

Despite the limitations above, many of which may be addressed
in principle, the main advantage of MDN inversion over other in-
verse methods is that MDN inversion is a nonlinear method capable
of directly estimating Bayesian posterior probability distributions.
In fact, the MDN inversion procedure is a rigorously formulated
Bayesian inference procedure and is equivalent to MCMC meth-
ods (Sambridge & Mosegaard 2002) given sufficient training data
(Küufl et al. 2016). However, unlike other nonlinear inverse tech-
niques such as MCMC methods, which construct posterior probabil-
ity distributions by sampling from them, MDNs can be understood
to estimate posteriors through prior sampling (Küufl et al. 2016).
In essence, MDNs evaluate all prior samples without reference to
any particular data observations and, for this reason, MDN inver-
sion is orders of magnitude faster than both MCMC approaches and
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Figure 12. Inversion of the normalized compliance signal measured by A02W. (a) The VS profiles generated from the 1000 sets of Bernstein coefficients,
sampled from the GMM learned by the MDN (orange). The mean profile (our estimate of VS) is shown in dashed blue. The 95 per cent confidence bounds are
plotted in black. The inversion result obtained by Zha and Webb (2016) is plotted in dashed red along with their corresponding confidence bounds (solid red
bars). (b) A comparison of the normalized compliance signal predicted by our result in (a), shown as orange circles, against the signal measured by A02W. The
95 per cent confidence bounds for the measured signal are shown in shaded blue. All values of the predicted signal are within the confidence bounds of the
measured signal, apart from the highest frequency value.

linearized inverse methods (Earp et al. 2020). That being said, the
computationally intensive aspect of MDNs lies within their training,
which can take up to several hours depending on the exact problem.
However, once trained, MDN inversion is on the order of seconds,
thus they are especially suited to situations in which the same in-
verse problem needs to be solved repeatedly at different points in
space or time (Küufl et al. 2016). Finally, MDNs can be standard-
ized and are easily shared. For example, in the case of compliance
inversion pursued here, the MDN used to invert data from A02W
occupies 185 kB on disk and, if used by anyone else, will produce
repeatable measurements.

6 C O N C LU S I O N S

In this study, we demonstrate the effectiveness of a novel approach to
nonlinearly invert compliance signals recorded by colocated OBSs
and high-sample-rate pressure gauges for VS in shallow oceanic
crustal structures within a probabilistic framework. Rather than use
a nonlinear inverse technique such as MCMC, which estimates
posterior probability distributions through prior sampling, we use a
machine learning technique known as an MDN to learn conditional
probability distributions between compliance signals and structural
VS models via prior sampling (Meier et al. 2007; de Wit et al.
2013; Küufl et al. 2016). Using this approach, we were able to train
a network to adequately invert for oceanic VS profiles in several
thousand synthetic models. Among all 30 000 synthetic inversion
tests, the average velocity error was 0.025 km s−1. We then applied
the trained MDN to invert compliance data recorded by OBS A02W
of the Eastern Lau Spreading Center Seismic Experiment, for which

a VS profile was recently estimated by Zha & Webb (2016), using
an MCMC approach. The resulting VS profile obtained using the
MDN in this study is in excellent agreement with the result of Zha
& Webb (2016).

In the context of VS inversion from compliance data, the contrast
between nonlinear sampling techniques (e.g. MCMC) and MDN is
that, within the prior sampling framework, the process of computing
realizations of data is separate from the actual inversion. Therefore,
while the act of training an MDN can be computationally demand-
ing, once a network is trained, the actual inversion process itself
is computationally extremely advantageous. Furthermore, we note
that the use of MDNs allows for repeatable measurements and there-
fore helps to standardize geophysical inversions. Finally, while the
MDN approach to compliance inversion pursued in this work led
to networks that are not able to generalize to other stations, we
discussed improvements to the method which would allow it to do
so.

DATA S TAT E M E N T

Software tools used in this research include MATLAB open source
code written by Wayne Crawford for forward modelling syn-
thetic compliance signals (available at http://www.ipgp.fr/crawford
/Homepage/Software.html); the open source ATaCR package, both
MATLAB (available at https://github.com/helenjanisz/ATaCR) and
Python (available at https://github.com/nfsi-canada/OBStools) ver-
sions, written by Helen Janiszewski and Pascal Audet, respectively,
for performing various OBS corrections and computing real com-
pliance signals; for the machine learning portion of the project we
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used TensorFlow with a custom MDN layer written by Charles Mar-
tin and available on GitHub at https://github.com/cpmpercussion/k
eras-mdn-layer.
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Supplementary data are available at GJI online.

Figure S1: A comparison of inversion results obtained from two
MDNs each assuming a different parametrization for VP. The shaded
regions denote the confidence intervals of each result.
Figure S2: Forward computed compliance values obtained from
the inverted profiles in Fig. S2, compared to the observed signal for
station FN04C.
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