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ABSTRACT

The spectrometer on the international gamma-ray astrophysics laboratory (INTEGRAL /SPI) is a coded mask instrument observing
since 2002 in the keV to MeV energy range, which covers the peak of the VFV spectrum of most gamma-ray bursts (GRBs). Since
its launch in 2008, the gamma-ray burst monitor (GBM) on board the Fermi satellite has been the primary instrument for analysing
GRBs in the energy range between= 10 keV and = 10 MeV. Here, we show that the spectrometer on board INTEGRAL, named ‘SPD’,
which covers a similar energy range, can give equivalently constraining results for some parameters if we use an advanced analysis
method. Also, combining the data of both instruments reduces the allowed parameter space in spectral fits. The main advantage of

SPI over GBM is the energy resolution of = 0.2% at 1.3 MeV compared to

10% for GBM. Therefore, SPI is an ideal instrument

for precisely measuring the curvature of the spectrum. This is important, as it has been shown in recent years that physical models
rather than heuristic functions should be fit to GRB data to obtain better insights into their still unknown emission mechanism, and
the curvature of the peak is unique to the di fferent physical models. To fit physical models to SPI GRB data and get the maximal
amount of information from the data, we developed new open-source analysis software, PySPL We apply these new techniques to
GRB 120711A in order to validate and showcase the capabilities of this software. We show thatPySPIlimproves the analysis of SPI
GRB data compared to the INTEGRAL o ff-line scientific analysis software ( OSA In addition, we demonstrate that the GBM and
the SPI data for this particular GRB can be fitted well with a physical synchrotron model. This demonstrates that SPI can play an

important role in GRB spectral model fitting.
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1. Introduction

Gamma-ray bursts (GRBs) are short transient bursts of X — and
y-rays (Klebesadel et al. 1973) with a typical active time of be-
tween a few milliseconds and a few hundred seconds for the
prompt phase. After the prompt emission, there is a long-lasting
afterglow phase when the ejecta interact ~ with the interstellar
medium (Mészaros & Rees 1997; Vietri 1997). GRBs are clas-
sified into two groups depending on the duration of the prompt
emission (Kouveliotou et al. 1993). Long GRBs (prompt phase
' 2s) have been associated with the collapse of massive stars
(Galama et al. 1998; Hjorth et al. 2003; Woosley & Bloom
2006), whereas short GRBs are caused by mergers of compact
objects, such as neutron stars (Eichler et al. 1989; Abbott et al.

2017). In both cases there is consensus that the progenitor events

of GRBs produce jetted relativistic outflows, which consist of
several shells with different velocities, resulting in internal shell
collisions (Rees & Meszaros 1994; Mochkovitch et al. 1995).

The true physical mechanism(s) responsible for the prompt
emission of GRBs is a heavily debated topic (for a review, see
Kumar & Zhang 2015). Two of the possible emission mech-
anisms are synchrotron (e.g. Daigne & Mochkovitch 1998;
Bosnjak et al. 2009; Burgess et al. 2020) and photospheric emis-
sion (e.g. Goodman 1986; Pe’er et al. 2005; Beloborodov 2010;
Lazzati et al. 2013). In the past, GRB data were often fitted with
empirical functions like the Band function (Band et al. 1993) in
order to decipher the preferred physical model from the fit pa-
rameters. In recent years, it has been shown that this approach
can be misleading and that it is preferable to fit physical mod-
els directly to the data (Burgess et al. 2014; Oganesyan et al.

2019; Burgess et al. 2020). A prominent example of this is the
so-called ‘line of death’ for synchrotron emission (Crider et al.
1997; Preece et al. 1998), which states that synchrotron radiation
cannot be the universal emission mechanism if fits with a Band
function give a low-energy power law slope larger than —2/3.
Burgess et al. (2020) showed that this conclusion is flawed and
that one can fit GRB spectra well with a physical synchrotron
model even though the same spectra violate the line of death if
fitted with a Band function. Another proposed proxy for physical
emission processes in GRBs is the spectral curvature of empir-
ical model fits to GRB data (Yuetal. 2015; Axelsson & Bor-
gonovo 2015). This too has been shown to be an inaccurate in-
dicator of the emission process (Burgess 2019). Therefore, the
use of physical models remains the best tool for deciphering
the emission processes occurring in the relativistic outflows of
GRB:s.

In addition to the model used, the data also play an impor-
tant role. Earlier analyses showed that the shape of the spectrum
around the peak is a decisive feature. Therefore, we make use
of the spectrometer (SPI) on the international ~gamma-ray as-
trophysics laboratory (/INTEGRAL; Winkler et al. 2003) which
provides 100 times higher spectral resolution in the 0.1-1 MeV
band compared to the frequently used gamma-ray burst monitor
(GBM) on board the Fermi satellite.

The spectrometer SPI (Vedrenne et al. 2003) is one of the in-
struments on board the INTEGRAL satellite, which was launched
in 2002. It is a coded mask instrument, with a fully coded field-
of-view of 16 degrees, covering an energy range between 20
keV and 8 MeV. The unprecedented energy resolution allows
the identification of fine spectral features, such as nuclear decay
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lines (Roques et al. 2003; Diehl et al. 2006) and curvature in
continuous spectra (Jourdain & Roques 2020).

The standard analysis of SPI GRB data is done within the /N-
TEGRAL Offline Scientific Analysis OSAsoftware (Courvoisier
et al. 2003), including SPI-specific routines (Diehl et al. 2003).
A two-step method is applied, whereby first only the photo peak
response is used to incorporate the mask pattern on the detec-
tors, and then an energy redistribution correction response is
applied. This method was used in several works that fitted em-
pirical GRB models to the SPI data (Malaguti, G. etal. 2003;
Mereghetti, S. et al. 2003; Mereghetti et al. 2003; von Kienlin,
A. et al. 2003a,b; Beckmann et al. 2004; Moran, L. et al. 2005;
Filliatre, P. et al. 2005, 2006; McBreen et al. 2006; Grebenev
& Chelovekov 2007; McGlynn, S. et al. 2008; Foley, S. et al.
2008; McGlynn, S. et al. 2009; Martin-Carrillo, A. et al. 2014).
The noteworthy exception of Bosnjak et al. (2014) is discussed
separately below in Sect. 2.5. Apart from data handling, all pre-
vious analysis of GRB data from INTEGRAL/SPI used heuristic
functions like the Band function, but not a physical model.

Here, we developed the pure Python-based analysis tool
PySPlin order to provide an easy-to-use data-reduction and fit-
ting tool while getting the maximal amount of information out of
the data to progress to fitting physical models. This improves the
analysis method in general, because we use the full response to
forward model the expected spectra to the native SPI data space
and use the correct likelihood to take the Poisson nature of the
measurements into account. It also dfers an interface that is easy
to install and use. This work is structured as follows: In Sect. 2,
we summarise the different methods and concepts for SPI GRB
data analysis, and provide a detailed description of the new anal-
ysis method within PySPlin Sect. 2.4. Section 3 introduces the
physical synchrotron model we used in the fits and Sect. 4 ex-
plains how we check whethre or not a fit is a good description of
the data. We analyse the SPI and GBM data for GRB 120711A
in Sect. 5 and conclude our results in Sect. 6.

2. SPI GRB analysis methods

All instruments, especially gamma-ray instruments, su ffer from
energy dispersion and finite energy resolution. The information
about this is encoded in the response matrix, which gives the
probability that a photon with a certain energy and starting posi-
tion on the sky will be detected in one of the electronic channels
of the detector. These response matrices are usually not invert-
ible, and therefore we have to forward fold the photon spectrum
through the response matrix into the data space of the detected
counts and compare them using the correct likelihood. This is a
general statement that also applies to SPI. In the following sub-
section, we first cover some general concepts for SPI and then
the standard analysis method within OSA,as well as the method
within our new analysis tool PySPL The main difference is that
the method in PySPlis a full forward-folding method, fulfilling
the statement above, which results in maximising the informa-
tion we can get from the data in the analysis.

2.1. Response

The response connects the photon spectrum to an expected de-
tected count spectrum for a given source position. The response
encapsulates all the information about the probability of a pho-
ton with a certain energy and origin to be detected in a certain
electronic channel of the detector. This includes, for example,
information about partial energy deposition of the photon in a
crystal and the process that transforms the deposited energy into
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the electronic signal that is measured. The response is split into
two components, namely the image response functions (IRFs)
and redistribution matrix files (RMFs). The IRFs contain infor-
mation about the total effective area over which a photon can in-
teract with the detector and the RMFs contain information about
the probability in which electronic channel the photon will be
measured. For SPI, both these components were derived with ex-
tensive geometry and tracking (Geant) simulations (Sturner et al.
2003). The SPI IRF files give the total e ffective area for three
different interaction types: (1) photo peak events; (2) non-photo-
peak events that first interact in the Ge crystal, and (3) non-
photo-peak events that first interact in passive material. These ef-
fective areas were calculated for 51 photon energies and on a (5
grid out to 235 from the on-axis direction. For each of the three
interaction types, there is one RMF to define the shape of the re-
distributed spectra, assuming that this shape does not depend on
the detector or the incident angles of the photons. The procedure
used to construct the response includes several simplifications to
keep the computational costs and storage space at manageable
levels (Sturner et al. 2003). Re-simulating the response without
these simplifications could improve the scientific output of SPI,
but would be computationally very expensive, even today.

2.2. Electronic noise

According to Roques & Jourdain (2019),  there are spurious
events in the SPI data, which are photons with small energy
(<100 keV) that get detected at a higher energy due to saturation
of the analog front-end electronics (AFEE) by previous high-
energy deposition. It is also known that these spurious events do
not show up in events that also have a detection in the pulse shape
discriminator (PSD) electronics. The reason for this is that the
PSD electronics have a low-energy threshold of =450 keV and

a high-energy threshold of =2700 keV (the exact values have
been changed a few times during the mission; Roques & Jour-
dain 2019). Therefore, only events that deposit more than this
low-energy threshold in the germanium crystal can trigger this
electronic chain, which eliminates the <100 keV events that are
detected at the wrong energies by the AFEE. In Fig. 1, the feature
at 1.5 MeV is nicely visible in the non-PSD events but is missing
in the PSD events. Even though this problem is most significant
in the area around 1.5 MeV, it is also important at lower energies
>400 keV. The electronic noise is not stable and depends on the
signal strength (Roques & Jourdain 2019), and therefore it can-
not be included in the response and has to be treated differently.

2.3. INTEGRAL OSA software

As we are introducing new analysis software in this work, we
want to compare it to the existing analysis software to check
whether or not the results are in agreement. We briefly sum-
marise the standard analysis tools for GRB analysis, which are
part of the OSAoftware (Courvoisier et al. 2003).

Analysing GRB data from SPI with the OSAools is a multi-
step process. The first steps involve selecting the science window
containing the GRB, the time intervals for active time and back-
ground time, and the energy bins for the analysis. One can either
find the location of the GRB with SPIROS, which is an itera-
tive source-removal algorithm for SPI data (Skinner & Connell
2003), or set it manually if it is already known. The next steps
encompass the spectral fitting, which is done in another two-step
procedure.
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Fig. 1. Count spectrum for detector 0 integrated over 1000 seconds in
revolution 1189. The non-PSD event count spectrum is drawn in purple
and the PSD events in grey. The light green shaded area marks the en-
ergy range within the PSD energy thresholds (Roques & Jourdain 2019).
The feature is clearly seen in the non-PSD events at 1.5 MeV (stronger
green shaded area) and is not visible in the PSD events.

The first step in the spectral fitting witHOSAs to use only the
photo-peak response of the detectors. These responses depend
on the source position, as this defines for example the absorp-
tion by the mask. With these responses and the measured data
in the individual SPI detectors, taking into account the different
background rates, a photon flux is fitted individually per energy
channel. These pseudo photon fluxes are not the final result, as
at this point, energy dispersion and detector energy resolution
have not yet been accounted for. The pseudo photon flux data
points are fitted with a spectral photon flux model and a correc-
tion response. The correction response, that is available through
OSAdepends on the energy bins that are used and should ac-
count for energy dispersion. In this step, the energy channels are
fitted simultaneously, as it is impossible to incorporate energy
dispersion in a way that fits every energy channel individually.
This fitting can be done in diferent spectral fitting software, such
as XSPEQArnaud 1996) or the Multi-Mission Maximum Like-
lihood framework (3ML; Vianello et al. 2015).

2.4. PySPI

To fit SPI GRB data, we developed a new Python packageySPI
(Biltzinger et al. 2022). Below, we summarise the main points of
GRB analysis within PySPL

2.4.1. Background

GRBs are transient sources with a typical duration of up to a few
tens of seconds. Therefore, we can use the time intervals dur-
ing a single pointed observation (science window) —when the
transient source is not active— as an independent temporal o ff-
source observation (see Fig. 2). This approach is similar to what
is done with other instruments that use o ff-source observations
to make independent background measurements. The probability
distribution for the background model rates per energy channel
is the Poisson distribution:

65)* -

L (Bi tolbi) = —57 :

(1)

300

250

200

150

Rate (cnts/s)

100

T T T T T T T T 1

-300 -200 -100 0 100

Time (s)

200 300 400 500

Fig. 2. Light curve for SPI detector O for GRB 120711A. The transient
source is clearly visible as well as the constant background for the time
when the transient is not active. The time interval we use for the inde-
pendent background observation is marked with the green shaded area¥

where b; are the background rates per energy channel, B; are
the detected counts in the o ff-source observation, and ¢y, is the
exposure of the off-source observation.

2.4.2. Likelihood

With the defined background distribution, we can construct a
likelihood, given by Eq. 2, that connects the source and back-
ground model with the Poisson process data of the background
and active time interval via the response. Here,8 summarises all
the parameters of the source model, D; are the measured counts
in the selected active time interval of the transient source, m;(8)
are the predicted count rates from the model evaluated at the
parameters 0, and z4 is the exposure of the selected active time
interval.

(ta(mi(8) + bi))™

L (D, Bi, 14, 116,b;) = D

\Bi
e—zd(mi(e)wi)(tb;l') o ibi )
fl

If there was a spectral model for the background, we would fit
the background and the source model at the same time with the
likelihood given in Eq. 2, but we do not have such a model for
the SPI background. The background in SPI is dominated by the
interaction of cosmic rays in the satellite material, which pro-
duces nuclear de-excitation line emission for example (Siegert
et al. 2019). For this reason, the background consists of sev-
eral hundred different nuclear lines (Siegert et al. 2019), which
makes an accurate spectral model for the background impossible
at present. However, we can marginalise over the parameters b;
using only the simple fact that they cannot be negative, which
leaves us with Eq. 3.

£ i @+ b))

L (Ds, B;, 14, 416) = Dl

N\Bi
e—zd(mi(e)+b,)(lbgll) e (3)
Al

The marginalisation is equivalent to integrating out the back-
ground rate parameter assuming a uniform prior from zero tow .
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Because solving this integral is computationally expensive, we
use a profile likelihood as an auxiliary but still statistically sound
figure of merit. For the profile likelihood, we use the fact that the
derivative of the likelihood at its maximum is zero% = 0). This
defines the background rates A max (see Eq. 4) that maximise the
likelihood for a given model n(0) and observed quantities:

bimax(6) = (Bi + Di — mi(O)(t, + 14)+

2(ty + tg)
(Bi + Di + mi(0)(t, + 14))> = 4mi(O)Di(ta = t).  (4)
These values are then substituted into the likelihood Eq. 2 to

eliminate the b ; dependency. This gives the exact solution for
the maximum of the likelihood; for likelihood values close to
the maximum, the assumption is that most of the likelihood in
the integrand in Eq. 3 is in a small area around #,,x. This profile
likelihood method has been used in many spectral analysis works
(e.g. Loredo & Wasserman 1995; Burgess et al. 2019) and is also
available in XSPECArnaud 1996) as cstat and pgstat.

2.4.3. Response

In PySPL we use the official response files, as described in Sect.
2.1, interpolate them to the wanted energy bins and source po-
sitions, and construct one response matrix incorporating all the
information about the effective area and energy redistribution.
During this process, we take into account that the mask is not
absorbing 100% of the photons flying through it.

2.4.4. Electronic noise

In PySPl one can select the energy range in which only the PSD
events should be used to avoid including spurious events (see
Sec. 2.2). To account for the larger dead time of the PSD elec-
tronics, an effective area correction can be either fixed to 85%
(Roques & Jourdain 2019), or treated as a free parameter of the
model.

2.4.5. General procedure

Every Ge detector is treated as an independent detector unit. The
workflow during a fit step is a forward folding method: (1) sam-
ple model parameters, (2) calculate the model flux and responses
individually for all detectors for the given source position, (3)
fold the model with responses to get the predicted model counts
in all detectors, (4) calculate the log-likelihood for all detectors,
and (5) sum these log-likelihoods to get the total log-likelihood
of the SPI data for the given model parameters. The BALROG
(BAyesian Lo-cation Reconstruction Of GRBs) algorithm for
localising GRBs with Fermi /GBM employs the same method
(Burgess et al. 2018), which shows that forward folding allows
one to localise photon sources with a non-imaging instrument.
It is important to realise that the instruments SPT and GBM are
fundamentally very similar; they both consist of individual de-
tectors that have different responses for a given source position.
In GBM, this is due to the di fferent pointing directions of the
detectors, and in SPI it is due to the varying obscuration by the
mask. Even though SPI is defined as a coded-mask instrument,
it does not require special treatment. The information that the
mask encodes into the data is automatically included by using
the different responses for the detectors and a forward folding
method. A similar approach was used by DeLaunay & Tohu-
vavohu (2021) that introduces a new forward folding method to
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detect and localise faint GRBs with the coded mask instrument
Swift/BAT.

2.4.6. Software interface

PySPI constructs a plug-in for 3ML (Vianello et al. 2015). This
allows one to fit SPI data together with data from other instru-
ments, such as Ferm{GBM'. PySPlis open source software, and
is publicly available on GitHub (Biltzinger et al. 2022), includ-
ing documentation with examples’.

2.5. Comparison of our method to BoSnjak et al. 2014

Bosnjak et al. (2014) performed a joint analysis of SPI and IBIS
(Imager on Board the INTEGRAL Satellite) data of GRBs and
created a spectral catalogue of INTEGRAL GRBs (Ubertini et al.
2003). Bosnjak et al. (2014) construct a response for every SPI
detector and forward fold the photon model directly into the data
space of every detector, which is similar to our approach in this
work. Following their paper, we see two main di fferences com-
pared to our method, namely response generation and treatment
of the electronic noise, and one ill-defined issue (background
treatment).

For the response generation, Bosnjak et al. (2014) state that
they calculate a response function taking into account  the ex-
posed fraction of each detector for the GRB position and that
the net spectrum is zero for a completely shadowed detector.
Therefore, we conclude that they used an idealistic mask with
zero transparency at all energies. We on the other hand used
the official response simulations that also include some trans-
parency, especially at high energies. The second point is that the
electronic noise is ignored completely in Bosnjak et al. (2014).
Roques & Jourdain (2019) showed that the effect of the PSD
events gets stronger for bright sources, and therefore it is impor-
tant to account for this effect in the case of GRBs.

Concerning the background treatment, Bosnjak et al. (2014)
argue that background subtraction is better than using a model
template for the background withinOSAand cite Cash (1979) for
their likelihood. Therefore, one would conclude that they used a
Poisson likelihood on the background-subtracted data, but they
also state that they provide on-burst and background spectra sep-
arately to XSPEC, which implies that no background subtraction
was done before the fit. This was clarified with Z. Bo$njak in a
private communication during the refereeing process: in XSPEC,
background and burst(-source) spectra were used separately, and
no background subtraction was done for the fits.

Unfortunately, the software used to generate the data files
and response files in Bosnjak et al. (2014) is not public and only
the results for combined fits of SPI and IBIS data are shown.
Therefore, we cannot directly compare our method and results
with theirs. Also, Bo$njak et al. (2014) only used data up to 1
MeV for SPI, whereas with PySPI we can use the data up to
higher energies (up to 8 MeV), which is needed to constrain the
peak energy for GRB 1200711A, whichisat = 1.4 MeV (see
Sec. 5.2).

3. Physical synchrotron model

We use pynchrotron 3 to calculate the spectrum from a phys-
ical spectral synchrotron model. This model was previously

' See threeml.readthedocs.io
2 See pyspi.readthedocs.io
3 https://github.com/grburgess/pynchrotron
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used to successfully fit many single-pulse GRBs observed with
Fermi/GBM in Burgess et al. (2020), which also includes a de-
tailed description of the model. Here, we summarise the main
points.

The core of the model is the assumption of some generic ac-
celeration mechanism that constantly accelerates electrons into
a power-law spectrum N(Y) « Y 77 between Yi,j and Ypmax. These
electrons are cooled via the emission of synchrotron photons in
a magnetic field. The resulting photon spectrum is the sum of
the photon spectra at every time-step in the cooling process and
is defined by five quantities: (1) the magnetic field strength (B),
(2) the slope of the injected electron spectrum (p), (3) the lower
boundary of the injected electron spectrum ( Viyj), (4) the upper
boundary of the injected electron spectrum ( Ymax), and (5) the
characteristic Lorentz factor the electrons cool to ( Ycoo1). There
exists a strong degeneracy between B and Yjyj, as their combi-
nation sets the peak of the photon spectrum. Therefore, we fix
Yinj = 10° and only fit for B.

4. Model checking

How to decipher whether or not the fit of a model is a good de-
scription of the measured data is a very complicated and highly
debated topic in the statistics community. Measurements like re-
duced X? rely on many assumptions; for example, that all the
probability distributions in the problem are described as normal
distributions (Andrae et al. 2010). This is not the case here, as the
measurement process is a Poisson process. We therefore decided
to use posterior predictive checks (PPCs) and quantile-quantile
(QQ) plots.

For the PPCs, one simulates new data from the full poste-
rior of the fit and the measurement process (see Eq. 5) and com-
pares them to the observed data (Gelman 2003). QQ plots use the
same simulation process, but instead of comparing the observed
data of every energy channel individually to the simulated data,
one compares the cumulative counts of the observation and the
simulations over energy channels (Wilk & Gnanadesikan 1968).
QQ plots are very sensitive to weak systematic deviations of the
model from the data.

z

P(ysim IyobS) = P(ysim | e)P(erObs)de (5)

Here )** are the observed data, P@)y°*) is the posterior distribu-
tion of the model parameters0 given the observed data, P(™|6)
is the probability of new data given the parameters of the model,
and y*'™ are the simulated data.

5. Analysis

As an example, we analyse GRB 120711A, a bright, multi-pulse
GRB with a precursor and a long emission period of =100 s.
GRB 120711A was detected by SPI and GBM (Goetz et al. 2012;
Gruber & Pelassa 2012). We look at one time interval with a du-
ration of 10 seconds around the first bright peak in the light curve
(see Fig. 3). From the detection of the afterglow with the x-ray
telescope (XRT) onboard the Swift satellite, we have an accu-
rate position of the GRB (RA = 94.68, Decl. = -71:00 in J2000)
(Beardmore & Evans 2012). The SPI data for GRB 120711A
were previously analysed by Martin-Carrillo, A. et al. (2014),
but these authors only fitted the time-averaged spectrum over the
Ty emission (between 0 and 115 seconds after the trigger) with

SPI detector 0

Rate (cnts/s)

1
200

0 50 100 150
Time (s)
GBM detector n2
3500
3000
@
£ 2500 A
S
£ 2000
o
1500 +
1000 T T T 1 | 1
0 50 100 150 200
Time (s)

Fig. 3. Light curve for GRB 120711A in one GBM and one SPI detector.
The green shaded area marks part of the time intervals used for the
independent background observation and the blue shaded area is the
active time interval used in the fit.

¥

an empirical exponential cuto ff power-law model, while focus-
ing on the post-GRB emission properties.

First, we present our fit of the data with the empirical Band
function, and show a comparison between the fit results using
PySPIlversus OSASec. 5.1). We then check whether or not the
results for SPI and GBM are in agreement  (Sec. 5.2). Subse-
quently, we present our fit of the SPI and GBM data simulta-
neously with a physical synchrotron model, which was done to
check whether or not including SPI in the analysis can reduce
the allowed parameter space (Sec. 5.3).

For all GBM and PySPIfits, we added effective area correc-
tion parameters, allowing the total éfective area of the individual
detectors to vary with respect to each other in order to account
for slightly di fferent calibrations. To do this, we fixed the re-
sponse of one of the detectors and fitted one parameter for every
other detector. We constrain the ffective area correction parame-
ters to be between 0.7 and 1.3. All the fits us@ML(Vianello et al.
2015) and the Bayesian sampling algorithm MultiNest (Feroz
et al. 2009) to create posterior distributions of the parameters.

5.1. Comparing PySPland OSA

We fit the SPI data of an identical time interval with a Band func-
tion within PySPland OSAFigure 4 shows the resulting poste-
rior distributions of the fits. The results for the spectral shape
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Fig. 4. Corner plot showing the Band function fit to the SPI data with
PySPland OSAwith the data for GRB120711A. The results are in agree-
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Fig. 5. Corner plot for the SPI fit with PySPland the GBM fit to the
data of GRB120711A. In this fit, we used a Band function as a spectral
model. The spectral shapes for the SPI and GBM fits coincide within

their uncertainty regions and the normalisation is df by =10%. ¥

from the two analysis techniques agree within their uncertainty
regions, but PySPI can constrain the model more precisely (see
Fig. 7).
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Fig. 6. Corner plot for the SPI fit witlPySPland the GBM fit to the data
of GRB120711A. In this fit we used a physical synchrotron model (see

Sec. 3) as a spectral model. The results from SPI and GBM agree within
their uncertainty region and the combined fit provides better constraints
on the parameter than the individual ones. ¥

5.2. Comparing SPI and GBM

We then analysed SPI data with PySPland the GBM data with
the GRB analysis within 3ML again with a Band function. Fig-
ure 5 shows the results for these fits; we can see that the results
for the spectral shape from SPI and GBM are in agreement. It
also shows that the effective area calibrations for SPI and GBM
are well aligned, with a difference of only =10% (K parameter),
which is well within the uncertainties as specified in the corre-
sponding instrument publications.

5.3. Joint fit of SPl and GBM

We performed a joint fit of SPI and GBM data with a physical
synchrotron model (see Sec. 3). Figure 6 shows the corner plots
for the individual and combined fits. The posterior distribution of
the parameters from the GBM and the SPI fit agree within their
uncertainty regions and the combined fit reduces the allowed pa-
rameter space. The physical synchrotron model was able to fit
the data of GBM and SPI well, which is shown with PPC and
QQ plots in Appendix B.

6. Conclusion

We present a new analysis method for GRBs detected by /NV-

TEGRAL/SPI and the corresponding software package that uses
this method. The PySPIsoftware uses a proper forward-folding
technique for each detector (see Sec. 2.4). To show that this im-
proves the analysis of GRBs detected by SPI, we analysed GRB
120711A using the data from INTEGRAL/SPI and Fermi/GBM.
The results for SPI withPySPlare in agreement with those from
the INTEGRAL OSAsoftware, but provide better constraints.
Also, the resulting spectral shape for the fits with GBM and SPI
data are in agreement and the relative calibration di fference be-
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Fig. 7. Model posterior plots (95% confidence region) for t
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combined fit reduces the allowed model space.

tween SPI and GBM —which we conclude fi
= 10% or less. We show that the GBM as well as the SPI data
for GRB 120711A can be fitted well with a physical synchrotron
model and that combining the data in a simultaneous fit improves
the parameter constraints. Consequently, SPI can play an im-
portant role in physical GRB model checking. The next steps
will entail an analysis of all GRBs detected by SPI with di ffer-
ent physical models and PySPI to check whether or not some
of these models can be rejected with the SPI data. This will be
covered in a future paper.
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Appendix A: Localising GRB 120711A

It is also possible to localise GRBs with PySPI. To localise, we
vary the spectrum parameters and the location of the source at
the same time in one fit. For this,PySPlhas a fast response gen-
erator that uses the base response simulation grid to generate the
response for any given source position quickly. Figure A.1 shows
the localisation we get if we fit the location and use a Band func-
tion as spectral model. We also marked the position of the GRB
measured by Swiff XRT, which shows that the result with the SPI
data is in agreement with the SwiffXRT observation (Beardmore
& Evans 2012). For this fit, we only used the energies up to 600
keV to avoid the PSD energy region.
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Fig. A.1. Localisation of GRB120711A with PySPI. Contours show the
statistical only 1- and 2-sigma credible regions. We estimate an addi-
tional systematic error of = 0.5 degrees because that is the resolution
of the grid points in the response simulation. The dashed lines mark the
position observed by SwiftXRT (Beardmore & Evans 2012). ¥
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Appendix B: Model checking plots

In this section we show a selection of the PPC- and QQ-plots for the simultaneous synchrotron fit to the SPI and GBM data for
GRBI120711A.
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Fig. B.1. PPC (left) and QQ (right) plot for the GBM detector n0. The green and purple shaded areas are the one- and two-sigma contours. In the
PPC plots, the dark yellow curve is the detected count spectrum, and in the QQ plots it shows the expected 1:1 relation between the cumulative
model and observed counts.
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Fig. B.2. PPC (left) and QQ (right) plot for the GBM detector b0. The green and purple shaded area are the one- and two-sigma contours. The
dark yellow curve has the same signification as in Fig. B.1. for the two plots. ¥
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Fig. B.3. PPC (left) and QQ (right) plot for the low energy range of SPI detector 13 (all single events).  The dark yellow curve has the same
signification as in Fig. B.1. for the two plots. ¥
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