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Abstract
Shocks thatoccur below a gamma-ray burst(GRB) jet photosphere are mediated by radiation.Such radiation-
mediated shocks (RMSs)could be responsible forshaping the promptGRB emission.Although well studied
theoretically,RMS models have not yet been fitted to data owing to the computational cost of simulating RMSs
from first principles.Here we bridge the gap between theory and observations by developing an approximate
method capable of accurately reproducing radiation spectra from mildly relativistic (in the shock frame) or slower
RMSs, called the Kompaneets RMS approximation (KRA). The approximation is based on the similarities between
thermalComptonization of radiation and the bulk Comptonization thatoccurs inside an RMS.We validate the
method by comparing simulated KRA radiation spectra to first-principle radiation hydrodynamics simulations,
finding excellent agreement both inside the RMS and in the RMS downstream. The KRA is then applied to a shock
scenario inside a GRB jet, allowing for fast and efficient fitting to GRB data. We illustrate the capabilities of the
developed method by performing a fit to a nonthermal spectrum in GRB 150314A. The fit allows us to uncover the
physicalproperties of the RMS responsible for the promptemission,such as the shock speed and the upstream
plasma temperature.
Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629)

1. Introduction
The launching, propagation,and collimation of a highly

supersonic jetunavoidably lead to immense shock formation
inside the jet and its surroundings (see,e.g., López-Cámara
et al. 2013, 2014; Gottlieb et al. 2019). Shocks that occur deep
inside gamma-ray burst (GRB) jets are mediated by radiation.
Such radiation-mediated shocks (RMSs)fill the jet with hot,
nonthermal radiation, which is advected toward the jet
photosphere,where it is released.The released spectra will
range from strongly nonthermal to thermal, depending on
whether the radiation has had time to thermalize via scatterings
before reaching the photosphere or not.

GRBs are observed to have strong spectralevolution, in
terms of both peak energy (Golenetskii et al.1983) and shape
(e.g., the width of the spectrum;Wheaton et al. 1973). In
around one-quarterof GRB pulses, the narrowest, time-
resolved spectrum is consistentwith a thermal spectrum,
which strongly suggests that the whole pulse is of a
photosphericorigin (Yu et al. 2019; Acuner et al. 2020;
Dereli-Béguéet al. 2020; Li et al. 2021). It is plausible,
therefore,that the wider, nonthermalspectra in such pulses
have undergone subphotospheric dissipation (Rees & Mészáros
2005; Ryde et al. 2011). Even though RMSs are a natural cause
of this dissipation,so far RMS models have not been fitted to
the data.3

The main reason for this is that RMSs are expensive to
simulate from first principles. RMSs have previously been
considered in one spatialdimension (Levinson & Bromberg
2008; Nakar & Sari 2012; Beloborodov 2017; Ito et al.2018;
Lundman et al. 2018; Lundman & Beloborodov 2019; Ito et al.
2020; Levinson & Nakar 2020;Levinson 2020;Lundman &
Beloborodov 2021).The 1D simulations illustrate the main
features of the nonthermal RMS radiation expected inside GRB
jets: a broad power-law spectrum for up to mildly relativistic
shocks (that have relative relativistic speed between the up- and
downstreams ofβγ  few,where β is the speed in units of
speed of light c and γ is the Lorentz factor), while faster shocks
have more complex spectralshapes owing to Klein–Nishina
effects,anisotropic radiation in the shock,and photon–photon
pair production. Once advected into the downstream, the RMS
spectrum gradually thermalizes through scatterings.

Currently, these 1D simulations are not fast enough to build
a table model of simulated RMS spectra overthe relevant
parameterspace,which is an efficient way to test models
against data. However, model testing is of crucial importance to
further develop our understanding of the promptemission in
GRBs. With this motivation, in this work we explore an
alternative path to connecting RMS theory and GRB observa-
tions. In Section 2, we construct an approximate, but very fast,
method called the Kompaneets RMS approximation (KRA).
The approximation is based on the strong similarities between
bulk Comptonization of radiation inside an RMS and thermal
Comptonization of radiation on hotelectrons,the latter being
described by the Kompaneets equation.The KRA is appro-
priate to use for mildly relativistic (and slower), optically thick
RMSs. We validate the KRA by comparing simulated radiation
spectra to those produced by the full radiation hydrodynamics
simulations,finding excellent agreement.The KRA is then
applied to a minimal model of a shock inside a GRB jet in
Section 3, which generatessynthetic photosphericspectra,
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3 We note that Ahlgren et al. (2015) and Vianello et al. (2018) fit
photospheric models including dissipation to the data. However, their assumed
energy dissipation mechanism was different.
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accounting for both adiabatic cooling and thermalization of the
photon distribution. The KRA simulations are about four orders
of magnitude faster to run than the corresponding1D
simulations, allowing for table model construction.As an
illustration of the model capabilities, we use the table model to
perform a fit to the prompt emission of GRB 150314A in
Section 4. We conclude by summarizing and discussing our
results in Section 5.

2. The Kompaneets RMS Approximation
In this section, we develop the KRA and compare the

resulting spectra to full-scale,special relativistic RMS simula-
tions in planar geometry. The approximation is valid for RMSs
where the photonsinside the shock do not obtain energies
exceeding the electron rest mass energy, as the transfer problem
then becomesmore complicated, including Klein–Nishina
scattering effects,anisotropy,and γγ-pair production. This
typically corresponds to shocks thatare mildly relativistic4 or
slower, inside plasma where the downstream radiation pressure
dominates over the magnetic pressure.

As is appropriate for RMSs inside GRB jets, the RMS is
assumed to be photon rich (Bromberg etal. 2011), i.e., the
photons inside the RMS are mainly supplied by advection of
upstream photons,as opposed to photon production inside the
RMS and in the immediate downstream.The RMS is also
assumed to be in an optically thick region, which is appropriate
deep below the photosphere. The approximation will therefore
not hold for shocks that dissipate most of their energy close to
the photosphere;such shocks require full radiation hydro-
dynamics simulations.5 We note that Blandford & Payne
(1981) showed that the shape of a photon spectrum traversing a
photon-rich,nonrelativistic RMS can be obtained analytically.
Although their analyticalcalculation is impressive,it ignores
photon energy losses due to electron recoil. The photon
spectrum, therefore, lacks a high-energy cutoff, which makes it
accurate only for soft spectra where the bulk energy is not
carried by the high-energy photons. Due to this limitation, their
solution is not applicable here.

2.1. Bulk Comptonization inside the RMS
The following treatment assumes a nonrelativistic shock, but

comparison to full RMS simulations shows thatthe approx-
imation is valid also for mildly relativistic shocks with
γβ  few (see also Section 2.4).

In the shock rest frame, the incoming speed of the upstream
is greater than the outgoing speed of the downstream,leading
to a speed gradient inside the shock.The photons that diffuse
inside the RMS speed gradient directly tap the incoming kinetic
energy by scattering on fast electrons. If the photon mean free
path is λ, the velocity difference of the plasma over a scattering
length is  λ(dβ/dx) = dβ/dτ, where x is the spatial coordinate
and dτ = dx/λ measures the optical depth along the x-
coordinate.Doppler-boosting the photon to the frame ofthe
scatterer,performing a scattering,and averaging over the

scattering angles,one finds a relative energy gain of
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per scattering, e.g., a first-order Fermi process. Here the photon
energy ò is given in units of electron restmass,ò = hν/mec2,
where h is Planck’s constantand ν is the photon frequency.
Equation (1) is valid for a relative energy gain Δò/ò < 1, where
Δò is the energy gain in a scattering for a photon with initial
energy ò. Note that dβ/dτ is a local quantity that changes
continuously across the RMS transition region and vanishes in
the far up- and downstreams,where the plasma velocity is
constant(see Figure 1 for a schematic of the velocity profile
across the shock). The dβ/dτ profile is self-consistently
determined by the radiation feedback onto the plasma:the
photons gain precisely the available kinetic energy such that the
Rankine–Hugoniot shock jump conditions are satisfied.

Since plasma is advected through the RMS, so are the
photons that scatter inside the plasma.However,photons also
diffuse within the flow, and a fraction of the photons will stay
inside the RMS much longer than the advection time across the
RMS, accumulating more scatteringsand therefore more
energy.As is always the case when both the probability of
escaping the shock and the relative energy gain per scattering,
Δò/ò, are energy independent, a power-law spectrum develops.
The power law extends up to energies where the energy gain
per scattering is balanced by energy losses due to electron
recoil, which occurs when Δò/ò ≈ ò.This gives a maximum
photon energy inside the shock of

»
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where the brackets on the right-hand side indicate a weighted
average across the shock.

The exactexpression foráD ñ  is difficult to determine
from first principles.With u and d as the average photon
energies in the up- and downstreams, respectively, and βuγu the
four-velocity of the upstream evaluated in the shock rest frame,

Figure 1. Schematic of the KRA:green indicates the upstream zone,red the
RMS zone,and purple the downstream zone.In each zone,photons interact
with a population of thermal electronswith an effective temperature,θ.
Dissipation occursin the RMS zone by prescribing the electrons a high
temperature θr ? θ u. The zones are connected via source terms, s. The overlaid
blue line is a rough indication of the velocity profile, β(x), across a real RMS,
where x is the spatial coordinate.

4 We illustrate this point later with a shock simulation that has an upstream
four-velocity of βγ = 3.
5 Lundman & Beloborodov (2021) show the evolution of a mildly relativistic
RMS that reaches the edge of neutron star merger ejecta. The shock evolution
is complex:the radiation begins leaking ahead of the shock,while a forward
collisionless shock and a reverse collisionless shock are formed at the
photosphere.
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we empirically find in Appendix A that
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with ξ = 55 is a good approximation across the relevant shock
parameter space. Although Equation (3) contains the relativistic
four-velocity,it is only valid while áD  »ñ    1max .

2.2. Modeling an RMS as Thermal Comptonization
The energy gain processdescribed in Section 2.1 looks

strikingly similar to thermalComptonization on hotelectrons
(see, e.g., Rybicki & Lightman 1979). Consider a hot cloud of
nonrelativistic electrons at a constant temperatureθ = kT/
mec2 = 1, where k is the Boltzmann constant and T is the
temperature, with injection of low-energy photons (ò = θ) into
the cloud and an escape probability that is energy independent.
The low-energy photons will gain a relative energy per
scattering ofΔò/ò ≈ 4θ, and the energy gain continues until
balanced by recoillosses at q» D »   4max . Such Comp-
tonization is described by the Kompaneets equation,with a
source term s for the photon injection and escape from the
cloud
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where tsc= λ/c is the Thompson scattering time and n is the
photon occupation number.Stimulated scattering (∝n2) has
been omitted in Equation (4),as this effectis insignificantas
long as the occupation number is small,n = 1, which is true
for the nonthermal emission considered here.

Motivated by the similarities between the two systems,our
aim is to constructan approximate RMS modelbased on the
Kompaneets equation.The plasma is split into three discrete
zones: the upstream zone, the RMS zone, and the downstream
zone. The time evolution of the radiation spectrum inside each
zone is computed using the Kompaneets equation.Each zone
has an effective electron temperature,and the zones are
connected via source terms. A schematic of the KRA is shown
in Figure 1.

The upstream zone feeds thermalradiation into the RMS
zone, which passesradiation onto the downstream zone.
Dissipation occurs only inside the RMS zone. This is achieved
by prescribing an effective electron temperatureq » D  r

1
4

,
found from Equation (3) as

q
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The subscriptr here and henceforth denotes quantities in the
RMS zone,and the subscripts u and d willbe used to denote
quantities in the upstream and downstream zones, respectively.
Equation (5) assures that the maximum photon energy and the
energy gain per scattering in the RMS zone mimic those of a
real RMS. By matching how long photons stay in the shock
such that the average downstream energies in the two systems
become equal,the evolution of the photon distribution in the
KRA will closely match that of a real shock.This is achieved
by using appropriate source terms (see Section 2.3).

The up- and downstream zonesdo not dissipate energy.
Therefore, the temperaturesinside these zones equal the

radiation Compton temperature θC, defined as the electron
temperature with which there is no net energy transfer between
the photon and electron populations.It is given by
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where the integrals are taken overall photon energies.The
upstream temperature of the radiation,6 θu, is a free parameter
of the model, but the downstream Compton temperature is not a
free parameter, as it is determined by the upstream temperature
and the amountof dissipation in the shock.The nonthermal
radiation that streams from the RMS zone is accumulated in the
downstream zone,where it gradually thermalizes7 via scatter-
ings. The downstream zone contains allphotons thatpassed
through the RMS zone, and the degree of thermalization of the
radiation inside the downstream zone increases with time.

2.3. The KRA Source Terms
The three zones in the KRA are coupled by source terms.

Denoting the source of photons that stream into the RMS by sin
and the source that streams out of the RMS by sout, one gets

= - ( )s s , 7u in

= - ( )s s s , 8r in out

= ( )s s . 9d out

The probability for a photon to escape the RMS into the
downstream is independentof the photon energy. Thus,
sout= knr, where k is a constant and nr is the occupation
number inside the RMS zone.In this scenario,one can show
(e.g., Rybicki & Lightman 1979) that the steady-state solution
to the Kompaneets equation inside the RMS zone is a power-
law distribution, n ∝ ò− α, with a q=  +( )k3 2 9 4 r

1 2 .
In analogy with Rybicki & Lightman (1979), we identify the
RMS zone y-parameter as yr = 4θr/k. Therefore,

q
=⎜ ⎟
⎛
⎝

⎞
⎠

( )s
y

n4 . 10r

r
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The RMS zone y-parameterdetermineshow much time
photons spend inside the shock; therefore, it is a measure of the
average photon energy gain inside the RMS.As such,yr sets
the hardness of the nonthermal spectrum that is injected into the
downstream.A value of yr = 1 corresponds to a flat νFν
spectrum,with larger values of yr giving harder slopes.The
value of yr in the KRA is chosen such that the average
downstream photon energy obtained equals that of a real RMS.
The full conversion between the parameters thatspecify the
RMS and the corresponding KRA parametersis shown in
Appendix A.

6 We use a Wien distribution for the upstream radiation,which is a Planck
spectrum with nonzero chemical potential.
7 That is, high-energy photons preferentially lose energy as they scatter, while
low-energy photons gain energy.The net effect is to gradually thermalize the
photon distribution,while keeping the average photon energy constant.
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Requiring thatthe photon number inside the RMS zone is
conserved,one finds from Equation (8)
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where the integrals are again taken over all photon energies.

2.4. Estimating the KRA Upper Speed Limit
The energy gain inside the RMS qualitatively changes when

the relative energy gain per scattering, Δò/ò, becomes
comparable to unity.This is because the upper photon energy
inside the shock is » D  max , and the radiative transfer is
different for such high-energy photons.In particular, Klein–
Nishina effects modify the scattering cross section, and γγ-pair
production is triggered.Furthermore,shocks with such a high
energy gain per scattering willhave a narrow width (compar-
able to a few photon mean free paths), which makes the
radiation anisotropic. The KRA is therefore limited to modeling
shocks with Δò/ò  1.This corresponds to (see Equation (3))

 b g
x( )

( )
( )

 ln
, 12u u

d u

2

with ξ ≈ 55.
The ratio of average downstream to upstream photon

energies can vary significantly butenters Equation (12) only
as a logarithmic factor. For a typical energy ratio of

=  10d u
2, one gets an upper velocity limitof β uγu ≈ 3.5.

Thus, the KRA is expected to be applicable to shocks with
βuγu  3,with the exactvalue only marginally dependenton
the shock parameters.

2.5. Quasi-thermal RMS Spectra
The radiation in the downstream of an RMS becomes quasi-

thermal if the energy dissipation per photon is either very low
or very high. In the former case the upstream photon
distribution is largely unaltered,while in the latter case the
photons gain so much energy thatthey pile up in a thermal
Wien distribution aroundmax (i.e., saturated Comptonization).
In both cases, the radiation relaxes to a near-thermal
distribution after a few scatterings in the downstream, at which
point the information from the shock is all but lost. When
fitting to data, such shocks are almostindistinguishable from
each other and from outflows where no dissipation occurred.
As such, they are less interesting from an observational
perspective.

Shocks with small photon-to-proton ratios,nγ/n p, where nγ
and np are the photon and proton number densities,
respectively,tend to have more thermal-like spectra inside
the RMS. This is because the average downstream photon
energyd is inversely proportional to the photon-to-proton ratio
(i.e., more photons sharing the same shock kinetic energy),
while the maximum photon energymax is proportionalto the
logarithm of d (see Equation (3)). Thus, as the photon number
shrinks,d increases faster thanmax, until the spectrum appears
quasi-thermal with ~ d max.

For  d u, the average downstream photon energy is
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where mp is the proton mass. Equatingd to » D  max and
solving for nγ/n p, one gets
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Consider the limitβu = 1, which gives g  b g- »( ) ( )1u u u
2

1 2 . With ξ = 55 and a typical energy ratio of =  10d u
2,

one finds a critical photon-to-proton ratio of nγ/n p ≈ 1.1 × 104.
Shocks that have photon-to-proton ratios close to this
value will result in quasi-thermal radiation spectra.Below,
we illustrate this fact with a simulation that has nγ/n p ≈
4 × 104.

2.6. Comparing the Kompaneets RMS Approximation to Full
RMS Simulations

In this subsection,we will compare the spectrum inside the
RMS and downstream regions as computed by the two codes
radshock and Komrad, the latter implementing the KRA.
The radshock code is a special relativistic, Lagrangian
radiation hydrodynamicscode (Lundman et al. 2018). The
radiation field is computed using the Monte Carlo method,
which self-consistently connectsto the hydrodynamicsvia
energy and momentum source terms.The RMS is set up by
smashing plasma into a wall boundary condition and allowing
the code to relax into an RMS thatpropagates steadily away
from the wall. For the case of a thermal upstream radiation
spectrum, the RMS solution is fully specified by three
parameters.These can be taken to be the temperature of the
upstream radiation,θu, the speed of the upstream plasma
relative to the shock, βu, and the photon-to-proton ratio, nγ/n p,
inside the upstream (Lundman et al.2018).

Komrad implements the KRA described in the previous
subsections,evolving the radiation in the RMS zone and the
downstream zone8 using Kompaneets solvers (e.g.,Chang &
Cooper1970). We choose the following three parameters to
describe the RMS in Komrad: the temperature of the upstream
photons,θu, K (where the subscriptK indicates Komrad), the
effective electron temperature inside the RMS zone, θr, and the
Compton y-parameterof the RMS zone, yr. As mentioned
above, the conversion from the KRA parameters to the
corresponding RMS parameters is given in Appendix A.A
nontrivial point is that the two codes will have somewhat
different upstream temperatures.This is becauseplasma
compression inside the RMS willincrease the internalenergy
density and shift the upstream spectral peak,and no analog to
this compression exists for the KRA.

A simulation is fully specified by the three shock parameters
and the total simulation time t/tsc. The simulation time affects
the degree to which the downstream has been thermalized.To
highlight the similarities between the downstream spectra,we
do not include the radiation produced during the initialRMS
formation. This is becausethe formation of the shock is
different between the simulations.Therefore,the simulation
time starts when the RMS is already in steady state.

The RMS transition region in radshock is continuous, and
it is not obvious a priori what part should be compared to the
RMS zone in Komrad. For the comparison,we chose the
radiation in radshock that is located atthe point where the
shock has just finished dissipating all incoming energy, as this

8 The upstream zone has no need for a Kompaneets solver, as the radiation is
assumed to be thermal and the shape of the spectrum is known analytically.
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represents the spectrum thatis injected into the downstream.
This location is determined as the point where the average
photon energy has reached its downstream value.The plasma
that has passed through thislocation after the start of the
simulation time belongs to the downstream.At the end of the
simulation, the radiation inside the downstream is collected and
its spectrum computed.

Figures 2 and 3 show the results of six different shock
simulations,labeled Runs A–F.The Komrad parameters for
the six runs are shown in Table 1, and the radshock
parameters are found in Table 2.The simulation parameters
were chosen to test the KRA in different regions of the shock
parameterspace, resulting in differently shaped radiation
spectra inside the shock.The Komrad parameters for the six

Figure 2. Comparison of RMS and downstream spectra for Runs A–E as indicated in the panels. Solid lines show the spectra from the full radiation hydrodynamics
code radshock, and dashed lines show spectra from the KRA code Komrad.The parameter values for the runs are given in Tables 1 and 2.
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runs are calculated from the corresponding radshock
parameters using the method described in Appendix A.The
only free parameter in the conversion is ξ from Equation (3).
All Komrad runs are made with ξ = 55, as we empirically
found that this value gave good agreement across the parameter
space.

In Figure 2, Runs A–E are shown in five differentpanels.
The spectra produced by the two codes are remarkably similar,
highlighting the close analogy between bulk and thermal
Comptonization.We conclude that the KRA can accurately
capture the RMS radiation physics.

In Figure 3, we show the spectra for Run F, which is a mildly
relativistic shock with upstream speed βuγu = 3 in the shock
rest frame. The KRA neglects relativistic effects such as Klein–
Nishina suppressionand pair production. Furthermore,as
shown in, e.g., Ito et al. (2018), anisotropy starts to become
important when the shock becomesrelativistic. However,
Komrad can still capture the behaviorof mildly relativistic

shocks,as long as the photon energies inside the RMS do not
exceed the electron restmass, i.e., as long as  1max as
discussed in Section 2.4.

In this run, the relative energy gain per scattering is close to
unity, and the shock is only a few Thomson optical depths wide
in the radshock simulation. Hence,photonshave a high
probability of diffusing in and out of the different regions, and
there are no sharp “zone boundaries” in radshock. Therefore,
the comparison to a discrete RMS zone in Komrad is less
accurate.Furthermore,Klein–Nishina suppression startsto
become important.This can be seen in the high-energy tail of
the photon distribution in the downstream.The high-energy
photons in radshock have cooled less than those in Komrad,
due to their lower scattering cross section. However, this effect
will likely be unimportant when the KRA is fitted to actual
data,as radiation with ò  1 has time to downscatter to lower
energies before reaching the photosphere,even with Klein–
Nishina suppression.Furthermore,the high-energy part of the
spectrum is often given little weight in the fitting process owing
to the lower photon counts at high energies in the GBM energy
channels (Yu et al. 2019). Overall the approximation is
surprisingly accurate even in this case when βuγu = 3,
especially in the downstream zone, which contains the
radiation thatwill later be observed.This indicates thatany
anisotropy of the radiation field within the shock does not have
a major impact on the shape of the spectrum in this case.We
conclude that the limit of the KRA is when »max

qD »  4 r starts to approach unity.

3. Applying the Kompaneets RMS Approximation to a
GRB Jet

RMSs come with a variety of dynamical behaviors.
Explosions,such as supernovae,generate an outward-going
shock wave. The shock wave propagates through the star until
it either breaks out of the stellar surface (i.e., the photosphere)
or dissolves as the downstream pressure becomes too small,
due to the limited explosion energy budget. A different
dynamical behavior is seen in recollimation shocks, which
arise as the jet propagates in a confining medium. Such shocks
can be approximately stationary with respectto the star and
might therefore never break out. However, the radiation that is
advected through the recollimation shock is energized, and the
emission released atthe photosphere can be nonthermal.Yet
another behavior is seen in shocks that arise owing to internal
collisions of plasma inside the jet.When two plasma blobs
collide, the plasma in between the blobs is compressed,
increasing the pressure adiabatically until the pressure profile is
steep enough to launch two shocks.The shocks propagate in
opposite directions into the two colliding blobs while sharing a
causally connected downstream region.Such shocks cease
when they have dissipated most of the available kinetic energy
in the two blobs. The time it takes the shocks to cross the blobs
is roughly a dynamical time (as they cross the causally
connected jet ejecta).

Dynamical effects on the shock structure are important if the
shock reaches the jetphotosphere.For instance,part of the
RMS can transform into a pair of collisionless shocks atthe
point of breakout when the photons mediating the shock start to
leak out toward infinity (Lundman & Beloborodov 2021). The
KRA is not able to handle such dynamical effects. On the other
hand, the KRA is well suited for simulating plasma thatis

Figure 3. Similar to Figure 2, but for a mildly relativistic RMS with βuγu = 3
(Run F). The RMS width is only a few optical depths wide,and photons can
easily diffuse in and out of the shock. Thus, the comparison to a discrete, well-
defined zone in Komrad becomes less accurate.In the downstream,Klein–
Nishina effects suppress the cooling of the highest-energy photons. Parameter
values for the run are given in Tables 1 and 2.

Table 1
Komrad Simulation Parameters

Run t/t sc θu, K R ≡ θr/θ u, K yr

A 5 × 103 1.05 × 10−4 15.3 0.56
B 1.5 × 104 3.35 × 10−6 110 0.70
C 320 1.73 × 10−5 522 1.58
D 5 × 103 3.35 × 10−6 325 2.97
E 2834 6.04 × 10−7 5644 5.6
F 80 2.51 × 10−4 403 0.99

Table 2
radshock Simulation Parameters

Run t/t sc θu βu nγ/n p

A 5 × 103 6.13 × 10−5 0.490 5.47 × 105

B 1.5 × 104 1.89 × 10−6 0.224 1.70 × 106

C 320 8.86 × 10−6 0.610 4.82 × 105

D 5 × 103 1.75 × 10−6 0.228 9.00 × 104

E 2834 3.14 × 10−7 0.303 4.12 × 104

F 80 1.1 × 10−4 0.949 106
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shocked while still being optically thick and then advected
toward the jet photosphere, where the emission is later released.

3.1. A Minimal Subphotospheric Shock Model
One shock scenario that can be modeled by the KRA is the

collision inside the jet of two blobs of similar mass and density
but differentspeeds.This is a minimal scenario with few free
parameters.More complex models with additionalparameters
can be considered in the future, if the current model fails to fit
prompt GRB data. In Appendix B we compute the speed of the
two shocks,the energy dissipated,and the radius at which the
shocks have finished dissipating most of the available energy.
For blobs of similar properties (i.e., similar mass and density),
we show thatalso the properties of the shocks are similar.In
that case,only one of the two shocks has to be explicitly
simulated,and the numberof model parameters is keptat a
minimum.

The KRA is valid for shocks where Δò/ò  1,as discussed
in Section 2.4. In Appendix B we translate this limit to jet
quantities in the context of internal shocks. It corresponds to a
Lorentz factor ratio of Γ2/Γ 1  30, where Γ2 and Γ1 are the lab
frame Lorentz factors of the fast and slow blobs,respectively.
As an example, Γ1 = 50 and Γ2 = 1000 produce shocks that the
KRA can accurately model.

A schematic illustration of the minimal shock model at four
different stages of its evolution is shown in Figure 4. In the first
stage,the two blobs have recently collided. The RMS has
started to propagate into the upstream, and a few photons have
had time to diffuse into the downstream.In the second stage,
the shock has almostcrossed the upstream.The shock has
finished crossing the upstream and dissolved in the third stage,
with all photons accumulated in the downstream, and the fourth
stage shows the radiation being released atthe photosphere.
Each of the three zonesaccountsfor thermalization of the
photon spectrum via scatterings and adiabatic cooling.

The time over which shocks dissipate their energy is nota
free parameter; it should be found self-consistently from,e.g.,
hydrodynamical simulations. However, the shock crossing time
is always comparable to the dynamicaltimescale of the jet,
which corresponds to a doubling of the jetradius.Therefore,
we let the KRA dissipate energy overa doubling of the jet

radius in our shock model.This also corresponds to a halving
of the optical depth as we consider the case of a conical
outflow. After the shock stops dissipating,the downstream
plasma containing the shocked radiation is advected toward the
photosphere, while it gradually thermalizes through scatterings
and cools adiabatically. The simulation ends when the shocked
radiation reaches the photosphere.

As mentioned above,we omit photon production by the
plasma (i.e., the shock is photon rich). This is a valid
assumption, as the advected flux of upstream photons
already existing inside the GRB jet is much larger than the
number of photons produced by bremsstrahlung ordouble
Compton scattering (e.g.,Bromberg etal. 2011; Lundman &
Beloborodov 2019). Photon production will occur in the
downstream, but the timescale for such production is long; the
photon spectrum thermalizes into a Wien spectrum via
scatterings long before photon production acts to modify the
Wien spectrum into a Planck spectrum. As shown by Levinson
(2012),photon production has time to modify the spectrum if
the shock occurred at optical depths of ∼ 105. In that case, the
radiation will have lost essentially allits energy to adiabatic
expansion before reaching the photosphere and is therefore of
little interest.

3.2. KRA Implementation in Spherical Geometry
A conical jet appears locally as spherically symmetric.The

Kompaneets equation inside a steady-state, spherical relativistic
outflow (with outflow bulk velocity β → 1) is given by
Equation (3) of Vurm & Beloborodov (2016). With the
assumptions of a constantbulk Lorentz factor Γ, no induced
scattering (n = 1),and no emission or absorption of photons,
the Kompaneets equation can be written as
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where =r̄ r R ph is a normalized radius and Rph is the radius of
the photosphere. The normalized radius equals t=r̄ 1 , where
τ = σTner/Γ is the optical depth of the jet (not to be confused
with the optical depth of the RMS), with σT being the Thomson
cross section and ne the electron number density. The
comoving time coordinate in the Kompaneetsequation has
here been rewritten into a lab frame radialcoordinate (using
t = r/Γc).

The last term in the curly brackets of Equation (15) accounts
for adiabatic cooling of the spectrum.9 In the optically thick
regime, this causes the average energy of the photon
distribution to decrease as -r̄ 2 3 , while the shape of the
spectrum is preserved.When the photons start to decouple
close to the photosphere (τ  1), the evolution changes and the
idealized cooling of -r̄ 2 3 is no longer valid (Pe’er 2008;
Beloborodov 2011).To accountfor this, we numerically stop
the cooling at an optical depth of τ = 3. The total adiabatic
cooling of the photon distribution is then similar to thatof a

Figure 4. Schematic showing four stages in the evolution of the minimal shock
model from left to right. Green,red, and purple indicate the upstream,RMS,
and downstream zones,respectively.At some opticaldepth τi (small r), the
shock is initiated.Photons startto diffuse through the shock region and gain
energy. The photons that pass through the RMS are collected in the
downstream region,which gains more and more photons (stages 1 and 2).
When the RMS has crossed the upstream,it dissolves,leaving only the
downstream (stage 3). The photons in the downstream continue to scatter until
they are released at the photosphere (stage 4).

9 The Kompaneets solver method described in Chang & Cooper (1970) with a
small grid size is not directly applicable here anymore,since no stationary
solution to the Kompaneets equation exists when adiabatic cooling is included.
However, increasing the energy grid size assures that convergence is obtained.
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real spectrum where the proper radiation transfer is taken into
account(see Beloborodov 2011).Scattering is incorporated
until τ = 1.

3.3. Lab frame Transformation of the Simulated Radiation
Spectrum

The simulation outputs the comoving radiation spectrum at
the jet photosphere.The simplestapproximate transformation
to the lab frame involves multiplying all photon energies by a
factor Γ (the Doppler boost for a typical photon), where Γ is the
Lorentz factor of the downstream zone.Since Γ does not
explicitly enter the simulation, it is effectively a post-
processing parameter.

In reality, the radiation spectrum broadens somewhatas it
decouples from the plasma at the jet photosphere (Pe’er 2008;
Beloborodov 2010;Lundman et al. 2013). This is because
individual photons decouple atdifferent angles to the line of
sight, which affects their Doppler boosts,and also at different
radii, which affects their energy losses due to adiabatic
expansion.These effects are importantto take into account
when performing spectralfits to data, specifically to narrow
bursts (Ryde et al. 2017). This spectralbroadening can be
approximately computed in a post-processing step,under the
assumption thatthe jet Lorentz factor Γ is constantat the
photosphere. The post-processing calculation is fairly long and
will be described in full detail elsewhere.

The Kompaneetsequation without the induced scattering
term is linear in the photon occupation number n.Therefore,
the total photon number of the simulation is also a free
parameter,which effectively makes the normalization ofthe
GRB luminosity a post-processing parameter.

3.4. New Parameters Based on Parameter Degeneracy
In the case of planar geometry described in Section 2,the

KRA has three parameters: θu, θr, and yr. In the case of a jet, the
optical depth of the jet where the shock is initiated,τ i, is an
additional parameter. Together, they determine the shape of the
photosphericspectrum in the rest frame of the outflow.
Additionally, as described in the subsection above,the bulk
Lorentz factor Γ and the luminosity Lγ are two post-processing
parameters that shift the observed spectrum in energy and flux.

However, there exists a degeneracy in the current parameter
set.As long as the product τiθr, the ratio θr/θ u, and yr remain
unchanged, the spectral shape in the rest frame of the outflow is
identical.With the translationalfreedoms given by Γ and Lγ,
this becomesdegenerate.Therefore,a more suitable set of
parametersis τθ ≡ τ iθr, R ≡ θr/θ u, and yr. This brings the
number of simulation parametersdown from four to three,
which simplifies the process of table model building.

The degeneracy can be understood as follows.Imagine that
τ i is increased by some factor fbut θr and θu are decreased by
the same amount. The evolution of the photon distribution with
optical depth is slower,as the energy transfer per scattering is
proportional to the electron temperature (when the photon gains
energy in the scattering) or the photon energy (when the photon
loses energy),both of which have decreased by a factorf.
However,the numberof scatterings is ftimes larger,so the
relative energy transfer is the same,i.e., the spectrum evolves
similarly but is a factor f lower in energy. The net effect is that
the evolution of the whole system is equivalent.The shape of
the photospheric spectrum is identical,but shifted down in

energy by a factor f5/3, where an additional factor f2/3 comes
from the increasedadiabatic cooling. The degeneracyin
numberof scatterings and energy gain perscattering is not
unique to our model.Indeed,it is inherentto all jetted RMS
models.

To see how each parameterinfluencesthe shape of the
released photospheric spectrum,in Figure 5 we vary τθ (top
panel), R (middle panel), and yr (bottom panel), while keeping
the other parameters constant. The value of the parameter being
varied increases from black to red. As can be seen in the figure,
the combined parameter τθ determines the amount of
thermalization after the shock has finished dissipating its
energy.A higher τθ implies a higher numberof scatterings
and/or higher energy transfer per scattering, leading to a faster
thermalization.For large τθ the downstream spectrum relaxes
to a Wien spectrum, in which case the original shock
parameters cannot be retrieved. The ratio R ≡ θr/θ u determines
the separation between thelower and upper cutoff in the
spectrum. A large R leads to a long power-law segment in the
downstream.The slope of the power-law dependson the
Compton y-parameteryr, which is a measure of how much
energy is dissipated in the shock.Higher values of yr lead to
harder spectra, with yr = 1 correspondingto a flat νFν
spectrum.The spectralbroadening discussed in Section 3.3
has been omitted in Figure 5, so that the effect of each
parameter on the final spectrum is more clearly seen.

4. Fitting GRB Data with the Kompaneets RMS
Approximation

As a proof of conceptof fitting an RMS model to prompt
GRB emission data,we present an analysis of a time-resolved
spectrum in GRB 150314A. This luminous burst was observed
by the Fermi Gamma-ray Space Telescope and its Gamma-ray
Burst Monitor (GBM), which covers the energy range of
8 keV–40 MeV.

GRB 150314A is an example of a GRB pulse in which the
spectrum becomes very narrow during a portion of its duration
(Yu et al. 2019). The low-energy photon index, α, of the Band
function (Band et al. 1993) reachesa very large value,
a = - 0.27max . Such a large α-value strongly suggestsa
photospheric origin of the emission during the analyzed time
bin (Acuner et al. 2020). It is further natural to assume that the
same emission mechanism operatesthroughout a coherent
pulse structure such as the one in GRB 150314A (Yu etal.
2019). Therefore, the whole pulse can be argued to be
photospheric,even though mostof the other time bins have
nonthermal spectra (α ∼ −1). As described in the introduction,
these nonthermalspectramust then have been formed by
subphotospheric dissipation (Rees& Mészáros 2005; Ryde
et al. 2011) with RMSs as the most probable source of
dissipation (e.g.,Levinson & Bromberg 2008; Lundman &
Beloborodov 2019).

In order to perform fast and efficient fits with the RMS
model, we generate synthetic photospheric spectra over a large
parameterspaceusing Komrad within the minimal shock
modelas explained above.With the photospheric spectra,we
construct a table model in the Multi-Mission Maximum
Likelihood Framework (3ML; Vianello et al.2015).Here,we
include the broadening effect described in Section 3.3 by post-
processing of the spectra.Our initial table modelconsists of
125 spectra.
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Figure 6 shows a fit to one of the nonthermal spectra in GRB
150314A with our RMS model. The data are from a narrow
time bin at around 4.6 s after the trigger. The fit indicates that

there are two spectral breaks present, one at around 30 keV and
the other at around 400 keV.The high-energy break corre-
sponds to the energy the high-energy photons,those that
reached the maximum energy q~ 4 rmax in the RMS, have
downscattered to before decoupling. Conversely, the low-
energy break depends on how much the low-energy photons,
those that entered the downstream with energyu, are heated
by scatterings before they reach the photosphere (see also
Section 5.1). A corresponding fit with the Band function yields
α = −0.73 ± 0.06 and a high-energy index β = −2.47 ± 0.25,
which are typical values for nonthermal spectra in GRBs (e.g.,
Yu et al. 2016).Both the Band function and the RMS model
have AIC = 1610 and can therefore equally well describe the
data.The modelparameters of the bestfit of the RMS model
are τθ = 11.3 ± 2.9,R = 290 ± 50,and yr = 1.72 ± 0.14. The
initial separation between θr and θu was thus relatively large
and the thermalization moderate,which allow for the broad,
nonthermal shape of the spectrum. The slope of the power-law
segmentat around 200 keV reveals thatquite a lot of energy

Figure 5. Photospheric spectra generated by Komrad in the minimalshock
model.In each panel,one of the three parameters τθ,R, and yr is varied as
indicated in the panels,while the other two parameters are keptconstant.The
constantparameter values are τθ = 5,R = 100,and yr = 0.7. The value of the
varying parameter increases from black to red, being evenly log-spaced from 1.5 to
50 for τθ, from 10 to 103 for R, and from 0.5 to 3 for yr. Increasing τθ increases the
thermalization. The ratio R determines the separation between the lower and upper
cutoff in the spectrum, and yr determines the slope of the power-law segment. All
spectra have been normalized to unity in photon number (Nν = 1) at ò = 1.

Figure 6. Time-resolved spectrum in GRB 150314A from a narrow time bin at
around 4.6 s after the GBM trigger.Top panel:νFν spectrum of the best-fit
RMS model.Two breaks are presentat around 30 and 400 keV.The best-fit
model is depicted by the black line, and the gray region is its statistical
uncertainty. The data points are derived from the counts fit and correspond to
three of the triggered GBM detectors.Note that the nonlinearity of the GBM
response matrix meansthat the data points will not be accurate in a νFν
spectrum; they are here shown only for visual purposes. Bottom panel: the best-
fit model to the observed countdata, including the residuals,which show
random variation,indicating a good fit.
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has been dissipated in the shock,causing a large value of yr.
Assuming a Lorentz factor of Γ = 300,the parameters can be
decoupled.10 This gives θr = 0.055 and τi = 206. Translating
this into the physical RMS parametersyields the upstream
4-velocity as βuγu = 1.89, an upstream temperature of
θu = 8.81 × 10−5 , and a photon-to-proton ratio of nγ/n p =
2.01 × 105. This fit thus illustrates that our model can be used
to study the flow properties and the shock physics in
observed GRBs.

5. Discussion and Conclusion
Dissipation in the optically thick regions of a GRB jethas

the potential to generate a wide variety of released photospheric
spectralshapes;therefore,it is a promising candidate for the
prompt emission.Although RMSs are a natural dissipation
mechanism, so far no such model has been fitted to data. In this
paper,we have for the first time performed a fit to a time-
resolved spectrum of the prompt emission in a GRB using an
RMS model. This allowed us to determine the physical
propertiesof the initial shock, such as its speed and the
upstream photon temperature.

The main reason for the previous lack of fitted prompt
spectra within an RMS framework is that RMSs are
computationally expensive to simulate from firstprinciples.
To overcome this obstacle,we developed an approximate
model (KRA; see Figure 1 for a schematic)based on the
similarities between the bulk Comptonization of photons
crossing an RMS and thermalComptonization of photons on
hot electrons. By comparing the simulated spectra from
Komrad, a code employing the KRA,to those generated by
a special relativistic radiation hydrodynamics code, we verified
that the KRA can indeed accurately reproduce the RMS and
downstream spectrafrom the full simulations in a wide
parameter range (see Figures 2 and 3).

We connected the KRA to GRB prompt observations by
creating a minimal shock model considering a single RMS
occurring well below the photosphere. The downstream of the
shock is allowed to thermalize and cool adiabatically asit
advects to the photosphere, where its radiation is released (see
Figure 4 for a schematic).The model has only three free
parameters determining the shape of the released spectrum: the
combined parameterτθ, which determines the amount of
thermalization;R, which determines the extentof the power-
law segment;and yr, which determines the hardness ofthe
power law (see Figure 5). Additionally, there are two post-
processing parameters for the normalization and the frequency
shift. We generated 125 spectra using the modeland, after
accounting for broadening of the observed spectrum due to
high-latitude effects and a radially varying photosphere,
performed a fit to a broad spectrum in a narrow time bin of
GRB 150314A as a proof of concept (see Figure 6).

5.1. Qualitative Spectral Features
Within the minimal shock modeldeveloped in this paper,

there are some clear observational predictions. The spectra will
consist of smooth low- and high-energy cutoffs, with a power-
law segment in between. The low-energy cutoff is very smooth
owing to the broadening effects discussed in Section 3.3, while

there is an exponential cutoff at the highest energies. Typically,
a single-break function is used to fit the spectral GRB data, e.g.,
the Band function, with its peak at Ep. Depending on the
hardness of the power-law segment, Ep can correspond to either
the low-energy cutoff (when yr < 1) or the high-energy cutoff
(when yr > 1). Breaks both above and below the peak
energy have been detected.Additional breaks atlow energies
(<10 keV) were reported in,e.g., Strohmayeret al. (1998),
while additional high-energy breaksare discussed in, e.g.,
Barat et al. (1998). Within our model, bursts that have an
additional low-energy break should be well fitted with an
exponentialcutoff above Ep or very soft values of the high-
energy power-law index β in the Band function.Conversely,
bursts that have reported high-energy breaks above Ep should
produce hard, low-energy slopes, as long as the smooth
curvature is within the detectorenergy range.However,we
note that many of our generated spectra will appear as a single
smooth curvature over a large range of energies (see,e.g., the
best fit in Figure 6), due to the effects of thermalization on the
downstream spectrum,as well as the broadening effectsof
high-latitude emission and radially varying emission.

As it propagates toward the jet photosphere, the downstream
spectrum will tend toward a Wien spectrum atthe Compton
temperature.The more thermalized the downstream spectrum
becomes,the more difficult it will be to retrieve the original
shock parameters.Once the spectrum has relaxed into a Wien
spectrum,the shock information is lost. This is an inherit
degeneracy in photospheric models that is important to keep in
mind when drawing conclusions aboutthe physics from the
parameter estimation.

5.2. Optical Emission
Although the curvature of the spectrum is very smooth, and

although it may be outside the observable energy range of the
prompt detectors, the Rayleigh–Jeans limit always exists in our
spectra atlow energies.Therefore,our minimal modelwith a
single shock cannot account for low-energy observations such
as opticalduring the promptphase.Thus,we must conclude
that any early opticalemission is partof the afterglow.Early
optical observations are rare,and very few are within ∼ 100 s
after trigger (see Oganesyan et al. 2021 for a recent example).
Optical detections are commonly reported as prompt as long as
they are observed within the T90 of the GRB11 (Yost et al.
2007; Klotz et al. 2009). This definition disregards whether the
GRB had a quiescentperiod within the active phase ornot.
Given that most optical observationsoccur quite late, they
could be the onset of the afterglow. This highlights the need for
early opticalobservations in GRBs,which have the power to
discriminate between the current models of the prompt
emission (see also Oganesyan et al. 2019). Early optical
observations also have the potentialto discern whether GRBs
are significantcontributors to the observed ultra-high-energy
cosmic ray flux, as discussed in Samuelsson et al. (2019, 2020).

5.3. Recollimation and Multiple Shocks
Recollimation shocks below the photosphereand their

connection to the prompt emission in GRBs have been
investigated by severalauthors(e.g., Gottlieb et al. 2019).
Although not discussed in this paper, we expect the KRA to be

10 The details of how Γ is related to the fitted parameters will be described in
an upcoming paper,which focuses on GRB data analysis using the KRA
model.

11 The T90 is defined as the time during which 90% of the totalfluence was
detected,from 5% to 95%.
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able to model recollimation shocks as well.Such shocks have
different dynamics, but bulk Comptonization is still responsible
for the energy dissipation, leading to the same spectral features,
that is, a power-law segment with a cutoff at high energies and
a Rayleigh–Jeansslope at low energies. Indeed, oblique
shocks,such as recollimation shocks,can be transformed into
parallel shocks with a suitable Lorentz transformation
(Henriksen & Westbury 1988). Therefore, a recollimation
shock could plausibly be responsible for the subphotospheric
dissipation in a GRB whose spectra can be wellfitted with
the KRA.

The minimal shock model considered here consistsof a
single RMS, dissipating energy overa dynamical time. It is
easy to imagine a more complex jetstructure with multiple
shocks and turbulence. However, although the dynamics below
the photosphere are complicated, it is not inconceivable that the
shape of a time-resolved spectrum is dominated by a single,
strong dissipation event.The good fit to the emission in GRB
150314A shows that the current minimal shock model can
plausibly explain the data. Additional model complexity should
be considered only if the current model is found inadequate to
explain the observations. Further investigation will tell whether
the current minimal model is sufficient when applied to a larger
sample of GRBs.
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National Space Board undergrant No. Dnr. 107/16. F.R. is
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Natural Sciences and Medicine. This research made use of the
High Energy Astrophysics Science Archive Research Center
(HEASARC) Online Service at the NASA/Goddard Space
Flight Center (GSFC).In particular,we thank the GBM team
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Appendix A
Converting between the KRA Parameters and the RMS

Parameters
In this appendix,we show how to convert between the

Komrad parameters and the corresponding RMS parameters.
The Komrad parameters are the upstream temperature θu,K, the
effective electron temperature in the shock zone θr, and the
Compton y-parameterof the shock yr. If one has obtained a
value for the parameter τθ through a fit, then it is not possible
to decouple θr and θu,K without additional information about
the bulk Lorentz factor of the outflow.In that case,the final
parameterswill be functions of the Lorentz factor. The
radshock parameters are the upstream temperature θu, the
upstream velocity in the shock rest frame βu, and the photon to
baryon density nγ/n p.

In the case of negligible magnetic fields and a radiation-
dominated equation of state, the relativistic shock jump
conditions can be written as (e.g.,Beloborodov 2017)
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where w = 4p/ρc2 is the dimensionlessenthalpy, p is the
pressure,ρ is the matter density,u ≡ βγ is the four-velocity

(Lorentz factors are evaluated in the shock restframe), and
subscriptsu and d indicate quantities in the upstream and
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where̄ is the average photon energy measured in units of mec2

and nγ/n p is equal in the upstream and the downstream in the
case of a photon-rich shock. From Komrad, d is found
through numerical integration of the spectrum inside the RMS
zone at the end of dissipation.12 Furthermore, q= 3u u, given
that the upstream is a thermalized Wien spectrum.

Part of the energy gain across an RMS is due to plasma
compression across the shock,which increases the upstream
energy by a factorr r( )d u

1 3 (Blandford & Payne 1981). Using
Equation (A3),the increase can be written as( )u uu d

1 3 . The
KRA cannot accountfor compression.Therefore,in order to
generate the same RMS spectrum,the codes need different
upstream temperatures
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The jump conditions, together with Equation (A6), assure that
the two codes get similar low-energy cutoff and average
downstream energy.An additional equation is needed,which
relates the energy gain per scattering in the shock, Δò/ò,
between the two models.The maximum photon energy in the
shock roughly equals the relative energy gain, ~ D  max .
In the radshock simulations, we empirically find that

x» ( )  u lnu d umax
2 , where a constant value of ξ = 55

works well across the parameterspace. In Komrad, the
maximum energy is given by q= 4 rmax . Therefore, we obtain
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where ξ = 55.
From a Komrad simulation, we know θu, K, θr, and d.

Given the equation above, the system can be solved.
Numerically, one can startby guessing ud. Then, uu and θu
can be found from Equations (A6) and (A7). With
Equations(A4) and (A5), the only unknown left is nγ/n p,
which can be solved from Equation (A1). If the original guess
of ud was correct,Equation (A2) should be satisfied.

If one wishes to instead go from the RMS parameters to the
Komrad parameters, one can find w d and ud numerically
through Equations (A1) and (A2),using Equations (A4) and
(A5). Then θu,K and θr are found from Equations (A6) and
(A7). The parameter yr can be found iteratively by requiring
that the downstream energyd should be equal in both models.
In practice,a qualitative firstguess of yr can be made from a

12 Integration of the RMS zone instead of the downstream zone assures that
there is no contamination from the shock formation history.The equations
given here are valid for an RMS in steady state,and d describes the average
downstream energy from once the shock is in steady state.As the average
downstream energy remains constantin planar geometry,the average photon
energy in the steady-state RMS spectrum equalsd.
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plot of the RMS spectrum from radshock: by comparing the
power-law slope to the spectra in the bottom panel of Figure 5,
the value of yr can be estimated.

Appendix B
When Can the KRA Model Internal Shocks?

Consider a part of the jet that consists mainly of two masses:
a slower and a faster masswith lab frame Lorentz factors
Γ1 ? 1 and Γ 2 ? Γ 1, respectively. The masses are assumed to
be initially separated by a lab frame distance δr  δl1, δl2,
where δl1 and δl2 are the corresponding initial lab frame widths
of the slower and fastermass,respectively.The fastermass
catches up to the slower mass atradius d» GR r2i 1

2 . By then,
the plasma between the masses has been highly compressed,
increasing its pressureadiabatically until a forward and a
reverse shock forms. The forward and reverse shocks propagate
into the slower and faster masses,respectively.The speed of
the shocked region (i.e., the shared downstream,which is
bounded by the forward and reverse shocks) is found by
balancing the momentum flux in the rest frame of the shocked
region, β2Γ2h + p, from both sides. Here h ≡ ρc2 + e + p is the
specific enthalpy,where ρ is the mass density and p is the
pressure, all of which are measured in the respective rest frame
of the unshocked masses. If we suppose that the initial pressure
inside the two masses is small (such that h ≈ ρc2), then we can
solve for the lab frame Lorentz factor Γ of the shocked material
as

r r

r r
 »  G G G

G + G

G + G
( ), B12

1 2
1 1

1 2
2 2

1 2

1 2
1 2

2 1
1 2

where ρ1 and ρ2 are the proper densities of the respective mass,
before being shocked. In a wide range of density ratios,

 r rG G  G G( ) ( )2 1
2

2 1 1 2
2 holds and the above expression

can be simplified to

r
r

 »  G G G⎜ ⎟
⎛
⎝
⎞
⎠

( ). B22
1 2

2

1

1 2

The condition  r rG G  G G( ) ( )2 1
2

2 1 1 2
2 also ensures

that Γ2 ? Γ ? Γ 1. The radii where the two shocks have
crossedtheir respectivemassesare then R2 ≈ 2Γ 2δl2 and

d» GR l21 1
2

1, respectively.The massesare related to their
widths and densities by δm ≈ 4πr2Γρδl, and so the ratio of the
radii where the reverse and forward shocks have crossed the
respective masses can be written as

r
r

d
d

» ⎜ ⎟
⎛
⎝
⎞
⎠

( )
R

R

m

m
. B32

1

1

2

1 2
2

1

The relative Lorentz factors between the upstream (moving
with Lorentz factor Γ1 and Γ2 for the forward and reverse
shocks,respectively)and the downstream (Lorentz factorΓ)
give a measure of how relativistic the two shocks are. They can
be computed using Equation (B2),

r
r

 »G
G
G

»
G
G

⎜ ⎟⎜ ⎟⎛
⎝
⎞
⎠
⎛
⎝
⎞
⎠

¯ ( )
2

1
2

, B42
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1 2
1
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and

r
r

 »G
G
G

»
G
G

⎜ ⎟⎜ ⎟⎛
⎝
⎞
⎠
⎛
⎝
⎞
⎠

¯ ( )
2

1
2

, B51
1
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and their ratio is

r
r

G
G

» ⎜ ⎟
⎛
⎝
⎞
⎠

¯
¯ ( ). B62

1

1

2

1 2

The energy dissipated for each mass (in the rest frame of the
shocked plasma) is d»  -G( ¯ )E mc1 2, whereḠ is the relative
Lorentz factor between the up- and downstream,so that

r
r

d
d

» »⎜ ⎟
⎛
⎝
⎞
⎠

( )
E

E

m

m

R

R
. B72
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Based on the analysis above, we see that the collision of two
masses with similar properties,δm1 ∼ δm2 and ρ1 ∼ ρ2, results
in shocks of similar strengths,  ~ G G¯ ¯1 2. The shocks also
dissipate roughly the same amountof energy,E1 ∼ E2, and
finish dissipating roughly at the same time, R1 ∼ R2. The heated
radiation is located in the shared downstream between the two
shocks. Since the shocks have similar strengths and the heated
radiation from both shocks sits inside plasma thatpropagates
with the same Lorentz factor (here called simply Γ), modeling
of only one shock is necessary.

The KRA can accurately model shocks as long as the relative
energy gain per scattering is less than unity, Δò/ò  1.In
Appendix A we found that  g bD » ( ) ( )   0.018 lnu u d u

2 ,
which means that the approximation is valid up to βuγu ∼ 3−4.
Such a scenario is shown in Figure 3. For two blobs with
ρ1 ∼ ρ2, γuβu = 3 translates to  »Ḡ 3. Using Equations (B4)
and (B5),we find

G
G

( ) 36. B82

1

As an example, two masses of similar properties that propagate
with initial Lorenz factors of Γ1 ≈ 50 and Γ 2 ≈ 1000 would
give rise to two RMSs with Δò/ò < 1,which can be modeled
by the KRA.
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