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1. Introduction

Consider the polynomial ring Q[x,]:= Q[x1,...,X,;] in n variables. The symmetric group &, acts on Q[x,] by vari-
able permutation. It is known that the corresponding invariant subring Q[x,]1%" of symmetric functions has algebraically
independent homogeneous generators e1(Xp), ..., €n(Xy), where

eq .= E Xiy + - Xiy
1§i1<.4.<id§n

is the degree d elementary symmetric polynomial. The invariant ideal is the ideal generated by the symmetric functions with
zero constant term:

In = (QX:1$") = (e1, ... en).

The coinvariant algebra Ry, := Q[x,]/1, has long been studied. In particular, as ungraded &,-module R, =g, Q[S;] coincides
with the regular representation of &,. Moreover, the Hilbert series Hilb(Rp; @) = (1 +q)(1+q+¢?)---(A1+q+...+q" D)
coincides with the generating function of both the inversion and major index statistic on permutations.

Traditionally studied in physics, the superspace ring Q, has received significant recent attention in coinvariant theory
[9,11]. For a positive integer n, superspace of rank n is the tensor product

Qn:=Q[x1,....,xn ] @ A{b1,...,6n}

of a rank n polynomial ring with a rank n exterior algebra. The group &, acts diagonally on 2, viz. W.X; 1= Xw(j), W.0; 1=

Ow(i)- Let (Qn)f” C @, denote the space of G,-invariants with vanishing constant term and let ((Qn)f”) C Q, be the ideal
generated by this subspace. Considering commuting and anticommuting variables separately, the superspace coinvariant ring
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Qn/ ((Qn)f”) carries a bigraded action of &,. One recovers the classical coinvariant algebra by setting the #-variables to
zero.

The Combinatorics Group and the Fields Institute conjectured (see [11]) a formula for the bigraded &,-Frobenius image
type of the superspace coinvariant ring. Let SYT(n) be the family of standard Young tableaux with n boxes. Given T € SYT(n),
let des(T) be the number of descents in T and let maj(T) be its major index. We use the g-analog notation

[lg:=1+q+---+q"", [nllg:=[nlgln — 11g---[1] [n] = Wb
q: ’ a4 a g oLkl kg =kl
The Fields Group conjectured [11] that
n
grFrob(Qn/(2)$"):q.2) =Y 2" F - Cop(x: @) (1)
k=1
where
: n— des(T
G = Y qmIm( zk”("*k)‘de“”[ es( ,)} Sohape(r) (X). (12)
TeSYT(n) n—==Klq

Here Sshape(r) (X) is the Schur function corresponding to the shape of T.

The symmetric function C, x(X; q) appearing in Equation (1.1) has appeared in the literature before. Combinatorially, it
is the t = 0 specialization of the function A/k en appearing in the Haglund-Remmel-Wilson Delta Conjecture [4,3]. Alge-
braically, it is (up to a minor twist) the graded Frobenius image of the generalized coinvariant algebras R, introduced
by Haglund-Rhoades-Shimozono [5]. Geometrically, it is (up to the same minor twist) the graded Frobenius image of the
cohomology representation afforded by the G,-action on the variety X,y of n-tuples of lines (€1, ..., {;) spanning Ck [7].
Despite these varied interpretations of Cp x(X; q), the formula (1.1) remains conjectural as of this writing.

Whereas algebraic properties of the classical coinvariant ring are governed by permutations, the superspace coinvariants
appear to be governed by packed words. A word w = w1 ... w;, over the positive integers is packed if, for all i > 1, whenever
i+ 1 appears as a letter in w, so does i. Let W, be the family of packed words of length n. For example, we have

Ws = {123,213, 132, 231,312,321, 112,121, 211, 122, 212, 221, 111}.

Packed words in W, are in natural bijection with the family OP, of all ordered set partitions of [n] and have appeared in
various settings including Hopf algebras [6] and polytopes [1].
The symmetric group &, acts on the set YW, by letter permutation. The conjecture (1.1) implies that

/()" = QW] ® sign (1.3)

as ungraded G,-modules, where sign is the 1-dimensional sign representation of &;. Proving the isomorphism (1.3) remains

an open problem. Even the dimension equality dim Qn/((Qn)f") = |[Wh| is presently out of reach.
Motivated by the conjecture (1.1), we define the following family of singly-graded &p-modules S, which prov-

ably have vector space dimension |W;| and satisfy algebraic properties similar to (1.3) and (1.1). We let eg) =
eq(X1,...,Xi—1,Xit+1,--.,Xn) be the degree d elementary symmetric polynomial with the variable x; omitted.

Definition 1.1. Let J, € Q[x;,] be the ideal

Jn=e 1<i<n 1<r<d<n)

and let S, := Q[xy]1/Jn be the corresponding quotient ring.

By convention, the degree 0 elementary symmetric polynomial is 1, so that J, contains the variable powers x}.
Although the generators of the ideal J, may appear unusual, they will arise naturally from the perspective of orbit
harmonics as follows. More precisely, suppose X € Q" is a finite locus of points. Consider the ideal

I(X):={f €eQ[xn] : f(x)=0forallx € X} (1.4)
of polynomials in Q[x,] which vanish on X and let
T(X) :={t(f) : felX)—{0}), (1.5)

where 7(f) denotes the highest degree component of a nonzero polynomial f € Q[x,]. The homogeneous ideal T(X) is the
associated graded ideal of I(X) and we have isomorphisms of Q-vector spaces

QX1 = Q[xnl/I(X) = Q[xn]/T(X) (1.6)
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which are isomorphisms of ungraded &,-modules when X is closed under the natural action of &, on Q"; the quotient
Q[xn]/T(X) has the additional structure of a graded &,-module.

Given n distinct rational parameters a1, ..., ,, we have a natural point locus X, € Q" in bijection with W,, namely
Xn={B1,....Bn) €Q" : {B1,..., Bu) = {1, ..., o} for some k}. (1.7)
It will develop that
T(Xn) = ]n- (1-8)

In other words, the quotient S, = Q[x,1/T(X;) is the graded quotient of Q[x;] arising from the packed word locus Xj.
Equation (1.8) may be viewed as a more natural, if less computationally useful, alternative to Definition 1.1. We prove the
following facts regarding the module Sj,.

e The ungraded &;-structure of S, coincides with the natural G,-action on W, (without sign twist)

Sn = Q[Whl. (1.9)
e The graded G,-structure is described by

n
grFrob(Sn; q) = Y q" % - (revg 0 @)Cp k(X: Q). (1.10)
k=1
Here revg is the operator on polynomials in g which reverses their coefficient sequences and w is the symmetric
function involution which trades e, (x) for h,(x).

Finding an algebraic explanation for the similarity between the provable (1.10) and the conjectural (1.1) could shed light on
a proof of (1.1).

The outline of the paper is as follows. In Section 2 we cover some of the necessary background, including symmetric
functions, representation theory of the symmetric group, and Grébner theory. In Section 3 we describe a bijection between
ordered set partitions in OP;, and certain sequences (c1,...,Cy) of nonnegative integers. This bijection will translate to a
bijection between a monomial basis of S; and W,. In Section 4 we use this bijection to prove (1.9) and its graded refinement
Equation (1.10). In Section 5 we end with some concluding remarks and open questions.

2. Background
2.1. Symmetric functions and the representation theory of Gy,

A partition A of size n, denoted A Fn, is a sequence A = (A1, ..., Ay) of integers A1 >...> Ay >0 with Ay +...+ Ay =n.

Let X = (x1,X2,X3,...) be an infinite set of variables and let A € Q[[x]] be the ring of symmetric functions. It is known
that the degree n homogeneous piece of A has a basis given by the Schur functions s, (x) where the index A ranges over all
partitions of size n. For thorough definitions of the ring of symmetric functions and Schur functions, we refer to [10].

We will now recall the fundamentals of the representation theory of &;,. The irreducible representations of &, are
naturally in bijections with the partitions A - n. For every such 2, the corresponding irreducible G,-module is denoted by
S,

Consequently, every G,-module V decomposes as

V=P (H”
Abn
for some integers c, > 0. The Frobenius character of V is the symmetric function

Frob(V) =" c;. - s1(%).
An

Lastly, let V be a graded vector space such that for every d > 0 the degree d homogeneous component Vg is finite
dimensional. The Hilbert series of V is the power series in q given by

Hilb(V; q) =) _dim(Vg) - q°.
d>0
If further V carries a graded Gp-action, we define the graded Frobenius character by
grFrob(V; q) = ZFrob(Vd) . qd.
d>0
More details on the representation theory of &, can be found in [10].

3
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2.2. Grobner theory

In this section we will review some of the Grobner theory used in this paper. The main starting point of Grobner theory
is a polynomial ring k[X;] over a field k equipped with a total order < on its monomials that satisfies:

1. 1 <m for any monomial m;
2. for monomials my < my and any monomial m we have m-my; <m -m,.

Such a total order is called a monomial order. Given a monomial order <, for any 0 # f € k[x,] we define the leading
monomial LM(f) as the monomial m such that m has nonzero coefficient in f and n <m for any monomial n with nonzero
coefficient in f. For an ideal I <k[x;] we set LM(I) as the ideal generated by the leading monomials of all non-zero f € 1.

We know [2] that a basis for the k-vector space k[x,]/I is given by all monomials m that do not belong to LM(I), which
is equivalent to m not being divisible by any monomial of the form LM(f) with f € I. This basis for k[x,]/I is called the
standard monomial basis with respect to the total order <.

The monomial order on Q[x;,] used in this paper is the lexicographic order. In this order, two monomials m; = x‘;l e
and my :x’l’1 ---xg" are compared as follows. Assuming mq # my, let j € {1,2,...,n} be minimal such that a; # bj, then
my <my if and only if a; <bj.

3. The combinatorial bijection

In this section we will establish a bijection between ordered set partitions and coinversion codes. The starting point will
be a bijection established by Rhoades and Wilson [8, Thm. 2.2]. Let OP; \ be the family of ordered set partitions (Bq |- |
By) of [n] into k blocks. Given an ordered set partition o = (By | --- | Bx) € OPpy, define a sequence code(o) = (c1, ..., Cn)
as follows. If 1 <i <n and i € B, then

~_J{€>j : min(B;) > i}| if i = min(B);
" lie>j: min(By) > i} + (j—1) ifi% min(B;).

The sequence code(o) was called the coinversion code of o in [8]. This is a variant of the classical Lehmer code on permuta-
tions in the case k =n.

The coinversion code(o) of ordered set partitions o € OPp were characterized in [8] as follows. Given a subset S =
{s1 <--- <sq} € [n], define the skip sequence by y (S) = (v1, ..., Ya) Where

a1 ifies
_{1 j+1 ifi=s;es (31)

"o ifi¢s.

Also let y(S)* = (Vn,..., Y1) be the reverse skip sequence. For example, if n =7 and S = {2,3,6} we have y(S) =
(0,2,2,0,0,4,0) and y(5)*=(0,4,0,0,2,2,0).

Theorem 3.1. (/8, Thm. 2.2]) Let 1 < k < n. The map o +—> code(o) is a bijection from ordered set partitions of [n] with k blocks to the
family of nonnegative integer sequences (c1, ..., Cp) Such that

e forall1 <i<nwehavec; <k,
e for any subset S C [n] with |S| =n — k + 1, the componentwise inequality y (S)* < (c1, ..., cy) fails to hold.

For future reference we recall the inverse map introduced in the proof of the above theorem. This inverse map uses the
following insertion procedure.

For (B1 | --- | Bk) a sequence of k (possibly empty) sets of positive integers we define the coinversion labels as follows.
First, label the empty sets 0,1, ..., j from right to left, and then label the nonempty sets j+1,...,j+k — 1 from left to
right.

For a sequence (cq,...,Cp) satisfying the conditions in Theorem 3.1, we construct an ordered set partition as follows.
Start with a sequence (@ | --- | ¥) of k copies of the empty set, and for i =1, 2,...,n insert the number i in the block with
label ¢; under the coinversion labeling.

For example, let n =7, k =4 and consider the sequence c = (2,1, 2,0, 2,0, 2). The resulting ordered set partition will be
(6 ] 13 | 257 | 4), as shown by the following process, starting with the labeled sequence of blocks (7> | % | @' | #°).

4



D. Kroes and B. Rhoades Discrete Mathematics 345 (2022) 112945

i ¢;i  Updated labeled sequence of blocks
@113 0" 9%

@' 11223 | g%

@' 113223 | 9%

@° 113" |22 | 43)

@° 131 | 252 | 4%)

(69 | 131 | 252 | 43)

(6% 1131 | 2572 | 4%)

N U W=
NONON~=DN

In our algebraic analysis of S, we will need a version of this insertion which maps the family of ordered set partitions
of [n] with at least k blocks bijectively onto a certain collection (cq,...,cy) of length n ‘code words’ over the nonnegative
integers. In the bijection code of Theorem 3.1, the ordered set partition (1|2|---jm,m+1,...,n) has code (0,0,...,0) for
any number of blocks m, so we cannot simply take the union of these maps for m > k.

We resolve the problem in the above paragraph by working with a different version of the coinversion code, which we
will call the boosted coinversion code. For an ordered set partition o = (B1 | --- | Bx) we define code(o) = (c1,...,Cy) as
follows. Suppose 1 <i<n and i € Bj, then

~_JH{¢>j : min(By) > i} if i = min(B);
" |ite>j: min(By) > i} +j ifi % min(B)).

Compared to the coinversion codes from before, the difference is that all the numbers corresponding to non-minimal ele-
ments of blocks are raised by one, and we say that these numbers are boosted.
The remainder of the section will be devoted to the proof of the following theorem.

Theorem 3.2. Let 1 < k < n. The map o +— code(o) is a bijection from the set of ordered set partitions of [n] with at least k blocks to
the family of nonnegative integer sequences such that

e forall1 <i<nwehavec; <n.

e for any subset S C [n] with |S| =n — k + 1 the componentwise inequality y (S)* < (c1, ..., ¢p) fails to hold.

e forany 1 <i,d<nand any T C [n — 1] with |T| =n —d and y(T)* = (Yn-1,---, Y1), the componentwise inequality
Wn=1s+-+»Vird, Vi-1, ..., Y1) < (€1, ..., Cy) fails to hold.

The proof of the necessity of these conditions will be similar to that of the proof of [8, Thm.2.2]. For the sufficiency
of the conditions we use an insertion map similar to that considered above. We begin by showing that both the number
of blocks of an ordered set partition of [n], as well as its classical coinversion code, can be recovered from its boosted
coinversion code.

Lemma 3.3. Let o be an ordered set partition of [n]. Given the boosted coinversion code code (o) one can recover the coinversion code
code(o), as well as the number of blocks of o.

Proof. Note that the second part is immediate once we have recovered code(o), as the number of blocks will be equal to
the number of unboosted numbers, which is easily found by comparing code(c) and code(o).

Given a boosted coinversion code (cq,...,c,) corresponding to an ordered set partition with ¢ blocks (where ¢ is un-
known), we can think of creating the ordered set partition by following the same procedure as described before, with the
only difference that the labels of all the nonempty blocks should be raised by one.

No matter what, at some point we will fill in the last nonempty block with some number i, which necessarily has ¢; = 0.
Additionally, from the boosting, it is clear that ¢; > 0 for all j > i, hence we can recover i by looking for the last entry in
our sequence that equals 0.

Now, assume that we have identified that i; < ... <i; are minimal in their block and that all other numbers in [iq, n] are
not minimal in their block. If i1 =1 we are done. Otherwise, it is clear that we must have at least j+ 1 blocks (as clearly
1 will be minimal in its block). Now, let ig < i; be the largest number that is also minimal in its block. By the inverse
map, this must correspond to some index with c;, < j, as at the time of inserting ip there are exactly j + 1 empty blocks,
labeled 0,1, ..., j. Additionally, for any ig < i < i1, at the time of insertion there will be exactly j empty blocks, hence the
coinversion label of i will be at least j + 1 (because of the boosting). Therefore, given code(oc) we can recognize ig as the
largest index ig < i1 with ¢j, < j. By induction we are done. O

Explicitly, the procedure above is as follows. Given a sequence (c1, ..., Cy), trace the sequence from right to left, marking
the first 0, then the first 0 or 1, then the first 0, 1 or 2, etcetera. Now, decrease all the unmarked numbers by 1 and one
recovers the coinversion code. We call this procedure the unboosting of a sequence (cq,...,Cn).

As an example, consider the boosted coinversion code ¢ = (2,4,2,4,0,0, 1,4). Working from right to left we mark cg
as it is the first 0, then cs5 as it is at most 1, then c3 as it is the next number at most 2 and finally cq as it is the next

5
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number that is at most 3. Therefore, the number of blocks is equal to 4 and the unboosted coinversion code is given by
(2,3,2,3,0,0,0, 3). Applying the earlier bijection this coinversion code corresponds to (37 | 124 | 6 | 58).
We are now ready to prove the main result of this section.

Proof of Theorem 3.2. We first prove the necessity of the conditions. Let o be an ordered set partition of [n] with at least
k blocks and let code(o) = (c1, ..., cp) be its boosted coinversion code.

e If i is minimal in its block, ¢; will be at most the number of blocks following the block containing i, which is at most
n—1.1f i is not minimal we have at most n — 1 blocks, and if i € Bj we have

ci=j+I{€>j: min(By) >i}| <j+I|{€>j : the £™ block exists}| <n — 1.

e Suppose S={n+1—tp_k+1,...,n+1—1t1} (with t1 <... <th_ky1) satisfies y(S)* <(cq,...,cn). We show that none
of the numbers {t1, ..., t_x+1} is minimal in its block of o, contradicting that o has at least k blocks.
If th_+1 is minimal in its block, then

c — >t . tisminimal in its block and }]
thkt1 = n—k+1 - occurs to the right of t, 41 in o

<tk +1,....n=1,n}| =n—ty_py1.

However, the term in y (S)* in position t,; 41 equals n —t;_r41 + 1, hence we conclude that t; ;¢ is not minimal in
its block.
Now, if t,_; were minimal in its block, we would have

¢, , = |{€ > ty_i : £ is minimal in its block and occurs to the right of t;_ in o'} |
=< |{tn7k + 17 e, — l7n} - {tn7k+1}| =n- tnfk -1

But again, the term in y(S)* in position t,_y equals n — t,;,_k, which shows that t,_; cannot be minimal in its block

either. An inductive argument now shows that none of {t1,...,t;_r+1} is minimal in its block.

e For d = n this is equivalent to the fact that ¢; < n for all i, so assume 1 <d < n. Assume for contradiction that
=1, ---»Yi>d, Vi1, .--, Y1) <(c1,...,cn) where (Yn—1,...,y1) =y (T)* for some T C [n — 1] of size |T| =n —d. Since
Cn+1—i > d, this implies that o has at least d blocks. Let T ={i; <...<i;<n+1—1i<ir1 <... <itys}. By the same
argument used in the previous bullet, we see that all n+ 1 —i; with j <t are not minimal in their block. Now we
consider two cases.

- If n+1—1i is not minimal in its block either, we can continue the argument as in the previous case to show that
none of n+1 —i; is minimal in its block. In particular we have 14 (n —d) elements that are not minimal in their
respective blocks, contradicting the fact that o has at least d blocks.

- Now suppose that n+ 1 —i is minimal in its block. Since cp4+1—; =d, this implies that among {n+2 —1i,...,n} at least
d numbers are also minimal in their respective blocks. In particular, there are at least d numbers that are not of the
form n+ 1 — j with j e T. But this implies that T has size at most (n — 1) —d < n —d, which is a contradiction.

Now, we show that these conditions are sufficient. Given a sequence (ci,...,c;) We can first unboost the sequence
(as we can apply this procedure to every sequence of nonnegative integers) to determine how many blocks our intended
ordered set partition must have. Given this extra information, we can basically run the same inverse map as before, with
the exception that we should increase the label of every nonempty block by 1. It now suffices to check that we don’t run
into any troubles by doing so. Our proof will go through the following steps.

o First we will show that the unboosting procedure concludes that there are at most n — k boosted numbers, as this will
ensure that the ordered set partition we aim for has at least k blocks.
e Then we will inductively show that can basically run the same inverse map as before.
- First we show that the conclusion of the unboosting is that 1 is unboosted, ensuring we have enough blocks to insert
1 as a minimal element in its block.
- After that we will show that if the first j — 1 numbers have been placed, we can place j following the appropriate
procedure. This argument will depend on whether j is supposed to be minimal in its block or not (something that
we know from the unboosting procedure).

We will now prove each of these steps.

e Assume that we have t boosted numbers Cnt1—i; (with iy < ... <i;) and assume that t >n —k + 1. Let S =
{i1, ..., in—k+1}, then we claim that (c1,...,cn) > y(S)*. If i ¢ S, we have Y (S)*nt1-i =0, SO Cp1-i > Y (S);, ;_; indeed
holds. Furthermore, for i =i; by assumption on Cn+1—i; there are (i; — j) unboosted numbers to the right of n +1 —i;.
Therefore, since Cnt+1-i; Was boosted, we have cp1—j; >ij— j+1= y(S)ﬁJr]fij, as desired.

6
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e As mentioned before, we now show that we can run the inverse map without any issues.

- If ¢y =0 it is clear that we can insert 1, so assume c¢; =d with 1 <d <n — 1. Our goal is to show that in the
unboosting procedure we conclude that 1 has to be minimal in its block. As c; =d this happens precisely if the
procedure shows that among {2, 3,...,n} at least d numbers were not boosted. For the sake of contradiction, assume
that we have at least n — d boosted numbers, and let the largestn—d ben+1—i;>n+1—iy>...>n+1—i,_q.
Let T = {iy,...,i,—q} then again we have (c1,¢2,...,¢n) >, Yn—1, ..., y1) where (yYn—1,...,y1) =y (T)*.

- Assume that the inverse map successfully inserted all the numbers in [j — 1] (with j > 2) and that we now try to
insert j according to c;.

First assume that c¢; =t is unboosted. Since this is unboosted, there are still at least t unboosted numbers among
{Cj41,...,cn}. As so far only indices corresponding to unboosted numbers have been inserted in empty blocks, and
the number of total blocks it the number of unboosted numbers, we have at least t + 1 empty blocks at this point.
As a result, there will be some empty block labeled with t, so we can insert j into an empty block, as desired.
Hence, assume that c; was boosted. Suppose that at the time we still have t nonempty blocks, then by the unboosting
procedure we know that ¢; >t 41, so we can insert j appropriately, unless c; is too big. In other words, the only
thing that can go wrong is that there were ¢ unboosted numbers (hence ¢ blocks in the ordered set partition), but
thatcj>€+1.Letn+1—i;>...>n+1—ig> j>n—igy1 >...>n—ip_o_1 be all the boosted numbers. But then,
for T ={iy,...,in—g—1} Of size n — (£ + 1), with y(T)* = (Vu—1,..., 1), we have (c1,...,¢n) = (Vn—1,..., Va—js1. £+
1, ¥n—j,---, ¥1), a contradiction. O

4. The algebraic quotient

Recall from the introduction that a word w = wyw;---wy on the alphabet Z. is packed if whenever i + 1 appears,
then so does i. It will be convenient for our inductive arguments to consider packed words in which every letter in some
segment 1 <i <k must appear. To this end, we define

Wik := {length n packed words w = wiw; ... w;, : theletters 1,2, ..., k appear in w}. (4.1)

Words in W, i are in bijection with ordered set partitions of [n] with at least k blocks. We have the further identifications
Wi =Wy and Wy =Gy

The symmetric group &, acts on W, by the rule o - (Wq...wy) := Ws(1) ... Wo@m. The quotient rings S, of the
following definition will give a graded refinement of this action. Their defining ideals ], contain the ideal J, defining the
ring S, appearing in the introduction.

Definition 4.1. Let ], € Q[x,] be the ideal

Jak:=Jn+{(en,n-1,...,€0_ks1)

and let S,k := Q[Xy]/ Jnx be the corresponding quotient ring.

Jn.n = In. Note that the fact that e, € J, will follow from the equality J, =T(Xy), using the fact that e, is the top-degree
component of (x; —a1)-(x2 —a1) - -+ (Xp —a1) € I(Xy). We study Sy by making use of a point locus X, x € Q" corresponding
to Wh.k. Fix n distinct rational numbers «1, ..., o, € Q. For any packed word wy...w, € Wy, we have a corresponding
point (@, .., 0w,) € Q". We let X, € Q" be the family of points corresponding to all packed words in W, k.

The set X, € Q" is closed under the coordinate-permuting action of &, and we have an identification Q[W) ] =
Q[ Xn k] As explained in the introduction, we have isomorphisms of ungraded S,-modules

Each of the quotients Sj x is a graded G,-module. Their defining ideals are nested according to J, = Ju1 € Jn2 S+ C

QWhi] = QI Xn k] = QXnl/1(Xn k) = Q[Xn]l/T(Xn k)-
It turns out that T(X, ) coincides with Jp k.

Theorem 4.2. For any 1 < k < n, we have the ideal equality |, = T(Xpnx). Consequently, we have an isomorphism of ungraded
GSn-modules QWi k] = Spk-

Proof. To show that J, x € T(X; ), it suffices to show that every generator of J,\ arises as the highest degree component

of some polynomial in I(X, ). Fix 1 <i <n and 1 <r <d <n; we begin by showing that the generator xde lies in T(Xn k).

i Cn—r
Note that if (x1,...,Xn) € Xk, we either have x; € {1, ..., g}, or for any 1 < j <d the number «; must appear among
{X1,...,Xi—1,Xi+1, ..., Xn}. We let t be a new variable, and define the function
(I —tx1)--- (1 —tx-1)(1 = tXjy1) - - (1 — txp)
Fa, o, 0) = (X — 1) - (xi — ) - ’ : -

1 —tay)---(1 —toyg)

7
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and expanding this function in terms of the parameter t yields

fx1, ..., %,0) =
Xi—a)xi—a) -y [ Y (—1)% - hy(en.... o) | €
r>0 \a+b=r
Specialization of f(xq,...,%n,t) at (X1,...,%,) = (B1,..., Bn) yields an element of Q[[t]]. We analyze this specialization
when (B1, ..., Bn) € Xnk. If Bi € {a1, ..., aq}, then f(B1,..., B, t) =0. Otherwise, d of the terms in the numerator of f will
cancel with the d terms in the denominator, so that hence f(8i,..., Bn,t) is a polynomial of degree (n — 1) —d in t. Either
way, the coefficient of t"~" in f(x1,..., Xy, t) vanishes on X, so that

i—an) o) | Y (=% hyen, ... o) | €1(Xn )
a+b=n—r

and taking the highest degree component gives
X (=) el e T(Xn ).
The remaining generators ey (for d > n — k) are handled by a similar argument. We consider the rational function

(A =tx)(A —tx2)--- (1 —txn)

X1,...,Xp, ) :=
8 0= A a1 = ta) - (1 = ta)
= Z Z (—=D%q - hp(a, ..., ap) | -t
r>0 \a+b=r
Evaluating (x1,...,Xp) at a point in X, ; forces the k factors in the denominator to cancel with k factors in the numerator,

yielding a polynomial of degree n —k in t. For any d > n — k, we conclude that
D (=) hy(e, ..., &) € 1(Xni),
a+b=d
which implies
eq € T(Xnk)-

This proves the containment J, x € T(Xp ), so that

dim Q[Xn1/ Jn k = dim Q[Xn]/T(Xn k) = W,k (4.2)

In light of Equation (4.2), to prove the desired equality J, x = T(Xp k) it is enough to show that dim(Q[xn]/ Jnk) < [Whkl-
This is a Grobner theory argument.

Since the elementary symmetric polynomials e;, en—_1, ..., en_k+1 in the full variable set {xi,...,x,} lie in Jy, [5, Lem.
3.4] implies that for any subset S C [n] with |S| =n —k + 1, the Demazure character k) s) corresponding to the length n
sequence y(S) also lies in Jj k. The lexicographical leading monomial of « (s) has exponent sequence y (S)*. Similarly, for
1<i,d <n, since

x4 -egid, oK ~e,(1'1] € Jnks
for any T C [n — 1] of size |T| =n —d, [5, Lem. 3.4] again implies that

d
Xi Ky X1, Xie1, Xig 1, -0, Xn) € Ik

Writing y(T)* = (Va—1, ..., ¥1), the lexicographical leading term of x? Ky (M X1y oo Xic 1, Xig 1, s Xn) 1S (Vao1, .., VL d,
Yi—1, ..., Y1)- It follows that

the exponent sequence (c, ..., c;) of any member of the standard monomial basis of Q[x,]/ J5.k satisfies the conditions
in the statement of Theorem 3.2.

Theorem 3.2 implies the desired dimension bound dim Q([X;]/ Jnx < |[Wh.|, completing the proof. O
The standard monomial basis of S, is governed by coinversion codes.

8
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Corollary 4.3. The standard monomial basis of Sy, x with respect to the lexicographical term ordering are the monomials x‘{l P
where (c1, ..., cp) = code(o) is the boosted coinversion code of some ordered set partition o of [n] with at least k blocks.

Proof. This follows from Theorem 3.2 and the last paragraph of the above proof. O

Our next goal is to derive the graded &,-module structure of the quotients S; k. This result is stated most cleanly in
terms of the following rings defined by Haglund, Rhoades, and Shimozono [5].
Definition 4.4. Let 1 <k <n be integers. Define the ideal I, , € Q[x,] by

ok Uk k
Ingk = (X7, Xy, ..., Xp, €n,€n—1, ..., €n_k1)

and let Ry i := Q[X,]/I5 x be the corresponding quotient ring.

We can now state the graded &,-module structure of S, in terms of the graded &,-module structure of these Ry,
which have been extensively studied in [5].

Theorem 4.5. As graded G,-module we have
Suk = Rpn(0) @ Run—1(—1)®--- ® Rpp(—n+k).
We are now ready to prove Theorem 4.5.

Proof. We proceed by descending induction on k. In the case n =k, we claim that J,, =1y, = (e1,...,eyn) is the classical
invariant ideal so that S, ; = Ry,n. Indeed, each elementary symmetric polynomial ey appears as a generator of J . On the
other hand, Theorem 4.2 implies that dim S, , =n! =dim R, . This finishes the proof in the case k =n.

Now suppose 1 <k <n — 1. We exhibit a short exact sequence of G,-modules

0— Rn,k _(/7) Sn’k z) Sﬂ,k+l — O, (43)
where ¢ is homogeneous of degree n — k and 7 is homogeneous of degree 0. The exactness of this sequence implies

Snk = Snik+1 ® Rux{—n+k),

proving the theorem by induction.
Since every generator of J, k41 is also a generator of [k, we may take 77 : Sy x — Sp k41 to be the canonical projection.
We have a map

@ : Q[Xn] = Snk (4.4)
given by multiplication by e, followed by projection onto Spj. We verify that ¢ descends to a map ¢ : Ry x — Snk
by showing that ¢ sends every generator of I,y to zero. Indeed, we have @(ej(x1,...,%;)) =0 for any j >n —k since
ej(x1,...,Xy) is a generator of Jj . Furthermore, for 1 <i <n we have

PO) =xfen g = X?ev(;ik + e;likfl =0,
where the final equality follows because both xé‘e(iik and xf“e,(j)_k_l are generators of J, ;. We conclude that ¢ descends

to a map ¢ : Ry x — Sy of Gp-modules which is homogeneous of degree n — k. It is clear that ¢ surjects onto the kernel
of 7. The exactness of the sequence (4.3) follows from the dimensional equality

dim(sn,k) = Wakl = Wh k1| + |0Pn,k| = dim(sn,k+1) + dim(Rn,k)- 0
The graded Frobenius image of S, ; is most naturally stated in terms of the C-functions defined in Equation (1.2).

Corollary 4.6. For any 1 < k <n, the graded Frobenius image of Sy, x is given by

n
grFrob(Sp: @) =) " (@ o revg) G j(x: q). (45)
j=k

Proof. Apply [5, Thm. 6.11] and Theorem 4.5. O
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5. Conclusion

In this paper we have described a quotient S, of Q[x,] whose algebraic properties are governed by the combinatorics
of packed words in W,. The ring S, has provable algebraic properties which are similar to conjectural properties of the
superspace coinvariant ring 2,/((2;);"). With an eye towards proving these conjectures, it would be desirable to have a
more direct connection between the packed word quotient S, and the superspace coinvariant ring.

Generalized coinvariant rings related to delta operators have seen ties to cohomology theory. In the context of the
rings Rp of Definition 4.4, Pawlowski and Rhoades showed that H® (X, x; Q) = Ry k, where X, j is the variety of n-tuples
(1, ..., 4y of 1-dimensional subspaces of C¥ which satisfy ¢; + - - - + £, = C. Rhoades and Wilson [8] refined this result
by considering the open subvariety Xr(lri obtained by requiring the sum ¢; + --- 4 ¢, of the first r lines is direct. In light of
[7,8], it is natural to ask for a geometric perspective on the ring S, appearing in this paper.

Problem 5.1. Find a variety Y, whose rational cohomology ring H*(Yy; Q) is isomorphic to S.

The results in [7] suggest that Y, could be taken to be an open subvariety of the n-fold Cartesian product (Pk=1)"
of (k — 1)-dimensional projective space with itself with the property that the cohomology map i* : H*((P¥*1)": Q) —
H*(Yy; Q) induced by the inclusion i : Y, < (P¥=1)" is surjective.
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