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The coinvariant algebra is a quotient of the polynomial ring Q[x1, . . . , xn] whose algebraic 
properties are governed by the combinatorics of permutations of length n. A word w =
w1 . . . wn over the positive integers is packed if whenever i > 2 appears as a letter of 
w , so does i − 1. We introduce a quotient Sn of Q[x1, . . . , xn] which is governed by the 
combinatorics of packed words. We relate our quotient Sn to the generalized coinvariant 
rings of Haglund, Rhoades, and Shimozono as well as the superspace coinvariant ring.
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1. Introduction

Consider the polynomial ring Q[xn] := Q[x1, . . . , xn] in n variables. The symmetric group Sn acts on Q[xn] by vari-
able permutation. It is known that the corresponding invariant subring Q[xn]Sn of symmetric functions has algebraically 
independent homogeneous generators e1(xn), . . . , en(xn), where

ed :=
∑

1≤i1<...<id≤n

xi1 · · · xid

is the degree d elementary symmetric polynomial. The invariant ideal is the ideal generated by the symmetric functions with 
zero constant term:

In := 〈Q[xn]Sn+ 〉 = 〈e1, . . . , en〉.
The coinvariant algebra Rn :=Q[xn]/In has long been studied. In particular, as ungraded Sn-module Rn ∼=Sn Q[Sn] coincides 
with the regular representation of Sn . Moreover, the Hilbert series Hilb(Rn; q) = (1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1)

coincides with the generating function of both the inversion and major index statistic on permutations.
Traditionally studied in physics, the superspace ring �n has received significant recent attention in coinvariant theory 

[9,11]. For a positive integer n, superspace of rank n is the tensor product

�n := Q[x1, . . . , xn] ⊗ ∧{θ1, . . . , θn}
of a rank n polynomial ring with a rank n exterior algebra. The group Sn acts diagonally on �n , viz. w.xi := xw(i) , w.θi :=
θw(i) . Let (�n)

Sn+ ⊆ �n denote the space of Sn-invariants with vanishing constant term and let 〈(�n)
Sn+ 〉 ⊆ �n be the ideal 

generated by this subspace. Considering commuting and anticommuting variables separately, the superspace coinvariant ring
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�n/〈(�n)
Sn+ 〉 carries a bigraded action of Sn . One recovers the classical coinvariant algebra by setting the θ -variables to 

zero.
The Combinatorics Group and the Fields Institute conjectured (see [11]) a formula for the bigraded Sn-Frobenius image 

type of the superspace coinvariant ring. Let SYT(n) be the family of standard Young tableaux with n boxes. Given T ∈ SYT(n), 
let des(T ) be the number of descents in T and let maj(T ) be its major index. We use the q-analog notation

[n]q := 1 + q + · · · + qn−1, [n]!q := [n]q[n − 1]q · · · [1]q,

[
n

k

]
q
:= [n]!q

[k]!q · [n − k]!q .

The Fields Group conjectured [11] that

grFrob(�n/〈(�n)
Sn+ 〉;q, z) =

n∑
k=1

zn−k · Cn,k(x;q) (1.1)

where

Cn,k(x;q) :=
∑

T ∈SYT(n)

qmaj(T )+(n−k
2 )+(n−k)·des(T )

[
des(T )

n − k

]
q

sshape(T )(x). (1.2)

Here sshape(T )(x) is the Schur function corresponding to the shape of T .
The symmetric function Cn,k(x; q) appearing in Equation (1.1) has appeared in the literature before. Combinatorially, it 

is the t = 0 specialization of the function �′
ek−1

en appearing in the Haglund-Remmel-Wilson Delta Conjecture [4,3]. Alge-
braically, it is (up to a minor twist) the graded Frobenius image of the generalized coinvariant algebras Rn,k introduced 
by Haglund-Rhoades-Shimozono [5]. Geometrically, it is (up to the same minor twist) the graded Frobenius image of the 
cohomology representation afforded by the Sn-action on the variety Xn,k of n-tuples of lines (�1, . . . , �n) spanning Ck [7]. 
Despite these varied interpretations of Cn,k(x; q), the formula (1.1) remains conjectural as of this writing.

Whereas algebraic properties of the classical coinvariant ring are governed by permutations, the superspace coinvariants 
appear to be governed by packed words. A word w = w1 . . . wn over the positive integers is packed if, for all i ≥ 1, whenever 
i + 1 appears as a letter in w , so does i. Let Wn be the family of packed words of length n. For example, we have

W3 = {123,213,132,231,312,321,112,121,211,122,212,221,111}.
Packed words in Wn are in natural bijection with the family OPn of all ordered set partitions of [n] and have appeared in 
various settings including Hopf algebras [6] and polytopes [1].

The symmetric group Sn acts on the set Wn by letter permutation. The conjecture (1.1) implies that

�n/〈(�n)
Sn+ 〉 ∼= Q[Wn] ⊗ sign (1.3)

as ungraded Sn-modules, where sign is the 1-dimensional sign representation of Sn . Proving the isomorphism (1.3) remains 
an open problem. Even the dimension equality dim �n/〈(�n)

Sn+ 〉 = |Wn| is presently out of reach.
Motivated by the conjecture (1.1), we define the following family of singly-graded Sn-modules Sn which prov-

ably have vector space dimension |Wn| and satisfy algebraic properties similar to (1.3) and (1.1). We let e(i)
d :=

ed(x1, . . . , xi−1, xi+1, . . . , xn) be the degree d elementary symmetric polynomial with the variable xi omitted.

Definition 1.1. Let Jn ⊆Q[xn] be the ideal

Jn = 〈xd
i · e(i)

n−r : 1 ≤ i ≤ n, 1 ≤ r ≤ d ≤ n〉
and let Sn :=Q[xn]/ Jn be the corresponding quotient ring.

By convention, the degree 0 elementary symmetric polynomial is 1, so that Jn contains the variable powers xn
i .

Although the generators of the ideal Jn may appear unusual, they will arise naturally from the perspective of orbit 
harmonics as follows. More precisely, suppose X ⊆Qn is a finite locus of points. Consider the ideal

I(X) := { f ∈Q[xn] : f (x) = 0 for all x ∈ X} (1.4)

of polynomials in Q[xn] which vanish on X and let

T(X) := 〈τ ( f ) : f ∈ I(X) − {0}〉, (1.5)

where τ ( f ) denotes the highest degree component of a nonzero polynomial f ∈Q[xn]. The homogeneous ideal T(X) is the 
associated graded ideal of I(X) and we have isomorphisms of Q-vector spaces

Q[X] ∼= Q[xn]/I(X) ∼= Q[xn]/T(X) (1.6)
2
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which are isomorphisms of ungraded Sn-modules when X is closed under the natural action of Sn on Qn; the quotient 
Q[xn]/T(X) has the additional structure of a graded Sn-module.

Given n distinct rational parameters α1, . . . , αn , we have a natural point locus Xn ⊆Qn in bijection with Wn , namely

Xn = {(β1, . . . , βn) ∈Qn : {β1, . . . , βn} = {α1, . . . ,αk} for some k}. (1.7)

It will develop that

T(Xn) = Jn. (1.8)

In other words, the quotient Sn = Q[xn]/T(Xn) is the graded quotient of Q[xn] arising from the packed word locus Xn . 
Equation (1.8) may be viewed as a more natural, if less computationally useful, alternative to Definition 1.1. We prove the 
following facts regarding the module Sn .

• The ungraded Sn-structure of Sn coincides with the natural Sn-action on Wn (without sign twist)

Sn ∼= Q[Wn]. (1.9)

• The graded Sn-structure is described by

grFrob(Sn;q) =
n∑

k=1

qn−k · (revq ◦ ω)Cn,k(x;q). (1.10)

Here revq is the operator on polynomials in q which reverses their coefficient sequences and ω is the symmetric 
function involution which trades en(x) for hn(x).

Finding an algebraic explanation for the similarity between the provable (1.10) and the conjectural (1.1) could shed light on 
a proof of (1.1).

The outline of the paper is as follows. In Section 2 we cover some of the necessary background, including symmetric 
functions, representation theory of the symmetric group, and Gröbner theory. In Section 3 we describe a bijection between 
ordered set partitions in OPn and certain sequences (c1, . . . , cn) of nonnegative integers. This bijection will translate to a 
bijection between a monomial basis of Sn and Wn . In Section 4 we use this bijection to prove (1.9) and its graded refinement 
Equation (1.10). In Section 5 we end with some concluding remarks and open questions.

2. Background

2.1. Symmetric functions and the representation theory of Sn

A partition λ of size n, denoted λ � n, is a sequence λ = (λ1, . . . , λm) of integers λ1 ≥ . . . ≥ λm > 0 with λ1 + . . .+λm = n.
Let x = (x1, x2, x3, . . .) be an infinite set of variables and let � ⊆ Q[[x]] be the ring of symmetric functions. It is known 

that the degree n homogeneous piece of � has a basis given by the Schur functions sλ(x) where the index λ ranges over all 
partitions of size n. For thorough definitions of the ring of symmetric functions and Schur functions, we refer to [10].

We will now recall the fundamentals of the representation theory of Sn . The irreducible representations of Sn are 
naturally in bijections with the partitions λ � n. For every such λ, the corresponding irreducible Sn-module is denoted by 
Sλ .

Consequently, every Sn-module V decomposes as

V =
⊕
λ�n

(
Sλ

)cλ

for some integers cλ ≥ 0. The Frobenius character of V is the symmetric function

Frob(V ) =
∑
λ�n

cλ · sλ(x).

Lastly, let V be a graded vector space such that for every d ≥ 0 the degree d homogeneous component Vd is finite 
dimensional. The Hilbert series of V is the power series in q given by

Hilb(V ;q) =
∑
d≥0

dim(Vd) · qd.

If further V carries a graded Sn-action, we define the graded Frobenius character by

grFrob(V ;q) =
∑
d≥0

Frob(Vd) · qd.

More details on the representation theory of Sn can be found in [10].
3
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2.2. Gröbner theory

In this section we will review some of the Gröbner theory used in this paper. The main starting point of Gröbner theory 
is a polynomial ring k[xn] over a field k equipped with a total order < on its monomials that satisfies:

1. 1 ≤ m for any monomial m;
2. for monomials m1 < m2 and any monomial m we have m · m1 < m · m2.

Such a total order is called a monomial order. Given a monomial order <, for any 0 �= f ∈ k[xn] we define the leading 
monomial LM( f ) as the monomial m such that m has nonzero coefficient in f and n ≤ m for any monomial n with nonzero 
coefficient in f . For an ideal I ≤ k[xn] we set LM(I) as the ideal generated by the leading monomials of all non-zero f ∈ I .

We know [2] that a basis for the k-vector space k[xn]/I is given by all monomials m that do not belong to LM(I), which 
is equivalent to m not being divisible by any monomial of the form LM( f ) with f ∈ I . This basis for k[xn]/I is called the 
standard monomial basis with respect to the total order <.

The monomial order on Q[xn] used in this paper is the lexicographic order. In this order, two monomials m1 = xa1
1 · · · xan

n

and m2 = xb1
1 · · · xbn

n are compared as follows. Assuming m1 �= m2, let j ∈ {1, 2, . . . , n} be minimal such that a j �= b j , then 
m1 < m2 if and only if a j < b j .

3. The combinatorial bijection

In this section we will establish a bijection between ordered set partitions and coinversion codes. The starting point will 
be a bijection established by Rhoades and Wilson [8, Thm. 2.2]. Let OPn,k be the family of ordered set partitions (B1 | · · · |
Bk) of [n] into k blocks. Given an ordered set partition σ = (B1 | · · · | Bk) ∈OPn,k , define a sequence code(σ ) = (c1, . . . , cn)

as follows. If 1 ≤ i ≤ n and i ∈ B j , then

ci =
{

|{� > j : min(B�) > i}| if i = min(B j);
|{� > j : min(B�) > i}| + ( j − 1) if i �= min(B j).

The sequence code(σ ) was called the coinversion code of σ in [8]. This is a variant of the classical Lehmer code on permuta-
tions in the case k = n.

The coinversion code(σ ) of ordered set partitions σ ∈ OPn,k were characterized in [8] as follows. Given a subset S =
{s1 < · · · < sd} ⊆ [n], define the skip sequence by γ (S) = (γ1, . . . , γn) where

γi =
{

i − j + 1 if i = s j ∈ S

0 if i /∈ S .
(3.1)

Also let γ (S)∗ = (γn, . . . , γ1) be the reverse skip sequence. For example, if n = 7 and S = {2, 3, 6} we have γ (S) =
(0, 2, 2, 0, 0, 4, 0) and γ (S)∗ = (0, 4, 0, 0, 2, 2, 0).

Theorem 3.1. ([8, Thm. 2.2]) Let 1 ≤ k ≤ n. The map σ �→ code(σ ) is a bijection from ordered set partitions of [n] with k blocks to the 
family of nonnegative integer sequences (c1, . . . , cn) such that

• for all 1 ≤ i ≤ n we have ci < k,
• for any subset S ⊆ [n] with |S| = n − k + 1, the componentwise inequality γ (S)∗ ≤ (c1, . . . , cn) fails to hold.

For future reference we recall the inverse map introduced in the proof of the above theorem. This inverse map uses the 
following insertion procedure.

For (B1 | · · · | Bk) a sequence of k (possibly empty) sets of positive integers we define the coinversion labels as follows. 
First, label the empty sets 0, 1, . . . , j from right to left, and then label the nonempty sets j + 1, . . . , j + k − 1 from left to 
right.

For a sequence (c1, . . . , cn) satisfying the conditions in Theorem 3.1, we construct an ordered set partition as follows. 
Start with a sequence (∅ | · · · | ∅) of k copies of the empty set, and for i = 1, 2, . . . , n insert the number i in the block with 
label ci under the coinversion labeling.

For example, let n = 7, k = 4 and consider the sequence c = (2, 1, 2, 0, 2, 0, 2). The resulting ordered set partition will be 
(6 | 13 | 257 | 4), as shown by the following process, starting with the labeled sequence of blocks (∅3 | ∅2 | ∅1 | ∅0).
4
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i ci Updated labeled sequence of blocks

1 2 (∅2 | 13 | ∅1 | ∅0)

2 1 (∅1 | 12 | 23 | ∅0)

3 2 (∅1 | 132 | 23 | ∅0)

4 0 (∅0 | 131 | 22 | 43)

5 2 (∅0 | 131 | 252 | 43)

6 0 (60 | 131 | 252 | 43)

7 2 (60 | 131 | 2572 | 43)

In our algebraic analysis of Sn we will need a version of this insertion which maps the family of ordered set partitions 
of [n] with at least k blocks bijectively onto a certain collection (c1, . . . , cn) of length n ‘code words’ over the nonnegative 
integers. In the bijection code of Theorem 3.1, the ordered set partition (1|2| · · · |m, m + 1, . . . , n) has code (0, 0, . . . , 0) for 
any number of blocks m, so we cannot simply take the union of these maps for m ≥ k.

We resolve the problem in the above paragraph by working with a different version of the coinversion code, which we 
will call the boosted coinversion code. For an ordered set partition σ = (B1 | · · · | Bk) we define code(σ ) = (c1, . . . , cn) as 
follows. Suppose 1 ≤ i ≤ n and i ∈ B j , then

ci =
{

|{� > j : min(B�) > i}| if i = min(B j);
|{� > j : min(B�) > i}| + j if i �= min(B j).

Compared to the coinversion codes from before, the difference is that all the numbers corresponding to non-minimal ele-
ments of blocks are raised by one, and we say that these numbers are boosted.

The remainder of the section will be devoted to the proof of the following theorem.

Theorem 3.2. Let 1 ≤ k ≤ n. The map σ �→ code(σ ) is a bijection from the set of ordered set partitions of [n] with at least k blocks to 
the family of nonnegative integer sequences such that

• for all 1 ≤ i ≤ n we have ci < n.
• for any subset S ⊆ [n] with |S| = n − k + 1 the componentwise inequality γ (S)∗ ≤ (c1, . . . , cn) fails to hold.
• for any 1 ≤ i, d ≤ n and any T ⊆ [n − 1] with |T | = n − d and γ (T )∗ = (γn−1, . . . , γ1), the componentwise inequality 

(γn−1, . . . , γi, d, γi−1, . . . , γ1) ≤ (c1, . . . , cn) fails to hold.

The proof of the necessity of these conditions will be similar to that of the proof of [8, Thm.2.2]. For the sufficiency 
of the conditions we use an insertion map similar to that considered above. We begin by showing that both the number 
of blocks of an ordered set partition of [n], as well as its classical coinversion code, can be recovered from its boosted 
coinversion code.

Lemma 3.3. Let σ be an ordered set partition of [n]. Given the boosted coinversion code code(σ ) one can recover the coinversion code 
code(σ ), as well as the number of blocks of σ .

Proof. Note that the second part is immediate once we have recovered code(σ ), as the number of blocks will be equal to 
the number of unboosted numbers, which is easily found by comparing code(σ ) and code(σ ).

Given a boosted coinversion code (c1, . . . , cn) corresponding to an ordered set partition with � blocks (where � is un-
known), we can think of creating the ordered set partition by following the same procedure as described before, with the 
only difference that the labels of all the nonempty blocks should be raised by one.

No matter what, at some point we will fill in the last nonempty block with some number i, which necessarily has ci = 0. 
Additionally, from the boosting, it is clear that c j > 0 for all j > i, hence we can recover i by looking for the last entry in 
our sequence that equals 0.

Now, assume that we have identified that i1 < . . . < i j are minimal in their block and that all other numbers in [i1, n] are 
not minimal in their block. If i1 = 1 we are done. Otherwise, it is clear that we must have at least j + 1 blocks (as clearly 
1 will be minimal in its block). Now, let i0 < i1 be the largest number that is also minimal in its block. By the inverse 
map, this must correspond to some index with ci0 ≤ j, as at the time of inserting i0 there are exactly j + 1 empty blocks, 
labeled 0, 1, . . . , j. Additionally, for any i0 < i < i1, at the time of insertion there will be exactly j empty blocks, hence the 
coinversion label of i will be at least j + 1 (because of the boosting). Therefore, given code(σ ) we can recognize i0 as the 
largest index i0 < i1 with ci0 ≤ j. By induction we are done. �

Explicitly, the procedure above is as follows. Given a sequence (c1, . . . , cn), trace the sequence from right to left, marking 
the first 0, then the first 0 or 1, then the first 0, 1 or 2, etcetera. Now, decrease all the unmarked numbers by 1 and one 
recovers the coinversion code. We call this procedure the unboosting of a sequence (c1, . . . , cn).

As an example, consider the boosted coinversion code c = (2, 4, 2, 4, 0, 0, 1, 4). Working from right to left we mark c6
as it is the first 0, then c5 as it is at most 1, then c3 as it is the next number at most 2 and finally c1 as it is the next 
5
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number that is at most 3. Therefore, the number of blocks is equal to 4 and the unboosted coinversion code is given by 
(2, 3, 2, 3, 0, 0, 0, 3). Applying the earlier bijection this coinversion code corresponds to (37 | 124 | 6 | 58).

We are now ready to prove the main result of this section.

Proof of Theorem 3.2. We first prove the necessity of the conditions. Let σ be an ordered set partition of [n] with at least 
k blocks and let code(σ ) = (c1, . . . , cn) be its boosted coinversion code.

• If i is minimal in its block, ci will be at most the number of blocks following the block containing i, which is at most 
n − 1. If i is not minimal we have at most n − 1 blocks, and if i ∈ B j we have

ci = j + |{� > j : min(B�) > i}| ≤ j + |{� > j : the �th block exists}| ≤ n − 1.

• Suppose S = {n + 1 − tn−k+1, . . . , n + 1 − t1} (with t1 < . . . < tn−k+1) satisfies γ (S)∗ ≤ (c1, . . . , cn). We show that none 
of the numbers {t1, . . . , tn−k+1} is minimal in its block of σ , contradicting that σ has at least k blocks.
If tn−k+1 is minimal in its block, then

ctn−k+1 = |{� > tn−k+1 : � is minimal in its block and
occurs to the right of tn−k+1 in σ }|

≤ |{tn−k+1 + 1, . . . ,n − 1,n}| = n − tn−k+1.

However, the term in γ (S)∗ in position tn−k+1 equals n − tn−k+1 + 1, hence we conclude that tn−k+1 is not minimal in 
its block.
Now, if tn−k were minimal in its block, we would have

ctn−k = |{� > tn−k : � is minimal in its block and occurs to the right of tn−k in σ }|
≤ |{tn−k + 1, . . . ,n − 1,n} − {tn−k+1}| = n − tn−k − 1.

But again, the term in γ (S)∗ in position tn−k equals n − tn−k , which shows that tn−k cannot be minimal in its block 
either. An inductive argument now shows that none of {t1, . . . , tn−k+1} is minimal in its block.

• For d = n this is equivalent to the fact that ci < n for all i, so assume 1 ≤ d < n. Assume for contradiction that 
(γn−1, . . . , γi, d, γi−1, . . . , γ1) ≤ (c1, . . . , cn) where (γn−1, . . . , γ1) = γ (T )∗ for some T ⊆ [n − 1] of size |T | = n − d. Since 
cn+1−i ≥ d, this implies that σ has at least d blocks. Let T = {i1 < . . . < it ≤ n + 1 − i < it+1 < . . . < it+s}. By the same 
argument used in the previous bullet, we see that all n + 1 − i j with j ≤ t are not minimal in their block. Now we 
consider two cases.
– If n + 1 − i is not minimal in its block either, we can continue the argument as in the previous case to show that 

none of n + 1 − i j is minimal in its block. In particular we have 1 + (n − d) elements that are not minimal in their 
respective blocks, contradicting the fact that σ has at least d blocks.

– Now suppose that n + 1 − i is minimal in its block. Since cn+1−i = d, this implies that among {n + 2 − i, . . . , n} at least 
d numbers are also minimal in their respective blocks. In particular, there are at least d numbers that are not of the 
form n + 1 − j with j ∈ T . But this implies that T has size at most (n − 1) − d < n − d, which is a contradiction.

Now, we show that these conditions are sufficient. Given a sequence (c1, . . . , cn) we can first unboost the sequence 
(as we can apply this procedure to every sequence of nonnegative integers) to determine how many blocks our intended 
ordered set partition must have. Given this extra information, we can basically run the same inverse map as before, with 
the exception that we should increase the label of every nonempty block by 1. It now suffices to check that we don’t run 
into any troubles by doing so. Our proof will go through the following steps.

• First we will show that the unboosting procedure concludes that there are at most n − k boosted numbers, as this will 
ensure that the ordered set partition we aim for has at least k blocks.

• Then we will inductively show that can basically run the same inverse map as before.
– First we show that the conclusion of the unboosting is that 1 is unboosted, ensuring we have enough blocks to insert 

1 as a minimal element in its block.
– After that we will show that if the first j − 1 numbers have been placed, we can place j following the appropriate 

procedure. This argument will depend on whether j is supposed to be minimal in its block or not (something that 
we know from the unboosting procedure).

We will now prove each of these steps.

• Assume that we have t boosted numbers cn+1−i j (with i1 < . . . < it ) and assume that t ≥ n − k + 1. Let S =
{i1, . . . , in−k+1}, then we claim that (c1, . . . , cn) ≥ γ (S)∗ . If i /∈ S , we have γ (S)∗n+1−i = 0, so cn+1−i ≥ γ (S)∗n+1−i indeed 
holds. Furthermore, for i = i j by assumption on cn+1−i j there are (i j − j) unboosted numbers to the right of n + 1 − i j . 
Therefore, since cn+1−i j was boosted, we have cn+1−i j ≥ i j − j + 1 = γ (S)∗ , as desired.
n+1−i j

6
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• As mentioned before, we now show that we can run the inverse map without any issues.
– If c1 = 0 it is clear that we can insert 1, so assume c1 = d with 1 ≤ d ≤ n − 1. Our goal is to show that in the 

unboosting procedure we conclude that 1 has to be minimal in its block. As c1 = d this happens precisely if the 
procedure shows that among {2, 3, . . . , n} at least d numbers were not boosted. For the sake of contradiction, assume 
that we have at least n − d boosted numbers, and let the largest n − d be n + 1 − i1 > n + 1 − i2 > . . . > n + 1 − in−d . 
Let T = {i1, . . . , in−d} then again we have (c1, c2, . . . , cn) ≥ (d, γn−1, . . . , γ1) where (γn−1, . . . , γ1) = γ (T )∗ .

– Assume that the inverse map successfully inserted all the numbers in [ j − 1] (with j ≥ 2) and that we now try to 
insert j according to c j .
First assume that c j = t is unboosted. Since this is unboosted, there are still at least t unboosted numbers among 
{c j+1, . . . , cn}. As so far only indices corresponding to unboosted numbers have been inserted in empty blocks, and 
the number of total blocks it the number of unboosted numbers, we have at least t + 1 empty blocks at this point. 
As a result, there will be some empty block labeled with t , so we can insert j into an empty block, as desired.
Hence, assume that c j was boosted. Suppose that at the time we still have t nonempty blocks, then by the unboosting 
procedure we know that c j ≥ t + 1, so we can insert j appropriately, unless c j is too big. In other words, the only 
thing that can go wrong is that there were � unboosted numbers (hence � blocks in the ordered set partition), but 
that c j ≥ � + 1. Let n + 1 − i1 > . . . > n + 1 − ia > j > n − ia+1 > . . . > n − in−�−1 be all the boosted numbers. But then, 
for T = {i1, . . . , in−�−1} of size n − (� + 1), with γ (T )∗ = (γn−1, . . . , γ1), we have (c1, . . . , cn) ≥ (γn−1, . . . , γn− j+1, � +
1, γn− j, . . . , γ1), a contradiction. �

4. The algebraic quotient

Recall from the introduction that a word w = w1 w2 · · · wn on the alphabet Z>0 is packed if whenever i + 1 appears, 
then so does i. It will be convenient for our inductive arguments to consider packed words in which every letter in some 
segment 1 ≤ i ≤ k must appear. To this end, we define

Wn,k := {length n packed words w = w1 w2 . . . wn : the letters 1,2, . . . ,k appear in w}. (4.1)

Words in Wn,k are in bijection with ordered set partitions of [n] with at least k blocks. We have the further identifications 
Wn,1 =Wn and Wn,n = Sn .

The symmetric group Sn acts on Wn,k by the rule σ · (w1 . . . wn) := wσ(1) . . . wσ(n) . The quotient rings Sn,k of the 
following definition will give a graded refinement of this action. Their defining ideals Jn,k contain the ideal Jn defining the 
ring Sn appearing in the introduction.

Definition 4.1. Let Jn,k ⊆Q[xn] be the ideal

Jn,k := Jn + 〈en, en−1, . . . , en−k+1〉
and let Sn,k :=Q[xn]/ Jn,k be the corresponding quotient ring.

Each of the quotients Sn,k is a graded Sn-module. Their defining ideals are nested according to Jn = Jn,1 ⊆ Jn,2 ⊆ · · · ⊆
Jn,n = In . Note that the fact that en ∈ Jn will follow from the equality Jn = T(Xn), using the fact that en is the top-degree 
component of (x1 −α1) ·(x2 −α1) · · · (xn −α1) ∈ I(Xn). We study Sn,k by making use of a point locus Xn,k ⊆Qn corresponding 
to Wn,k . Fix n distinct rational numbers α1, . . . , αn ∈ Q. For any packed word w1 . . . wn ∈ Wn,k , we have a corresponding 
point (αw1 , . . . , αwn ) ∈Qn . We let Xn,k ⊆Qn be the family of points corresponding to all packed words in Wn,k .

The set Xn,k ⊆ Qn is closed under the coordinate-permuting action of Sn and we have an identification Q[Wn,k] ∼=
Q[Xn,k]. As explained in the introduction, we have isomorphisms of ungraded Sn-modules

Q[Wn,k] ∼= Q[Xn,k] ∼= Q[xn]/I(Xn,k) ∼= Q[xn]/T(Xn,k).

It turns out that T(Xn,k) coincides with Jn,k .

Theorem 4.2. For any 1 ≤ k ≤ n, we have the ideal equality Jn,k = T(Xn,k). Consequently, we have an isomorphism of ungraded 
Sn-modules Q[Wn,k] ∼= Sn,k.

Proof. To show that Jn,k ⊆ T(Xn,k), it suffices to show that every generator of Jn,k arises as the highest degree component 
of some polynomial in I(Xn,k). Fix 1 ≤ i ≤ n and 1 ≤ r ≤ d ≤ n; we begin by showing that the generator xd

i e(i)
n−r lies in T(Xn,k).

Note that if (x1, . . . , xn) ∈ Xn,k , we either have xi ∈ {α1, . . . , αd}, or for any 1 ≤ j ≤ d the number α j must appear among 
{x1, . . . , xi−1, xi+1, . . . , xn}. We let t be a new variable, and define the function

f (x1, . . . , xn, t) := (xi − α1) · · · (xi − αd) · (1 − tx1) · · · (1 − txi−1)(1 − txi+1) · · · (1 − txn)
(1 − tα1) · · · (1 − tαd)

7
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and expanding this function in terms of the parameter t yields

f (x1, . . . , xn, t) =

(xi − α1) · · · (xi − αd) ·
∑
r≥0

⎛⎝ ∑
a+b=r

(−1)ae(i)
a · hb(α1, . . . ,αd)

⎞⎠ tr

Specialization of f (x1, . . . , xn, t) at (x1, . . . , xn) = (β1, . . . , βn) yields an element of Q[[t]]. We analyze this specialization 
when (β1, . . . , βn) ∈ Xn,k . If βi ∈ {α1, . . . , αd}, then f (β1, . . . , βn, t) = 0. Otherwise, d of the terms in the numerator of f will 
cancel with the d terms in the denominator, so that hence f (β1, . . . , βn, t) is a polynomial of degree (n − 1) − d in t . Either 
way, the coefficient of tn−r in f (x1, . . . , xn, t) vanishes on Xn,k , so that

(xi − α1) · · · (xi − αd) ·
⎛⎝ ∑

a+b=n−r

(−1)ae(i)
a · hb(α1, . . . ,αd)

⎞⎠ ∈ I(Xn,k)

and taking the highest degree component gives

xd
i · (−1)n−re(i)

n−r ∈ T(Xn,k).

The remaining generators ed (for d > n − k) are handled by a similar argument. We consider the rational function

g(x1, . . . , xn, t) := (1 − tx1)(1 − tx2) · · · (1 − txn)

(1 − tα1)(1 − tα2) · · · (1 − tαk)

=
∑
r≥0

⎛⎝ ∑
a+b=r

(−1)aea · hb(α1, . . . ,αk)

⎞⎠ · tr .

Evaluating (x1, . . . , xn) at a point in Xn,k forces the k factors in the denominator to cancel with k factors in the numerator, 
yielding a polynomial of degree n − k in t . For any d > n − k, we conclude that∑

a+b=d

(−1)aea · hb(α1, . . . ,αk) ∈ I(Xn,k),

which implies

ed ∈ T(Xn,k).

This proves the containment Jn,k ⊆ T(Xn,k), so that

dimQ[xn]/ Jn,k ≥ dimQ[xn]/T(Xn,k) = |Wn,k| (4.2)

In light of Equation (4.2), to prove the desired equality Jn,k = T(Xn,k) it is enough to show that dim(Q[xn]/ Jn,k) ≤ |Wn,k|. 
This is a Gröbner theory argument.

Since the elementary symmetric polynomials en, en−1, . . . , en−k+1 in the full variable set {x1, . . . , xn} lie in Jn,k , [5, Lem. 
3.4] implies that for any subset S ⊆ [n] with |S| = n − k + 1, the Demazure character κγ (S) corresponding to the length n
sequence γ (S) also lies in Jn,k . The lexicographical leading monomial of κγ (S) has exponent sequence γ (S)∗ . Similarly, for 
1 ≤ i, d ≤ n, since

xd
i · e(i)

n−d, . . . , xd
i · e(i)

n−1 ∈ Jn,k,

for any T ⊆ [n − 1] of size |T | = n − d, [5, Lem. 3.4] again implies that

xd
i · κγ (T )(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Jn,k.

Writing γ (T )∗ = (γn−1, . . . , γ1), the lexicographical leading term of xd
i · κγ (T )(x1, . . . , xi−1, xi+1, . . . , xn) is (γn−1, . . . , γi, d,

γi−1, . . . , γ1). It follows that

the exponent sequence (c1, . . . , cn) of any member of the standard monomial basis of Q[xn]/ Jn,k satisfies the conditions 
in the statement of Theorem 3.2.

Theorem 3.2 implies the desired dimension bound dimQ[xn]/ Jn,k ≤ |Wn,k|, completing the proof. �
The standard monomial basis of Sn,k is governed by coinversion codes.
8
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Corollary 4.3. The standard monomial basis of Sn,k with respect to the lexicographical term ordering are the monomials xc1
1 · · · xcn

n

where (c1, . . . , cn) = code(σ ) is the boosted coinversion code of some ordered set partition σ of [n] with at least k blocks.

Proof. This follows from Theorem 3.2 and the last paragraph of the above proof. �
Our next goal is to derive the graded Sn-module structure of the quotients Sn,k . This result is stated most cleanly in 

terms of the following rings defined by Haglund, Rhoades, and Shimozono [5].

Definition 4.4. Let 1 ≤ k ≤ n be integers. Define the ideal In,k ⊆Q[xn] by

In,k := 〈xk
1, xk

2, . . . , xk
n, en, en−1, . . . , en−k+1〉

and let Rn,k :=Q[xn]/In,k be the corresponding quotient ring.

We can now state the graded Sn-module structure of Sn in terms of the graded Sn-module structure of these Rn,k , 
which have been extensively studied in [5].

Theorem 4.5. As graded Sn-module we have

Sn,k
∼= Rn,n〈0〉 ⊕ Rn,n−1〈−1〉 ⊕ · · · ⊕ Rn,k〈−n + k〉.

We are now ready to prove Theorem 4.5.

Proof. We proceed by descending induction on k. In the case n = k, we claim that Jn,n = In,n = 〈e1, . . . , en〉 is the classical 
invariant ideal so that Sn,n = Rn,n . Indeed, each elementary symmetric polynomial ed appears as a generator of Jn,n . On the 
other hand, Theorem 4.2 implies that dim Sn,n = n! = dim Rn,n . This finishes the proof in the case k = n.

Now suppose 1 ≤ k ≤ n − 1. We exhibit a short exact sequence of Sn-modules

0 → Rn,k
ϕ→ Sn,k

π→ Sn,k+1 → 0, (4.3)

where ϕ is homogeneous of degree n − k and π is homogeneous of degree 0. The exactness of this sequence implies

Sn,k
∼= Sn,k+1 ⊕ Rn,k〈−n + k〉,

proving the theorem by induction.
Since every generator of Jn,k+1 is also a generator of Jn,k , we may take π : Sn,k � Sn,k+1 to be the canonical projection. 

We have a map

ϕ̃ :Q[xn] → Sn,k (4.4)

given by multiplication by en−k followed by projection onto Sn,k . We verify that ϕ̃ descends to a map ϕ : Rn,k → Sn,k

by showing that ϕ̃ sends every generator of In,k to zero. Indeed, we have ϕ̃(e j(x1, . . . , xn)) = 0 for any j > n − k since 
e j(x1, . . . , xn) is a generator of Jn,k . Furthermore, for 1 ≤ i ≤ n we have

ϕ̃(xk
i ) = xk

i en−k = xk
i e(i)

n−k + xk+1
i e(i)

n−k−1 = 0,

where the final equality follows because both xk
i e(i)

n−k and xk+1
i e(i)

n−k−1 are generators of Jn,k . We conclude that ϕ̃ descends 
to a map ϕ : Rn,k → Sn,k of Sn-modules which is homogeneous of degree n − k. It is clear that ϕ surjects onto the kernel 
of π . The exactness of the sequence (4.3) follows from the dimensional equality

dim(Sn,k) = |Wn,k| = |Wn,k+1| + |OPn,k| = dim(Sn,k+1) + dim(Rn,k). �
The graded Frobenius image of Sn,k is most naturally stated in terms of the C-functions defined in Equation (1.2).

Corollary 4.6. For any 1 ≤ k ≤ n, the graded Frobenius image of Sn,k is given by

grFrob(Sn,k;q) =
n∑

j=k

qn− j · (ω ◦ revq)Cn, j(x;q). (4.5)

Proof. Apply [5, Thm. 6.11] and Theorem 4.5. �
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5. Conclusion

In this paper we have described a quotient Sn of Q[xn] whose algebraic properties are governed by the combinatorics 
of packed words in Wn . The ring Sn has provable algebraic properties which are similar to conjectural properties of the 
superspace coinvariant ring �n/〈(�n)

Sn+ 〉. With an eye towards proving these conjectures, it would be desirable to have a 
more direct connection between the packed word quotient Sn and the superspace coinvariant ring.

Generalized coinvariant rings related to delta operators have seen ties to cohomology theory. In the context of the 
rings Rn,k of Definition 4.4, Pawlowski and Rhoades showed that H•(Xn,k; Q) = Rn,k , where Xn,k is the variety of n-tuples 
(�1, . . . , �n) of 1-dimensional subspaces of Ck which satisfy �1 + · · · + �n = Ck . Rhoades and Wilson [8] refined this result 
by considering the open subvariety X (r)

n,k obtained by requiring the sum �1 + · · · + �r of the first r lines is direct. In light of 
[7,8], it is natural to ask for a geometric perspective on the ring Sn appearing in this paper.

Problem 5.1. Find a variety Yn whose rational cohomology ring H•(Yn; Q) is isomorphic to Sn.

The results in [7] suggest that Yn could be taken to be an open subvariety of the n-fold Cartesian product (Pk−1)n

of (k − 1)-dimensional projective space with itself with the property that the cohomology map i∗ : H•((Pk−1)n; Q) →
H•(Yn; Q) induced by the inclusion i : Yn ↪→ (Pk−1)n is surjective.
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