Mach Limits in Analytic Spaces
Juhi Jang, Igor Kukavica, and Linfeng Li

ABSTRACT. We address the Mach limit problem for the Euler equations in the analytic spaces. We prove that, given
analytic data, the solutions to the compressible Euler equations are uniformly bounded in a suitable analytic norm and then
show that the convergence toward the incompressible Euler solution holds in the analytic norm. We also show that the
same results hold more generally for Gevrey data with the convergence in the Gevrey norms.

1. Introduction

The low Mach number limit problem, which concerns the passage from slightly compressible flows to incom-
pressible flows, is a classical singular limit problem in mathematical fluid dynamics. The problem has both physical
and mathematical importance. There have been many significant works on the subject and a great deal of progress
made in recent decades [A1, A3, As, E, FKM, I, Is1, Is2, Is3, KM1, KM2, MS, S1, S2, U]. The main difficulty of
the problem is the presence of different wave speeds, which play a significant role in the limit process. In particular,
one has to address the vanishing of the acoustic waves in the limit. A study of the low Mach number limit involves
two parts: the uniform bounds and existence of slightly compressible flows for a time-independent of Mach numbers
and convergence to solutions of the limiting equations. Interestingly, the analysis of such a singular limit problem
significantly changes depending whether compressible fluids are isentropic or non-isentropic, if compressible fluids
are inviscid or viscous, if initial data are well-prepared or not, if the problem is set in the whole space or domains
with boundaries, or which regularity space of data is considered. In this paper, we address the low Mach number
limit of the non-isentropic compressible Euler flows in R? in analytic and, more generally, in Gevrey spaces.

Before describing the results, we briefly review prior relevant works (cf. [A1l, A3, MS] for more extensive
reviews). For isentropic flows or well-prepared initial data, it is well-known that solutions of the compressible Euler
equations with low Mach numbers exist in Sobolev spaces for a time interval independent of the Mach numbers
[KM1, KM2, S1]. When initial data are well-prepared, solutions converge to the solutions of the corresponding
incompressible Euler equations with the limiting initial data [KM1, KM2, S1]. For the isentropic flows with general
initial data, the convergence is not uniform for times close to zero and initial layers are present [As, U, I, Isl,
Is2, Is3]. On the other hand, the non-isentropic problem with general initial data is much more involved. In
this case, the pressure depends not only on the density but also on the entropy that enters into the coefficients of
the linearized equations, and the convergence is more subtle because the acoustic waves are governed by a wave
equation with variable coefficients. The first existence and convergence of the non-isentropic problem were given
in [MS] and the existence result for general domains with boundary and the convergence result for exterior domains
were obtained in [A1]. The results above were obtained in Sobolev spaces. Recently the low Mach number limit
was studied in [FKM] starting from dissipative measure-valued solutions of the isentropic Euler equations. Also,
the Mach limit in the domains with evolving boundary was addressed in [DE, DL], while for the dissipative case,
see [A2, D1, D2, DG, DM, F, FN, H, LM, M]. For other works on analyticity for the equations involving fluids, see
[B, BB, BGK, CKYV, LO], while for different approaches to analyticity, cf. [Bi, BF, BoGK, FT, G, GK, KP, OT].

This paper concerns the non-isentropic equations with general analytic or Gevrey initial data in R and conver-
gence holding in these strong norms. The first result provides a uniform in € bound of the analytic solution, where
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e > 0 represents the Mach number, while the second result asserts the convergence of the solution to the limiting
equation as € tends to zero. The main difficulty is in obtaining the uniform analytic bound. The Mach limit in an
analytic norm is then proven by interpolating the uniform boundedness result and the convergence in the Sobolev
space due to Métivier and Schochet in [MS].

For the isentropic case, the standard energy estimate method can be applied to the velocity equation to obtain
analytic estimates. However, for the non-isentropic case, the problem is more difficult since the matrix, E(eu®, S¢)
(cf. the formulation (2.14)—(2.15)), also depends on S€, and thus spatial derivative bounds cannot be obtained solely
by the fundamental energy estimates. Moreover, the non-isentropic Euler flows feature intriguing wave-transport
structure: The divergence component of the modified velocity is governed by nonlinear acoustic equations, while
the curl component and entropy are transported, and their interactions are coupled. Thus a careful analysis that
captures the coupled structure of the modified velocity and the entropy is required. To accomplish these, we use the
elliptic regularity for the velocity to reduce the spatial derivative to divergence and curl components. The key to the
former is that the divergence equation for the velocity is properly balanced with the analytic energy solution, which
motivates us to include time derivatives using €0; to our analytic norm; for the latter, we appeal to the transport
equation of the curl component, which can be treated in a similar way as the entropy. Thus, the pure time analytic
norm needs to be treated differently than the one which also involves the spatial derivatives (cf. Sections 6.2 and 6.3
respectively). It is important to include the analytic weight « in (3.3), which ultimately balances the time and the
spatial derivatives. The main difficulty in our approach is the handling of the vorticity w, which can not be treated
directly. Instead, as in [A1], we need to consider the equation for the modified vorticity curl(rqv), where rq is a
certain function of the entropy (cf. Section 6.1 below). The product and chain rules then lead to complicated analytic
coupling among the entropy, divergence, vorticity, and curl(rqv).

The paper is organized as follows. In Section 2, we introduce the Mach number limit problem and then formu-
late the symmetrized version of the compressible Euler equations. In Section 3, we define the analytic norm and
state the main results. The first theorem relies on Lemma 3.3, the proof of which is given at the end of Section 6. We
present the energy estimate for the transport equation in Section 4. Product rule and chain rules in analytic spaces
are provided in Section 5. In Section 6, we estimate the curl, divergence, and time-derivative components of the
velocity. In Section 7, we prove the convergence theorem. In Section 8, we establish the finiteness of the space-time
analytic norm at the initial time under the assumption that the initial data is real-analytic in the spatial variable. In
Section 9, we provide the Mach limit theorem in any Gevrey space.

2. Set-up

We consider the compressible Euler equations describing the motion of an inviscid, non-isentropic gaseous fluid
in R3

Op+v-Vp+pV-v=0 2.1
p(Ow—+v-Vo)+ VP =0 (2.2)
9,S+v-VS=0, 2.3)

where p = p(x,t) € R, is the density, v = v(x,t) € R3 is the velocity, P = P(z,t) € R, is the pressure, and
S = S(z,t) € Ris the entropy of the fluid. The system (2.1)—(2.3) is closed with the equation of state

P=P(p,S). 2.4
For instance, the equation of state for an ideal gas takes the form
P(p,S) =p'e®, 2.5)

where v > 1 is the adiabatic exponent.
To address the low Mach number limit, we introduce the rescalings
v

t = et, T =z, p=p, 0= -, lf’:P7
€

e
I
W
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where € > 0 represents the Mach number, the ratio of the typical fluid speed to the typical sound speed. We assume
that the typical sound speed is O(1). For simplicity of notation, we omit tilde, and obtain the rescaled system

Op+v-Vp+pV-v=0 (2.6)
p (O +v-Vu)+ 6%VP =0 2.7
9,8 +v-VS=0. 2.8)

The goal of this paper is to obtain the low Mach number limit of (2.6)—(2.8) in analytic spaces.

2.1. Reformulation. Now, consider P, instead of p, as an independent variable, we may write (2.4) as

p=p(P,5),
and (2.6) is then replaced by
Ao (0P +v-VP)+ V- -v=0, 2.9)
where
1 0p(S,P)
A=A P)= ——F—F—F7—.
0 O(Sv ) p(S, P) oP

The equation of state for an ideal gas in (2.5) then reads as

S

p(P,S)=Pve 7.
To symmetrize the Euler equations, we set
P = Pe?,
for a positive constant P which represents the reference state at the spatial infinity so that P = P + O(e). Using
0y P = ¢PO;p and VP = ePVp, we rewrite (2.9) and (2.7) as

1
a(atp+v~Vp)+EV-v=0 (2.10)
1
T(@tv—l—v-Vv)—&—EVp:O, (2.11)
respectively, where
a = a(S,ep) = Ag(S, Pe®P)PeP (2.12)
and B
p(S, PeP)
= S = — 2.13
r=r(s,e) = F2 @13)
In the case of an ideal gas, from p(P, S) = P% 67%, we have the expression
1
a=—
~y
for a, and

r= (Peep)%7167%

for r. Thus we have obtained the symmetrized version of the compressible Euler equation for non-isentropic fluids
in R3, which reads

1

E(S,eu)(Ou+ v - Vu) + —L(9;)u = 0, (2.14)
€

84S +v-VS =0, (2.15)

where u = (p, v) and

E(S,eu)<a(5(’)6u) T(&gu)]g), L(az)@ dév). (2.16)
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After transforming (2.1)—(2.3) to the symmetrized form (2.14)—(2.15), we now focus on the formulation (2.14)—
(2.15). In view of (2.12) and (2.13), we assume

a(S, eu) = f1(5)g1(eu) (2.17)
and
(S, eu) = f2(S)g2(eu), (2.18)

where f1, f2, g1, and go are positive entire real-analytic functions.

3. The main results

We assume that the initial data (pg, vg, S§) satisfies

[1(p5, 06, 56) | s < Mo (3.1)
and
= T(m*3)+
mZ Z Pm%aso)”mm < My, (3.2)

where 79, My > 0 are fixed constants. For 7 > 0, define the mixed weighted analytic space
A(r) = {u € C*(R®) : [|ull a¢r) < o0},

where
m 3)+T(t)(m—3)+

lullacry = Z SN 107 ()™l T (3.3)

m=1 j=0 |a|=j

here, 7 € (0, 1] represents the mixed space-time analyticity radius and where « > 0. It is convenient that the term
with ||u|| L2 is not included in the norm. In (3.2) and below we use the convention n! = 1 when n € —N. As shown
in Section 8 below, (3.2) implies that with k = 1

16> 06, S5) | a(70) < Q@(Mo) (3.4)

for some function Q, where 7y = 79/Q (M) is a sufficiently small constant. Note that the time derivatives of the
initial data are defined iteratively by differentiating the equations (2.14)—(2.15) and evaluating at ¢t = 0 (cf. Section 8
below for details). Also observe that the norm in (3.3) is an increasing function of x, and thus (3.4) holds for any
€ (0, 1]. We define the analyticity radius function

7(t) = 7(0) — Kt, (3.5)

where 7(0) < min{l, 7y} is a sufficiently small parameter (different from 7), and K > 1 is a sufficiently large
parameter, both to be determined below.

The first theorem provides a uniform in € boundedness of the analytic norm on a time interval, which is inde-
pendent of e.

THEOREM 3.1. Assume that the initial data (pf, v§, S§) satisfies (3.1)~(3.2), where My, 79 > 0. There exist
sufficiently small constants k,7(0), eg, To > 0, depending on My, such that

(P, v, S)(t)||ary < M, 0 < e < e, t € [0, To], (3.6)
where T is as in (3.5) and K and M are sufficiently large constants depending on M.

We now turn to the Mach limit for solutions of (2.14)—(2.15) in R® as e — 0. Denote
k7(0)

5:
Co ’

(3.7)
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where 7(0), x € (0, 1] are fixed constants chosen in the proof of Theorem 3.1, and Cy > 1 is a sufficiently large
constant to be chosen in Section 7. We introduce the spatial analytic norm

o0 o gmea
[ullx, = Z Z |0 'U||L2m7 (3.8)

m=1 |a|=m
where § > 0 is as in (3.7). Note that this is a part of our main analytic A-norm, (3.2).

By Theorem 3.1, for a given My and 79 > 0, the solutions (p¢,v¢, S€) are uniformly bounded by M in the
norm of C([0, Ty], X;s) for fixed parameters &, Ty, and € € (0, 9]. The second main theorem shows that solutions
of (2.14)—(2.15) converge to the solution of the stratified incompressible Euler equations

r(S,0)(0v + v - Vo) + Vr =0, 3.9)
dive =0, (3.10)
84S +v-VS =0, 3.11)

ase — 0.

THEOREM 3.2. Let § > 0, and assume that the initial data (v§, S§) converges to (vo, So) in X5 and in L? as
e = 0, and S§ decays sufficiently rapidly at infinity in the sense

S5(2)] < Cla|™7¢, |VSi(2)| < Clae| 727,

for0 < € < eq and some constants C and ¢ > 0. Then (v, p, S€) converges to (v, 0, 1)) in C°([0, Tp], X5),
where (v(2°), §(1)) js the solution to (3.9)—(3.11) with the initial data (wg, So), and w is the unique solution of

div wo = 0,
curl(rowo) = curl(rovo),

with rg = 1(Sp, 0).

In the rest of the paper, the constant C' depends only on M and 79, and it may vary from relation to relation;
we omit the superscript €, and we write .S, u for S€¢, u®.

Theorem 3.2 is proven in Section 7 below as a consequence of Theorem 3.1. The proof of Theorem 3.1 consists
of a priori estimates performed on the solutions. The a priori estimates are easily justified by simply restricting
the sum (3.2) to m < mg where mgy € {6,7,...} is arbitrary. The estimates on the finite sums are justified since
boundedness of solutions in any Sobolev norm is known by [A1].

The proof of Theorem 3.1 relies on analytic a priori estimates on the entropy S and the (modified) velocity w.

The a priori estimate needed to prove Theorem 3.1 is the following.

LEMMA 3.3. Let My > 0. For any x < 1, there exist constants C, 71, €g, Ty and a nonnegative continuous
function @ such that for all € € (0, ¢, the norm

M (T) = sup (|S()|lacrey) + lu)laceey)) (3.12)
te[0,T]
satisfies the estimate
M. .(t) <C+(t+e+r+7(0) QM. .(2)), (3.13)

for ¢ € [0, Tp] and 7(0) € (0, 71], provided
K > Q(M.,x (1)) (3.14)
holds.

With 7 = 7(¢) as in (3.5), we use the notation (3.12). The constant X depends on M (and thus ultimately
on M), i.e., K = Q(M). We shall work on an interval of time such that
7(0)

Ty < G- (3.15)
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Thus we have 7(0)/2 < 7(t) < 7(0) for ¢t € [0, Tp].

From here on, we denote by () a positive increasing continuous function, which may change from inequality to
inequality; importantly, the function @) does not depend on ¢, «, and ¢. The estimates are performed on an interval
of time [0, T'] where (3.5) holds and is such that

7(0)
T< —~.
- 2K
In the rest of the paper, we allow all the constants to depend on 7.

PROOF OF THEOREM 3.1 GIVEN LEMMA 3.3. Let My > 0 be as in (3.1)—(3.2). Also, fix Cy and Q¢ as the
constant C' and the function @) appearing in the statement of Lemma 3.3, respectively. Now, choose and fix

My > max{Cy, Qo(Mpy)}.
Then select x < 1 sufficiently small, 7(0) < min{1, 7,71}, T1 € (0,Tp], and € € (0, o] sufficiently small, so that
Co+ (Th + e+ rk+7(0)) Qo(M1) < M.
Next, set
7(0)

T2 :min{Tl,QC?O(]\m}. (316)

In view of (3.14), this last condition ensures

0
%) < 7(t) <7(0), t €[0,T3].
Note that M, ,,(0) < Mjy. By (3.13)—(3.16) and the continuation principle, we get
Me7n(t) S M17 te [07T2]7

and Theorem 3.1 is proven. ]

Sections 4—6 are devoted to the proof of Lemma 3.3, thus completing the proof of Theorem 3.1.

REMARK 3.4 (Boundedness of Sobolev norms). By [A1, Theorem 1.1] the H® norm of (p¢,v¢, S€) can be
estimated by a constant on a time interval [0, Tp], where Ty only depends on the H® norm of the initial data. More
precisely, for given initial data satisfying (3.1), there exists 7 > 0 and a constant C' such that

sup 10%(0;)™ 7 (p°, v, S)(t)|| 22 < C, t €10, To], e € (0,1].
0<m<5,0<j<m,|al=j

In the rest of the paper, we always work on an interval of time [0, 7] such that 0 < T' < Tp.

REMARK 3.5. (Boundedness of functions of solutions). If F' is a smooth function of » and S, then from
Remark 3.4 there exists some constant C' depending on the function F' such that

IF(eu(t), St))||lz~ < C,  te[0,To), ee(0,1].

4. Analytic estimate of the entropy
The following statement provides an analytic estimate for the entropy S.
LEMMA 4.1. Let My > 0. For any k € (0, 1], there exists 71 € (0, 1] such that if 0 < 7(0) < 74, then
SO acr@)) < C+1Q(Mek(t), 1t € (0,To], 4.1)
forall e € (0,1], provided K in (3.5) satisfies
K > Q(Mc,x(Tv)),

where Ty > 0 is a sufficiently small constant depending on M.
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PROOF OF LEMMA 4.1. Fix m € Nand |a| = j where 0 < j < m. We apply 9%(ed;)™ 7 to the equation
(2.15) and take the L?-inner product with 9% (ed;)™ 7S obtaining

1d

2.dt
where (-, -) denotes the scalar product in L2. Using the Cauchy-Schwarz inequality and summing over |a| = 7, we
obtain

d . . .
= > 1008l 22 < Vol - 10™( @)™ IS Nsa +C Y v 9,0%(e0)™ ]S 1.

lel=3 lol=3 lo =g

Z10% (€)™ S||2 + (v - VO™ (e0r)™ 7S, 0%(e0n) ™I S) = (v V, 0% (edp)™ ]S, 0*(edy)™ 7 S,

With the notation (3.2), the above estimate implies

k(=3)+ (m=3)4

d d fe% m—j
L1Sllar) = OISy + 330 S s @Sl

m=1j=0 |a|=j

c© m J m—j
< OISl a0y + CUVVILe ST ay +C DD DTN M Z Con.jiluov Bk

m=1j=0 1=0 |a|—j f<a
= ]|ﬂ| Lyt

4.2)

where
K/(j_?’)+ (m_3)+ o m — .
Crnjla Bk = (m—i?’)' <ﬂ> ( J) 10°(0) v - 0% P (e0)™ T 7F VS| 2

with

i = 32 D2 D 197 (€)™l e

m=47=0 |a|=j
denoting the dissipative analytic norm corresponding to (3.2). In the above sums as well as below, the multiindexes
a, 3, ... are assumed to belong to Ng. The third term on the far right side of (4.2) equals

220 95 D ) b SN

m=135=01=0 |a|=j B<la k=

|8]= ll<l+k
m J m—j
+C Z D220 > Cojtags
J=01=0 |a|=j f<a k=0

co m J
O 222> > Cmgvass
m="7 j=0 [=0 ‘og|:] BLla k=0
<l+k<m-—3

=C1 +Cy+Cs+Cy,

where we split the sum according to the low and high values of [ + k and m. We claim that there exists Ty > 0, such
that for any x € (0, 1], there is 71 € (0, 1] such that if 0 < 7(0) < 74, then

C <C, 4.3)
Co < Cllollan 151 7y 4.4
C3 < Cllvllan) 1SN 4y 4.5)

Cy < CH’UHA(.,-). 4.6)
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Proof of (4.3): Using Holder’s and the Sobolev inequalities, C; may be estimated by low-order mixed space-time
derivatives, and (4.3) follows by appealing to Remark 3.4.
Proof of (4.4): Using Hélder’s and the Sobolev inequalities we arrive at

S kU=3)+7m=3 70\ /m — J
B 1/4
§CZZZZ Z Z (m—3)'<ﬁ>< >||8 (€0r)" vl 2
m=>5 j=01=0 |a|=
|5‘ ll<l+k<[m/2]
x D207 (edn) o[ 751110° P ()™ =+ VS| 2,

and thus

s K (=3)+ p(Hk—=3)4 > 1/4

<Y Yy Y Z e (Haﬁ(eat)kvuw —

m=>5 j=0 I=0 |a|=j B k=0
\BI [1<l+k<[m/2]

(=14 L (1+k—1)4\ 3/4 4.7
208 k K T
X <||D 9P (edy)*v]| 2 Y )
- m—je kU2 (m — k — [ — 2)7m k=13
P e ) At
where
— i\ U+k =341+ k-1 m—k—1-2)!
A jlaBk = a)(m=g) i+ e G ) (m ) (4.8)
Ié] k (m—k—1-2)(m—3)!
and
‘ 1-3 30— 3 ,
= (52) () i,
+ +
(4.9)

b=m—3— (l—l—k—3> _(W> —(m—k—1-3).
4 i 4 T

For simplicity, we omitted indicating the dependence of @ and b on j, k, and [. Since [ +k > 1 and 0 <[ < j, one
can readily check that —3/2 < a < 3/2 and 1 < b < 3/2, which implies

< (4.10)
if
7(0) < K. (4.11)

(5) =< () @.12)
G) (mk_ j) = (lT k:) (4.13)

Recall the combinatorial inequality

which may also be written as

from where we obtain

- B Cm! (I+k—3)(1+k)>*?(m—k—1-3)!
N (S Ty Y (m —3)!
o 4.14)

< —— <
Sm-i—mp =
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since [ + k < [m/2]. Using

YooY wsvas= > w || D v (4.15)

lov|=3 ‘%lﬁ_al |Bl=1 lvl=j—1
from [KV, Lemma 4.2], together with (4.7), (4.8)—(4.10), (4.14) and the discrete Holder inequality, we obtain
J J 14
> m (1=3)4 +(I+k=3)+
3 K T
<c33y S ol T
=5j=0 1=0 k=0 18|=1
1<I4+k<[m/2]
3/4
(=14 (I+k=1)4
K T
x 1D20°% () ¥ .2 T F ) (4.16)

1B1=l

kU—1=2)+ (m—k—1—2)rm-k=i=3
(m—k—1-2)!

x| Y2 107(edn)™ VS 2
Iv|=5—1
< Clollan 151 4¢ry
where the last inequality follows from the discrete Young inequality.
Proof of (4.5): We reverse the roles of [ + k£ and m — | — k and proceed as above, arriving at

C3<C a b 8/3 P k H(l—3)+7-l+k—3
s ZZZ > D Z KT (|| (d,) U||L2(l+k_3)!>

m="7 j=0 =0 B<La
o= J|5| l[m/2]+1<l+k<m 3

, G=1=2)t (mp — | — f — 2)pm—i—k=3\ /4 (4.17)
a—/f3 m—j—k 9 K (m T
X (la (eat) VSHL (m*lfk*Q)' )
— m—ie H(jfl)#» m — l — k Tm7l7k71 3/4
X (|D23 6(6(%) J kVSHLz ((m i ]){:)' > Bm,j,l,(xﬁ,ky

where we denote

B (o (m =\ (+Ek=3)(m—1—k—2)4(m—1— k)34
mogheofk = g k (m—1—k—2)Y4m —1 — k)34(m — 3)!
and
. j—1-2 3j — 30
o=G-9s - -3 (T72) ( ,
i), i ),
bem—3—(+h—3)— (m—-1-k-—3) B 3(m—l—k—1).
4 4
Since 0 < [ < j, it is readily seen that —5/2 < a < 1/2 and b = 3/2, which implies
kTP < C (4.18)
if (4.11) holds. Using (4.12)—(4.13), we obtain
Cm! (I4+k=3)!(m—-1—k—=2)!(m—1—Fk—1)12
Bonjl,apk <
I+ k) (m—1—k) (m — 3)!
(4.19)
L oM
“(l+k)p3

since [m/2] + 1 <l + k. Combining (4.17)—(4.19) and proceeding as in (4.16), we obtain
C3 < Clvllagm 1SN 4¢r)-
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Proof of (4.6): We split C,4 into three sums according to the value of [ + k being equal to m — 2, m — 1, or m,
and denote them by Cy41, C42, and Cy3, respectively.
For Cy41, we use Holder’s and the Sobolev inequalities and obtain

TR HIPIP 3h 3 e (] (g LT

la|=j B<a k=0
[B8]=1

x 1|08 (€8,)*v]| 2]|0% P (€8,) ™I TFV S|

) 3/4
m—j 1=3)4 ;m—5

Z > 07 (edy) UHHW

A
NE
Ms

3" ID%07(edy) ™I TRVS |2

m=5j=01=0 k=0 \|B|=l lyl=5—1
1/4
i m!  (m—5)!
X Z ||a’7(68t) J kaHL2 (m — 2)' (m — 3)' I].{l+k;:m_2}
lv|=5—1 ’ '
S C”UHA(T)?

where in the second inequality we applied (4.12)—(4.13), (4.15) and we used 7, x < C; in the last inequality, we
estimated the low-order mixed space-time Sobolev norm of .S by C' using Remark 3.4.
For C45 and Cy3, we proceed as in above, by writing

R 90 ) 3D 9 3 o s ) [ () Fn

m=>5 j=0 1=0 |a|=j f<a k=0
|B8|=l

x (|07 (e0r) v 12|07 (eD)™ I~V S | L

, , 3/4
co m j m—j 1-3) pm—4 4
O33N X Wt s G | | S 190 st
m=5j=0 =0 k=0 \|B|=l ' |y|=5—1
1/4
i m!  (m—4)!
| T s | e e
|vl=5—1
< Cllvllac
and
oo m J M= (j-3)y m—3 _
K T a\ [m—j
(=02 2.2, 2 Z s (o) (") e
=0 fal=j <o, k=0
1Bl=l
x (|07 (ede)"vl| 12|07 P (ed)™ I TEV S|
oo m .y ( 3)+7_71— 3/4 4
<o Y 3 (1@l S ) 102U vs
m=5j=0 |8 =
< Cllvllagr)-
Combining (4.2)~(4.6) and Remark 3.4 to bound || Vv =, we get
d .
G 18lae) < ISy (7 + Clivllae) + CllSllae) + Clivllag + C. (4.20)

Now, determine K in (3.5) to be sufficiently large so that
7(t) + Cllv][a¢ry <0, 0<t<T, 4.21)
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where T; > 0 satisfies (3.15). The lemma is then proven by integrating (4.20) on [0, 7], using (4.21), and applying
the Gronwall lemma. ]

After Section 5, we work with derivatives of the solution and thus instead of the norms (3.2) we use

m(1—2>+7(t)(m—2)+

lullpery =YD > 110%(ed)™ ul| L2 T 4.22)

m=1j=0 |a|=j

and the corresponding dissipative analytic norm

o m _ =24 (y, — 2)7(£)m=3
lullsir = 32 3 3 107l =S @23

m=3 j=0 |a|=j

It turns out that the curl component of the velocity satisfies an equation similar to the one for the entropy, but with
the nonzero right-hand side. Thus we now consider the inhomogeneous transport equation

8,:5’ + v - VS = G,
where S = S(x,t), v = v(x,t), and G = G(z,1).

LEMMA 4.2. For any k € (0, 1], there exists 71 € (0, 1] such that if 0 < 7(0) < 74, then

t
ISl aey < 1SO0)[[ae) + C/O (IG()ai) + ()l ary) ds +Ct, € [0,Tol, (4.24)
for some constant C' and sufficiently small Ty > 0, provided K in (3.5) satisfies
K > C”v(t)HA(T)v te [OaTO]a (425)

where Ty is chosen sufficiently small so that (3.15) holds. Similarly, for any k < 1, there exists 7(0) > 0 such that

t
1S5 < 18O +C /0 (IG&)r) + l0()ar) ds +Ct, - t€[0,To], (4.26)
Sfor some constant C' and sufficiently small Ty > 0, provided K satisfies
K > Cllv(t)|lam, t €10, To], (4.27)
where T} is chosen sufficiently small so that (3.15) holds.
Note that from definitions (3.2) and (4.22), we have
[vllB(r) < lvllae
for all v, and thus (4.25) implies (4.27).

PROOF. We proceed exactly as in the proof of Lemma 4.1. Using the Cauchy-Schwarz inequality with the
inhomogeneous part G, we obtain

d, - o )
S 181ae) < 1S (7 + Clivllag) + CUISae) + ollae) + 16 ]ae) +C-

The estimate (4.24) then follows by using (4.21) and the Gronwall inequality. Analogously, we use the analytic shift
(m — 2)! instead of (m — 3)! and proceed as in the proof of Lemma 4.1, we conclude

%HS’IIB(T) <181 3¢y (7 + Cllolla) + CUISI B + 0]l Ber) + 1G] 8(r)) + C-
The assertion (4.26) may then be obtained by setting
7(t) + Cllvllpr) <0
with C sufficiently large and using the Gronwall inequality. (|
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5. Analytic estimate of 0; F/

In order to bound the velocity, we first need to obtain an analytic estimate for 0, £, which in turn requires the
bound on the entropy. We first provide a product rule for the type B norm.

LEMMA 5.1. Letk € {2,3,...}and T > 0. For f1,..., fr € B(7), and any x € (0, 1], there exists 1 € (0,1]
and Ty > 0 such that if 0 < 7(0) < 71, then

k
11

i=1

B(7)

k
<Ay illsy  TT Ufillae +15lz2) )
i=1

1<j<k;j#i

for k > 2, where the constant is independent of k.

PROOF OF LEMMA 5.1. By induction, it is sufficient to prove the inequality

1fallae) < Clfll@ gz + gllze) + CU @ + 1 fl2) 9l B (5.1
for f and g such that the respective right hand sides are finite. To prove the estimate (5.1), we use the Leibniz rule
and write

k(G—2)+ (m—2)4

1fglsmy =D Z —Ilf) (€)™ (f)ll 2

m=1 ]:0 =

m j m—j
< Z Z Z Z Hon,jl,a,8,ks

m=1j=0 1=0 |a|=j |B|=l,<a k=0

(5.2)

where

_ i\ gG=2)+(m=2)4
‘ _(a\(m—=J\~ T 3 k ¢ na—B m—j—k g
Hom,jilo, 8,k (6) ( i )(m — i 107 (€0¢)" fO 7 (e0h) 9z

We split the sum on the right side of (5.2) according to the low and high values of [ + k£ and m, and we claim

Mm
NgE
Mu

Z > ZH bk < CUF B + IF 1) 9l 5y + CUlgllse + gl )5,

m=1j=0 1=0 |a|=j |B|=l,6<ca k=0
(5.3)
oo m J
IS Z HumjabkLitr=0y < CUflBe + 1 £ 12)lgllBe, (54
m=3 j=0 1=0 |a|=j |B|=l,6<a k=0
o m J m—j
SN Yo Hmgtask < CULBE + 1£l2)l9l 50, (5.5)
m=3j=0 =0 |a|=j |8|=1,8<c 1<z+’2<°[m/2]
oo m J m—j
3> > Hnjiesn < Clf sy (19l By + llgllc2)- (5.6)
m=3j=0 =0 |a|=j |8|=1,8<a [m/2]+1k§:l—(0)—k§m—1
c© m J m—j
YO HonjtapiLisremy < Clf e (lgllae + lgllze), 5.7)
m=3 j=0 1=0 |a|=j |8|=1,8<a k=0
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Proof of (5.3): For m = 1, we use Holder’s and the Sobolev inequalities and arrive at

1 J 1—3
SN N S Hijuass < Cllfediglle + CllfDgllzz + Cllgedif| Lz + CllgD f | 2

7=01=0 |a|=j |B|=l,6<a k=0
< CID* FIILM £ €deg 2 + CUD FIILM A1 Dyl e (5.8)
+ CIID 9|35 gl 15" ede £l 2 + D g3 gl o [ D £l 2
< CUIflse + 1AM gl sy + Clglse + Iglz)ll fllser)-

For m = 2, by Leibniz rule we write

iiz > gﬂz,ml,a,ﬁ,k

§=0 1=0 |a|=j |B|=1,f<a k=0
< C|lf(ed:)?gll 12 + C||f Dedrgll 2 + C||f D?gl| 2 (5.9)
+ CDfedrgll> + ClIDfDgllL> + Cllede f (edr)gllL> + Clledr fDyl| >
+Cllg(ede)* fllrz + CligDede f| 2 + CllgD* £ 2.

All the terms in (5.9) are estimated using Holder and Sobolev inequalities. For illustration, we treat the fifth term,
for which we write

3/4 1/4 3/4 1/4
IDfDgllz2 < IDf|l1a]Dglle < CID*FIL DA D206 Dgll s < ClAlsellollae.  (5:10)

Collecting the estimates (5.8)—(5.10), we obtain (5.3).
Proof of (5.4): Using Holder and Sobolev inequalities, we obtain

co m J m—j
DO Y D Humjraskluie=o

m=3 j=0 =0 |a|=7 |B|=l,8<a k=0
=24 (m—2) (5.11)

O3 Y Ul ey gl T !

m=3 j=0 |a|=j
< C(IfllBy + 1 fl2)lgllB(r)-

Proof of (5.5): Using Holder and Sobolev inequalities, we obtain

i ii X 2 mi:] Homjlo .k

m=3 j=0 1=0 |a|=j | 8|=1.8<a k=0
lel=g1Bl=tBer ) A2

1/4

<1—2>+T<1+k—2)+>

<cYYY Y ¥ z (197 e s e

m=3 ;=0 1=0 |a 7
lal=g1BI=tA<e ) A28

Ly (k)4 K(jl2)+7—(mlk2)+>

3/4
298 b 57 a,ﬁG m—i—k )
x(nDa (0" flle> =g ) (8 (0™l — =T = =y

where we bound the constant coefficient by C analogously as in (4.14), and bound the 7 and « term by C analogously
as in (4.9)—(4.10). Therefore, using the discrete Holder and Young inequalities, we obtain (5.5).
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Proof of (5.6): We reverse the roles of [ and m — [ — k and proceed as in the above argument, obtaining

m—j

i ii >, > > Homjlap.k

m=3 j=0 =0 |a|=5 =I,6<«a k=0
led=gIBl=t.A<e o 5 k<

m_J <lz>+T<l+k2>+)

535 5) 35 JD SENEED DI (LAl P

m=3 j=0 l=0 |a|=j =I,f<x k=0
=g 1Bl=th<e o 5 h<m

(=1=2)4 (m—l-k—2); \ /4
a—03 m—j—k r T
X (||8 (€0)™ 7 "gll2 (m—1—k—2) )
=D+ p(m—1=k)4 \ 3/4
S ik K T
x <||D 9P (ed)" 7 gl L2 (m—1—h) )

Therefore, using the discrete Holder and Young inequalities, we obtain (5.6).
Proof of (5.7): We proceed as in (5.11), obtaining

o m J m—j
Z ZZ Z Z Z Hm,jl,a.8,k L {1+k=m}

m=3 j=0 [=0 |(x\:j \5\ZZ,BSO¢ k=0
j2)+7—(m2)+>

oo m ‘ I*{(
<O Nl (naa(eat)mffnmm_g)!

m=3 j=0 |a|=j

< Clfllselgllsery + llglize)-
Combining (5.3)—(5.7), we obtain (5.2).

Similarly to (5.1) and Lemma 5.1, with analytic shift (m — 3)! rather than (m — 2)!, we also have

1fgllacry < CllfllaUlgllacy + llgllz2) + CUflla + 112l ac)-

In the case when f belongs to L but is not square integrable, we have variant formulas

I fallay < ClfllaeUlgllacy + lgllz2) + Cllfllz<llgll acys

and

I fallBiry < Cllflls l9llBery + lgliz2) + Cll flize<llgll B(r-

(5.12)

(5.13)

(5.14)

The proofs are similar to (5.1), where the modification of the proof for the variant formula (5.13) is to treat the term

| fO“(edy)™ I g|| 1> by Holder’s inequality with exponents oo and 2.
The next lemma provides an analytic estimate for composition of functions.

LEMMA 5.2. Assume that f is an entire real-analytic function. Then there exists a function Q) such that

IF (S < QUISE N ar + I1S#)llz2),
and

IFSEairy < QUS| a) + 1S®)]22),
where Q) also depends on f.

PROOF. First we prove (5.15). Since f is entire, for every R > 0 there exists N(R) > 0 such that

NEk!
|f(k)(x)|§ﬁ, z € R, k e Ny

(5.15)

(5.16)
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and
< 9 (0)S(t)*
:Zf (k)' (t) . (5.17)

By Lemma 5.1, we obtain

f® (0 ckk 4
© < MOk 61y (1S 0y + 1S 2)E (5.18)

k
k!S

‘ B('r)
Summing (5.18) in k£ € N and using the Taylor expansion (5.17), we arrive at

< on 5Ol i(C(HSHB(T)""'S”Lz))k

1£(S()lB(r) <
B(r) 1S5 + 11512 &= R

k=

(15|l 5(r) + 1] 2
<0NZ( (1ot + |L>

Choosing R = 2C|S(t)|| p(r) +2C||S(t)| 2, we obtain || f(S(t)) || g(-) < CN, where N depends on ||S(t)| p(r) +
|S(t)||z>- Finally, observe that ||S(t)|| -y < [|S(t)|l.a(r). by the definition of the norms, concluding the proof of
(5.15). The estimate (5.16) is proven analogously by using (5.12), and we omit the details here. O

For the next two lemmas, assume that e is one of components of the matrix F in (2.16), i.e., either r or one of
the components of a. By the assumptions (2.17) and (2.18), we have

é(S,eu) = f(9)g(ew), (5.19)
where f and g are positive entire real-analytic functions.
The first lemma gives the estimate of the derivative of the component of the matrix E.
LEMMA 5.3. Given My > 0, and (5.19), where f and g are as above. Then
10:ell By < QUIullacr) + lullzz, 151 acry + 151l 2) (5:20)

for some function Q.

PROOF. By (2.15), the chain rule, and product rule, we obtain
e = f'(8)0:Sg(eu) + f(S)Vg(eu) - edyu = —f'(S)v - VSg(eu) + f(S)Vg(eu) - €dpu.
Therefore,
10l By < I/ (S)v - VSg(eu)ll () + 1 (S)Vg(ew) - €dpullp(r) = G1 + Ga.. (5.21)
By repeated use of (5.1) and (5.14) and Remark 3.5, we arrive at
G1 < ' e lv - VSg(eu)llpiry + llv - VSg(eu)l|z2) + 1/ (S)llLe v - VSg(eu) | (r)
<N s (lgledlsa v VS +llv-VS|r2) + Cllo- VS|p@e) + lv- VS|lr2)  (5.22)
+ Cliglew)ll ) (v VS|lpe) + v - VS|L2) + Cllv - VS| p(r).
For the term ||v - VS|| g(;), we again appeal to (5.1), obtaining
lv-VS|lgr) < Clvllse (IVSIey + 1VSlze) + ClIVSIam (Ivlae) + [[vllz2) -
By the definition of the analytic norms in (3.2) and (4.22), we have

(1=2)4 H(m—2)4
K T
VSl = E > D 10%(edn) ™IV S| 2 2
m=1j=0 |a|=j '

(5.23)

k(G=2) 1 p(m=2)4

<C Z Z D 0% (€)™ IS (m —2)] < ClSllacr)-

m=1j=0 |a|=j+1
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Collecting estimates (5.22)—(5.23), we obtain

G < Qllullac) + llullz2; [1S]lar + 1151lz2)-
Using analogous arguments, we also get

G2 < Q(llull ary + llullL2; 1Sl ac) + 1151 22)
since by definition

m k(=24 (m=2)4

- o m—j+1
ledrull ey = DD Y (10 (edn)™* uHsz

m=1j=0 |a|=j

IN

k(G=3) 4+ (m=3)4
m=1j=0 |a|=j B
Therefore, (5.20) is proven by combining (5.21), (5.24), and (5.25).
The second lemma gives the analytic estimates for the component of the matrix E.
LEMMA 5.4. Assume (5.19), where f and g are as above. Then

@l < QUIwlacr) + llullze, 1Sl ac) + 15]1z2),

for some function Q.

¢ Z Z Z ||8a(€8t)m7j||L2W < Cllullar)-

(5.24)

(5.25)

(5.26)

PROOF. Since é(t) = f(5)g(eu), the proof of the estimate (5.26) may be carried out by appealing to Lem-

mas 5.1 and 5.2 in the A-norm.

6. Estimates on the velocity

E(S, eu) = (a(S(,)eu) r(S,gu)Hg) ’

Recall that

where a(S, eu) and r(S, eu) are as in Section 2.1.

O

6.1. Estimate on the curl. We first need to rewrite the equation (2.11) so to be able to estimate the curl of the

velocity v. Introduce ro(z) = r(x,0) (i.e., ro(S) = (S, 0)), and note that, by our assumptions,

ro(S) = f2(5)g2(0).

Define () )
7 _q_ Tolx) . 92
Ty =1y = al

Since f is a function of y only and vanishes at y = 0, there exists a bounded entire function A such that

f(z,y) = yh(y).

Denoting

we then have

f(S, eu) = eh(u).

Since 9;.5 + v - V.S = 0, the equation (2.11) for v is equivalent to the nonlinear transport equation

1 -
(O +v-V)(rov) + EVP = hVp.
Applying curl to the above equation and using curl Vp = 0, we arrive at

(8 +v - V) curl(rov) = [v - V, curl](rov) + [curl, h]Vp.

6.1)
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To treat (6.1), we would like to use (4.26) from Lemma 4.2 and thus we need to estimate the forcing term
G = [v-V,curl](rov) + [curl, A]Vp = Gy + Go

in the analytic norm (4.22). Since ([v;0;, curllw); = €;kmOmv; 0wy, Where €, is the permutation symbol, we
may apply Lemma 5.1 and obtain

Gl < C(IV(rov) |5y + [V (rov)|[2) (Vo[ 5r) + [Vl £2)- (6.2)
From (5.13), (5.23), (5.26) and (6.2), we get ||G1]|p(r) < Q(Mc(t)). The term Gy may be estimated in an
analogous way since ([curl, 71] Vp); = €10} hop, leading to
|1Galla) < CUIVPIBE +IVPIL2) (VR B(r) + [ VhllL2) < Q(Mc (1))
Proceeding as in Lemma 4.2, we obtain

k=24 (m=2)¢ g4 i
—|| curl(rov) || p(r) = 7| curl(rov) || 5, + Z Z Z —@Haa(eat)m Teurl(rov) Lz, (6.3)

m=1 j=0 \a| =j
where we used the notation (4.22)—(4.23). By (4.26) from Lemma 4.2, we get
| curl(rov) (1) | 5(r) < |l curl(rov) (0) | 5(ry + Ct sup [G(s)llner) +Ct sup [[v(s)]l () + Ct
s€(0,t) s€(0,t) (6.4)
< C+tQ(M. . (1)).

Next, we estimate curl v in the analytic norm B(7). Denoting

1
RO =
To
we rewrite
| curlv|| g(ry < || Ro curl(rov) || g(ry + ||[[curl, RoJrov||p(ry = &1 + &o- (6.5)

For the term &1, we use (5.14) and the curl estimate (6.4), obtaining

&1 < Cl[Roll () (| curl(rov) | 5(r) + || curl(rov)| £2) + C[[Rol| o< || curl(rov)[| 5¢r)- (6.6)
Since Ry satisfies the homogeneous transport equation 9, Ry + v - VR = 0, the inequality (4.26) from Lemma 4.2
implies

[Ro(S)lB(r) < [1Ro(S(0)llB(r) + Ct Supt) [o(s)B(r) + Ct < C +1Q(Me x(1)). (6.7)

s€(0,
Combining (6.4), (6.6), and (6.7), we obtain
& < C+1Q(Me (1)) (6.8)
For &;, we first rewrite it as
[curl, Ro]rov = R1V.S X v,
where Ry = —r{(/ro. Applying Lemma 5.1 and (5.14), we get
&2 = |[[ewr], RoJrov| p(ry < ClRillp) (IVSIa(r) + IVSIL2) (vl 5ry + lvllL2)

+ ClIVS| o) (1Rl Br) + [[Ballze) (0] 5(r) + [0l £2)

+ Ol (1Bl By + 1R llz=)(IVSl 5y + VS| L2)-
To bound the right hand side, it suffices to estimate || R1||p(r. [|VS| B(r)» and ||v]| p(+). as the rest are bounded by

C (cf. Remark 3.4). For || R1|| g(-), since Ry = —r(/ro depends only on the entropy S, it satisfies the homogeneous
transport equation 9, Ry + v - VR; = 0 and thus by Lemma 4.2,

IR (S B(ry < IRL(SO)B(r) + Ct+ Ct sup [[u(s)l|pr) < C + 1Q(Mek(t))-

s€(0,t)
For ||V S| g(r. by (5.23) and Lemma 4.1, we obtain
”VSHB(T) < OHSHA(T) =+ tQ(Me,H(t))-
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For ||v|| g(+) by the norm relation we have

< by D7 ()™ 107 (e8,)™ 7 RO (b
lollne < 330 2 1@y ol + 30 30 3 ovean™ e e T

m=1 :Oa‘] m4j Ola‘_]
< C+O7lvllaery < C+7Q(Mc k(1)).
By combining the above estimates, we deduce that
£ < O+ (t+T)Q(Mek(1))-
Therefore, together with (6.5) and (6.8) we arrive at
| curlv||pry < C+ (t +7) Q(Me x(1)). (6.9)

6.2. Energy equation for the pure time derivatives (A; norm). In this section, we estimate the pure time-
analytic norm

o Tt)(m—3)+
Il = 2 eo)™ullee =5

with the corresponding dissipative analytic norm

(m — 3)r (e
Hu”Al (r)y — Z H 6875 u||L2 ( — 3)|
Consider the partially linearized equation
1
E(Oyi+v- Vi) + —L(0,)t = F, (6.10)
€

where @ = (p,v) and E = E(S, eu).
The next lemma provides a differential inequality that is used for pure time derivatives of u.

LEMMA 6.1. For all (u, F) satisfying (6.10), we have
d . .
B a2 < (|2 + [|1F1z2),

for a constant C' > 1.

PROOF. We multiply the equation (6.10) by 7 and integrate in R®. Since L(3,.) is skew-symmetric, we have
(L) i) =0,
i.e., the term with 1/e cancels out. Using also the Cauchy-Schwarz inequality, we get
(Bdyi, i) < CIV(E0) | a3 + CIF | gzl oz, 6.11)

and thus by Holder’s inequality and since F is a positive definite symmetric matrix, we obtain from (6.11)

d, .. . o L
- (B, 0) = (0, B, i) + 2(Edyi, ) (6.12)

< 0Bl llalz> + CUV (B @l + ClIF| el o

d .
SIE 2. =

On the other hand,
d ) o d :
i IEY 203, = 2| EY2a) 12 P | B2 2. (6.13)

Now, we combine (6.12)—(6.13), and using that the low-order Sobolev norms of 9, F, 0, FE, 0,v, and E-1/2 may be
estimated by C' (cf. Remark 3.4 and 3.5). We arrive at

Clalz: . ClF|ala] 2
< C(]Ja F
= [EV24) 12 + IEV2a) . = (Il + 1F ) 22),

HE1/2 lr2 <
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where we appealed to
il e = |E7V2EYil| 2 < OBV pee | B2 12 < C| BV 12,
and the lemma is proven. |
Using the previous lemma, the next statement provides a pure time derivative analytic estimate for the solution
w in the A;(7) norm.

LEMMA 6.2. There exist tog > 0 sufficiently small depending only on My and €1 > 0 sufficiently small depend-
ing on M. ,.(T) such that for t € (0,ty) and € € (0, €1), we have

[u(®)[[a, < C+tQ(Me,x(t)), (6.14)
for a function Q.

PROOF. For m € N, we apply (e0;)™ to the equation (2.14). Then @ = (e0;)™u satisfies (6.10) with

F =[E, (e0,)"0wu + [Ev, (€0;)™Vu. (6.15)
Denote
1/2 7(m=3)4
ullag = Z 1B ()™ ull 2 o5 (6.16)
m=1 ’
with the corresponding dissipative norm
> (m — 3)rm—*
Iz = 3 12 D0l == (6.17)
By Lemma 6.1 and using the notation (6.16)—(6.17), we obtain
d
lullas = Hlulz, + Z ; eyl
m= 1 o, (618)
< Tllullz, + Cllulla, +C Z 7)IIFHL2
where F'is given in (6.15). Note that
‘FHLQ < Z ( >|| e@t J- 1815 (Gat)m_j+1u||L2 + Z ( ) €8t Ev)(e@t)m jVUHLQ
= (6.19)
- Fl,m + F27m-
For the first sum in (6.19), we have
> (m=3) 4. f(m=3)y
T T m . e
Z mFl’Tn’ = Z ZM<]>||(€at)J 18tE(66t) ‘7+1UHL2
m=1 m=1 j=1
oo [m/2) (m-3)4
T m . .
—_— 9, Lo, E(edy)m Tt
P = (m—3>!(j)”(€ O e (6.20)
oo m 7(m=3)1 /1y i1 el
+y Y CEEnt 1(e0:) 1 0L E(edy) ul| 2
m=>5 j=[m/2]+1 “\J
=Dy + Da + D3,
where we split the sum according to the low and high values of j. We claim
D <C, (6.21)

Dy < C”afEHB(T)HUHAI(T) + C”UHAl(T)a (6.22)
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D3 < Cl|0:E|| By llull acry- (6.23)

Proof of (6.21): Using Holder’s and the Sobolev inequalities, we may estimate D; using low order mixed space
time derivative of w and S, and from Remark 3.4, we obtain (6.21).
Proof of (6.22): Using the approach as in the estimate for .S, we have

o M2 g _ _
D, = ( ,)(eat)JlﬁtE(eat)m7+1u||L2
m=>5 j=1 (m—3)I\J
oo /2 (-8)+ VA G- 8/

o T - T - 6.24)
< —_— 3719, El| 12 - ||D? I10,E|| 12 (
o33 (Gl asls) (i) ab:

m—j—2)rmIi=3 m—j

X < m—j)—2)! [[(€0%) H_1“||L2> Ajm,
where

A = m! (G —=3)MAG — )3/ (m —j —2)! - Cm? -C

Pl (m = g)l(m — 3)! m—j—2 T (m—g)pP T
and

a:m—3—<]—3> —(3]_3> —(m—j—3)>1, (6.25)
4 ), 4 ),

since 1 < j < [m/2]. By (6.24)—(6.25) and the discrete Young inequality, we obtain

oo [m/2] (j—3)4 — i —9)ym—i—3 .
<0y 3 (Fogleonable ) (M2 ey s )

m=5 j=1 J = 2)'
= A T( =D+ 2 1 (m _j B 2)7_m—j—3 m—j+1
+OZ5 Z; ( |D (D)7~ atE||L2) ( ] (€)™ u||L2>
m J

< C(||0:E| p(ry + ||<9tEHL2) lull 4, ()

Proof of (6.23): Reversing the roles of j and m — j and proceeding as in the above argument, we may write

, (-3 A(m—j—2)4 - 1/4
Dy < Cr Z Z <( o ||(eat) 8tE||L2) <(m_,_2)|||(eat)mg+ u||L2)
m=5 j=[m/2]+1 I J ' (6.26)
r(m=i)s 2 m—j+1 i
< (T D200 iz ) B
where
! SV i VL A _ i)13/4 3
B; . — - m! ' (G=3)(m—j—2)"%(m —j)! < C’m <c
g m = g)! (m = 3)! j*
and
o o
b:m_3_(j_3)+_<mj) _(3m3]> >0, (6.27)
i), 1),

since m > j > [m/2] 4+ 1. From (6.26)—(6.27), we obtain

D3 < C||0cE| =) llull ar)- (6.28)
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Analogously, the second sum in (6.19) may be separated according to low and high values of j, obtaining

© Tm 3)+ 4 [m/2] T(m 3)+ »
2 i T 2 2 < >”(Eat> (Bv)(cd,)" V]
m=1 m=1 j=1
€ € 2
= e (m=3)! ! ‘ L (6.29)
T(m_3)+

Yy <ms)!(?)||(@)f<Ev><eat>m-jw||m

m=>5 j=[m/2]+1

=Dy + D5 + Dg.
We claim
Dy <C, (6.30)
D5 < C||Ev|| anIVulla, (r), 6.31)
Dg < Cl|Ev]|a¢rl[ull acr)- (6.32)

Proof of (6.30): Proceeding as in the proof of (6.30), we obtain that the low-order mixed space-time derivatives
may be estimated by C'.
Proof of (6.31): As in (6.24), we have

oo [m/2] (m 3)+

Di<CY Y ( )H(e@» (B ID2 €0,y (Eo) 25 (c0)™ 7 ul| 12

m=5 j=1
oo [m/2] SG=3)\ /4 N
<o > (e Enles—r ) (ID@ Ele Gy
m=5 j=1 ' )
. F(m—j=3)4
(Il(ef?t) ’VUIlLZ(j_g)!>

< ClEv|amnlIVull a, (r)-
Proof of (6.32): Asin (6.26), we arrive at

T(m—3)+ m ] m—j 1/4 2 m—j 3/4
Ds < C Z Z m j [[(e0e)’ (Ev)|[ 2 |(€Dr) Vull s [ 121D (edk) Vull7
m=>5 j=[m/2]+1

(G-3)+ 1/4

<oy 3 (el T ) (o vl L)

m=>5 j=[m/2]+1 J

< (12 )

3/4

< CllEv|allullac
Collecting the above estimates (6.20)—(6.23) and (6.29)—(6.32), we obtain from (6.19),

(m—3)+ (m—3)+
Z(T 1m+ZT iFem S Di Dy Dy 4D+ Dy + Do

m=1

<C+ CH@EHB(T)IIUHAI(T) + CHUllgl + Cll0:E| By llull acry
+ Cl|Ev[| oty VUl a, () + CllEV] a(ry [ull A,

(6.33)

where we estimate ||0; E|| p(-) using Lemma 5.3, and || Ev|| 4(-) with (5.13) and Lemma 5.4.
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In order to estimate the dissipative term ||Vu|| 4, (-), we recall the elliptic regularity for the div-curl system
[Vo|lzz < C|ldivu|zz + C| curlv]| gz, (6.34)
which, together with the definition of the A;(7) norm, leads to
IVulla,r) < CIL(0z)ull 4,7y + C|l curlv| 4, (r).- (6.35)
To treat the divergence part of the dissipative term, we rewrite the equation (2.14) as
L(0y)u = —E(S, eu)(edu + ev - Vu). (6.36)

For m € N, we apply (ed;)™ to the equation (6.36), obtaining

1(€0e)™ L(Oy)ul| 2 < CZ >|| (€0y)? E(€0,)™ 7 | 2 + Ce||Bvl| oo ||(€0:) ™ V| 1.2

Jj=0

+Ce Y |[(edr) (Bv)(edr)™ IV ul| 2.

j=1
From here we arrive at
7(m=3)4
IL(0z)ull 4y (r) = Z [[(ede)™ U||L2m
(m—3)4 0 Fm—3
< E(ed,)™ || ——— Bl || (e0)™ | pp ————
_leH (e0e)™ " ullr (m73)1+£|| [ (€)™ ull (m =3,
o1 et 7(m=3)4
+cemz:1;< >|| (e0,) 10, E(edy) u||Lzm
7(m=3)4
+ Ce Z | (ey) mvvnmW
T(m 3)+
+C’ez Z( >|| (€D1)? (Ew)(edy)™ Jvu||L2W
m=1 j=1
<C+C|E Ce||V eSS T ey T
< O ClEl=lllz, + Ol Vol + Ce 3o gy Fim + Ce 32 oy oo
(6.37)

where we used the notation from (6.19) in the last inequality. The third term on the far right side of (6.37) may be
absorbed in the left side of (6.35) when e is sufficiently small, and the fourth and fifth terms may be absorbed into
the left side of (6.33) when e is sufficiently small depending on M, ,.(T').

To treat the curl part of the dissipative term, using the similar technique for the curl estimate above, we have

|(€0:)™ curlv||rz = ||(edy)™ curl(Rorov)|| 12

< Z ( )H (€0y)? Ro(€d,)™ 7 curl(rov)| 12 + Z (] ) (€0 V Ro(€0:)™ I rou|| 2.

7=0
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We use a similar technique as in the proofs of (4.4)—(4.5), obtaining

A e (M . . 7(m=3)4
ool < 32 3 () 6P Rt el
F(m=3)4
+ Z Z ( )H (ed) JVRQ(eat)m ]TOUHLZ’W (6.38)
m=1 j=0 .

< CllRollaelFeurl(rov) |l 5y + CllRollacr |l curl(rov)| )
+ CllRolla¢rIrovll ac) + CllRoll 40y llmov] ¢
Since Ry is a function of S, it satisfies the inhomogeneous transport equation
ORy+v-VRy=0.
Then Lemma 4.1 and (4.20) imply that

d .
ZBolla@) < [Roll i) (7 + Cllvllae) + CllBollacr) + Cllollagr + C. (6.39)
Coupling (6.3), (6.18), and (6.39), we arrive at
d
p (l[ullap + [[Roll a¢ry + [ curl(rov) || 5(r))
Dt 6.40
< 7llull 5, + Cllulla,- +C Z ﬁHFHH + | Roll 1) (7 + Cllvlla¢r)) + CllRoll a(r (6.40)

m=1

+ Cllvflacry + 7l carl(rov)|| 5y + CIGl By + Cllvliser) + C.
Collecting the estimates (6.18), (6.33), (6.35), (6.37), (6.38), and (6.40), we arrive at

3 (ullas + 1 Boll g + | cnrlron)] o)
<|lull 5, (7 + CllOEllp(ry + C + CllEv| a(r)) + CllOEl 3oy ull acry + CllE]| A 1wl acry
+ C||[Bvl|a@) + CllEv[|ai [ Rollan | curl(rov) | By + ClEV|| o)l Rollai Imov]l acr
+[Rolligry (7 + Cllvllagry + CllBv] aellrovllacny) + CllRollary + Cllollac
+ [ ewl(rov)|| gy (7 + ClEV[|a [ Rollam)) + ClIG| 5ry + Cllvll ey + C,
where we appealed to

lull 4,y < Cllull 4,,

by the boundedness of || E~/2| .
Now, assume that the radius 7(t) decreases sufficiently fast so that the factors next to [|ul 5,,. [|Roll 4(,) and
|| curl(rov) || 5, are less than or equal to 0. Integrating the resulting inequality on [0, ], we get

[ullap < u0)lap + [[Ro(0)][a(r) + | carl(rov) (0) || 5(r) + EQR(Me,x (1)) < C + tQ(Me,x (1)),

and since ||ul|4, < C||lul|a, the proof is concluded. O

6.3. Energy equation for the mixed derivatives (4, norm). Here we estimate the mixed space-time analytic
norm. For this purpose, denote

,.;(j—3)+7-(t)(m—3)+

Il = 3 3 37 e ul = T

m= 1j lla‘ ]
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and let

o m i—3 m—4
bl = 353 3 107(c0)" Fulia" e
be the corresponding dissipative analytic norm. Note that
lu(®)lla = [lu()lla, + [lu(t)]la,
LEMMA 6.3. Given My > 0, there exist a function Q) and eo such that for ¢ € (0,¢p), k < 1, the solution
of (2.14) satisfies

[u®)]a, < C+ (E+ e+ 7+ 5) Q(Mcx(1))- (6.41)

PROOF OF LEMMA 6.3. By the definition of the As(7) norm, we have
k(G=3)+ (m=3)4

[ull as(r) = Z Z D 10 ()™ Pl 2 (m—3)!

m=1 j= 1|a| =j

-3 Tm= 3
DI I M D) S M AT AL s
m=1 j= 1|a|j m=4 j=4 |a|=j
+ZZ Z ||8C¥ Eatm ]uHL2( ) _P1+P2+Pda
m=4 j=1 \o/| =j
where we split the sum according to the high and low values of j and m. We claim
P <C, (6.42)
Po<CH (t+e+r+7)Q(M(t)), (6.43)
Ps < C+ (t+ e+ 1) Q(Mek(t)). (6.44)
Firstly, (6.42) follows by using Sobolev inequalities and Remark 3.4.
Proof of (6.43): We rewrite equation (2.14) as
L(0,)u = —E(S, eu)(edsu + ev - Vu). (6.45)

For m > 3, and |a| = j where 3 < j < m, we commute 9%(ed;)™ 7 with (6.45), and using div-curl regularity
(6.34), we obtain

V0% (e0,)™ | 12 < C||L(2)0%(€d)™ || 12 + C|| curl(d%(edy)™ 7 v)|| .2

¥y ¥ (5)(" 7 1o cont oeanym s+

k=0 1=0 |8|=l,8<x
+ Ce||Ev|| 1o ||0% (D)™ IV ul| 12

+Ce§j:n§ 3 (g) (m J>||aﬂ(eat) (Ev)9° B (ed,)™ I~k V| 12

1=0 k=0_|8|=l1,8<
l+k>1\ﬁ\ Bl

+ C||0%(e0y)™ 7 curl v|| 2.
(6.46)
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The second term on the far right side of (6.46) can be absorbed into the left side when e is sufficiently small. Multiply
the above estimate with appropriate weights and then sum, with change of variables we obtain

K]SmS

Z Z > 0% (edn)™ uHLZW

m=4 j= 4|a\ =j

<O Y Y v eyl T —
m=3 j=3 |a|=j

co m—1 m—

J J i—3._m—3 _i_1 ‘
< Ck 3 3 kz >y ’M(g) (m ]j >||8ﬁ(63t)kE3a5(68t)mJku”Lz
lal=j k=

3

=4 j=

x |08 (€0 )* (Ev)0“ P (edy)™ 17 *Vul| 12

m—2

K~ 27'
+C Z Z Z ||8°‘(e(9t)m I curlvl| 2

m=3 j=3 |a|=j
< Ck| Bull ey + Ce(||Ev||A<T) + 1Ev[lL2)[ulla¢ry + Cll curlv|[ p(r
<C+ (t +KrK4+T74+ E) Q(Me,n(t))’

(6.47)
where the last inequality follows from the estimates (5.13) and (6.9).
Proof of (6.44): For m > 4 and |a| = j where 1 < j < 3, we proceed as in (6.46)—(6.47) and obtain
-y Z > N9 (ea)m ]U||L2( )
m=4 j=1|a|=j
e} 2 ] Tm_2
(6% m—
<Cc> Z Z. [VO* (edy) ]u||L27(m 3
m=3 j=0 |a|=j
o o) 2 m—2
-
<Ccy Z > IL(02)0* (€0)™ ]u||L2 +c SN | curl(8% (€dy)™ )| 2 ——— R
m=3 j=0 |a|=j m=3 j=0 |a|=j
(6.48)
Therefore,
oo 2 J ’Tm_2
3 a—f3 m—j+1
Ps<C >y Z ,Z > mna B0 (0,)™ I | 2
m=3 j=0 |a|=j I=0 |8|=l,<a
co 2 m—j j 7_m—2 m — ] 5 o1 8 Cht
o — m—
m=3 j=0 |a|=5 k=1 1=0 |B|=l,<a

m—2

URPIPIPIPIDS i ]>”3B<68t> (B0)* )"+l

(6.49)
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The second term on the far right side is estimated by using Lemmas 5.1 and 5.3, while the third and fourth term can
be estimated analogously as in (6.47). For the first term, denoted by P31, we use the div-curl regularity to reduce
the spatial derivative. We split it according to the values of j, obtaining

m—2
P31 = Z Z ||E (€)™ ul L2 + Z > Z > ﬁ”aﬂanﬁ(eaﬂmuHL‘z

m=3 |a|= O m=3 |a|=1 =0 |8|=l,8<«

2 m—2
+ Z IDINDY ﬁl\ﬁﬁffa‘“ﬁ(e&)m*ullm (6.50)

m=3 |a|=2 1=0 | 8| =1.3<a

> . m—2 Fm—2
< C”uHAl(T) +O7nz::2||v(fat) UHNM m
The first term on the far side is bounded by C' + tQ(M, ,.(¢)) by Lemma 6.2, while the second and third terms can
be estimated analogously to (6.48)—(6.50). Combining the resulting inequalities, we obtain
PS < C+ (t te+ T) Q(Me,n(t))v

and the lemma then follows by (6.42)—(6.44). U

+C Y IVP(ed)™ e
m=3

PROOF OF LEMMA 3.3. The inequality (3.13) follows by using (4.1), (6.14), and (6.41). O

7. The Mach limit
In this section, we prove the second main theorem on the Mach limit in the space X .

PROOF OF THEOREM 3.2. Let 6 > 0 be a small constant, which is to be determined below. For the sake
of contradiction, we assume that (v¢,p¢, S¢) does not converge to (v(°) 0, () in C([0,T], X5). Then there
exists a sequence (v, p, S") which does not converge to (v(i“C) 0, S(inc)) in C([0,T], Xs) as €, — 0. Recall
from [MS, Theorem 1.4] that (v, p°», S converges to (v 0, S(¢)) in L°°([0, T], L?(R?)) as ¢,, — 0. For
k,n € N, we define vy, (t) = v (t) — v (t). For m € N and o € N3, using integration by parts and the
Cauchy-Schwarz inequality leads to

||aavkn‘|%2 = <8avkn78avkn> = (_1)|a|<vkna62avkn> S ||'Uk:n||L2||82aUkn||L2~

Summing over |a| = m with m € N such that m > 4, we obtain

(m
> 2. e vknllm <l Y >l ;m|”25m 3

m= 4‘a| m= 4‘a|

m— m— 1/2 .

= Hv ||1/2 Z Z ||52a11 || . K (2m=3)4 (2m—3)4 (2m _ 3)!1/25( 3)4
kn ~ kn||L (2m — 3)' (m _ 3)!/{<2m—3)+/27-(2m—3)+/2

e (7.1)

1/25 m—3)4
1/2 1/2 2m 3)'
< cM |Uk7l|| Z Z m 3 'H(in 3)+/2T(2’m 3)+/2

m= 4|a|

oo _ 3)11/25(m=3)
1/2 1/2 C (2m 3)'
= G [ [ Z_ (71— 3R @) 2, @I /2

where C' > 0 is a fixed universal constant and M is as in (3.6). Now choose § > 0 sufficiently small so that
0/kT < 1/CC) on the whole time interval [0, Ty], where C is sufficiently large, and obtain

o2m — 3)11/2
> Z |o° vknllw ) < MY25732 II1/2Z(C(%n_)). < MY 2, (72)

m=4 ‘al m=4
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where we used Stirling’s formula and assumed Cj to be sufficiently large so the sum converges. Analogously, we
set P (t) = p* (t) — p (t) and Sky (t) = S (t) — S (t) and proceed as in above obtaining

> Z o° panLz ) < MY25732,,, |12, 73)
m=4a|=

and
X:E:Hasmh2 ) < MY25730|| S, |12 (7.4)
m=4a|=

Note also that ||vg,||gs < C’||vkn\|3/4Hvanl/4 C’||v;m||L2 , by Remark 3.4, with analogous inequalities for
Pin and Sk,,. Since M and 0 are fixed constants, we infer from (7.2)—(7.4) that the sequence { (v, p, S )} is
Cauchy in C(]0,Tp], Xs) which implies that it converges in C([0, Tp], Xs), which is a contradiction. Therefore,
{(v¢, p¢, S€)} is convergent and converges to (v("®), 0, S("¢)) in C([0, Ty], X;) as € — 0. O

8. Analyticity assumptions on the initial data

In this section, we assume that the initial data satisfies (3.2), and intend to prove that for smaller n we have

ii 5 A=)
10 (eds)"u(0) | 2 57 < T, 8.1)
"0 520 1o (j+n—3)!
and
(J+n 3)+

ZZ > 110%(ed)™S(0)]] 2 ﬂ <T, (8.2)

n=07=0|a|=j
where I' > 0 is a sufficiently large constant depending on Mj; for larger values of n, we claim that there exists a
sufficiently small parameter A > 0 depending on M, such that for all £ > 4 we have

/\n737.(j+"—3)+

k oo
XS ||3a(eat)”u(0)llmm <1 (8.3)

n=4 j=0 |a|=j
and
A3 (j+n—3)+

ZZ 3 9% (ed)"S (0 )HLQW <1 (8.4)

n=4j=0 |a|=j
In (8.3) and (8.4) we then choose 7y = A7p/2 and using (8.1)—(8.4), we get
7:(J+”—3)+

TSI SHD DD DN LA wS) Ol G =3y

n=0j=0,n+j>1 |a|=j
(+n—3)+

gzzzwmw>mw%;@

=0;=0|a|=j
> A3 (J+n—3)+

1 o0
+22n_3z Z Haa(Gat)n(U,S)(O)HHW 1“—4—22” 5 <C,

n=4 7=0 |a|=j

obtaining (3.4). In the remainder of this section, we prove (8.1)—(8.4).
For n = 0, we use the assumption (3.2) on the initial data to obtain

(] 3)+

Z > 110 (u, S)( ||L2( 31 = o ®8.5)

3=0]al=j
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for some constant I’y > 0. Next, for n = 1, we apply 9° to (2.15) where |a| = j € Ny, which leads to
«a
0%0,5 = - < )aﬁv -9V,
BLla b

Therefore,

(J 2)+

Z Z Hé’“e@ts\lm( 2)!

J=0 |a|=j

8.6
(J 2)+ (8.6)

SCe NN (5>”3ﬁ“ 0° PV, 2(] i

J=0]al=j =0 B<a,|B|=I
We split the right side of (8.6) according to low and high values [. By Holder and Sobolev inequalities, we have

] 2)+

Z > ||a%at5||L2( 7

J=0]al=j

- , (1-1)4 \ /4 F1=3)4 1/4
oSS x5 (i) (i)

7=0|a|=j 0<I<[j/2] B<a, | B|=1

(G—1-2)+ —DIB/A( — 345 — [ — 9141
|92~ ’BVSHL2 7?0 (l )! .(l 3)'. (-1 ) (8.7)
(G —1-2) G—=2)'(G -
o0 =34 S04\ ¥4
+O Y 3 19%le gy | (ID%0 Sl
7=0lal=; [j/2] +1<1<] B<a|B=l 7=
/4 . .
NP A W ot L€l i U 11
BG-i-2) G -2 —Hul
One may check that
(1= 1)1 =)/ —1—2)!5! -
G =2 =D T
for I < [j/2], while
P DI3/4 (5 — 1 — 24 = 314!
(G =D =1 =21V = 3)!5! <c 88)

G—20G - D :
forl > [j/2] + 1. Collecting the estimates (8.5) and (8.7)—(8.8), we obtain

—2)+

Z > o 63t5||L2( 21 = < C(llvllaoro) + [101lL2) 151 40 (re) < T1,
J=01al=j
where I'; = Q(I'y) and
(J 3)+
[ell Ao (o) = Z > ||<’9“uHL2 3
i=1|al=j

As for (8.1), we rewrite the equation (2.14) as

€Ou = —ev - Vu — EL(&)u, (8.9)
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where we denoted E(S, eu) = E~1(S, eu). Applying 9 to (8.9), where |a| = j > 0, we get

J
«
[0%€edsullp2 < Ced Y (B)H@Bv-@“_BVuhQ

1=0 B<a,|B|=l

J
ey Y (g)HaﬁE@a—ﬁvunp,

1=0 f<a,|B|=I

from where

(1—2)+

Z > ||a%atu||L2( ol

J=0 |al=j

(J 2)+

ey Yy Y (g)a@ Il (8.10)

J=0]a|=5 1=0 <o, | B|=1

(J 2)+

+CZ Z Z Z (5)513Eaa BVU”L? G2 =5+ .

J=0 |a|=3 I=0 B<a,|B|=l

The term I; can be estimated analogously as in (8.6)—(8.8), obtaining 111 < Q(I'y). For the term I3, we proceed as
in (8.6)—(8.8), obtaining o < C||E|| Ay (7o) [t 4 (ro) + Cll £ L ||t]| 44 (r4)- One may easily check that the product
rules in Lemmas 5.1 and 5.2 hold for the norm Ag(7). Thus we have

1Bl ag(r0) < QUUIull ag(ro) + 1ull 22, 1S 4o (o) + 19]122) < Q(To). (8.11)
Combining (8.10)—(8.11), we may write
J 2)+

|0 eatuHLz <Ty,
—2)!

J=0 |a|=j

where I'; = Q(Tp).
For n = 2 and n = 3, the proof is completely analogous and we obtain

Ltn=3)4
;‘);ﬂ 10° (¢0)) snwﬁ <T,
and
. (J+n 3)+
;nazjla (00"l gy <

for sufficiently large I',, depending on I'y. Summing over n from 0 to 3, we obtain (8.1) and (8.2) for sufficiently
large T' = Q(T'g). We fix T" for the rest of the proof.

Next, we prove (8.3) and (8.4) for all £ > 4 using induction and starting with the case k& = 4. First, we apply
0%(ed;)? to (2.15), where |a| = j > 0, obtaining

0%(e8,)%0,S = — ZZ( )( )aﬁ €dy)"v - 927 P(e9;)> " VS.

B<an=0
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Using the splitting argument as in (8.6)—(8. 7)

S 0% S e (”0 5

=0 |a|=j

0o 3 5 . 7_(] n—Il+1)4
SCaAY D> > > Z(naa (€0r) nvsnLQ(Hl))

J=0 |a]=5 0<i<[j /2] B<a,|B]=1 n=0

(I+n—=3)+

X 1/4 Fin=D)s 3/4
s . 298 .
<||a (@ ol T 3)) (nD 0%(e0r)" ol 1),>

(8.12)
(l+n 3)+
LY Y Y Y <|aﬁ @l )>
J=0Ja|=5 [1/2]4+1<1<j B< o, |B|=1 =0
, Gtk 3/4
D2 a— 3—n R
<|| G B Hg))
, Tu n—i+1), O\ V4
o— 3—n
<||0 (ed) VSHLZ( Y ) .
Appealing to (8.1) and (8.2), we arrive at
A
>3 Joredn) 'Sl 57 i o
J=0Ja|=j
(J+n 3)+
< C)\Z Z > 0% (edr) nul\m( Y (8.13)
n=0 \j=0|a|=j

o0 (7 n)+
(Z D 10 ()" Sl s ) <3

J=0|al=j

where we set A = 1/Q(T"), concluding the proof of (8.4) for k = 4. As for (8.3), we apply 9%(¢d;)? to (8.9), where
|a] = j > 0, obtaining

J
||80¢(eat)4u||L2 < OGZ Z (g) (z) ||6/5(68t)nv . 80475(58t)37nvu”l;2

1=0 f<a,|B|=l

J
3 - ;
+CZ Z (g)( >||3ﬂ(68t)”E8“B(eat)3”Vu||L2.
1=0 B<a,|8|=l n
Therefore, we get

S5 0% ull (”0 5

J=0]al=j

Jj+1

scai > zjj > i( )( )Ilaﬁ €dp)"v - 0° P (edy)*” "VuIILz(T+ i

7=0 |a|=j I= Oﬁ<a\5\ In=0

+C>\Z > Z > i( >( )IIaﬁ (0)"EO* P (e0y)* " Vul| 12 (JTJF 0

7=0 |a|=j =0 B<a,|B|=ln=
= Iy1 + Iyo.

(8.14)
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The term I4; can be estimated as in (8.12)—(8.13), obtaining I4; < 1/2, while I45 can be treated in a similar fashion
asin (8.11), arriving at I42 < CA||E|| 4, (7o) [ull 45 (7o) + CAIE|l o< ||l 4, (r)» Where for each & > 3, we denote

A(n=3)+ (j+”*3)+

[ ull Ay (ro) = Z Z > 110 (€de) ull 2 (+n_3), . (8.15)

n=035=0,j4n>1|a|=j

One can easily check that Lemma 5.1 and 5.2 hold for the Ay (7p)-norm for each k > 3. Therefore, I;o < 1/2 by
choosing A = 1/Q(T"). There, we obtain (8.3) for k& = 4.

Now we assume that we have (8.3) and (8.4) for some k& > 4, and prove them for k£ + 1. For n > 3, we apply
0% (edy)™ to (2.15), where |a| = j > 0, obtaining

0%(ed))" DS = = > 9%(edy)™v - 0* P (edy)" VS,

B<am=0

from where

)\n—QT(j+n—2)+

804 n+1S 5 0

X;ZX; 2.5000)

5 i An—2 O(J-HL 2)+
||(9 (6815 ‘v -0 (66) VSHLQW

We split the above sum according to the low and high values of [ + n. Using a similar argument as in (8.12), we get
A2 (J +n—2)4

Z Z Haa €8t n+1S|| ﬁ

J=0|a|=j

/\(m,3)+7_(l+m71)+ ) 3/4

23D 3D ol i of (LT A

7=0 |a|=j 1=0 B<a,|B|=l m=0

_ 1/4
A(m=3)4 UAm=3)4

8 m 0

x (na (0™ ol 2=

(n7m73)+7_(j+"*l*m*2)+

o — n—m A
X <||3 Pedy)" "™V S| 2 (j—i—n—?—m—Q)! ) Lio<i+m<[(j+n)/2]}

A\(n—m=3); L (FH+n—l-m); ) 3/4

D S S S o L

7=0 |a|=j I1=0 B<a,|B|=l m=0
nem—3), _(j+n—1-m-2); \ 1/4
An=m=3); (j+n—l=m=2)
(G+n—1—m—2)!

X <||8°‘_5(66t)"_mVS||L2

A(m=3)4 LUAm=3)4
X <||aﬁ(eat)%||m (l+mo— 31 L{{(j+n) /21 41<14m<+n}
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from where
oo (G+n—2)+
AP 21
>3 0% (ed) S| e S
7=0 |a|=j Gtn -2
(m— 3)+T(J+m 3)+
<Ce>\z Z > 10%(edr) v||Lz T ol (8.16)
m=0 \J=0 a]=j e

)\(nfm73)+,r(j+”*m*3)+

feY n—m 0
> 3 e Sl S T

=0 |a|=j

Summing the above estimate in n from 3 to k, we get

k+1 oo n—3_ (]+n 3)+

SN 0%(eor) ”SHLZ =

n=475=0 |a|=j

A2 (J+n 2)+

k o
ZZ 0% (€0 n+1SHL ﬁ’

n=3 j=0 |a|=j
which is bounded from above by

m—3); (J+m=3);

k n
AY Y (XX 1ol (+nf 3)!

n=3m=0 \ j=0 |a|=j

)\(n—m—3)+7_(j+”*m*3)+

leY n—m 0
| 20 20 10D S e G+n—m-—3)

7=0 |a|=j

(8.17)
o a )\(m—3)+,7_(§j+m*3)+
= j70| :
zk:z Z )\m 3)+ (J+m 3)+
X |0 (e0r)™ S| L2
=0 720 |l (j+m 3)!
By (8.1) and (8.2), and the inductive hypothesis (8.3)—(8.4) for k, we arrive at
k+1 oo n— (J+n 3)
o " A 3 + 1
ZZ Z 10%(e0e)™ S| 12 ﬁ =5
n=4 j=0 |a|=j ’
where we choose A = 1/Q(T"), which leads to (8.4) for k + 1.
As for (8.3), we apply 9“(e0;)™ to (8.9) where |a| = j > 0 and n > 3. Similarly to (8.10), we obtain
Z Z 1 An—2 J-‘rn 2
|0%(€d)" T ul| e ————— 0
7=0 Jal=j Y - 2)
n 3 B )\n7373+n72
< Cel 07 (e0y)™v - %P (edy)" "V —_
‘ ]Zmz zz% 2 Z( )(m>” (0™ (00"l T =y 8.18)
al=j 1=0 f<a,|B|=1 m=0

n—3,.Jj+tn—2

FOYY Y Y Z( )(Z)naff(eat)méaaﬂ(e@)”mwnpm

J=0|a|=j 1=0 B<a,|B|=l m=0
= Jln + J2n-
For the term .J;,,, we proceed as in (8.16)—(8.17), obtaining

Z Jin < 2 (8.19)
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For the term J3,,, we split the sum according to the low and high values of [ + n. Proceeding as in (8.16), we arrive
at

An—3 ]-‘rn 2

Jon < C)\Z > B e 0% (e0r)" VU”HW

J=0 |a|=j

A(m=3)4 p(m=1)4 ) 3/4

95 90 i) DD of (LR RET LR

J=0 |a|=j =0 B<a,|B|=l m=0

. 1/4
~ A(m=3)4 LUIAm=3)4

& m 0

x (na (00" Ellss 2=,

o n—m )\(nfm*3)+,r(j+n7l7m,2)+
X (Ha P (€0)™ " Vul| 2 (j+n—(l)—m—2)! L1 <t4m<{(G+m)/2}

+OXY YN 3 > (||D%w—ﬁ(eat)"—mvu|L2A (ijOl_m)!

(n—m—3) 4 (G+n—l—m)4 ) 3/4
520 Jal=j 1=0 < Bl =t m=0

; 1/4
/\(n—m—3)+ (J4+n—l—-m—2)4
X (Haa—ﬂ(Eat)n—mquLQ To

(j+n—1—m—2)!

5 )\(771—3)+Tél+m_3)+
x| [|0°(0r)™ E|| > Tim_3r ) MGm2<itms in),

and thus
)\(n73)+,7_(§j+”*3)+

Jon < C)\Z Z ”aa(ea’f)nunl‘2 (] +n— 3)!

J=0al=j

(m—3)+7_éj+m—3)+

& — feY m 1 A
+CAY (DD D l0%(ed)™ Bl E—

m=0 \j=0 |a|=j,m+j>1

(n—m—3)+7_(j+”_m—3)+

= le" n—m A 0
D D 10 el =

J=0|a|=j

Summing the above estimate in n from 3 to k , we obtain
N 3)+7_(J+n 3)+

ZJ2n<C)\ZZZHaa 6(915 uHLz ( +n_3)|

n=3 j=0 |a|=j

\(m=3)4 L (Hm=3)

+0AZZ 2.2 e Bl

n=3m=0 \ j=0 \a|:j,m+j21

(8.20)

A(n—m—3)+7_(j+n—m—3)+

« n—m 0
> 3 0 D)l gy

J=0 |a|=j
< ONful 4y (o) + CANE |y (o) (11l 4 () + il z2).

where we used the Ay (7p) norm in (8.15). The first term on the right side of above can be estimated by 1/4, for
sufficiently small A = 1/Q(T"). For the second term of the right-hand side of (8.20), it is easy to check that the
product rules in Lemmas 5.1 and 5.2 hold for the norm A (7p), and the function @) in Lemma 5.2 is independent
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of k. Therefore, from (8.20) and the inductive hypothesis (8.3)—(8.4) for k, we obtain

N

1 -
S o < 5+ CMIB ] ay e (il g ) + Nl z2)
n=3 (821)

1
Z + )\Q(”u”Ak(m) + ||U‘HL23 ||SHA1C(7'0) + HS||L2) <

INA
l\D.\ —

Finally, combining (8.18), (8.19), and (8.21),

k+1 oo AP 3 j+n 3

SN (0%(edn) u||L2( —3

n=4 j= O\a| =j

n—2 J+n 2

Z 3716 (€)™ Ll 2( i _ZJ1H+ZJ%§1

n=3j=0 |a|=j

concluding the proof of (8.3) for k + 1.

9. The Mach limit in a Gevrey norm

Theorem 3.1 shows that if the initial data is analytic, then the Mach limit holds in an analytic norm. In this
section, we show that if, more generally, the initial data is Gevrey, then the Mach limit holds in the Gevrey norm.
Thus, assume the initial data is Gevrey regular that satisfies

(TYL 3)+

Z Z 0% pOaU07SO)||L2( 3y = < My, 9.1

m=0|a|=

where s > 1 is the Gevrey index and , 79, My > 0 are fixed constants. Note that when s = 1 we recover the class of
real-analytic functions. Also, for the Sobolev regularity, we assume that we have (3.1).
Similarly to (3.3), we define the mixed weighted Gevrey norm

m ] 3)+T(t)(m—3)+

e = 33 3 1007l e

m=1j=0|a|=j

where 7 € (0, 1] represents the mixed space-time Gevrey radius and x € (0, 1] is a fixed parameter depending on
M. Proceeding as in Section 8, we can prove that with x = 1 we have

(26, v, S0) |l (7) < Q(Mo) 9.2)

for some 7y > 0 depending on 7y and M. Thus (9.2) holds for any « € (0, 1] as it is an increasing function of .
We also define the analyticity radius function as

7(t) = 7(0) — Kt, 9.3)

where 7(0) < min{7, 1} is a sufficiently small parameter, and K > 1 is a sufficiently large parameter depending
on M. We shall work on the time interval [0, Tp] where Ty > 0 respects (3.15) and Remark 3.4.
The first theorem generalizes Theorem 3.1 by showing uniform boundedness in the Gevrey norms.

THEOREM 9.1. Assume that the initial data (p§, v§, S§) satisfies (3.1) and (9.1), where s > 1 and 19, My > 0.
There exist sufficiently small constants r,7(0), €0, Top > 0, depending on 1o, s, and My, such that

15,05, 5)Dller <M,  0<e<e, te]0,Tp], ©.4)

where T is as in (9.3) and K and M are sufficiently large constants depending on s and M.
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PROOF OF THEOREM 9.1. We proceed exactly as in Sections 406, obtaining the a priori estimates analogous
to (3.13). Then we use a similar argument as in Section 3 to prove (9.4) We omit further details. O

Similarly to (3.8), we introduce the spatial Gevrey norm
§m=3)4

vy = 32 3 10l oy

m=1 |a|=m
where § > 0 is as in (3.7).

The next theorem provides convergence of the solution in (9.1) to the corresponding incompressible Euler
equation in the Gevrey space.

THEOREM 9.2. Let 6 > 0 be as in (3.7), and assume that the initial data (v§, S§) converges to (vg, Sy) in Ys
and in L? as € — 0, and S§ decays sufficiently rapidly at infinity in the sense

|S5(2)] < Cla| 176, |VSG(@)] < Clz| 727,
for 0 < e < €y and some constants C and ¢ > 0. Then (v, p¢, S€) converges to (v\"®) 0, S in C([0, Ty], Ys),
where (v("°), S(1)) js the solution to (3.9)—(3.11) with the initial data (wy, So), and w is the unique solution of
divwg = 0,
curl(rowo) = curl(rovo),

with rg = ’I"(S(h 0)

PROOF OF THEOREM 9.2. Theorem 9.2 follows by using arguments analogous to those in Section 7. (]
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