
Mach Limits in Analytic Spaces

Juhi Jang, Igor Kukavica, and Linfeng Li

ABSTRACT. We address the Mach limit problem for the Euler equations in the analytic spaces. We prove that, given
analytic data, the solutions to the compressible Euler equations are uniformly bounded in a suitable analytic norm and then
show that the convergence toward the incompressible Euler solution holds in the analytic norm. We also show that the
same results hold more generally for Gevrey data with the convergence in the Gevrey norms.

1. Introduction

The low Mach number limit problem, which concerns the passage from slightly compressible flows to incom-
pressible flows, is a classical singular limit problem in mathematical fluid dynamics. The problem has both physical
and mathematical importance. There have been many significant works on the subject and a great deal of progress
made in recent decades [A1, A3, As, E, FKM, I, Is1, Is2, Is3, KM1, KM2, MS, S1, S2, U]. The main difficulty of
the problem is the presence of different wave speeds, which play a significant role in the limit process. In particular,
one has to address the vanishing of the acoustic waves in the limit. A study of the low Mach number limit involves
two parts: the uniform bounds and existence of slightly compressible flows for a time-independent of Mach numbers
and convergence to solutions of the limiting equations. Interestingly, the analysis of such a singular limit problem
significantly changes depending whether compressible fluids are isentropic or non-isentropic, if compressible fluids
are inviscid or viscous, if initial data are well-prepared or not, if the problem is set in the whole space or domains
with boundaries, or which regularity space of data is considered. In this paper, we address the low Mach number
limit of the non-isentropic compressible Euler flows in R3 in analytic and, more generally, in Gevrey spaces.

Before describing the results, we briefly review prior relevant works (cf. [A1, A3, MS] for more extensive
reviews). For isentropic flows or well-prepared initial data, it is well-known that solutions of the compressible Euler
equations with low Mach numbers exist in Sobolev spaces for a time interval independent of the Mach numbers
[KM1, KM2, S1]. When initial data are well-prepared, solutions converge to the solutions of the corresponding
incompressible Euler equations with the limiting initial data [KM1, KM2, S1]. For the isentropic flows with general
initial data, the convergence is not uniform for times close to zero and initial layers are present [As, U, I, Is1,
Is2, Is3]. On the other hand, the non-isentropic problem with general initial data is much more involved. In
this case, the pressure depends not only on the density but also on the entropy that enters into the coefficients of
the linearized equations, and the convergence is more subtle because the acoustic waves are governed by a wave
equation with variable coefficients. The first existence and convergence of the non-isentropic problem were given
in [MS] and the existence result for general domains with boundary and the convergence result for exterior domains
were obtained in [A1]. The results above were obtained in Sobolev spaces. Recently the low Mach number limit
was studied in [FKM] starting from dissipative measure-valued solutions of the isentropic Euler equations. Also,
the Mach limit in the domains with evolving boundary was addressed in [DE, DL], while for the dissipative case,
see [A2, D1, D2, DG, DM, F, FN, H, LM, M]. For other works on analyticity for the equations involving fluids, see
[B, BB, BGK, CKV, LO], while for different approaches to analyticity, cf. [Bi, BF, BoGK, FT, G, GK, KP, OT].

This paper concerns the non-isentropic equations with general analytic or Gevrey initial data in R3 and conver-
gence holding in these strong norms. The first result provides a uniform in ε bound of the analytic solution, where
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ε > 0 represents the Mach number, while the second result asserts the convergence of the solution to the limiting
equation as ε tends to zero. The main difficulty is in obtaining the uniform analytic bound. The Mach limit in an
analytic norm is then proven by interpolating the uniform boundedness result and the convergence in the Sobolev
space due to Métivier and Schochet in [MS].

For the isentropic case, the standard energy estimate method can be applied to the velocity equation to obtain
analytic estimates. However, for the non-isentropic case, the problem is more difficult since the matrix, E(εuε, Sε)

(cf. the formulation (2.14)–(2.15)), also depends on Sε, and thus spatial derivative bounds cannot be obtained solely
by the fundamental energy estimates. Moreover, the non-isentropic Euler flows feature intriguing wave-transport
structure: The divergence component of the modified velocity is governed by nonlinear acoustic equations, while
the curl component and entropy are transported, and their interactions are coupled. Thus a careful analysis that
captures the coupled structure of the modified velocity and the entropy is required. To accomplish these, we use the
elliptic regularity for the velocity to reduce the spatial derivative to divergence and curl components. The key to the
former is that the divergence equation for the velocity is properly balanced with the analytic energy solution, which
motivates us to include time derivatives using ε∂t to our analytic norm; for the latter, we appeal to the transport
equation of the curl component, which can be treated in a similar way as the entropy. Thus, the pure time analytic
norm needs to be treated differently than the one which also involves the spatial derivatives (cf. Sections 6.2 and 6.3
respectively). It is important to include the analytic weight κ in (3.3), which ultimately balances the time and the
spatial derivatives. The main difficulty in our approach is the handling of the vorticity ω, which can not be treated
directly. Instead, as in [A1], we need to consider the equation for the modified vorticity curl(r0v), where r0 is a
certain function of the entropy (cf. Section 6.1 below). The product and chain rules then lead to complicated analytic
coupling among the entropy, divergence, vorticity, and curl(r0v).

The paper is organized as follows. In Section 2, we introduce the Mach number limit problem and then formu-
late the symmetrized version of the compressible Euler equations. In Section 3, we define the analytic norm and
state the main results. The first theorem relies on Lemma 3.3, the proof of which is given at the end of Section 6. We
present the energy estimate for the transport equation in Section 4. Product rule and chain rules in analytic spaces
are provided in Section 5. In Section 6, we estimate the curl, divergence, and time-derivative components of the
velocity. In Section 7, we prove the convergence theorem. In Section 8, we establish the finiteness of the space-time
analytic norm at the initial time under the assumption that the initial data is real-analytic in the spatial variable. In
Section 9, we provide the Mach limit theorem in any Gevrey space.

2. Set-up

We consider the compressible Euler equations describing the motion of an inviscid, non-isentropic gaseous fluid
in R3

∂tρ+ v · ∇ρ+ ρ∇ · v = 0 (2.1)

ρ (∂tv + v · ∇v) +∇P = 0 (2.2)

∂tS + v · ∇S = 0, (2.3)

where ρ = ρ(x, t) ∈ R+ is the density, v = v(x, t) ∈ R3 is the velocity, P = P (x, t) ∈ R+ is the pressure, and
S = S(x, t) ∈ R is the entropy of the fluid. The system (2.1)–(2.3) is closed with the equation of state

P = P (ρ, S). (2.4)

For instance, the equation of state for an ideal gas takes the form

P (ρ, S) = ργeS , (2.5)

where γ > 1 is the adiabatic exponent.
To address the low Mach number limit, we introduce the rescalings

t̃ = εt, x̃ = x, ρ̃ = ρ, ṽ =
v

ε
, P̃ = P , S̃ = S,
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where ε > 0 represents the Mach number, the ratio of the typical fluid speed to the typical sound speed. We assume
that the typical sound speed is O(1). For simplicity of notation, we omit tilde, and obtain the rescaled system

∂tρ+ v · ∇ρ+ ρ∇ · v = 0 (2.6)

ρ (∂tv + v · ∇v) +
1

ε2
∇P = 0 (2.7)

∂tS + v · ∇S = 0. (2.8)

The goal of this paper is to obtain the low Mach number limit of (2.6)–(2.8) in analytic spaces.

2.1. Reformulation. Now, consider P , instead of ρ, as an independent variable, we may write (2.4) as

ρ = ρ(P, S),

and (2.6) is then replaced by
A0 (∂tP + v · ∇P ) +∇ · v = 0, (2.9)

where

A0 = A0(S, P ) =
1

ρ(S, P )

∂ρ(S, P )

∂P
.

The equation of state for an ideal gas in (2.5) then reads as

ρ(P, S) = P
1
γ e−

S
γ .

To symmetrize the Euler equations, we set
P = P̄ eεp,

for a positive constant P̄ which represents the reference state at the spatial infinity so that P = P̄ + O(ε). Using
∂tP = εP∂tp and∇P = εP∇p, we rewrite (2.9) and (2.7) as

a (∂tp+ v · ∇p) +
1

ε
∇ · v = 0 (2.10)

r (∂tv + v · ∇v) +
1

ε
∇p = 0, (2.11)

respectively, where
a = a(S, εp) = A0(S, P̄ eεp)P̄ eεp (2.12)

and

r = r(S, εp) =
ρ(S, P̄ eεp)

P̄ eεp
. (2.13)

In the case of an ideal gas, from ρ(P, S) = P
1
γ e−

S
γ , we have the expression

a =
1

γ

for a, and
r = (P̄ eεp)

1
γ−1e−

S
γ

for r. Thus we have obtained the symmetrized version of the compressible Euler equation for non-isentropic fluids
in R3, which reads

E(S, εu)(∂tu+ v · ∇u) +
1

ε
L(∂x)u = 0, (2.14)

∂tS + v · ∇S = 0, (2.15)

where u = (p, v) and

E(S, εu) =

(
a(S, εu) 0

0 r(S, εu)I3

)
, L(∂x) =

(
0 div
∇ 0

)
. (2.16)
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After transforming (2.1)–(2.3) to the symmetrized form (2.14)–(2.15), we now focus on the formulation (2.14)–
(2.15). In view of (2.12) and (2.13), we assume

a(S, εu) = f1(S)g1(εu) (2.17)

and
r(S, εu) = f2(S)g2(εu), (2.18)

where f1, f2, g1, and g2 are positive entire real-analytic functions.

3. The main results

We assume that the initial data (pε0, v
ε
0, S

ε
0) satisfies

‖(pε0, vε0, Sε0)‖H5 ≤M0 (3.1)

and
∞∑
m=0

∑
|α|=m

‖∂α(pε0, v
ε
0, S

ε
0)‖L2

τ
(m−3)+
0

(m− 3)!
≤M0, (3.2)

where τ0,M0 > 0 are fixed constants. For τ > 0, define the mixed weighted analytic space

A(τ) = {u ∈ C∞(R3) : ‖u‖A(τ) <∞},

where

‖u‖A(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+τ(t)(m−3)+

(m− 3)!
; (3.3)

here, τ ∈ (0, 1] represents the mixed space-time analyticity radius and where κ > 0. It is convenient that the term
with ‖u‖L2 is not included in the norm. In (3.2) and below we use the convention n! = 1 when n ∈ −N. As shown
in Section 8 below, (3.2) implies that with κ = 1

‖(pε0, vε0, Sε0)‖A(τ̃0) ≤ Q(M0) (3.4)

for some function Q, where τ̃0 = τ0/Q(M0) is a sufficiently small constant. Note that the time derivatives of the
initial data are defined iteratively by differentiating the equations (2.14)–(2.15) and evaluating at t = 0 (cf. Section 8
below for details). Also observe that the norm in (3.3) is an increasing function of κ, and thus (3.4) holds for any
κ ∈ (0, 1]. We define the analyticity radius function

τ(t) = τ(0)−Kt, (3.5)

where τ(0) ≤ min{1, τ̃0} is a sufficiently small parameter (different from τ̃0), and K ≥ 1 is a sufficiently large
parameter, both to be determined below.

The first theorem provides a uniform in ε boundedness of the analytic norm on a time interval, which is inde-
pendent of ε.

THEOREM 3.1. Assume that the initial data (pε0, v
ε
0, S

ε
0) satisfies (3.1)–(3.2), where M0, τ0 > 0. There exist

sufficiently small constants κ, τ(0), ε0, T0 > 0, depending on M0, such that

‖(pε, vε, Sε)(t)‖A(τ) ≤M, 0 < ε ≤ ε0, t ∈ [0, T0], (3.6)

where τ is as in (3.5) and K and M are sufficiently large constants depending on M0.

We now turn to the Mach limit for solutions of (2.14)–(2.15) in R3 as ε→ 0. Denote

δ =
κτ(0)

C0
, (3.7)
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where τ(0), κ ∈ (0, 1] are fixed constants chosen in the proof of Theorem 3.1, and C0 > 1 is a sufficiently large
constant to be chosen in Section 7. We introduce the spatial analytic norm

‖u‖Xδ =
∞∑
m=1

∑
|α|=m

‖∂αu‖L2

δ(m−3)+

(m− 3)!
, (3.8)

where δ > 0 is as in (3.7). Note that this is a part of our main analytic A-norm, (3.2).
By Theorem 3.1, for a given M0 and τ0 > 0, the solutions (pε, vε, Sε) are uniformly bounded by M in the

norm of C0([0, T0], Xδ) for fixed parameters κ, T0, and ε ∈ (0, ε0]. The second main theorem shows that solutions
of (2.14)–(2.15) converge to the solution of the stratified incompressible Euler equations

r(S, 0)(∂tv + v · ∇v) +∇π = 0, (3.9)

div v = 0, (3.10)

∂tS + v · ∇S = 0, (3.11)

as ε→ 0.

THEOREM 3.2. Let δ > 0, and assume that the initial data (vε0, S
ε
0) converges to (v0, S0) in Xδ and in L2 as

ε→ 0, and Sε0 decays sufficiently rapidly at infinity in the sense

|Sε0(x)| ≤ C|x|−1−ζ , |∇Sε0(x)| ≤ C|x|−2−ζ ,

for 0 < ε ≤ ε0 and some constantsC and ζ > 0. Then (vε, pε, Sε) converges to (v(inc), 0, S(inc)) inC0([0, T0], Xδ),
where (v(inc), S(inc)) is the solution to (3.9)–(3.11) with the initial data (w0, S0), and w0 is the unique solution of

divw0 = 0,

curl(r0w0) = curl(r0v0),

with r0 = r(S0, 0).

In the rest of the paper, the constant C depends only on M0 and τ0, and it may vary from relation to relation;
we omit the superscript ε, and we write S, u for Sε, uε.

Theorem 3.2 is proven in Section 7 below as a consequence of Theorem 3.1. The proof of Theorem 3.1 consists
of a priori estimates performed on the solutions. The a priori estimates are easily justified by simply restricting
the sum (3.2) to m ≤ m0 where m0 ∈ {6, 7, . . .} is arbitrary. The estimates on the finite sums are justified since
boundedness of solutions in any Sobolev norm is known by [A1].

The proof of Theorem 3.1 relies on analytic a priori estimates on the entropy S and the (modified) velocity u.
The a priori estimate needed to prove Theorem 3.1 is the following.

LEMMA 3.3. Let M0 > 0. For any κ ≤ 1, there exist constants C, τ1, ε0, T0 and a nonnegative continuous
function Q such that for all ε ∈ (0, ε0], the norm

Mε,κ(T ) = sup
t∈[0,T ]

(‖S(t)‖A(τ(t)) + ‖u(t)‖A(τ(t))) (3.12)

satisfies the estimate

Mε,κ(t) ≤ C + (t+ ε+ κ+ τ(0))Q(Mε,κ(t)), (3.13)

for t ∈ [0, T0] and τ(0) ∈ (0, τ1], provided
K ≥ Q(Mε,κ(T0)) (3.14)

holds.

With τ = τ(t) as in (3.5), we use the notation (3.12). The constant K depends on M (and thus ultimately
on M0), i.e., K = Q(M). We shall work on an interval of time such that

T0 ≤
τ(0)

2K
. (3.15)
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Thus we have τ(0)/2 ≤ τ(t) ≤ τ(0) for t ∈ [0, T0].
From here on, we denote by Q a positive increasing continuous function, which may change from inequality to

inequality; importantly, the function Q does not depend on ε, κ, and t. The estimates are performed on an interval
of time [0, T ] where (3.5) holds and is such that

T ≤ τ(0)

2K
.

In the rest of the paper, we allow all the constants to depend on τ0.

PROOF OF THEOREM 3.1 GIVEN LEMMA 3.3. Let M0 > 0 be as in (3.1)–(3.2). Also, fix C0 and Q0 as the
constant C and the function Q appearing in the statement of Lemma 3.3, respectively. Now, choose and fix

M1 > max{C0, Q0(M0)}.

Then select κ ≤ 1 sufficiently small, τ(0) ≤ min{1, τ̃0, τ1}, T1 ∈ (0, T0], and ε ∈ (0, ε0] sufficiently small, so that

C0 + (T1 + ε+ κ+ τ(0))Q0(M1) < M1.

Next, set

T2 = min

{
T1,

τ(0)

2Q0(M1)

}
. (3.16)

In view of (3.14), this last condition ensures

τ(0)

2
≤ τ(t) ≤ τ(0), t ∈ [0, T2].

Note that Mε,κ(0) ≤M0. By (3.13)–(3.16) and the continuation principle, we get

Mε,κ(t) ≤M1, t ∈ [0, T2],

and Theorem 3.1 is proven. �

Sections 4–6 are devoted to the proof of Lemma 3.3, thus completing the proof of Theorem 3.1.

REMARK 3.4 (Boundedness of Sobolev norms). By [A1, Theorem 1.1] the H5 norm of (pε, vε, Sε) can be
estimated by a constant on a time interval [0, T0], where T0 only depends on the H5 norm of the initial data. More
precisely, for given initial data satisfying (3.1), there exists T0 > 0 and a constant C such that

sup
0≤m≤5,0≤j≤m,|α|=j

‖∂α(ε∂t)
m−j(pε, vε, Sε)(t)‖L2 ≤ C, t ∈ [0, T0], ε ∈ (0, 1].

In the rest of the paper, we always work on an interval of time [0, T ] such that 0 < T ≤ T0.

REMARK 3.5. (Boundedness of functions of solutions). If F is a smooth function of u and S, then from
Remark 3.4 there exists some constant C depending on the function F such that

‖F (εu(t), S(t))‖L∞ ≤ C, t ∈ [0, T0], ε ∈ (0, 1].

4. Analytic estimate of the entropy

The following statement provides an analytic estimate for the entropy S.

LEMMA 4.1. Let M0 > 0. For any κ ∈ (0, 1], there exists τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

‖S(t)‖A(τ(t)) ≤ C + tQ(Mε,κ(t)), t ∈ (0, T0], (4.1)

for all ε ∈ (0, 1], provided K in (3.5) satisfies

K ≥ Q(Mε,κ(T0)),

where T0 > 0 is a sufficiently small constant depending on M0.
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PROOF OF LEMMA 4.1. Fix m ∈ N and |α| = j where 0 ≤ j ≤ m. We apply ∂α(ε∂t)
m−j to the equation

(2.15) and take the L2-inner product with ∂α(ε∂t)
m−jS obtaining

1

2

d

dt
‖∂α(ε∂t)

m−jS‖2L2 +
〈
v · ∇∂α(ε∂t)

m−jS, ∂α(ε∂t)
m−jS

〉
=
〈
[v · ∇, ∂α(ε∂t)

m−j ]S, ∂α(ε∂t)
m−jS

〉
,

where 〈·, ·〉 denotes the scalar product in L2. Using the Cauchy-Schwarz inequality and summing over |α| = j, we
obtain

d

dt

∑
|α|=j

‖∂α(ε∂t)
m−jS‖L2 ≤ C‖∇v‖L∞

x

∑
|α|=j

‖∂α(ε∂t)
m−jS‖L2 + C

∑
|α|=j

‖[v · ∇, ∂α(ε∂t)
m−j ]S‖L2 .

With the notation (3.2), the above estimate implies

d

dt
‖S‖A(τ) = τ̇(t)‖S‖Ã(τ) +

∞∑
m=1

m∑
j=0

∑
|α|=j

κ(j−3)+τ (m−3)+

(m− 3)!

d

dt
‖∂α(ε∂t)

m−jS‖L2

≤ τ̇(t)‖S‖Ã(τ) + C‖∇v‖L∞
x
‖S‖A(τ) + C

∞∑
m=1

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

1≤l+k

Cm,j,l,α,β,k,
(4.2)

where

Cm,j,l,α,β,k =
κ(j−3)+τ (m−3)+

(m− 3)!

(
α

β

)(
m− j
k

)
‖∂β(ε∂t)

kv · ∂α−β(ε∂t)
m−j−k∇S‖L2

with

‖u‖Ã(τ) =
∞∑
m=4

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+(m− 3)τ(t)m−4

(m− 3)!

denoting the dissipative analytic norm corresponding to (3.2). In the above sums as well as below, the multiindexes
α, β, . . . are assumed to belong to N3

0. The third term on the far right side of (4.2) equals

C = C
4∑

m=1

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

1≤l+k

Cm,j,l,α,β,k

+ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

1≤l+k≤[m/2]

Cm,j,l,α,β,k

+ C
∞∑
m=7

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

[m/2]+1≤l+k≤m−3

Cm,j,l,α,β,k

+ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

Cm,j,l,α,β,k1{m−2≤l+k≤m}

= C1 + C2 + C3 + C4,
where we split the sum according to the low and high values of l+k and m. We claim that there exists T0 > 0, such
that for any κ ∈ (0, 1], there is τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

C1 ≤ C, (4.3)

C2 ≤ C‖v‖A(τ)‖S‖Ã(τ), (4.4)

C3 ≤ C‖v‖A(τ)‖S‖Ã(τ), (4.5)

C4 ≤ C‖v‖A(τ). (4.6)
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Proof of (4.3): Using Hölder’s and the Sobolev inequalities, C1 may be estimated by low-order mixed space-time
derivatives, and (4.3) follows by appealing to Remark 3.4.

Proof of (4.4): Using Hölder’s and the Sobolev inequalities we arrive at

C2 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

1≤l+k≤[m/2]

κ(j−3)+τm−3

(m− 3)!

(
α

β

)(
m− j
k

)
‖∂β(ε∂t)

kv‖1/4L2

× ‖D2∂β(ε∂t)
kv‖3/4L2 ‖∂α−β(ε∂t)

m−j−k∇S‖L2 ,

and thus

C2 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

1≤l+k≤[m/2]

κaτ b
(
‖∂β(ε∂t)

kv‖L2

κ(l−3)+τ (l+k−3)+

(l + k − 3)!

)1/4

×
(
‖D2∂β(ε∂t)

kv‖L2

κ(l−1)+τ (l+k−1)+

(l + k − 1)!

)3/4

×
(
‖∂α−β(ε∂t)

m−j−k∇S‖L2

κ(j−l−2)+(m− k − l − 2)τm−k−l−3

(m− k − l − 2)!

)
Am,j,l,α,β,k,

(4.7)

where

Am,j,l,α,β,k =

(
α

β

)(
m− j
k

)
(l + k − 3)!1/4(l + k − 1)!3/4(m− k − l − 2)!

(m− k − l − 2)(m− 3)!
(4.8)

and

a = (j − 3)+ −
(
l − 3

4

)
+

−
(

3l − 3

4

)
+

− (j − l − 2)+,

b = m− 3−
(
l + k − 3

4

)
+

−
(

3l + 3k − 3

4

)
+

− (m− k − l − 3).

(4.9)

For simplicity, we omitted indicating the dependence of a and b on j, k, and l. Since l + k ≥ 1 and 0 ≤ l ≤ j, one
can readily check that −3/2 ≤ a ≤ 3/2 and 1 ≤ b ≤ 3/2, which implies

κaτ b ≤ C (4.10)

if

τ(0) ≤ κ3. (4.11)

Recall the combinatorial inequality (
α

β

)
≤
(
|α|
|β|

)
, (4.12)

which may also be written as (
j

l

)(
m− j
k

)
≤
(

m

l + k

)
, (4.13)

from where we obtain

Am,j,l,α,β,k ≤
Cm!

(l + k)!(m− l − k)!

(l + k − 3)!(l + k)3/2(m− k − l − 3)!

(m− 3)!

≤ Cm3

(m− l − k)3
≤ C,

(4.14)
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since l + k ≤ [m/2]. Using ∑
|α|=j

∑
β≤α
|β|=l

xβyα−β =

∑
|β|=l

xβ

 ∑
|γ|=j−l

yγ

 (4.15)

from [KV, Lemma 4.2], together with (4.7), (4.8)–(4.10), (4.14) and the discrete Hölder inequality, we obtain

C2 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

m−j∑
k=0

1≤l+k≤[m/2]

∑
|β|=l

‖∂β(ε∂t)
kv‖L2

κ(l−3)+τ (l+k−3)+

(l + k − 3)!

1/4

×

∑
|β|=l

‖D2∂β(ε∂t)
kv‖L2

κ(l−1)+τ (l+k−1)+

(l + k − 1)!

3/4

×

 ∑
|γ|=j−l

‖∂γ(ε∂t)
m−j−k∇S‖L2

κ(j−l−2)+(m− k − l − 2)τm−k−l−3

(m− k − l − 2)!


≤ C‖v‖A(τ)‖S‖Ã(τ),

(4.16)

where the last inequality follows from the discrete Young inequality.
Proof of (4.5): We reverse the roles of l + k and m− l − k and proceed as above, arriving at

C3 ≤ C
∞∑
m=7

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

[m/2]+1≤l+k≤m−3

κaτ b
(
‖∂β(ε∂t)

kv‖L2

κ(l−3)+τ l+k−3

(l + k − 3)!

)

×
(
‖∂α−β(ε∂t)

m−j−k∇S‖L2

κ(j−l−2)+(m− l − k − 2)τm−l−k−3

(m− l − k − 2)!

)1/4

×
(
‖D2∂α−β(ε∂t)

m−j−k∇S‖L2

κ(j−l)+(m− l − k)τm−l−k−1

(m− l − k)!

)3/4

Bm,j,l,α,β,k,

(4.17)

where we denote

Bm,j,l,α,β,k =

(
α

β

)(
m− j
k

)
(l + k − 3)!(m− l − k − 2)!1/4(m− l − k)!3/4

(m− l − k − 2)1/4(m− l − k)3/4(m− 3)!

and

a = (j − 3)+ − (l − 3)+ −
(
j − l − 2

4

)
+

−
(

3j − 3l

4

)
+

,

b = m− 3− (l + k − 3)− (m− l − k − 3)

4
− 3(m− l − k − 1)

4
.

Since 0 ≤ l ≤ j, it is readily seen that −5/2 ≤ a ≤ 1/2 and b = 3/2, which implies

κaτ b ≤ C (4.18)

if (4.11) holds. Using (4.12)–(4.13), we obtain

Bm,j,l,α,β,k ≤
Cm!

(l + k)!(m− l − k)!

(l + k − 3)!(m− l − k − 2)!(m− l − k − 1)1/2

(m− 3)!

≤ Cm3

(l + k)3
≤ C,

(4.19)

since [m/2] + 1 ≤ l + k. Combining (4.17)–(4.19) and proceeding as in (4.16), we obtain

C3 ≤ C‖v‖A(τ)‖S‖Ã(τ).
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Proof of (4.6): We split C4 into three sums according to the value of l + k being equal to m− 2, m− 1, or m,
and denote them by C41, C42, and C43, respectively.

For C41, we use Hölder’s and the Sobolev inequalities and obtain

C41 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

κ(j−3)+τm−3

(m− 3)!

(
α

β

)(
m− j
k

)
1{l+k=m−2}

× ‖∂β(ε∂t)
kv‖L2‖∂α−β(ε∂t)

m−j−k∇S‖L∞

≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

m−j∑
k=0

∑
|β|=l

‖∂β(ε∂t)
kv‖L2

κ(l−3)+τm−5

(m− 5)!

 ∑
|γ|=j−l

‖D2∂γ(ε∂t)
m−j−k∇S‖L2

3/4

×

 ∑
|γ|=j−l

‖∂γ(ε∂t)
m−j−k∇S‖L2

1/4

m!

(m− 2)!

(m− 5)!

(m− 3)!
1{l+k=m−2}

≤ C‖v‖A(τ),

where in the second inequality we applied (4.12)–(4.13), (4.15) and we used τ, κ ≤ C; in the last inequality, we
estimated the low-order mixed space-time Sobolev norm of S by C using Remark 3.4.

For C42 and C43, we proceed as in above, by writing

C42 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

κ(j−3)+τm−3

(m− 3)!

(
α

β

)(
m− j
k

)
1{l+k=m−1}

× ‖∂β(ε∂t)
kv‖L2‖∂α−β(ε∂t)

m−j−k∇S‖L∞

≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

m−j∑
k=0

∑
|β|=l

‖∂β(ε∂t)
kv‖L2

κ(l−3)+τm−4

(m− 4)!

 ∑
|γ|=j−l

‖D2∂γ(ε∂t)
m−j−k∇S‖L2

3/4

×

 ∑
|γ|=j−l

‖∂γ(ε∂t)
m−j−k∇S‖L2

1/4

m!

(m− 1)!

(m− 4)!

(m− 3)!
1{l+k=m−1}

≤ C‖v‖A(τ)

and

C43 ≤ C
∞∑
m=5

m∑
j=0

j∑
l=0

∑
|α|=j

∑
β≤α
|β|=l

m−j∑
k=0

κ(j−3)+τm−3

(m− 3)!

(
α

β

)(
m− j
k

)
1{l+k=m}

× ‖∂β(ε∂t)
kv‖L2‖∂α−β(ε∂t)

m−j−k∇S‖L∞

≤ C
∞∑
m=5

m∑
j=0

∑
|β|=j

(
‖∂β(ε∂t)

m−jv‖L2

κ(j−3)+τm−3

(m− 3)!

)
‖D2∇S‖3/4L2 ‖∇S‖1/4L2

≤ C‖v‖A(τ).

Combining (4.2)–(4.6) and Remark 3.4 to bound ‖∇v‖L∞
x

, we get

d

dt
‖S‖A(τ) ≤ ‖S‖Ã(τ)(τ̇ + C‖v‖A(τ)) + C‖S‖A(τ) + C‖v‖A(τ) + C. (4.20)

Now, determine K in (3.5) to be sufficiently large so that

τ̇(t) + C‖v‖A(τ) ≤ 0, 0 ≤ t ≤ T0, (4.21)
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where T0 > 0 satisfies (3.15). The lemma is then proven by integrating (4.20) on [0, T0], using (4.21), and applying
the Gronwall lemma. �

After Section 5, we work with derivatives of the solution and thus instead of the norms (3.2) we use

‖u‖B(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−2)+τ(t)(m−2)+

(m− 2)!
(4.22)

and the corresponding dissipative analytic norm

‖u‖B̃(τ) =
∞∑
m=3

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−2)+(m− 2)τ(t)m−3

(m− 2)!
. (4.23)

It turns out that the curl component of the velocity satisfies an equation similar to the one for the entropy, but with
the nonzero right-hand side. Thus we now consider the inhomogeneous transport equation

∂tS̃ + v · ∇S̃ = G,

where S̃ = S̃(x, t), v = v(x, t), and G = G(x, t).

LEMMA 4.2. For any κ ∈ (0, 1], there exists τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

‖S̃‖A(τ) ≤ ‖S̃(0)‖A(τ) + C

∫ t

0

(
‖G(s)‖A(τ) + ‖v(s)‖A(τ)

)
ds+ Ct, t ∈ [0, T0], (4.24)

for some constant C and sufficiently small T0 > 0, provided K in (3.5) satisfies

K ≥ C‖v(t)‖A(τ), t ∈ [0, T0], (4.25)

where T0 is chosen sufficiently small so that (3.15) holds. Similarly, for any κ ≤ 1, there exists τ(0) > 0 such that

‖S̃‖B(τ) ≤ ‖S̃(0)‖B(τ) + C

∫ t

0

(
‖G(s)‖B(τ) + ‖v(s)‖B(τ)

)
ds+ Ct, t ∈ [0, T0], (4.26)

for some constant C and sufficiently small T0 > 0, provided K satisfies

K ≥ C‖v(t)‖B(τ), t ∈ [0, T0], (4.27)

where T0 is chosen sufficiently small so that (3.15) holds.

Note that from definitions (3.2) and (4.22), we have

‖v‖B(τ) ≤ ‖v‖A(τ)

for all v, and thus (4.25) implies (4.27).

PROOF. We proceed exactly as in the proof of Lemma 4.1. Using the Cauchy-Schwarz inequality with the
inhomogeneous part G, we obtain

d

dt
‖S̃‖A(τ) ≤ ‖S̃‖Ã(τ)(τ̇ + C‖v‖A(τ)) + C(‖S̃‖A(τ) + ‖v‖A(τ) + ‖G‖A(τ)) + C.

The estimate (4.24) then follows by using (4.21) and the Gronwall inequality. Analogously, we use the analytic shift
(m− 2)! instead of (m− 3)! and proceed as in the proof of Lemma 4.1, we conclude

d

dt
‖S̃‖B(τ) ≤ ‖S̃‖B̃(τ)(τ̇ + C‖v‖B(τ)) + C(‖S̃‖B(τ) + ‖v‖B(τ) + ‖G‖B(τ)) + C.

The assertion (4.26) may then be obtained by setting

τ̇(t) + C‖v‖B(τ) ≤ 0

with C sufficiently large and using the Gronwall inequality. �
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5. Analytic estimate of ∂tE

In order to bound the velocity, we first need to obtain an analytic estimate for ∂tE, which in turn requires the
bound on the entropy. We first provide a product rule for the type B norm.

LEMMA 5.1. Let k ∈ {2, 3, . . .} and τ > 0. For f1, . . . , fk ∈ B(τ), and any κ ∈ (0, 1], there exists τ1 ∈ (0, 1]

and T0 > 0 such that if 0 < τ(0) ≤ τ1, then

∥∥∥∥ k∏
i=1

fi

∥∥∥∥
B(τ)

≤ Ck
k∑
i=1

‖fi‖B(τ)

∏
1≤j≤k;j 6=i

(‖fj‖B(τ) + ‖fj‖L2)

 ,

for k ≥ 2, where the constant is independent of k.

PROOF OF LEMMA 5.1. By induction, it is sufficient to prove the inequality

‖fg‖B(τ) ≤ C‖f‖B(τ)(‖g‖B(τ) + ‖g‖L2) + C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ), (5.1)

for f and g such that the respective right hand sides are finite. To prove the estimate (5.1), we use the Leibniz rule
and write

‖fg‖B(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

κ(j−2)+τ (m−2)+

(m− 2)!
‖∂α(ε∂t)

m−j(fg)‖L2

≤
∞∑
m=1

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k,
(5.2)

where

Hm,j,l,α,β,k =

(
α

β

)(
m− j
k

)
κ(j−2)+τ (m−2)+

(m− 2)!
‖∂β(ε∂t)

kf∂α−β(ε∂t)
m−j−kg‖L2 .

We split the sum on the right side of (5.2) according to the low and high values of l + k and m, and we claim

2∑
m=1

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k ≤ C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ) + C(‖g‖B(τ) + ‖g‖L2)‖f‖B(τ),

(5.3)
∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k1{l+k=0} ≤ C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ), (5.4)

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

1≤l+k≤[m/2]

Hm,j,l,α,β,k ≤ C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ), (5.5)

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

[m/2]+1≤l+k≤m−1

Hm,j,l,α,β,k ≤ C‖f‖B(τ)(‖g‖B(τ) + ‖g‖L2). (5.6)

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k1{l+k=m} ≤ C‖f‖B(τ)(‖g‖B(τ) + ‖g‖L2), (5.7)
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Proof of (5.3): For m = 1, we use Hölder’s and the Sobolev inequalities and arrive at

1∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

1−j∑
k=0

H1,j,l,α,β,k ≤ C‖fε∂tg‖L2 + C‖fDg‖L2 + C‖gε∂tf‖L2 + C‖gDf‖L2

≤ C‖D2f‖3/4L2 ‖f‖1/4L2 ‖ε∂tg‖L2 + C‖D2f‖3/4L2 ‖f‖1/4L2 ‖Dg‖L2

+ C‖D2g‖3/4L2 ‖g‖1/4L2 ‖ε∂tf‖L2 + C‖D2g‖3/4L2 ‖g‖1/4L2 ‖Df‖L2

≤ C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ) + C(‖g‖B(τ) + ‖g‖L2)‖f‖B(τ).

(5.8)

For m = 2, by Leibniz rule we write

2∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

2−j∑
k=0

H2,j,l,α,β,k

≤ C‖f(ε∂t)
2g‖L2 + C‖fDε∂tg‖L2 + C‖fD2g‖L2

+ C‖Dfε∂tg‖L2 + C‖DfDg‖L2 + C‖ε∂tf(ε∂t)g‖L2 + C‖ε∂tfDg‖L2

+ C‖g(ε∂t)
2f‖L2 + C‖gDε∂tf‖L2 + C‖gD2f‖L2 .

(5.9)

All the terms in (5.9) are estimated using Hölder and Sobolev inequalities. For illustration, we treat the fifth term,
for which we write

‖DfDg‖L2 ≤ ‖Df‖L4‖Dg‖L4 ≤ C‖D2f‖3/4L2 ‖Df‖1/4L2 ‖D2g‖3/4L2 ‖Dg‖1/4L2 ≤ C‖f‖B(τ)‖g‖B(τ). (5.10)

Collecting the estimates (5.8)–(5.10), we obtain (5.3).
Proof of (5.4): Using Hölder and Sobolev inequalities, we obtain

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k1{l+k=0}

≤ C
∞∑
m=3

m∑
j=0

∑
|α|=j

‖f‖L∞‖∂α(ε∂t)
m−jg‖L2

κ(j−2)+τ (m−2)+

(m− 2)!

≤ C(‖f‖B(τ) + ‖f‖L2)‖g‖B(τ).

(5.11)

Proof of (5.5): Using Hölder and Sobolev inequalities, we obtain

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

0≤l+k≤[m/2]

Hm,j,l,α,β,k

≤ C
∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

0≤l+k≤[m/2]

(
‖∂β(ε∂t)

kf‖L2

κ(l−2)+τ (l+k−2)+

(l + k − 2)!

)1/4

×
(
‖D2∂β(ε∂t)

kf‖L2

κl+τ (l+k)+

(l + k)!

)3/4(
‖∂α−β(ε∂t)

m−j−kg‖L2

κ(j−l−2)+τ (m−l−k−2)+

(m− l − k − 2)!

)
,

where we bound the constant coefficient byC analogously as in (4.14), and bound the τ and κ term byC analogously
as in (4.9)–(4.10). Therefore, using the discrete Hölder and Young inequalities, we obtain (5.5).
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Proof of (5.6): We reverse the roles of l and m− l − k and proceed as in the above argument, obtaining

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

[m/2]+1≤l+k≤m

Hm,j,l,α,β,k

≤ C
∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

[m/2]+1≤l+k≤m

(
‖∂β(ε∂t)

kf‖L2

κ(l−2)+τ (l+k−2)+

(l + k − 2)!

)

×
(
‖∂α−β(ε∂t)

m−j−kg‖L2

κ(j−l−2)+τ (m−l−k−2)+

(m− l − k − 2)!

)1/4

×
(
‖D2∂α−β(ε∂t)

m−j−kg‖L2

κ(j−l)+τ (m−l−k)+

(m− l − k)!

)3/4

.

Therefore, using the discrete Hölder and Young inequalities, we obtain (5.6).
Proof of (5.7): We proceed as in (5.11), obtaining

∞∑
m=3

m∑
j=0

j∑
l=0

∑
|α|=j

∑
|β|=l,β≤α

m−j∑
k=0

Hm,j,l,α,β,k1{l+k=m}

≤ C
∞∑
m=3

m∑
j=0

∑
|α|=j

‖g‖L∞

(
‖∂α(ε∂t)

m−jf‖L2

κ(j−2)+τ (m−2)+

(m− 2)!

)
≤ C‖f‖B(τ)(‖g‖B(τ) + ‖g‖L2).

Combining (5.3)–(5.7), we obtain (5.2). �

Similarly to (5.1) and Lemma 5.1, with analytic shift (m− 3)! rather than (m− 2)!, we also have

‖fg‖A(τ) ≤ C‖f‖A(τ)(‖g‖A(τ) + ‖g‖L2) + C(‖f‖A(τ) + ‖f‖L2)‖g‖A(τ). (5.12)

In the case when f belongs to L∞ but is not square integrable, we have variant formulas

‖fg‖A(τ) ≤ C‖f‖A(τ)(‖g‖A(τ) + ‖g‖L2) + C‖f‖L∞‖g‖A(τ), (5.13)

and

‖fg‖B(τ) ≤ C‖f‖B(τ)(‖g‖B(τ) + ‖g‖L2) + C‖f‖L∞‖g‖B(τ). (5.14)

The proofs are similar to (5.1), where the modification of the proof for the variant formula (5.13) is to treat the term
‖f∂α(ε∂t)

m−jg‖L2 by Hölder’s inequality with exponents∞ and 2.
The next lemma provides an analytic estimate for composition of functions.

LEMMA 5.2. Assume that f is an entire real-analytic function. Then there exists a function Q such that

‖f(S(t))‖B(τ) ≤ Q(‖S(t)‖A(τ) + ‖S(t)‖L2), (5.15)

and

‖f(S(t))‖A(τ) ≤ Q(‖S(t)‖A(τ) + ‖S(t)‖L2), (5.16)

where Q also depends on f .

PROOF. First we prove (5.15). Since f is entire, for every R > 0 there exists N(R) > 0 such that

|f (k)(x)| ≤ Nk!

Rk
, x ∈ R, k ∈ N0
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and

f(S(t)) =
∞∑
k=0

f (k)(0)S(t)k

k!
. (5.17)

By Lemma 5.1, we obtain ∥∥∥∥f (k)(0)

k!
Sk
∥∥∥∥
B(τ)

≤ NCkk

Rk
‖S‖B(τ)(‖S‖B(τ) + ‖S‖L2)k−1. (5.18)

Summing (5.18) in k ∈ N and using the Taylor expansion (5.17), we arrive at

‖f(S(t))‖B(τ) ≤
∞∑
k=1

∥∥∥∥f (k)(0)

k!
S(t)k

∥∥∥∥
B(τ)

≤ CN
‖S(t)‖B(τ)

‖S‖B(τ) + ‖S‖L2

∞∑
k=1

(
C(‖S‖B(τ) + ‖S‖L2)

R

)k

≤ CN
∞∑
k=1

(
C(‖S‖B(τ) + ‖S‖L2)

R

)k
.

ChoosingR = 2C‖S(t)‖B(τ) +2C‖S(t)‖L2 , we obtain ‖f(S(t))‖B(τ) ≤ CN , whereN depends on ‖S(t)‖B(τ) +

‖S(t)‖L2 . Finally, observe that ‖S(t)‖B(τ) ≤ ‖S(t)‖A(τ), by the definition of the norms, concluding the proof of
(5.15). The estimate (5.16) is proven analogously by using (5.12), and we omit the details here. �

For the next two lemmas, assume that ẽ is one of components of the matrix E in (2.16), i.e., either r or one of
the components of a. By the assumptions (2.17) and (2.18), we have

ẽ(S, εu) = f(S)g(εu), (5.19)

where f and g are positive entire real-analytic functions.
The first lemma gives the estimate of the derivative of the component of the matrix E.

LEMMA 5.3. Given M0 > 0, and (5.19), where f and g are as above. Then

‖∂tẽ‖B(τ) ≤ Q(‖u‖A(τ) + ‖u‖L2 , ‖S‖A(τ) + ‖S‖L2) (5.20)

for some function Q.

PROOF. By (2.15), the chain rule, and product rule, we obtain

∂tẽ = f ′(S)∂tSg(εu) + f(S)∇g(εu) · ε∂tu = −f ′(S)v · ∇Sg(εu) + f(S)∇g(εu) · ε∂tu.

Therefore,

‖∂tẽ‖B(τ) ≤ ‖f ′(S)v · ∇Sg(εu)‖B(τ) + ‖f(S)∇g(εu) · ε∂tu‖B(τ) = G1 + G2.. (5.21)

By repeated use of (5.1) and (5.14) and Remark 3.5, we arrive at

G1 ≤ ‖f ′(S)‖B(τ)(‖v · ∇Sg(εu)‖B(τ) + ‖v · ∇Sg(εu)‖L2) + ‖f ′(S)‖L∞‖v · ∇Sg(εu)‖B(τ)

≤ ‖f ′(S)‖B(τ)

(
‖g(εu)‖B(τ)(‖v · ∇S‖B(τ) + ‖v · ∇S‖L2) + C‖v · ∇S‖B(τ) + ‖v · ∇S‖L2

)
+ C‖g(εu)‖B(τ)

(
‖v · ∇S‖B(τ) + ‖v · ∇S‖L2

)
+ C‖v · ∇S‖B(τ).

(5.22)

For the term ‖v · ∇S‖B(τ), we again appeal to (5.1), obtaining

‖v · ∇S‖B(τ) ≤ C‖v‖B(τ)

(
‖∇S‖B(τ) + ‖∇S‖L2

)
+ C‖∇S‖B(τ)

(
‖v‖B(τ) + ‖v‖L2

)
.

By the definition of the analytic norms in (3.2) and (4.22), we have

‖∇S‖B(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−j∇S‖L2

κ(j−2)+τ (m−2)+

(m− 2)!

≤ C
∞∑
m=1

m∑
j=0

∑
|α|=j+1

‖∂α(ε∂t)
m−jS‖L2

κ(j−2)+τ (m−2)+

(m− 2)!
≤ C‖S‖A(τ).

(5.23)
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Collecting estimates (5.22)–(5.23), we obtain

G1 ≤ Q(‖u‖A(τ) + ‖u‖L2 , ‖S‖A(τ) + ‖S‖L2). (5.24)

Using analogous arguments, we also get

G2 ≤ Q(‖u‖A(τ) + ‖u‖L2 , ‖S‖A(τ) + ‖S‖L2) (5.25)

since by definition

‖ε∂tu‖B(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−j+1u‖L2

κ(j−2)+τ (m−2)+

(m− 2)!

≤ C
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−j‖L2

κ(j−3)+τ (m−3)+

(m− 3)!
≤ C‖u‖A(τ).

Therefore, (5.20) is proven by combining (5.21), (5.24), and (5.25). �

The second lemma gives the analytic estimates for the component of the matrix E.

LEMMA 5.4. Assume (5.19), where f and g are as above. Then

‖ẽ(t)‖A(τ) ≤ Q(‖u‖A(τ) + ‖u‖L2 , ‖S‖A(τ) + ‖S‖L2), (5.26)

for some function Q.

PROOF. Since ẽ(t) = f(S)g(εu), the proof of the estimate (5.26) may be carried out by appealing to Lem-
mas 5.1 and 5.2 in the A-norm. �

6. Estimates on the velocity

Recall that

E(S, εu) =

(
a(S, εu) 0

0 r(S, εu)I3

)
,

where a(S, εu) and r(S, εu) are as in Section 2.1.

6.1. Estimate on the curl. We first need to rewrite the equation (2.11) so to be able to estimate the curl of the
velocity v. Introduce r0(x) = r(x, 0) (i.e., r0(S) = r(S, 0)), and note that, by our assumptions,

r0(S) = f2(S)g2(0).

Define

f̃(x, y) = 1− r0(x)

r(x, y)
= 1− g2(0)

g2(y)
.

Since f̃ is a function of y only and vanishes at y = 0, there exists a bounded entire function h such that

f̃(x, y) = yh(y).

Denoting
h̃(x) = xh(εx),

we then have
f̃(S, εu) = εh̃(u).

Since ∂tS + v · ∇S = 0, the equation (2.11) for v is equivalent to the nonlinear transport equation

(∂t + v · ∇)(r0v) +
1

ε
∇p = h̃∇p.

Applying curl to the above equation and using curl∇p = 0, we arrive at

(∂t + v · ∇) curl(r0v) = [v · ∇, curl](r0v) + [curl, h̃]∇p. (6.1)
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To treat (6.1), we would like to use (4.26) from Lemma 4.2 and thus we need to estimate the forcing term

G = [v · ∇, curl](r0v) + [curl, h̃]∇p = G1 +G2

in the analytic norm (4.22). Since ([vj∂j , curl]w)i = εikm∂mvj∂jwk, where εikm is the permutation symbol, we
may apply Lemma 5.1 and obtain

‖G1‖B(τ) ≤ C(‖∇(r0v)‖B(τ) + ‖∇(r0v)‖L2)(‖∇v‖B(τ) + ‖∇v‖L2). (6.2)

From (5.13), (5.23), (5.26) and (6.2), we get ‖G1‖B(τ) ≤ Q(Mε,κ(t)). The term G2 may be estimated in an
analogous way since ([curl, h̃]∇p)i = εijk∂j h̃∂kp, leading to

‖G2‖B(τ) ≤ C(‖∇p‖B(τ) + ‖∇p‖L2)(‖∇h̃‖B(τ) + ‖∇h̃‖L2) ≤ Q(Mε,κ(t)).

Proceeding as in Lemma 4.2, we obtain

d

dt
‖ curl(r0v)‖B(τ) = τ̇‖ curl(r0v)‖B̃(τ) +

∞∑
m=1

m∑
j=0

∑
|α|=j

κ(j−2)+τ (m−2)+

(m− 2)!

d

dt
‖∂α(ε∂t)

m−j curl(r0v)‖L2 , (6.3)

where we used the notation (4.22)–(4.23). By (4.26) from Lemma 4.2, we get
‖ curl(r0v)(t)‖B(τ) ≤ ‖ curl(r0v)(0)‖B(τ) + Ct sup

s∈(0,t)
‖G(s)‖B(τ) + Ct sup

s∈(0,t)
‖v(s)‖B(τ) + Ct

≤ C + tQ(Mε,κ(t)).
(6.4)

Next, we estimate curl v in the analytic norm B(τ). Denoting

R0 =
1

r0
,

we rewrite

‖ curl v‖B(τ) ≤ ‖R0 curl(r0v)‖B(τ) + ‖[curl, R0]r0v‖B(τ) = ξ1 + ξ2. (6.5)

For the term ξ1, we use (5.14) and the curl estimate (6.4), obtaining

ξ1 ≤ C‖R0‖B(τ)(‖ curl(r0v)‖B(τ) + ‖ curl(r0v)‖L2) + C‖R0‖L∞‖ curl(r0v)‖B(τ). (6.6)

Since R0 satisfies the homogeneous transport equation ∂tR0 + v · ∇R0 = 0, the inequality (4.26) from Lemma 4.2
implies

‖R0(S(t))‖B(τ) ≤ ‖R0(S(0))‖B(τ) + Ct sup
s∈(0,t)

‖v(s)‖B(τ) + Ct ≤ C + tQ(Mε,κ(t)). (6.7)

Combining (6.4), (6.6), and (6.7), we obtain

ξ1 ≤ C + tQ(Mε,κ(t)). (6.8)

For ξ2, we first rewrite it as
[curl, R0]r0v = R1∇S × v,

where R1 = −r′0/r0. Applying Lemma 5.1 and (5.14), we get

ξ2 = ‖[curl, R0]r0v‖B(τ) ≤ C‖R1‖B(τ)(‖∇S‖B(τ) + ‖∇S‖L2)(‖v‖B(τ) + ‖v‖L2)

+ C‖∇S‖B(τ)(‖R1‖B(τ) + ‖R1‖L∞)(‖v‖B(τ) + ‖v‖L2)

+ C‖v‖B(τ)(‖R1‖B(τ) + ‖R1‖L∞)(‖∇S‖B(τ) + ‖∇S‖L2).

To bound the right hand side, it suffices to estimate ‖R1‖B(τ), ‖∇S‖B(τ), and ‖v‖B(τ), as the rest are bounded by
C (cf. Remark 3.4). For ‖R1‖B(τ), sinceR1 = −r′0/r0 depends only on the entropy S, it satisfies the homogeneous
transport equation ∂tR1 + v · ∇R1 = 0 and thus by Lemma 4.2,

‖R1(S(t))‖B(τ) ≤ ‖R1(S(0))‖B(τ) + Ct+ Ct sup
s∈(0,t)

‖v(s)‖B(τ) ≤ C + tQ(Mε,κ(t)).

For ‖∇S‖B(τ), by (5.23) and Lemma 4.1, we obtain

‖∇S‖B(τ) ≤ C‖S‖A(τ) + tQ(Mε,κ(t)).
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For ‖v‖B(τ), by the norm relation we have

‖v‖B(τ) ≤
3∑

m=1

m∑
j=0

∑
|α|=j

‖∂j(ε∂t)m−jv‖L2 +
∞∑
m=4

m∑
j=0

∑
|α|=j

‖∂j(ε∂t)m−jv‖L2

κ(j−2)+τ(t)m−2

(m− 2)!

≤ C + Cτ‖v‖A(τ) ≤ C + τQ(Mε,κ(t)).

By combining the above estimates, we deduce that

ξ2 ≤ C + (t+ τ)Q(Mε,κ(t)).

Therefore, together with (6.5) and (6.8) we arrive at

‖ curl v‖B(τ) ≤ C + (t+ τ)Q(Mε,κ(t)). (6.9)

6.2. Energy equation for the pure time derivatives (A1 norm). In this section, we estimate the pure time-
analytic norm

‖u‖A1(τ) =
∞∑
m=1

‖(ε∂t)mu‖L2

τ(t)(m−3)+

(m− 3)!

with the corresponding dissipative analytic norm

‖u‖Ã1(τ)
=
∞∑
m=4

‖(ε∂t)mu‖L2

(m− 3)τ(t)m−4

(m− 3)!
.

Consider the partially linearized equation

E(∂tu̇+ v · ∇u̇) +
1

ε
L(∂x)u̇ = F, (6.10)

where u̇ = (ṗ, v̇) and E = E(S, εu).
The next lemma provides a differential inequality that is used for pure time derivatives of u.

LEMMA 6.1. For all (u̇, F ) satisfying (6.10), we have
d

dt
‖E1/2u̇‖L2 ≤ C(‖u̇‖L2 + ‖F‖L2),

for a constant C ≥ 1.

PROOF. We multiply the equation (6.10) by u̇ and integrate in R3. Since L(∂x) is skew-symmetric, we have
1

ε
〈L(∂x)u̇, u̇〉 = 0,

i.e., the term with 1/ε cancels out. Using also the Cauchy-Schwarz inequality, we get

〈E∂tu̇, u̇〉 ≤ C‖∇(Ev)‖L∞
x
‖u̇‖2L2 + C‖F‖L2‖u̇‖L2 , (6.11)

and thus by Hölder’s inequality and since E is a positive definite symmetric matrix, we obtain from (6.11)
d

dt
‖E1/2u̇‖2L2 =

d

dt
〈Eu̇, u̇〉 = 〈∂tEu̇, u̇〉+ 2〈E∂tu̇, u̇〉

≤ ‖∂tE‖L∞
x
‖u̇‖2L2 + C‖∇(Ev)‖L∞

x
‖u̇‖2L2 + C‖F‖L2‖u̇‖L2 .

(6.12)

On the other hand,
d

dt
‖E1/2u̇‖2L2 = 2‖E1/2u̇‖L2

d

dt
‖E1/2u̇‖L2 . (6.13)

Now, we combine (6.12)–(6.13), and using that the low-order Sobolev norms of ∂tE, ∂xE, ∂xv, and E−1/2 may be
estimated by C (cf. Remark 3.4 and 3.5). We arrive at

d

dt
‖E1/2u̇‖L2 ≤

C‖u̇‖2L2

‖E1/2u̇‖L2

+
C‖F‖L2‖u̇‖L2

‖E1/2u̇‖L2

≤ C(‖u̇‖L2 + ‖F‖L2),
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where we appealed to

‖u̇‖L2 = ‖E−1/2E1/2u̇‖L2 ≤ C‖E−1/2‖L∞‖E1/2u̇‖L2 ≤ C‖E1/2u̇‖L2 ,

and the lemma is proven. �

Using the previous lemma, the next statement provides a pure time derivative analytic estimate for the solution
u in the A1(τ) norm.

LEMMA 6.2. There exist t0 > 0 sufficiently small depending only on M0 and ε1 > 0 sufficiently small depend-
ing on Mε,κ(T ) such that for t ∈ (0, t0) and ε ∈ (0, ε1), we have

‖u(t)‖A1 ≤ C + tQ(Mε,κ(t)), (6.14)

for a function Q.

PROOF. For m ∈ N, we apply (ε∂t)
m to the equation (2.14). Then u̇ = (ε∂t)

mu satisfies (6.10) with

F = [E, (ε∂t)
m]∂tu+ [Ev, (ε∂t)

m]∇u. (6.15)

Denote

‖u‖AE =
∞∑
m=1

‖E1/2(ε∂t)
mu‖L2

τ (m−3)+

(m− 3)!
(6.16)

with the corresponding dissipative norm

‖u‖ÃE =
∞∑
m=4

‖E1/2(ε∂t)
mu‖L2

(m− 3)τm−4

(m− 3)!
. (6.17)

By Lemma 6.1 and using the notation (6.16)–(6.17), we obtain

d

dt
‖u‖AE = τ̇‖u‖ÃE +

∞∑
m=1

τ (m−3)+

(m− 3)!

d

dt
‖E1/2(ε∂t)

mu‖L2

≤ τ̇‖u‖ÃE + C‖u‖A1
+ C

∞∑
m=1

τ (m−3)+

(m− 3)!
‖F‖L2 ,

(6.18)

where F is given in (6.15). Note that

‖F‖L2 ≤
m∑
j=1

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2 +
m∑
j=1

(
m

j

)
‖(ε∂t)j(Ev)(ε∂t)

m−j∇u‖L2

= F1,m + F2,m.

(6.19)

For the first sum in (6.19), we have
∞∑
m=1

τ (m−3)+

(m− 3)!
F1,m =

4∑
m=1

m∑
j=1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2

+
∞∑
m=5

[m/2]∑
j=1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2

+
∞∑
m=5

m∑
j=[m/2]+1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2

= D1 +D2 +D3,

(6.20)

where we split the sum according to the low and high values of j. We claim

D1 ≤ C, (6.21)

D2 ≤ C‖∂tE‖B(τ)‖u‖Ã1(τ)
+ C‖u‖Ã1(τ)

, (6.22)
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D3 ≤ C‖∂tE‖B(τ)‖u‖A(τ). (6.23)

Proof of (6.21): Using Hölder’s and the Sobolev inequalities, we may estimate D1 using low order mixed space
time derivative of u and S, and from Remark 3.4, we obtain (6.21).

Proof of (6.22): Using the approach as in the estimate for S, we have

D1 =
∞∑
m=5

[m/2]∑
j=1

τm−3

(m− 3)!

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2

≤ Cτa
∞∑
m=5

[m/2]∑
j=1

(
τ (j−3)+

(j − 3)!
‖(ε∂t)j−1∂tE‖L2

)1/4(
τ (j−1)+

(j − 1)!
‖D2(ε∂t)

j−1∂tE‖L2

)3/4

×
(

(m− j − 2)τm−j−3

(m− j − 2)!
‖(ε∂t)m−j+1u‖L2

)
Aj,m,

(6.24)

where

Aj,m =
m!

j!(m− j)!(m− 3)!

(j − 3)!1/4(j − 1)!3/4(m− j − 2)!

m− j − 2
≤ Cm3

(m− j)3
≤ C,

and

a = m− 3−
(
j − 3

4

)
+

−
(

3j − 3

4

)
+

− (m− j − 3) ≥ 1, (6.25)

since 1 ≤ j ≤ [m/2]. By (6.24)–(6.25) and the discrete Young inequality, we obtain

D2 ≤ C
∞∑
m=5

[m/2]∑
j=1

(
τ (j−3)+

(j − 3)!
‖(ε∂t)j−1∂tE‖L2

)(
(m− j − 2)τm−j−3

(m− j − 2)!
‖(ε∂t)m−j+1u‖L2

)

+ C

∞∑
m=5

[m/2]∑
j=1

(
τ (j−1)+

(j − 1)!
‖D2(ε∂t)

j−1∂tE‖L2

)(
(m− j − 2)τm−j−3

(m− j − 2)!
‖(ε∂t)m−j+1u‖L2

)
≤ C

(
‖∂tE‖B(τ) + ‖∂tE‖L2

)
‖u‖Ã1(τ)

≤ C‖∂tE‖B(τ)‖u‖Ã1(τ)
+ C‖u‖Ã1(τ)

.

Proof of (6.23): Reversing the roles of j and m− j and proceeding as in the above argument, we may write

D3 ≤ Cτ b
∞∑
m=5

m∑
j=[m/2]+1

(
τ (j−3)+

(j − 3)!
‖(ε∂t)j−1∂tE‖L2

)(
τ (m−j−2)+

(m− j − 2)!
‖(ε∂t)m−j+1u‖L2

)1/4

×
(
τ (m−j)+

(m− j)!
‖D2(ε∂t)

m−j+1u‖L2

)3/4

Bj,m,

(6.26)

where

Bj,m =
m!

j!(m− j)!
(j − 3)!(m− j − 2)!1/4(m− j)!3/4

(m− 3)!
≤ Cm3

j3
≤ C,

and

b = m− 3− (j − 3)+ −
(
m− j − 2

4

)
+

−
(

3m− 3j

4

)
+

≥ 0, (6.27)

since m ≥ j ≥ [m/2] + 1. From (6.26)–(6.27), we obtain

D3 ≤ C‖∂tE‖B(τ)‖u‖A(τ). (6.28)
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Analogously, the second sum in (6.19) may be separated according to low and high values of j, obtaining

∞∑
m=1

τ (m−3)+

(m− 3)!
F2,m =

4∑
m=1

[m/2]∑
j=1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j(Ev)(ε∂t)

m−j∇u‖L2

+
∞∑
m=5

[m/2]∑
j=1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j(Ev)(ε∂t)

m−j∇u‖L2

+
∞∑
m=5

m∑
j=[m/2]+1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j(Ev)(ε∂t)

m−j∇u‖L2

= D4 +D5 +D6.

(6.29)

We claim

D4 ≤ C, (6.30)

D5 ≤ C‖Ev‖A(τ)‖∇u‖A1(τ), (6.31)

D6 ≤ C‖Ev‖A(τ)‖u‖A(τ). (6.32)

Proof of (6.30): Proceeding as in the proof of (6.30), we obtain that the low-order mixed space-time derivatives
may be estimated by C.

Proof of (6.31): As in (6.24), we have

D5 ≤ C
∞∑
m=5

[m/2]∑
j=1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j(Ev)‖1/4L2 ‖D2(ε∂t)

j(Ev)‖3/4L2 ‖(ε∂t)m−j∇u‖L2

≤ C
∞∑
m=5

[m/2]∑
j=1

(
‖(ε∂t)j(Ev)‖L2

τ (j−3)+

(j − 3)!

)1/4(
‖D2(ε∂t)

j(Ev)‖L2

τ (j−1)+

(j − 1)!

)3/4

×
(
‖(ε∂t)m−j∇u‖L2

τ (m−j−3)+

(m− j − 3)!

)
≤ C‖Ev‖A(τ)‖∇u‖A1(τ).

Proof of (6.32): As in (6.26), we arrive at

D6 ≤ C
∞∑
m=5

m∑
j=[m/2]+1

τ (m−3)+

(m− 3)!

(
m

j

)
‖(ε∂t)j(Ev)‖L2‖(ε∂t)m−j∇u‖1/4L2 ‖L2‖D2(ε∂t)

m−j∇u‖3/4L2

≤ C
∞∑
m=5

m∑
j=[m/2]+1

(
‖(ε∂t)j(Ev)‖L2

τ (j−3)+

(j − 3)!

)(
‖(ε∂t)m−j∇u‖L2

τ (m−j−2)+

(m− j − 2)!

)1/4

×
(
‖D2(ε∂t)

m−j∇u‖L2

τ (m−j)+

(m− j)!

)3/4

≤ C‖Ev‖A(τ)‖u‖A(τ).

Collecting the above estimates (6.20)–(6.23) and (6.29)–(6.32), we obtain from (6.19),
∞∑
m=1

τ (m−3)+

(m− 3)!
F1,m +

∞∑
m=1

τ (m−3)+

(m− 3)!
F2,m ≤ D1 +D2 +D3 +D4 +D5 +D6

≤ C + C‖∂tE‖B(τ)‖u‖Ã1(τ)
+ C‖u‖Ã1

+ C‖∂tE‖B(τ)‖u‖A(τ)

+ C‖Ev‖A(τ)‖∇u‖A1(τ) + C‖Ev‖A(τ)‖u‖A(τ),

(6.33)

where we estimate ‖∂tE‖B(τ) using Lemma 5.3, and ‖Ev‖A(τ) with (5.13) and Lemma 5.4.
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In order to estimate the dissipative term ‖∇u‖A1(τ), we recall the elliptic regularity for the div-curl system

‖∇v‖L2 ≤ C‖div v‖L2 + C‖ curl v‖L2 , (6.34)

which, together with the definition of the A1(τ) norm, leads to

‖∇u‖A1(τ) ≤ C‖L(∂x)u‖A1(τ) + C‖ curl v‖A1(τ). (6.35)

To treat the divergence part of the dissipative term, we rewrite the equation (2.14) as

L(∂x)u = −E(S, εu)(ε∂tu+ εv · ∇u). (6.36)

For m ∈ N, we apply (ε∂t)
m to the equation (6.36), obtaining

‖(ε∂t)mL(∂x)u‖L2 ≤ C
m∑
j=0

(
m

j

)
‖(ε∂t)jE(ε∂t)

m−j+1u‖L2 + Cε‖Ev‖L∞‖(ε∂t)m∇u‖L2

+ Cε
m∑
j=1

‖(ε∂t)j(Ev)(ε∂t)
m−j∇u‖L2 .

From here we arrive at

‖L(∂x)u‖A1(τ) =
∞∑
m=1

‖(ε∂t)mL(∂x)u‖L2

τ (m−3)+

(m− 3)!

≤
2∑

m=1

‖E(ε∂t)
m+1u‖L2

τ (m−3)+

(m− 3)!
+
∞∑
m=3

‖E‖L∞‖(ε∂t)m+1u‖L2

τm−3

(m− 3)!

+ Cε
∞∑
m=1

m∑
j=1

(
m

j

)
‖(ε∂t)j−1∂tE(ε∂t)

m−j+1u‖L2

τ (m−3)+

(m− 3)!

+ Cε
∞∑
m=1

‖(ε∂t)m∇v‖L2

τ (m−3)+

(m− 3)!

+ Cε
∞∑
m=1

m∑
j=1

(
m

j

)
‖(ε∂t)j(Ev)(ε∂t)

m−j∇u‖L2

τ (m−3)+

(m− 3)!

≤ C + C‖E‖L∞‖u‖Ã1
+ Cε‖∇v‖A1(τ) + Cε

∞∑
m=1

τ (m−3)+

(m− 3)!
F1,m + Cε

∞∑
m=1

τ (m−3)+

(m− 3)!
F2,m,

(6.37)

where we used the notation from (6.19) in the last inequality. The third term on the far right side of (6.37) may be
absorbed in the left side of (6.35) when ε is sufficiently small, and the fourth and fifth terms may be absorbed into
the left side of (6.33) when ε is sufficiently small depending on Mε,κ(T ).

To treat the curl part of the dissipative term, using the similar technique for the curl estimate above, we have

‖(ε∂t)m curl v‖L2 = ‖(ε∂t)m curl(R0r0v)‖L2

≤
m∑
j=0

(
m

j

)
‖(ε∂t)jR0(ε∂t)

m−j curl(r0v)‖L2 +

m∑
j=0

(
m

j

)
‖(ε∂t)j∇R0(ε∂t)

m−jr0v‖L2 .
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We use a similar technique as in the proofs of (4.4)–(4.5), obtaining

‖ curl v‖A1(τ) ≤
∞∑
m=1

m∑
j=0

(
m

j

)
‖(ε∂t)jR0(ε∂t)

m−j curl(r0v)‖L2

τ (m−3)+

(m− 3)!

+
∞∑
m=1

m∑
j=0

(
m

j

)
‖(ε∂t)j∇R0(ε∂t)

m−jr0v‖L2

τ (m−3)+

(m− 3)!

≤ C‖R0‖A(τ)‖ curl(r0v)‖B̃(τ) + C‖R0‖A(τ)‖ curl(r0v)‖B(τ)

+ C‖R0‖A(τ)‖r0v‖A(τ) + C‖R0‖Ã(τ)‖r0v‖A(τ).

(6.38)

Since R0 is a function of S, it satisfies the inhomogeneous transport equation

∂tR0 + v · ∇R0 = 0.

Then Lemma 4.1 and (4.20) imply that

d

dt
‖R0‖A(τ) ≤ ‖R0‖Ã(τ)(τ̇ + C‖v‖A(τ)) + C‖R0‖A(τ) + C‖v‖A(τ) + C. (6.39)

Coupling (6.3), (6.18), and (6.39), we arrive at

d

dt

(
‖u‖AE + ‖R0‖A(τ) + ‖ curl(r0v)‖B(τ)

)
≤ τ̇‖u‖ÃE + C‖u‖A1(τ) + C

∞∑
m=1

τ (m−3)+

(m− 3)!
‖F‖L2 + ‖R0‖Ã(τ)(τ̇ + C‖v‖A(τ)) + C‖R0‖A(τ)

+ C‖v‖A(τ) + τ̇‖ curl(r0v)‖B̃(τ) + C‖G‖B(τ) + C‖v‖B(τ) + C.

(6.40)

Collecting the estimates (6.18), (6.33), (6.35), (6.37), (6.38), and (6.40), we arrive at

d

dt

(
‖u‖AE + ‖R0‖A(τ) + ‖ curl(r0v)‖B(τ)

)
≤ ‖u‖ÃE

(
τ̇ + C‖∂tE‖B(τ) + C + C‖Ev‖A(τ)

)
+ C‖∂tE‖B(τ)‖u‖A(τ) + C‖Ev‖A(τ)‖u‖A(τ)

+ C‖Ev‖A(τ) + C‖Ev‖A(τ)‖R0‖A(τ)‖ curl(r0v)‖B(τ) + C‖Ev‖A(τ)‖R0‖A(τ)‖r0v‖A(τ)

+ ‖R0‖Ã(τ)

(
τ̇ + C‖v‖A(τ) + C‖Ev‖A(τ)‖r0v‖A(τ)

)
+ C‖R0‖A(τ) + C‖v‖A(τ)

+ ‖ curl(r0v)‖B̃(τ)

(
τ̇ + C‖Ev‖A(τ)‖R0‖A(τ)

)
+ C‖G‖B(τ) + C‖v‖B(τ) + C,

where we appealed to

‖u‖Ã1(τ)
≤ C‖u‖ÃE

by the boundedness of ‖E−1/2‖L∞ .
Now, assume that the radius τ(t) decreases sufficiently fast so that the factors next to ‖u‖ÃE , ‖R0‖Ã(τ), and

‖ curl(r0v)‖B̃(τ) are less than or equal to 0. Integrating the resulting inequality on [0, t], we get

‖u‖AE ≤ ‖u(0)‖AE + ‖R0(0)‖A(τ) + ‖ curl(r0v)(0)‖B(τ) + tQ(Mε,κ(t)) ≤ C + tQ(Mε,κ(t)),

and since ‖u‖A1
≤ C‖u‖AE , the proof is concluded. �

6.3. Energy equation for the mixed derivatives (A2 norm). Here we estimate the mixed space-time analytic
norm. For this purpose, denote

‖u‖A2(τ) =
∞∑
m=1

m∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+τ(t)(m−3)+

(m− 3)!
,
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and let

‖u‖Ã2(τ)
=
∞∑
m=4

m∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+(m− 3)τ(t)m−4

(m− 3)!

be the corresponding dissipative analytic norm. Note that

‖u(t)‖A = ‖u(t)‖A1 + ‖u(t)‖A2 .

LEMMA 6.3. Given M0 > 0, there exist a function Q and ε0 such that for ε ∈ (0, ε0), κ < 1, the solution
of (2.14) satisfies

‖u(t)‖A2
≤ C + (t+ ε+ τ + κ)Q(Mε,κ(t)). (6.41)

PROOF OF LEMMA 6.3. By the definition of the A2(τ) norm, we have

‖u‖A2(τ) =

∞∑
m=1

m∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+τ (m−3)+

(m− 3)!

=

3∑
m=1

m∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

1

(m− 3)!
+

∞∑
m=4

m∑
j=4

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κj−3τm−3

(m− 3)!

+

∞∑
m=4

3∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

τm−3

(m− 3)!
= P1 + P2 + P3,

where we split the sum according to the high and low values of j and m. We claim

P1 ≤ C, (6.42)

P2 ≤ C + (t+ ε+ κ+ τ)Q(Mε,κ(t)), (6.43)

P3 ≤ C + (t+ ε+ τ)Q(Mε,κ(t)). (6.44)

Firstly, (6.42) follows by using Sobolev inequalities and Remark 3.4.
Proof of (6.43): We rewrite equation (2.14) as

L(∂x)u = −E(S, εu)(ε∂tu+ εv · ∇u). (6.45)

For m ≥ 3, and |α| = j where 3 ≤ j ≤ m, we commute ∂α(ε∂t)
m−j with (6.45), and using div-curl regularity

(6.34), we obtain

‖∇∂α(ε∂t)
m−ju‖L2 ≤ C‖L(∂x)∂α(ε∂t)

m−ju‖L2 + C‖ curl(∂α(ε∂t)
m−jv)‖L2

≤ C
m−j∑
k=0

j∑
l=0

∑
|β|=l,β≤α

(
α

β

)(
m− j
k

)
‖∂β(ε∂t)

kE∂α−β(ε∂t)
m−j−k+1u‖L2

+ Cε‖Ev‖L∞‖∂α(ε∂t)
m−j∇u‖L2

+ Cε

j∑
l=0

m−j∑
k=0
l+k≥1

∑
|β|=l,β≤α

(
α

β

)(
m− j
k

)
‖∂β(ε∂t)

k(Ev)∂α−β(ε∂t)
m−j−k∇u‖L2

+ C‖∂α(ε∂t)
m−j curl v‖L2 .

(6.46)
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The second term on the far right side of (6.46) can be absorbed into the left side when ε is sufficiently small. Multiply
the above estimate with appropriate weights and then sum, with change of variables we obtain

P2 =
∞∑
m=4

m∑
j=4

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κj−3τm−3

(m− 3)!

≤ C
∞∑
m=3

m∑
j=3

∑
|α|=j

‖∇∂α(ε∂t)
m−ju‖L2

κj−2τm−2

(m− 2)!

≤ Cκ
∞∑
m=4

m−1∑
j=3

∑
|α|=j

m−j−1∑
k=0

j∑
l=0

∑
|β|=l,β≤α

κj−3τm−3

(m− 3)!

(
α

β

)(
m− j − 1

k

)
‖∂β(ε∂t)

kE∂α−β(ε∂t)
m−j−ku‖L2

+ Cε
∞∑
m=3

m∑
j=3

∑
|α|=j

j∑
l=0

m−j∑
k=0
l+k≥1

∑
|β|=l,β≤α

κj−2τm−2

(m− 2)!

(
α

β

)(
m− j
k

)

× ‖∂β(ε∂t)
k(Ev)∂α−β(ε∂t)

m−j−k∇u‖L2

+ C

∞∑
m=3

m∑
j=3

∑
|α|=j

κj−2τm−2

(m− 2)!
‖∂α(ε∂t)

m−j curl v‖L2

≤ Cκ‖Eu‖A(τ) + Cε(‖Ev‖A(τ) + ‖Ev‖L2)‖u‖A(τ) + C‖ curl v‖B(τ)

≤ C + (t+ κ+ τ + ε)Q(Mε,κ(t)),
(6.47)

where the last inequality follows from the estimates (5.13) and (6.9).
Proof of (6.44): For m ≥ 4 and |α| = j where 1 ≤ j ≤ 3, we proceed as in (6.46)–(6.47) and obtain

P3 =
∞∑
m=4

3∑
j=1

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

τm−3

(m− 3)!

≤ C
∞∑
m=3

2∑
j=0

∑
|α|=j

‖∇∂α(ε∂t)
m−ju‖L2

τm−2

(m− 2)!

≤ C
∞∑
m=3

2∑
j=0

∑
|α|=j

‖L(∂x)∂α(ε∂t)
m−ju‖L2

τm−2

(m− 2)!
+ C

∞∑
m=3

2∑
j=0

∑
|α|=j

‖ curl(∂α(ε∂t)
m−ju)‖L2

τm−2

(m− 2)!
.

(6.48)

Therefore,

P3 ≤ C
∞∑
m=3

2∑
j=0

∑
|α|=j

j∑
l=0

∑
|β|=l,β≤α

τm−2

(m− 2)!
‖∂βE∂α−β(ε∂t)

m−j+1u‖L2

+ Cε
∞∑
m=3

2∑
j=0

∑
|α|=j

m−j∑
k=1

j∑
l=0

∑
|β|=l,β≤α

τm−2

(m− 2)!

(
m− j
k

)
‖∂β(ε∂t)

k−1∂tE∂
α−β(ε∂t)

m−j−k+1u‖L2

+ Cε

∞∑
m=3

2∑
j=0

∑
|α|=j

j∑
l=0

m−j∑
k=0
l+k≥1

∑
|β|=l,β≤α

τm−2

(m− 2)!

(
m− j
k

)
‖∂β(ε∂t)

k(Ev)∂α−β(ε∂t)
m−j−k∇u‖L2

+ C
∞∑
m=3

2∑
j=0

∑
|α|=j

τm−2

(m− 2)!
‖∂α(ε∂t)

m−j curl v‖L2 .

(6.49)
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The second term on the far right side is estimated by using Lemmas 5.1 and 5.3, while the third and fourth term can
be estimated analogously as in (6.47). For the first term, denoted by P31, we use the div-curl regularity to reduce
the spatial derivative. We split it according to the values of j, obtaining

P31 =
∞∑
m=3

∑
|α|=0

τm−2

(m− 2)!
‖E(ε∂t)

m+1u‖L2 +
∞∑
m=3

∑
|α|=1

1∑
l=0

∑
|β|=l,β≤α

τm−2

(m− 2)!
‖∂βE∂α−β(ε∂t)

mu‖L2

+
∞∑
m=3

∑
|α|=2

2∑
l=0

∑
|β|=l,β≤α

τm−2

(m− 2)!
‖∂βE∂α−β(ε∂t)

m−1u‖L2

≤ C‖u‖A1(τ) + C
∞∑
m=2

‖∇(ε∂t)
mu‖L2

τm−2

(m− 2)!
+ C

∞∑
m=3

‖∇2(ε∂t)
m−1u‖L2

τm−2

(m− 2)!
.

(6.50)

The first term on the far side is bounded by C + tQ(Mε,κ(t)) by Lemma 6.2, while the second and third terms can
be estimated analogously to (6.48)–(6.50). Combining the resulting inequalities, we obtain

P3 ≤ C + (t+ ε+ τ)Q(Mε,κ(t)),

and the lemma then follows by (6.42)–(6.44). �

PROOF OF LEMMA 3.3. The inequality (3.13) follows by using (4.1), (6.14), and (6.41). �

7. The Mach limit

In this section, we prove the second main theorem on the Mach limit in the space X .

PROOF OF THEOREM 3.2. Let δ > 0 be a small constant, which is to be determined below. For the sake
of contradiction, we assume that (vε, pε, Sε) does not converge to (v(inc), 0, S(inc)) in C([0, T ], Xδ). Then there
exists a sequence (vεn , pεn , Sεn) which does not converge to (v(inc), 0, S(inc)) in C([0, T ], Xδ) as εn → 0. Recall
from [MS, Theorem 1.4] that (vεn , pεn , Sεn) converges to (v(inc), 0, S(inc)) in L∞([0, T ], L2(R3)) as εn → 0. For
k, n ∈ N, we define vkn(t) = vεk(t) − vεn(t). For m ∈ N and α ∈ N3

0, using integration by parts and the
Cauchy-Schwarz inequality leads to

‖∂αvkn‖2L2 =
〈
∂αvkn, ∂

αvkn
〉

= (−1)|α|
〈
vkn, ∂

2αvkn
〉
≤ ‖vkn‖L2‖∂2αvkn‖L2 .

Summing over |α| = m with m ∈ N such that m ≥ 4, we obtain
∞∑
m=4

∑
|α|=m

‖∂αvkn‖L2

δ(m−3)+

(m− 3)!
≤ ‖vkn‖1/2L2

∞∑
m=4

∑
|α|=m

‖∂2αvkn‖1/2L2

δ(m−3)+

(m− 3)!

= ‖vkn‖1/2L2

∞∑
m=4

∑
|α|=m

(
‖∂2αvkn‖L2

κ(2m−3)+τ (2m−3)+

(2m− 3)!

)1/2
(2m− 3)!1/2δ(m−3)+

(m− 3)!κ(2m−3)+/2τ (2m−3)+/2

≤ CM1/2‖vkn‖1/2L2

∞∑
m=4

∑
|α|=m

(2m− 3)!1/2δ(m−3)+

(m− 3)!κ(2m−3)+/2τ (2m−3)+/2

≤M1/2‖vkn‖1/2L2

∞∑
m=4

Cm(2m− 3)!1/2δ(m−3)+

(m− 3)!κ(2m−3)+/2τ (2m−3)+/2
,

(7.1)

where C > 0 is a fixed universal constant and M is as in (3.6). Now choose δ > 0 sufficiently small so that
δ/κτ ≤ 1/CC0 on the whole time interval [0, T0], where C0 is sufficiently large, and obtain

∞∑
m=4

∑
|α|=m

‖∂αvkn‖L2

δ(m−3)+

(m− 3)!
≤M1/2δ−3/2‖vkn‖1/2L2

∞∑
m=4

(2m− 3)!1/2

Cm0 (m− 3)!
≤M1/2δ−3/2‖vkn‖1/2L2 , (7.2)
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where we used Stirling’s formula and assumed C0 to be sufficiently large so the sum converges. Analogously, we
set pkn(t) = pεk(t)− pεn(t) and Skn(t) = Sεk(t)− Sεn(t) and proceed as in above obtaining

∞∑
m=4

∑
|α|=m

‖∂αpkn‖L2

δm−3

(m− 3)!
≤M1/2δ−3/2‖vkn‖1/2L2 , (7.3)

and
∞∑
m=4

∑
|α|=m

‖∂αSkn‖L2

δm−3

(m− 3)!
≤M1/2δ−3/2‖Skn‖1/2L2 . (7.4)

Note also that ‖vkn‖H3 ≤ C‖vkn‖3/4H4 ‖vkn‖1/4L2 ≤ C‖vkn‖1/4L2 , by Remark 3.4, with analogous inequalities for
pkn and Skn. Since M and δ are fixed constants, we infer from (7.2)–(7.4) that the sequence {(vεn , pεn , Sεn)} is
Cauchy in C([0, T0], Xδ) which implies that it converges in C([0, T0], Xδ), which is a contradiction. Therefore,
{(vε, pε, Sε)} is convergent and converges to (v(inc), 0, S(inc)) in C([0, T0], Xδ) as ε→ 0. �

8. Analyticity assumptions on the initial data

In this section, we assume that the initial data satisfies (3.2), and intend to prove that for smaller n we have
3∑

n=0

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu(0)‖L2

τ
(j+n−3)+
0

(j + n− 3)!
≤ Γ, (8.1)

and
3∑

n=0

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nS(0)‖L2

τ
(j+n−3)+
0

(j + n− 3)!
≤ Γ, (8.2)

where Γ > 0 is a sufficiently large constant depending on M0; for larger values of n, we claim that there exists a
sufficiently small parameter λ > 0 depending on M0, such that for all k ≥ 4 we have

k∑
n=4

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu(0)‖L2

λn−3τ
(j+n−3)+
0

(j + n− 3)!
≤ 1 (8.3)

and
k∑

n=4

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nS(0)‖L2

λn−3τ
(j+n−3)+
0

(j + n− 3)!
≤ 1. (8.4)

In (8.3) and (8.4) we then choose τ̃0 = λτ0/2 and using (8.1)–(8.4), we get

‖(p0, v0, S0)‖A(τ̃0) =
∞∑
n=0

∞∑
j=0,n+j≥1

∑
|α|=j

‖∂α(ε∂t)
n(u, S)(0)‖L2

τ̃
(j+n−3)+
0

(j + n− 3)!

≤
3∑

n=0

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n(u, S)(0)‖L2

τ
(j+n−3)+
0

(j + n− 3)!

+
∞∑
n=4

1

2n−3

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n(u, S)(0)‖L2

λn−3τ
(j+n−3)+
0

(j + n− 3)!
≤ Γ +

∞∑
n=4

1

2n−3
≤ C,

obtaining (3.4). In the remainder of this section, we prove (8.1)–(8.4).
For n = 0, we use the assumption (3.2) on the initial data to obtain

∞∑
j=0

∑
|α|=j

‖∂α(u, S)(0)‖L2

τ
(j−3)+
0

(j − 3)!
≤ Γ0, (8.5)
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for some constant Γ0 > 0. Next, for n = 1, we apply ∂α to (2.15) where |α| = j ∈ N0, which leads to

∂α∂tS = −
∑
β≤α

(
α

β

)
∂βv · ∂α−β∇S.

Therefore,

∞∑
j=0

∑
|α|=j

‖∂αε∂tS‖L2

τ
(j−2)+
0

(j − 2)!

≤ Cε
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)
‖∂βv · ∂α−β∇S‖L2

τ
(j−2)+
0

(j − 2)!
.

(8.6)

We split the right side of (8.6) according to low and high values l. By Hölder and Sobolev inequalities, we have

∞∑
j=0

∑
|α|=j

‖∂αε∂tS‖L2

τ
(j−2)+
0

(j − 2)!

≤ Cε
∞∑
j=0

∑
|α|=j

∑
0≤l≤[j/2]

∑
β≤α,|β|=l

(
‖D2∂βv‖L2

τ
(l−1)+
0

(l − 1)!

)3/4(
‖∂βv‖L2

τ
(l−3)+
0

(l − 3)!

)1/4

×

(
‖∂α−β∇S‖L2

τ
(j−l−2)+
0

(j − l − 2)!

)
(l − 1)!3/4(l − 3)!1/4(j − l − 2)!j!

(j − 2)!(j − l)!l!

+ Cε
∞∑
j=0

∑
|α|=j

∑
[j/2]+1≤l≤j

∑
β≤α,|β|=l

(
‖∂βv‖L2

τ
(l−3)+
0

(l − 3)!

)(
‖D2∂α−β∇S‖L2

τ
(j−l)+
0

(j − l)!

)3/4

×

(
‖∂α−β∇S‖L2

τ
(j−l−2)+
0

(j − l − 2)!

)1/4
(j − l)!3/4(j − l − 2)!1/4(l − 3)!j!

(j − 2)!(j − l)!l!
.

(8.7)

One may check that

(l − 1)!3/4(l − 3)!1/4(j − l − 2)!j!

(j − 2)!(j − l)!l!
≤ C,

for l ≤ [j/2], while

(j − l)!3/4(j − l − 2)!1/4(l − 3)!j!

(j − 2)!(j − l)!l!
≤ C, (8.8)

for l ≥ [j/2] + 1. Collecting the estimates (8.5) and (8.7)–(8.8), we obtain

∞∑
j=0

∑
|α|=j

‖∂αε∂tS‖L2

τ
(j−2)+
0

(j − 2)!
≤ C(‖v‖A0(τ0) + ‖v‖L2)‖S‖A0(τ0) ≤ Γ1,

where Γ1 = Q(Γ0) and

‖u‖A0(τ0) =
∞∑
j=1

∑
|α|=j

‖∂αu‖L2

τ
(j−3)+
0

(j − 3)!
.

As for (8.1), we rewrite the equation (2.14) as

ε∂tu = −εv · ∇u− ẼL(∂x)u, (8.9)
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where we denoted Ẽ(S, εu) = E−1(S, εu). Applying ∂α to (8.9), where |α| = j ≥ 0, we get

‖∂αε∂tu‖L2 ≤ Cε
j∑
l=0

∑
β≤α,|β|=l

(
α

β

)
‖∂βv · ∂α−β∇u‖L2

+ C

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)
‖∂βẼ∂α−β∇u‖L2 ,

from where

∞∑
j=0

∑
|α|=j

‖∂αε∂tu‖L2

τ
(j−2)+
0

(j − 2)!

≤ Cε
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)
‖∂βv · ∂α−β∇u‖L2

τ
(j−2)+
0

(j − 2)!

+ C
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)
‖∂βẼ∂α−β∇u‖L2

τ
(j−2)+
0

(j − 2)!
= I1 + I2.

(8.10)

The term I1 can be estimated analogously as in (8.6)–(8.8), obtaining µ1 ≤ Q(Γ0). For the term I2, we proceed as
in (8.6)–(8.8), obtaining µ2 ≤ C‖Ẽ‖A0(τ0)‖u‖A0(τ0) +C‖Ẽ‖L∞‖u‖A0(τ0). One may easily check that the product
rules in Lemmas 5.1 and 5.2 hold for the norm A0(τ0). Thus we have

‖Ẽ‖A0(τ0) ≤ Q(‖u‖A0(τ0) + ‖u‖L2 , ‖S‖A0(τ0) + ‖S‖L2) ≤ Q(Γ0). (8.11)

Combining (8.10)–(8.11), we may write

∞∑
j=0

∑
|α|=j

‖∂αε∂tu‖L2

τ
(j−2)+
0

(j − 2)!
≤ Γ1,

where Γ1 = Q(Γ0).
For n = 2 and n = 3, the proof is completely analogous and we obtain

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nS‖L2

τ
(j+n−3)+
0

(j + n− 3)!
≤ Γn

and

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

τ
(j+n−3)+
0

(j + n− 3)!
≤ Γn,

for sufficiently large Γn depending on Γ0. Summing over n from 0 to 3, we obtain (8.1) and (8.2) for sufficiently
large Γ = Q(Γ0). We fix Γ for the rest of the proof.

Next, we prove (8.3) and (8.4) for all k ≥ 4 using induction and starting with the case k = 4. First, we apply
∂α(ε∂t)

3 to (2.15), where |α| = j ≥ 0, obtaining

∂α(ε∂t)
3∂tS = −

∑
β≤α

3∑
n=0

(
α

β

)(
3

n

)
∂β(ε∂t)

nv · ∂α−β(ε∂t)
3−n∇S.
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Using the splitting argument as in (8.6)–(8.7),
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
4S‖L2

λτ j+1
0

(j + 1)!

≤ Cελ
∞∑
j=0

∑
|α|=j

∑
0≤l≤[j/2]

∑
β≤α,|β|=l

3∑
n=0

(
‖∂α−β(ε∂t)

3−n∇S‖L2

τ
(j−n−l+1)+
0

(j − n− l + 1)!

)

×

(
‖∂β(ε∂t)

nv‖L2

τ
(l+n−3)+
0

(l + n− 3)!

)1/4(
‖D2∂β(ε∂t)

nv‖L2

τ
(l+n−1)+
0

(l + n− 1)!

)3/4

+ Cελ
∞∑
j=0

∑
|α|=j

∑
[j/2]+1≤l≤j

∑
β≤α,|β|=l

3∑
n=0

(
‖∂β(ε∂t)

nv‖L2

τ
(l+n−3)+
0

(l + n− 3)!

)

×

(
‖D2∂α−β(ε∂t)

3−n∇S‖L2

τ
(j−n−l+3)+
0

(j − n− l + 3)!

)3/4

×

(
‖∂α−β(ε∂t)

3−n∇S‖L2

τ
(j−n−l+1)+
0

(j − n− l + 1)!

)1/4

.

(8.12)

Appealing to (8.1) and (8.2), we arrive at
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
4S‖L2

λτ j+1
0

(j + 1)!

≤ Cλ
3∑

n=0

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

τ
(j+n−3)+
0

(j + n− 3)!


×

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
3−nS‖L2

τ
(j−n)+
0

(j − n)!

 ≤ 1

2
,

(8.13)

where we set λ = 1/Q(Γ), concluding the proof of (8.4) for k = 4. As for (8.3), we apply ∂α(ε∂t)
3 to (8.9), where

|α| = j ≥ 0, obtaining

‖∂α(ε∂t)
4u‖L2 ≤ Cε

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)(
3

n

)
‖∂β(ε∂t)

nv · ∂α−β(ε∂t)
3−n∇u‖L2

+ C

j∑
l=0

∑
β≤α,|β|=l

(
α

β

)(
3

n

)
‖∂β(ε∂t)

nẼ∂α−β(ε∂t)
3−n∇u‖L2 .

Therefore, we get
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
4u‖L2

λτ j+1
0

(j + 1)!

≤ Cελ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

3∑
n=0

(
α

β

)(
3

n

)
‖∂β(ε∂t)

nv · ∂α−β(ε∂t)
3−n∇u‖L2

τ j+1
0

(j + 1)!

+ Cλ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

3∑
n=0

(
α

β

)(
3

n

)
‖∂β(ε∂t)

nẼ∂α−β(ε∂t)
3−n∇u‖L2

τ j+1
0

(j + 1)!

= I41 + I42.

(8.14)
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The term I41 can be estimated as in (8.12)–(8.13), obtaining I41 ≤ 1/2, while I42 can be treated in a similar fashion
as in (8.11), arriving at I42 ≤ Cλ‖Ẽ‖A3(τ0)‖u‖A3(τ0) + Cλ‖Ẽ‖L∞‖u‖A3(τ0), where for each k ≥ 3, we denote

‖u‖Ak(τ0) =
k∑

n=0

∞∑
j=0,j+n≥1

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

λ(n−3)+τ
(j+n−3)+
0

(j + n− 3)!
. (8.15)

One can easily check that Lemma 5.1 and 5.2 hold for the Ak(τ0)-norm for each k ≥ 3. Therefore, I42 ≤ 1/2 by
choosing λ = 1/Q(Γ). There, we obtain (8.3) for k = 4.

Now we assume that we have (8.3) and (8.4) for some k ≥ 4, and prove them for k + 1. For n ≥ 3, we apply
∂α(ε∂t)

n to (2.15), where |α| = j ≥ 0, obtaining

∂α(ε∂t)
n∂tS = −

∑
β≤α

n∑
m=0

∂β(ε∂t)
mv · ∂α−β(ε∂t)

n−m∇S,

from where

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1S‖L2

λn−2τ
(j+n−2)+
0

(j + n− 2)!

≤ Cε
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
α

β

)(
n

m

)

× ‖∂β(ε∂t)
mv · ∂α−β(ε∂t)

n−m∇S‖L2

λn−2τ
(j+n−2)+
0

(j + n− 2)!
.

We split the above sum according to the low and high values of l+ n. Using a similar argument as in (8.12), we get

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1S‖L2

λn−2τ
(j+n−2)+
0

(j + n− 2)!

≤ Cελ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
‖D2∂β(ε∂t)

mv‖L2

λ(m−3)+τ
(l+m−1)+
0

(l +m− 1)!

)3/4

×

(
‖∂β(ε∂t)

mv‖L2

λ(m−3)+τ
(l+m−3)+
0

(l +m− 3)!

)1/4

×

(
‖∂α−β(ε∂t)

n−m∇S‖L2

λ(n−m−3)+τ
(j+n−l−m−2)+
0

(j + n− l −m− 2)!

)
1{0≤l+m≤[(j+n)/2]}

+ Cελ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
‖D2∂α−β(ε∂t)

n−m∇S‖L2

λ(n−m−3)+τ
(j+n−l−m)+
0

(j + n− l −m)!

)3/4

×

(
‖∂α−β(ε∂t)

n−m∇S‖L2

λ(n−m−3)+τ
(j+n−l−m−2)+
0

(j + n− l −m− 2)!

)1/4

×

(
‖∂β(ε∂t)

mv‖L2

λ(m−3)+τ
(l+m−3)+
0

(l +m− 3)!

)
1{[(j+n)/2]+1≤l+m≤j+n},
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from where
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1S‖L2

λn−2τ
(j+n−2)+
0

(j + n− 2)!

≤ Cελ
n∑

m=0

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
mv‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!


×

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n−mS‖L2

λ(n−m−3)+τ
(j+n−m−3)+
0

(j + n−m− 3)!

 .

(8.16)

Summing the above estimate in n from 3 to k, we get
k+1∑
n=4

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nS‖L2

λn−3τ
(j+n−3)+
0

(j + n− 3)!
=

k∑
n=3

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1S‖L2

λn−2τ
(j+n−2)+
0

(j + n− 2)!
,

which is bounded from above by

Cλ
k∑

n=3

n∑
m=0

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
mv‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!


×

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n−mS‖L2

λ(n−m−3)+τ
(j+n−m−3)+
0

(j + n−m− 3)!


≤ Cλ

 k∑
m=0

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
mv‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!


×

 k∑
m=0

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
mS‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!

 .

(8.17)

By (8.1) and (8.2), and the inductive hypothesis (8.3)–(8.4) for k, we arrive at
k+1∑
n=4

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nS‖L2

λn−3τ
(j+n−3)+
0

(j + n− 3)!
≤ 1

2
,

where we choose λ = 1/Q(Γ), which leads to (8.4) for k + 1.
As for (8.3), we apply ∂α(ε∂t)

n to (8.9) where |α| = j ≥ 0 and n ≥ 3. Similarly to (8.10), we obtain
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1u‖L2

λn−2τ j+n−20

(j + n− 2)!

≤ Cελ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
α

β

)(
n

m

)
‖∂β(ε∂t)

mv · ∂α−β(ε∂t)
n−m∇u‖L2

λn−3τ j+n−20

(j + n− 2)!

+ Cλ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
α

β

)(
n

m

)
‖∂β(ε∂t)

mẼ∂α−β(ε∂t)
n−m∇u‖L2

λn−3τ j+n−20

(j + n− 2)!

= J1n + J2n.

(8.18)

For the term J1n, we proceed as in (8.16)–(8.17), obtaining
k∑

n=3

J1n ≤
1

2
. (8.19)
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For the term J2n, we split the sum according to the low and high values of l + n. Proceeding as in (8.16), we arrive
at

J2n ≤ Cλ
∞∑
j=0

∑
|α|=j

‖Ẽ‖L∞‖∂α(ε∂t)
n∇u‖L2

λn−3τ j+n−20

(j + n− 2)!

+ Cλ
∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
‖D2∂β(ε∂t)

mẼ‖L2

λ(m−3)+τ
(l+m−1)+
0

(l +m− 1)!

)3/4

×

(
‖∂β(ε∂t)

mẼ‖L2

λ(m−3)+τ
(l+m−3)+
0

(l +m− 3)!

)1/4

×

(
‖∂α−β(ε∂t)

n−m∇u‖L2

λ(n−m−3)+τ
(j+n−l−m−2)+
0

(j + n− l −m− 2)!

)
1{1≤l+m≤[(j+n)/2]}

+ Cλ

∞∑
j=0

∑
|α|=j

j∑
l=0

∑
β≤α,|β|=l

n∑
m=0

(
‖D2∂α−β(ε∂t)

n−m∇u‖L2

λ(n−m−3)+τ
(j+n−l−m)+
0

(j + n− l −m)!

)3/4

×

(
‖∂α−β(ε∂t)

n−m∇u‖L2

λ(n−m−3)+τ
(j+n−l−m−2)+
0

(j + n− l −m− 2)!

)1/4

×

(
‖∂β(ε∂t)

mẼ‖L2

λ(m−3)+τ
(l+m−3)+
0

(l +m− 3)!

)
1{[(j+n)/2]+1≤l+m≤j+n},

and thus

J2n ≤ Cλ
∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

λ(n−3)+τ
(j+n−3)+
0

(j + n− 3)!

+ Cλ
n∑

m=0

 ∞∑
j=0

∑
|α|=j,m+j≥1

‖∂α(ε∂t)
mẼ‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!


×

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n−mu‖L2

λ(n−m−3)+τ
(j+n−m−3)+
0

(j + n−m− 3)!

 .

Summing the above estimate in n from 3 to k , we obtain

k∑
n=3

J2n ≤ Cλ
k∑

n=3

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

λ(n−3)+τ
(j+n−3)+
0

(j + n− 3)!

+ Cλ
k∑

n=3

n∑
m=0

 ∞∑
j=0

∑
|α|=j,m+j≥1

‖∂α(ε∂t)
mẼ‖L2

λ(m−3)+τ
(j+m−3)+
0

(j +m− 3)!


×

 ∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n−mu‖L2

λ(n−m−3)+τ
(j+n−m−3)+
0

(j + n−m− 3)!


≤ Cλ‖u‖Ak(τ0) + Cλ‖Ẽ‖Ak(τ0)(‖u‖Ak(τ0) + ‖u‖L2),

(8.20)

where we used the Ak(τ0) norm in (8.15). The first term on the right side of above can be estimated by 1/4, for
sufficiently small λ = 1/Q(Γ). For the second term of the right-hand side of (8.20), it is easy to check that the
product rules in Lemmas 5.1 and 5.2 hold for the norm Ak(τ0), and the function Q in Lemma 5.2 is independent
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of k. Therefore, from (8.20) and the inductive hypothesis (8.3)–(8.4) for k, we obtain

k∑
n=3

J2n ≤
1

4
+ Cλ‖Ẽ‖Ak(τ0)(‖u‖Ak(τ0) + ‖u‖L2)

≤ 1

4
+ λQ(‖u‖Ak(τ0) + ‖u‖L2 , ‖S‖Ak(τ0) + ‖S‖L2) ≤ 1

2
.

(8.21)

Finally, combining (8.18), (8.19), and (8.21),

k+1∑
n=4

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
nu‖L2

λn−3τ j+n−30

(j + n− 3)!

=
k∑

n=3

∞∑
j=0

∑
|α|=j

‖∂α(ε∂t)
n+1u‖L2

λn−2τ j+n−20

(j + n− 2)!
≤

k∑
n=3

J1n +
k∑

n=3

J2n ≤ 1,

concluding the proof of (8.3) for k + 1.

9. The Mach limit in a Gevrey norm

Theorem 3.1 shows that if the initial data is analytic, then the Mach limit holds in an analytic norm. In this
section, we show that if, more generally, the initial data is Gevrey, then the Mach limit holds in the Gevrey norm.

Thus, assume the initial data is Gevrey regular that satisfies

∞∑
m=0

∑
|α|=m

‖∂α(pε0, v
ε
0, S

ε
0)‖L2

τ
(m−3)+
0

(m− 3)!s
≤M0, (9.1)

where s ≥ 1 is the Gevrey index and , τ0,M0 > 0 are fixed constants. Note that when s = 1 we recover the class of
real-analytic functions. Also, for the Sobolev regularity, we assume that we have (3.1).

Similarly to (3.3), we define the mixed weighted Gevrey norm

‖u‖G(τ) =
∞∑
m=1

m∑
j=0

∑
|α|=j

‖∂α(ε∂t)
m−ju‖L2

κ(j−3)+τ(t)(m−3)+

(m− 3)!s
,

where τ ∈ (0, 1] represents the mixed space-time Gevrey radius and κ ∈ (0, 1] is a fixed parameter depending on
M0. Proceeding as in Section 8, we can prove that with κ = 1 we have

‖(pε0, vε0, Sε0)‖G(τ̃0) ≤ Q(M0) (9.2)

for some τ̃0 > 0 depending on τ0 and M0. Thus (9.2) holds for any κ ∈ (0, 1] as it is an increasing function of κ.
We also define the analyticity radius function as

τ(t) = τ(0)−Kt, (9.3)

where τ(0) ≤ min{τ̃0, 1} is a sufficiently small parameter, and K ≥ 1 is a sufficiently large parameter depending
on M0. We shall work on the time interval [0, T0] where T0 > 0 respects (3.15) and Remark 3.4.

The first theorem generalizes Theorem 3.1 by showing uniform boundedness in the Gevrey norms.

THEOREM 9.1. Assume that the initial data (pε0, v
ε
0, S

ε
0) satisfies (3.1) and (9.1), where s ≥ 1 and τ0,M0 > 0.

There exist sufficiently small constants κ, τ(0), ε0, T0 > 0, depending on τ0, s, and M0, such that

‖(pε, vε, Sε)(t)‖G(τ) ≤M, 0 < ε ≤ ε0, t ∈ [0, T0], (9.4)

where τ is as in (9.3) and K and M are sufficiently large constants depending on s and M0.
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PROOF OF THEOREM 9.1. We proceed exactly as in Sections 4–6, obtaining the a priori estimates analogous
to (3.13). Then we use a similar argument as in Section 3 to prove (9.4) We omit further details. �

Similarly to (3.8), we introduce the spatial Gevrey norm

‖u‖Yδ =
∞∑
m=1

∑
|α|=m

‖∂αu‖L2

δ(m−3)+

(m− 3)!s
,

where δ > 0 is as in (3.7).
The next theorem provides convergence of the solution in (9.1) to the corresponding incompressible Euler

equation in the Gevrey space.

THEOREM 9.2. Let δ > 0 be as in (3.7), and assume that the initial data (vε0, S
ε
0) converges to (v0, S0) in Yδ

and in L2 as ε→ 0, and Sε0 decays sufficiently rapidly at infinity in the sense

|Sε0(x)| ≤ C|x|−1−ζ , |∇Sε0(x)| ≤ C|x|−2−ζ ,

for 0 < ε ≤ ε0 and some constants C and ζ > 0. Then (vε, pε, Sε) converges to (v(inc), 0, S(inc)) in C([0, T0], Yδ),
where (v(inc), S(inc)) is the solution to (3.9)–(3.11) with the initial data (w0, S0), and w0 is the unique solution of

divw0 = 0,

curl(r0w0) = curl(r0v0),

with r0 = r(S0, 0).

PROOF OF THEOREM 9.2. Theorem 9.2 follows by using arguments analogous to those in Section 7. �
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