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ABSTRACT. We prove the existence of global-in-time weak solutions of the incompressible Navier-Stokes equations in the

half-space R3
+ with initial data in a weighted space that allows non-uniformly locally square integrable functions that grow

at large scales in an intermittent sense. The space for initial data is built on cubes whose sides R are proportional to the

distance to the origin and the square integral of the data is allowed to grow as a power of R. The existence is obtained via a

new a priori estimate and a stability result in the weighted space, as well as new pressure estimates. Also, we prove eventual

regularity of such weak solutions, up to the boundary, for (x, t) satisfying t ≥ ǫ0|x|2 + M , where ǫ0 > 0 is arbitrarily

small and M > 0. By adding conditions on the data within a weighted L2 framework, we improve algebraic bounds on

the size of this region and we refine the pointwise decay rate of the solution within this region. As an application of the

existence theorem, we construct global discretely self-similar solutions, thus extending the theory on the half-space to the

same generality as the whole space.
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1. INTRODUCTION

We consider solutions to the three-dimensional incompressible Navier-Stokes equations (NSE)

∂tu−∆u+ u · ∇u+∇p = 0,

∇ · u = 0,
(1.1)

posed on R
3
+ = {(x1, x2, x3) : x3 > 0} satisfying homogeneous Dirichlet boundary condition on ∂R3

+ × (0,∞) and

the initial condition

u(x, 0) = u0(x),

where u0 ∈ L2
loc(R

3
+) is divergence-free with u3 = 0 on ∂R3

+. If u0 ∈ L2, then the existence of global-in-time

weak solutions satisfying the strong energy inequality has been shown in the fundamental works of Leray [Ler] and

Hopf [H] (see also [CF, T, RRS, OP]), and are commonly referred to as the Leray-Hopf weak solutions. Such solutions
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enjoy additional structure, such as weak-strong uniqueness. One can also construct Leray-Hopf weak solutions that are

suitable (see [CKN, BIC]), that is they satisfy the local energy inequality (see (1.4) below). This provides additional

interior regularity, as shown in the celebrated work of Caffarelli, Kohn, and Nirenberg [CKN] (see also [RRS, O]).

However, the questions of uniqueness and smoothness of such solutions remain open.

The Leray theory has been extended, in [Le1], to the uniformly locally square integrable data in R
3; see also

[KS, KwT] for some extensions. For global existence, these works assume some type of decay of the initial data as

|x| → ∞, either a pointwise decay of a locally determined quantity, the decay of the L2 norm confined to balls of unit

radius, or the decay of the oscillation computed over balls of unit radius. In [Le2, BT4, BKT, FL2, KwT], existence

results are given in weighted spaces, which allow for a lack of decay in some directions. The papers [BKT, FL2]

additionally allow for growth in some directions.

The question of well-posedness of the Navier–Stokes equations on R
3
+ is considerably more difficult than the

corresponding question in R
3, due to difficulties caused by the pressure when solving the linear Stokes problem.

For a treatment of the Stokes problem by the Fourier transform, see Solonnikov [Sol1, Sol2, Sol3], while a different

approach to solvability of the Stokes problem was developed by Ukai in [Uka]. For other works on the solvability

of the Stokes problem in the half-space, see also [Ka, KLLT]. Until recently the global-in-time existence of a weak

solution for uniformly locally square integrable initial data in R
3
+ was open, one of the main challenges being the

treatment of the pressure. In fact, the results in [GS] imply the estimate t‖∇p‖L2 ≤ C‖u0‖L2 for solutions of the

linear Stokes equations. Using the Poincaré inequality we thus obtain

‖p(t)− [p]B1(x0)∩R
3
+
(t)‖L2(B1(x0)∩R

3
+) ≤ t−1‖u0‖L2(R3

+)

where [f ]A := |A|−1
∫
A
f denotes the average of f over A. The right-hand side of this estimate, however, is not

integrable in t near the initial time. Recently, Maekawa, Miura, and Prange used in [MMP1] explicit representation of

the kernel for the Stokes equations in R
3
+ due to Desch, Hieber, and Prüss [DHP] to obtain a better estimate,

‖p(t)‖L2(B1(x0)∩R
3
+) ≤ t−3/4‖u0‖L2

uloc(R
3
+), (1.2)

(see (2.20), (2.21) in [MMP1]), which is integrable in time close to t = 0. Maekawa, Miura, and Prange [MMP1,

MMP2] also established a number of new estimates in the case of R3
+, and have also proved the global-in-time exis-

tence of weak solutions for uniformly locally square integrable initial data u0 in R
3
+, in the spirit of [Le1].

We note that such solutions further complicate the study of the pressure function, due to the contribution to p
coming from large scales. For example, in the case of R3, one way to deal with the pressure is to decompose it into

the near-field and the far-field. Namely, given an open set Q ⊂ R
3 one may consider

pnear(x, t) + pfar(x, t)− pQ(t) = −
1

3
|u(x, t)|2 + p.v.

∫

Q∗

Kij(x− y)(ui(y, t)uj(y, t)) dy

+

∫

y 6∈Q∗

(Kij(x− y)−Kij(xQ − y))(ui(y, t)uj(y, t)) dy,

(1.3)

as in [BK, BKT], where pQ(t) is an arbitrary function of time, Kij(y) = ∂ij(4π|y|)
−1, and xQ ∈ Q is fixed. In this

context, the case of the half-space R
3
+ becomes much more difficult, as no such direct decomposition is available. In

fact, in addition to the Helmholtz pressure, that is a solution of the nonhomogeneous Poisson equation
{
−∆pH = ∂ij(uiuj) in R

3
+,

∂3pH = div (uu3) on ∂R3
+,

one also needs to take into account the harmonic pressure, which is a solution of the Laplace equation with Neumann

boundary condition, {
−∆pharm = 0 in R

3
+,

∂3pharm = ∆u3|x3=0 on ∂R3
+,

where the boundary condition at x3 = 0 should be understood in the sense of the trace of ∆u3. This part of the

pressure function is absent in the case of the whole space R
3, and the Helmholtz pressure pH requires a much more

sophisticated analysis than in the case of R3. note that both parts of the pressure also need to be decomposed into the

near and far fields.

In this work we are concerned with the initial data u0 that involves growth at infinity. Note that for such u0,

the inequality (1.2) does not imply any local well-definiteness of the pressure near t = 0. This is an interesting

problem, and we address it here for u0 that can grow at infinity in an “intermittent” sense (see Lemmas 2.1 and 2.2



GLOBAL EXISTENCE FOR THE NAVIER-STOKES EQUATIONS IN THE HALF-SPACE 3

below). Namely, we consider u0 such that ‖u0‖L2(Q) . |Q|1/3 for every dyadic block Q of side-length d such that

dist(Q, 0) ∼ d (see Definition 1.1 below). In such setting one needs to treat the pressure function with additional

attention to the energy coming from the large scales of the velocity field. This can be achieved by developing an

appropriate framework consisting of a choice of the function space (see Definition 1.1), an energy functional adapted

to large scales (see (1.8)), and an a priori estimate for such energy functional (see Theorem 1.4), as well as estimates

of all components of the pressure function using such framework (see (2.15)).

To be more precise, our goal is to establish the global existence of weak solutions in R
3
+ with data built on a dyadic

tiling C of the half-space (see Figure 1 for an illustration projected on a half-plane), allowing for growth as |x| → ∞.

These data are on one hand general and on the other also well adapted for the study of self-similar solutions and

eventual regularity.

The notion of the large scale intermittent initial data has been considered in [BK, BKT] in the case of R3. This

concept should not be confused with the notion of intermittency in turbulence, although we chose the terminology in

analogy with this. In particular, intermittency in turbulence can refer to the fact that the active regions associated with

small scales do not occupy the full spatial domain. In our setting, the active region should be interpreted as the region

where local L2 quantitites are large. Intermittent then refers to the fact that, intersected with BR(0)∩R
3
+, the volume

of this region cannot be growing like R3.

2

FIGURE 1. The cover of R3
+ by the collection C. A scaled cover Cn is obtained by replacing 2

with 2n.

To state our main results, we first define local energy weak solutions.

Definition 1.1 (Local energy solutions). A vector field u ∈ L2
loc(R

3
+ × [0, T )), where 0 < T < ∞, is a local energy

solution to (1.1) with divergence-free initial data u0 ∈ L2
loc(R

3
+) such that u0,3 = 0 on ∂R3

+ if the following conditions

hold:

(1) u ∈
⋂

R>0 L
∞(0, T ;L2(BR(0) ∩ R

3
+)), ∇u ∈ L2

loc(R
3
+ × [0, T ]) and u|x3=0 = 0 a.e. t ∈ (0, T ),

(2) for some p ∈ D′(R3
+ × (0, T )), the pair (u, p) is a distributional solution to (1.1),

(3) for all compact subsets K of R3
+ we have u(t) → u0 in L2(K) as t→ 0+,

(4) u is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all non-negative φ ∈ C∞
c (R3

+ × (0, T )), we

have the local energy inequality

2

∫∫
|∇u|2φ dx dt ≤

∫∫
|u|2(∂tφ+∆φ) dx dt+

∫∫
(|u|2 + 2p)(u · ∇φ) dx dt, (1.4)

(5) the function t 7→
∫
u(x, t) · w(x) dx is continuous on [0, T ) for any compactly supported w ∈ L2(R3

+),
(6) given a bounded, open set Ω ⊂ R

3
+, the pressure satisfies the local pressure expansion,

p = pli,loc + pli,nonloc + ploc,H + ploc,harm + pnonloc,H + pharm,≤1 + pharm,≥1, (1.5)

which holds a.e. up to a function of time; the terms on the right-hand side are defined in (2.4), (2.7), (2.11),

(2.12), and (2.13) below and estimated in (2.15).
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We say that u is a local energy solution on R
3
+ × [0,∞) if it is a local energy solution on R

3
+ × [0, T ) for all T <∞.

This definition is primarily based on the one in [KS]. Some works refer to this class (without the part (6) and with

minor modifications) as local Leray solutions or Lemarié-Rieusset type solutions. This definition contains sufficient

properties for work on regularity, see e.g. [CKN, Li, LS, ESS, K, Gr, BS] among others, or in physical applications,

see e.g. [DG]. We note that we do not assert any uniform control in L2
loc. The local pressure expansion in (6) above is

inspired by the decomposition introduced by [MMP1, MMP2], and is unique up to a function of time; see (2.14).

Our main result is concerned with local energy weak solutions with initial data u0 belonging to a weighted space

that allows growth of the kinetic energy at spatial infinity.

To be precise, given n ∈ N, we denote by S
(n)
n the collection of 32 cubes of side-length 2n that can be obtained by

partitioning {x ∈ R
3
+ : |xi| ≤ 2n+1 for i = 1, 2, 3}. For k ≥ n + 1, let Rk = {x ∈ R

3
+ : |xi| < 2k; i = 1, 2, 3} and

we denote by S
(n)
k the collection of 28 cubes of side-length 2k that can be obtained by partitioning Rk+1 \Rk. Also,

set

Cn =
{
Q ∈ Sk, k ≥ n

}
; (1.6)

this is illustrated by Fig. 1 with 2 replaced by 2n. In other words, S
(n)
k is the collection of cubes from Cn of side-length

2k. We set C = C1.

Definition 1.2. Given p ∈ [1,∞), q ≥ 0, and n ≥ 1, we have f ∈Mp,q
Cn

if

‖f‖p
Mp,q

Cn

= sup
Q∈Cn

1

|Q|
q
3

∫

Q

|f(x)|p dx <∞.

We denote by M̊p,q
C the closure in Mp,q

C of divergence-free, smooth functions, which are compactly supported in R
3
+.

We note that
1

|Q|
q
3

∫

Q

|f |p dx→ 0 as |Q| → ∞, Q ∈ C, (1.7)

for f ∈ M̊p,q
C , which was shown in [BKT].

In the context of the whole space R3, the spaces Mp,q
C are discussed in detail in [BKT] and from the perspective of

interpolation theory in [FL1, Section 7]. The same observations apply here; in particular, the choice of tiling does not

matter so long as elements have length scales comparable to their distance from the origin. Additionally, dyadic cubes

can be replaced by balls centered at the origin as in [B], i.e., we have

‖u0‖
p
Mp,q

C

∼ sup
R≥1

1

Rq

∫

BR(0)

|u0|
p dx,

for u0 ∈ L2
loc, when q > 0. Here and below “a ∼ b” means “a . b and b . a”. The decay in M̊p,q

C can also be

encoded via Basson’s perspective due to the equivalence

f ∈ M̊p,q
C ⇐⇒ lim

n→∞
‖f‖Mp,q

Cn
= 0 ⇐⇒ lim

R→∞

1

Rq

∫

BR(0)

|u0|
p dx = 0

when q > 0; see [BKT] for a proof. The space Mp,q
C can also be viewed as an inhomogeneous Herz spaceK−q

p,∞(R3
+).

The norms in these spaces are defined by

‖f‖Kq
p,r(R

3
+) :=





(∑
k≥0 2

kqr‖f‖rLp(Ak)

) 1
r

for r <∞,

supk≥0 2
kq‖f‖rLp(Ak)

for r = ∞,

where A0 := B0 ∩ R
3
+, and Ak := (B2k \ B2k−1) ∩ R

3
+ for k ≥ 1. Homogeneous Herz spaces are used to analyze

strong solutions to the Navier-Stokes equations in [Tsu].

The first use of the spaces Mp,q
C in the analysis of the Navier-Stokes equations was by Basson [B], who constructed

local-in-time solutions in two dimensions belonging to the M2,2
C class. In 2D, Basson additionally constructed global

in time solutions with L2
uloc initial data by exploiting the maximum principle for the 2D vorticity [B]. Subsequently,

the local-in-time existence was addressed in three dimensions in [BK], while the global-in-time existence was obtained

in [BKT] for M̊2,2
C . In comparison to [BKT], here we build the divergence-free condition and the decay condition into

the space M̊2,2
C while in [BKT] only the decay condition was built into this space.
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Our main theorem is concerned with the global-in-time existence with initial data in M̊2,q
C where 0 < q ≤ 2. In

order to state it, for a space-time function u, define

αn(t) = sup
s∈[0,t]

‖u(s)‖2
M2,q

Cn

and βn(t) = sup
Q∈Cn

1

|Q|
q
3

∫ t

0

∫

Q

|∇u|2 dx dt, (1.8)

for n ∈ N and q ∈ (0, 2]. Note that both αn and βn are non-decreasing functions of t. For simplicity of notation, we

omit indicating q in αn and βn.

Theorem 1.3 (Global existence of local energy solutions). Let q ∈ (0, 2] and u0 ∈ M̊2,q
C . Then there exists a local

energy solution u on R
3
+ × (0,∞) with the initial data u0 such that

α1(t) + β1(t) <∞,

for all t <∞.

In comparison with the L2
uloc(R

3
+) setting of [MMP1, MMP2], we note that neither of the two spaces L2

uloc(R
3
+)

and M̊2,2
C contains the other. For example, if u0 is a constant (or periodic) function, then u0 ∈ L2

uloc(R
3
+) \ M̊

2,2
C ,

while

u0 :=
∑

k≥1

2qk/2χB1(2ke3) ∈ M̊2,q
C \ L2

uloc(R
3
+);

see [BK]. This example is intermittent at large scales in the sense that the growth is not occurring in all directions

simultaneously. The spaces M2,q are well-adapted to “zooming out” dyadically, which makes them suitable for

capturing the large scale behavior. In particular, the number q in M2,q measures potential growth at infinity, with

larger value of q corresponding to more growth. This implies that M2,q ⊂M2,q′ for q < q′.
In this context, Theorem 1.3 is the first result asserting the global-in-time existence of weak solutions in the half-

space that allows intermittent initial data.

Furthermore, the dyadic structure of M2,q makes it possible to quantify the eventual regularity of solutions con-

structed in Theorem 1.3 (see Theorem 1.7 below). We note that, in the context of scaling of the Navier–Stokes

equations, M2,q has the same scaling as L(1−q)/2 for large scales. In particular this implies that M2,1 includes all

self-similar initial data, allowing an extension of Theorem 1.3 to self-similar solutions to the NSE (see Theorem 1.7

below).

In the following theorem, we summarize the bounds which the local energy solutions satisfy.

Theorem 1.4 (Bounds for local energy solutions). Assume that q ∈ (0, 2] and u0 ∈ M̊2,q
C1

. There exists γ0 > 0,

η = η(‖u0‖M2,q
C1

) > 0, and C ≥ 1 with the following property. If (u, p) is a local energy solution on R
3
+ × (0,∞)

with the initial data u0 such that

α1(t) + β1(t) <∞,

for all 0 < t <∞, then for every n ∈ R, we have

αn(Tn) + βn(Tn) ≤ Cαn(0), (1.9)

for some

Tn ≥ ηmin

{
2n, ‖u0‖

−1

M2,q
Cn

}γ0

. (1.10)

Note that Tn → ∞ as n→ ∞.

Another important ingredient in the proof of Theorem 1.3 is the following stability result.

Theorem 1.5 (Stability). Assume q ∈ (0, 2] and u0 ∈ M̊2,q
C , and suppose that {u

(k)
0 }k≥1 ⊂ M2,q

C is such that

‖u
(k)
0 − u0‖M̊2,q

C

→ 0. Moreover, suppose that {(u(k), p(k))}k≥1 is a collection of local energy solutions with initial

data u
(k)
0 that satisfy the assumptions of Theorem 1.4 for every n ∈ N. Then there exists a subsequence {kl}l≥1 such

that (u(kl), p(kl)) converges in a weak sense to a global-in-time local energy solution (u, p) with initial data u0. In

addition, for every n ∈ N, the pair (u, p) satisfies the a priori estimate (1.9), and, given Ω ⋐ R
3
+, each part of the

local pressure expansion of p(kl) converges strongly in L
3
2 (Ω× (0, T )) to the corresponding part of the local pressure

expansion of p, for every T > 0.
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The most difficult part of the proofs of the above two theorems is the treatment of the pressure function. We note

that each of the pressure parts pli,loc, pli,nonloc, ploc,H, ploc,harm, pnonloc,H, pharm,≤1, and pharm,≥1 is defined in a

similar way as in the works [MMP1, MMP2] in the uniformly locally integrable setting. However, there are important

differences in our treatment of each of these parts in our estimates (see (2.15)). For example, our pressure estimates are

adapted to the energy functional that captures large scales. This results in additional difficulties in balancing the upper

bounds against the kinetic energy α and the dissipation energy β. In particular, we cannot afford to control ∇ploc,harm
only in L3/2L9/8, which we describe in more detail below Lemma 2.4. A related issue appears in our estimate on

the nonlocal harmonic part pharm,≥1, which is our most difficult estimate, and is balanced against α and β using two

auxiliary indices r and δ (see (2.15)). In fact, we use a new method to estimate this part, employing the structure of

our tiling C to handle the part of pharm,≥1 consisting of double convolution (i.e., the term in (2.13) that is concerned

with FB). We discuss this issue in detail in Steps 2 and 3 of the proof of Lemma 2.6. Moreover, we also use a simpler

estimate of the local Helmholtz pressure ploc,H (see (2.22) in [MMP1]) as well as pharm,≤1 (see (2.24) in [MMP1]).

Additionally, we do not need any estimates of derivatives of these parts of the pressure.

Our pressure bounds allow us to obtain the a priori estimate (1.9) as well as the strong convergence under the per-

turbation of the initial data u0 in M2,2
C mentioned in Theorem 1.5. Consequently, we obtain the explicit representation

(1.5) of the pressure for the weak solutions constructed in Theorem 1.3.

Our stability result can also be applied to construct self-similar and discretely self-similar solutions with very rough

data. Recall that if u solves (1.1), then so does u(λ)(x, t) := λu(λx, λ2t) for λ > 0. Self-similar (SS) solutions, i.e.,

solutions invariant with respect to the scaling of (1.1) for all scaling factors λ > 0, are noteworthy candidates for

the non-uniqueness and could lead to non-uniqueness in the Leray-Hopf class, as demonstrated by [JS1, GuS, ABC].

On the other hand, discretely self-similar (DSS) solutions, i.e., solutions that satisfy the scaling invariance possibly

only for some λ > 1, are candidates for the failure of eventual regularity [BT1, BT4]. For small data, the existence

and uniqueness of such solutions follow easily from the classical well-posedness results; see [KT] and the references

therein. The more interesting case of large data has been only recently solved by Jia and Šverák [JS2], and some

improvements and new approaches have been developed by e.g. [Ts, KTs, BT1, BT3, AB, CW, FL2]. The roughest

class of scaling invariant initial data for which existence is known is L2
loc(R

3) [CW, BT3, Le3, FL2]. Note that

if u0 ∈ L2
loc(R

3) is scaling invariant then it belongs to the R
3 version of the space M2,1

C , see [BK]. Indeed, this

observation led the first and second authors to study these spaces in [BK].

In the case of the half-space, Tsai and Korobkov [KTs] established the original theory of Jia and Šverák [JS2]

for smooth, self-similar data via a new method and, later, Tsai and the first author [BT2] addressed rough, discretely

self-similar initial data in L3,∞ with arbitrary scaling factor. As a consequence of Theorem 1.5, we prove that any

SS/DSS initial data in M̊2,2
C gives rise to a SS/DSS solution. This class of initial data corresponds to the roughest

case for R3 [CW, BT3, Le3, FL2] with a suitable boundary condition imposed. To see why this is true, assume that

u0 ∈ L2
loc(R

3
+) is divergence-free with vanishing normal component at the boundary (this is the boundary condition

implicit in the space M̊2,2
C since M̊2,2

C is obtained by taking the closure of compactly supported test functions; see

[CF, Proposition 1.5]). If, additionally, u0 is scaling invariant, then, by a re-scaling argument, u0 ∈ M2,1
C ⊂ M2,2

C .

Furthermore, we have u0 ∈ M̊2,2
C because u0 decays at spatial infinity (from membership in M2,1

C ) and satisfies the

correct boundary condition.

Theorem 1.6 (Global existence of self-similar solutions). Assume u0 ∈ M̊2,2
C is divergence-free, satisfies u0,3 = 0 on

∂R3
+, and is self-similar (resp. discretely self-similar) for some λ > 1. Then there exists a global-in-time local energy

solution u with data u0 that is self-similar (resp. discretely self-similar).

The proof of Theorem 1.6 uses our new a priori bounds to construct discretely self-similar solutions via the stability

result of Theorem 1.5 applied to a sequence of solutions given by [BT2]. The approach is similar to the one taken by

the first author and Tsai in [BT3] in the case of R3. However, an important difference is that [BT3] deals with the

non-local pressure by exploiting the DSS scaling to localize the far-field part, while in the present paper this technical

step is unnecessary because the far-field part of the pressure is controlled using the weighted L2 framework.

Finally, we show that local energy solutions eventually become regular, up to the boundary, provided u0 belongs to

a subspace of M̊2,2
C . This provides an extension of Theorem D of [CKN] in the setting of half-space R

3
+ by allowing

growth of u0 at spatial infinity. We show that if u0 is in M̊2,q
C where 0 < q ≤ 1, then an ensuing local energy solution

is regular above a parabola.
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Theorem 1.7 (Eventual regularity). Assume u0 ∈ M̊2,q
C for some q ∈ (0, 1]. Then, for any ǫ0 ∈ (0, 1], there exists

M > 0 so that, if u is local energy solution with initial data u0 satisfying

α1(t) + β1(t) <∞,

for all 0 < t <∞, then u is regular (up to the boundary) in the region

{(x, t) ∈ R3
+ × (0,∞) : t ≥ ǫ0|x|

2(q+2)
3 +M}. (1.11)

Moreover,

|u(x, t)| ≤ ǫ0t
− 7

8+
q+2
8λ in {t ≥ ǫ0|x|

2λ +M} (1.12)

for each λ ∈ [(q + 2)/3, 1].

Note that (1.12) quantifies the decay of u with respect to q. In fact, given q ∈ (0, 1] the inequality provides a family

of quantitative decay estimates: Taking λ = (q + 2)/3 we obtain decay O(t−1/2) in the region (1.11), while taking

λ > (q + 2)/3 gives a better decay rate in the smaller region (1.12), with the best decay rate O(t
q−5
8 ) inside the

parabola {t ≥ ǫ0|x|
2 +M}.

Recall from [SSS] that a point (x, t) ∈ R3
+× (0,∞) is regular if there exists a neighborhood B× I ⊂ R3

+× (0,∞)
of (x, t) such that u is Hölder continuous in B × I .

We note that an analogous result can be proven in the case of the whole space R
3, complementing the analysis

of [BKT]. In fact, in our case the proof is easier, due to a simpler structure (1.3) of the pressure function.

The subject of eventual regularity is classical. For the Leray-Hopf solutions, the global energy inequality makes

the matter trivial since ‖u‖Ḣ1 must become small at large times; see also [CKN]. For solutions not satisfying the

global energy inequality, the eventual regularity is not generally known. However, if the behavior at the spatial infinity

is appropriately controlled, usually via some integrability, then the eventual regularity should hold. For example, it

is shown in [BT4] using the ǫ-regularity that any local energy solution on R
3 with data in Lp where 2 < p ≤ 3, or

satisfying more general conditions, eventually regularizes. Theorem 1.7, which is a half-space version of a result in

[BKT], builds on this idea and identifies the way in which the far-field behavior of the data needs to be controlled

within the M2,q framework to ensure the eventual regularity.

The paper is organized as follows. Section 2 contains the study of the local pressure expansion and provides the

main estimates (2.15) for all pressure parts. This is then used in Section 3, where we prove the a priori estimate,

Theorem 1.4. Section 4 contains the proof of the stability result, Theorem 1.5. We then prove the main existence

results, Theorems 1.3 and 1.6 in Section 5. The proof of the eventual regularity result, Theorem 1.7, is provided in

Section 6.

2. PRESSURE FORMULA AND ESTIMATES

Given n ≥ 1 and a bounded, open set Ω ⊂ R
3
+, let m ≥ n be the smallest integer for which there exists the largest

integer m ∈ [n,m] such that

Ω can be covered using cubes from S(n)
m ∪ S

(n)
m+1 ∪ · · · ∪ S

(n)
m .

Note that if Ω ∈ Cn for some n ≥ 1, thenm = m = m, wherem is such that Ω ∈ S
(n)
m . (Recall (1.6) for the definition

of the family Cn, see also Fig. 1.)

Given Ω and n, let Q be the union of (closed) cubes from Cn that have a nonempty intersection with Ω. Denote by

Q∗ the union of the neighbors ofQ, i.e., the union ofQ and all cubes from Cn that share at least one common boundary

point with Q. We similarly define Q∗∗ and Q∗∗∗. We set χ ∈ C∞
0 (R3

+, [0, 1]) such that χ = 1 on a neighborhood of

Q that includes the union of the 5/4 homotheties of the cubes included in Q and χ = 0 outside Q∗, and we define χ∗

and χ∗∗ analogously. In the pressure estimates below, we shall use the following simple geometric fact: If ξ ∈ Q and

z ∈ {χ < 1} is such that z ∈ Q̃ for some Q̃ ∈ S
(n)
k ⊂ Cn, then

|ξ′ − z′|+ ξ3 + z3 &

{
2m k ≤ m,

2k k ≥ m+ 1,
(2.1)

where we used the notation x = (x′, x3) to distinguish the horizontal component x′ and the vertical component x3 of

any given point x ∈ R
3
+. Indeed, if k ≤ m, then either |ξ′ − z′| & 2m (if Q touches the plane ∂R3

+ and z does not lie

in a cube above Q), z3 & 2m (if z does lie in a cube above Q) or ξ3 & 2m (if Q does not touch the plane). The case
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k ≥ m+ 1 follows similarly as either |ξ′ − z′| & 2k (if z lies in a cube touching the plane ∂R3
+ and ξ does not lie in

a cube above it), ξ3 & 2k (if it does) or z3 & 2k (if z lies in a cube not touching the plane). Furthermore, note that

|ξ − z| . 2m for any ξ, z ∈ Q∗∗∗. (2.2)

We note that the reason to consider the two indices m and m is to be able to obtain the local pressure expansion (recall

Definition 1.1(6)) for any bounded and open set Ω ⊂ R
3
+, rather than merely for cubes in the family C, or sets of

similar geometry or location. For example, if Ω ∈ Cn for some n ≥ 1, as is the case in most of our applications, then

we have m = m = m, where m ≥ n is such that 2m is the side-length of Ω. However, if Ω is a set that stretches

through a number of length scales, then 2m and 2m should be thought of as the smallest and the largest length scales,

respectively, associated to Ω. In other words the indices m, m measure how well the geometry of Ω is adapted to the

tiling Cn. One of the features of our pressure estimates (see (2.15) below) is that these two indices are sufficient to

describe the dependence of the strength of each of the pressure estimates in terms of geometry of Ω.

We write

u = uli + uloc + unonloc, p = pli + ploc + pnonloc,

where the terms on the right-hand sides are solutions to the linear part




∂tuli −∆uli +∇pli = 0,

∇ · uli = 0,

uli|{z3=0} = 0,

uli|{t=0} = u0,

the local part 



∂tuloc −∆uloc +∇ploc = −∇ · (χ∗∗u⊗ u),

∇ · uloc = 0,

uloc|{z3=0} = 0,

uloc|{t=0} = 0,

(2.3)

and the nonlocal part




∂tunonloc −∆unonloc +∇pnonloc = −∇ · ((1− χ∗∗)u⊗ u),

∇ · unonloc = 0,

unonloc|{z3=0} = 0,

unonloc|{t=0} = 0.

We note that each of the pressure components enters the equation with a gradient, and thus it can be modified by an

arbitrary function of t. We have the representation

pli(x, t) =
1

2πi

∫

Γ

eλt
∫

R
3
+

(
χ(z)qλ(x

′ − z′, x3, z3) · u
′
0(z) + (1− χ(z))qλ,x,xΩ

(z) · u′0(z)
)
dz′ dz3 dλ

= pli,loc(x, t) + pli,nonloc(x, t),

(2.4)

where x = (x′, x3) and Γ = {λ ∈ C : |arg λ| = η, |λ| ≥ κ} ∪ {λ ∈ C : |argλ| ≤ η, |λ| = κ} with η ∈ (π/2, π) and

κ ∈ (0, 1),

qλ(x
′, x3, z3) := i

∫

R2

eix
′·ξe−|ξ|x3e−ωλ(ξ)z3

(
ξ

|ξ|
+

ξ

ωλ(ξ)

)
dξ,

ωλ(ξ) :=
√
λ+ |ξ|2, and

qλ,x,xΩ
(z) := qλ(x

′ − z′, x3, z3)− qλ(x
′
Ω − z′, xΩ,3, z3);

see (2.5)–(2.9) in [MMP1] and (2.8e) in [MMP2]. Above, xΩ = (x′Ω, xΩ,3) stands for any fixed point of Ω; if Ω is a

cube, we denote by xΩ the center of Ω. Moreover, we have the pointwise estimates

|∇m
x qλ(x

′ − z′, x3, z3)| .m
e−|λ|

1
2 z3

(|x′ − z′|+ x3 + z3)2+m
, m = 0, 1, 2, (2.5)

which are proven in [MMP2, Proposition 3.7].

As for the local (nonlinear) pressure ploc, we use the Helmholtz decomposition in the half-space to write

∇ · (χ∗∗u⊗ u) = P∇ · (χ∗∗u⊗ u) +∇ploc,H, (2.6)
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where ploc,H is the solution to Poisson equation with the Neumann boundary condition
{
−∆ploc,H = ∂i∂j(χ∗∗uiuj) in R

3
+,

∂3ploc,H = ∂i(χ∗∗uiu3) on ∂R3
+.

The solution is given by

ploc,H(x, t) = c0χ∗∗|u|
2(x, t) +

∫

R
3
+

∂zi∂zjN(x, z)χ∗∗(z)ui(z, t)uj(z, t) dz, (2.7)

where c0 is a constant; also,

N(x, z) =
1

4π

(
1

|x− z|
+

1

|x− z|

)
(2.8)

denotes the Neumann kernel for the half-space, where x = (x1, x2,−x3) is the reflection of x with respect to the

boundary ∂R3
+. With this definition of the local Helmholtz pressure ploc,H, one can use Fourier analytic methods (see

(6.2) in [MMP2] and Appendix A.1 in [MMP1]) to deduce that for the Helmholtz projection we have

P∇ · (χ∗∗u⊗ u) = FA + FB ,

where FA is a vector function whose components are finite sums of the terms of the form

∂j (χ∗∗ukul) , (2.9)

where j, k, l ∈ {1, 2, 3}, and FB(z, s) = FB(z
′, z3, s) is a finite sum of vectors of the form

m(D′)∇′ ⊗∇′

∫ ∞

0

∫

R2

(P (z′ − y′, |z3 − y3|) + P (z′ − y′, z3 + y3)) ((χ∗∗v ⊗ w)(y′, y3, s)) dy
′ dy3, (2.10)

where v and w denote various 2D vectors whose components are chosen among u1, u2, or u3; also, m(D′) denotes

a multiplier in the horizontal variable z′ that is homogeneous of degree 0 and that may be a matrix. Also, P (x′, t) =
(2π)−1t(t2 + |x′|2)−3/2 denotes the 2D Poisson kernel.

Thus, letting (uloc,harm, ploc,harm) be a solution to (2.3), but with the right-hand side replaced by −P∇·(χ∗∗u⊗u),
we see that

ploc = ploc,H + ploc,harm,

by applying the Helmholtz decomposition (2.6) to (2.3), and, from the Duhamel principle

ploc,harm(x, t) =
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ(x
′ − z′, x3, z3) · (FA(z, s) + FB(z, s)) dz dλ ds. (2.11)

As for the nonlocal (nonlinear) pressure pnonloc, we use the Helmholtz decomposition to write, similarly as in the

case of ploc,

∇ · ((1− χ∗∗)u⊗ u) = P∇ · ((1− χ∗∗)u⊗ u) +∇pnonloc,H,

where

pnonloc,H(x, t) =

∫

R
3
+

∂zi∂zjNx,xΩ
(z)(1− χ∗∗(z))ui(z, t)uj(z, t) dz (2.12)

and Nx,xΩ
(z) = N(x, z) − N(xΩ, z). Note that by introducing N(xΩ, z) we have modified pnonloc,H by a function

of t only (see local Helmholtz pressure, ploc,H, above), which thus makes no change to ∇pnonloc,H.

Similarly, we can modify the nonlocal harmonic pressure by writing

pharm(x, t) =
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ(x
′ − z′, x3, z3) · χ∗FB(z, s) dz

′ dz3 dλ ds

+
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ,x,xΩ
(z) · (1− χ∗)(FA(z, s) + FB(z, s)) dz dλ ds

= pharm,≤1(x, t) + pharm,≥1(x, t)

(2.13)

(see also (2.17) in [MMP1]), where FA and FB are defined as in (2.9) and (2.10) with χ∗∗ replaced by (1−χ∗∗). Note

that there is no FA part in pharm,≤1 as χ∗ vanishes on supp (1− χ∗∗).
We point out that the above representation of the pressure function is unique on a given bounded open set Ω ⊂ R

3
+,

up to a function of time, of any local energy solution u. Indeed, each of the pressure parts pli,loc, pli,nonloc, ploc,H,

ploc,harm, pnonloc,H, pharm,≤1, and pharm,≥1 depends only on u (rather than on our decomposition uli+uloc+unonloc),
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and so uniqueness (up to a function of time) follows from the distributional form of the Navier-Stokes equations (recall

Definition 1.1). In other words, if given Ω,Ω′ ⊂ R
3
+ are such that Ω ⊂ Ω′ and if we define the pressure functions

pΩ, pΩ′ as the sum of the above pressure parts (respectively), then

pΩ − pΩ′ = cΩ,Ω′(t) (2.14)

on Ω for some cΩ,Ω′ , a function of time only.

In the remaining part of this section, we fix n ≥ 1 and prove the following estimates on any given bounded open

set Ω ⊂ R
3
+:

‖pli,loc(t)‖L2(Ω) . 2
q+1
2 m‖u0‖M2,q t−

3
4 ,

‖pli,nonloc(t)‖L∞(Ω) . 2m+ q−4
2 m‖u0‖M2,q t−

3
4 ,

‖ploc,H(t)‖
L

3
2 (R3

+)
. ‖u(t)‖2L3(Q∗∗∗),

‖ploc,harm − θ‖
L

3
2 ((0,t);L

17
10 (R3

+))
. 2qm

(
‖α‖

13
34

L
39
5 (0,t)

β(t)
21
34 + 2−

21
17m‖α‖

L
3
2 (0,t)

)
,

‖pnonloc,H(t)‖L∞(Ω) . 2m+(q−4)m‖u(t)‖2M2,q ,

‖pharm,≥1‖Lr((0,T );L∞(Ω)) . 2m+(q−4)m

(
22(δ−γ)mT γ‖α‖1−δ

L
r(1−δ)
1−rδ (0,T )

β(T )δ

+
(
1 + T γ2−2γm + T

1
2 2mq−(1+q)m

)
‖α‖Lr(0,T )

)

‖pharm,≤1(t)‖L∞(Ω) . 2
m
4 +(q−4)mα(t)t

3
8 ,

(2.15)

for t > 0, r ∈ [1,∞), q ∈ (0, 3), δ ∈ (0,min{1/r, 3/4, 3q/2}), and γ ∈ (0, δ/3), where θ is a function of t only. The

implicit constants depend on q, r, δ, γ, κ, and η; we used the notation (1.8). In particular, the implicit constants do not

depend on the choice of xΩ (recall the above decompositions into the local and nonlocal parts). In fact, as mentioned

below (2.2), the dependence of the above estimates on the geometry of Ω is expressed in terms of the indices m and

m only. For simplicity of notation, we have used the abbreviations M2,q =M2,q
Cn

and

α = αn, β = βn

(recall (1.8)), which we also apply in the remainder of this section.

We note that the implicit constants in (2.15) do not depend on n. If Ω ∈ Cn for some n ≥ 1, then we have

m = m = m, where m ≥ n is such that 2m is the side-length of Q. For such Q the estimates reduce by replacing 2m

and 2m with |Q|1/3. An important property to keep in mind is that if Ω is a cube from C1 that also belongs to Cn for

some n > 1, then the estimates get sharper for larger n.

In the estimates below, we write Sk ≡ S
(n)
k for brevity.

Lemma 2.1 (Estimate for pli,loc). For every t > 0, we have

‖pli,loc(t)‖L2(Ω) . 2
q+1
2 m‖u0‖M2,q t−

3
4 .

Proof of Lemma 2.1. Fix t > 0, and note that Ω ⊂ Ω′ × Ω3, where Ω′ denotes the projection of Ω onto the (x1, x2)-
plane, and Ω3 onto the x3-axis. For x3 ∈ Ω3, we use (2.4) to get

‖pli,loc(·, x3)‖L2
x′ (Ω

′) .

∫

Γ

etReλ

∥∥∥∥∥

∫

R
3
+

χqλ(x
′ − z′, x3, z3) · u0(z) dz

′ dz3

∥∥∥∥∥
L2

x′ (Ω
′)

d|λ|

.

∫

Γ

etReλ

∫ ∞

0

e−|λ|
1
2 z3

∥∥∥∥
∫

R2

(|x′ − z′|+ x3 + z3)
−2|χu0(z)| dz

′

∥∥∥∥
L2

x′ (Ω
′)

dz3 d|λ|.

(2.16)

Since

|x′ − z′| ≤ |x′|+ |z′| . 2m, (2.17)
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for every x ∈ Ω and z ∈ Q∗. Thus it follows that for every z3
∥∥∥∥
∫

R2

(|x′ − z′|+ x3 + z3)
−2|χu0(z)| dz

′

∥∥∥∥
L2

x′ (Ω
′)

=

∥∥∥∥
∫

R2

1C2m(x′ − z′)(|x′ − z′|+ x3 + z3)
−2|χu0(z)| dz

′

∥∥∥∥
L2

x′ (Ω
′)

. ‖χu0(z
′, z3)‖L2

z′
(R2)

∫

|y′|≤C2m
(|y′|+ x3 + z3)

−2 dy′

. ‖χu0(z
′, z3)‖L2

z′
(R2)2

m/4(x3 + z3)
− 1

4 ,

(2.18)

where we used
∫
|y′|≤a

(|y′|+ b)−2 dy′ = 2π(−a/(a+ b) + log(1 + a/b)) ≤ cα(a/b)
α for any α ∈ (0, 1). Therefore,

∥∥∥∥∥

∫ ∞

0

e−|λ|
1
2 z3

∥∥∥∥
∫

R2

(|x′ − z′|+ x3 + z3)
−2|χu0(z)| dz

′

∥∥∥∥
L2

x′ (Ω
′)

dz3

∥∥∥∥∥
L2

x3
(Ω3)

. 2
m
4 ‖x

− 1
4

3 ‖L2
x3

(Ω3)

∫ ∞

0

e−|λ|
1
2 z3‖χu0(z

′, z3)‖L2
z′
(R2) dz3

. 2
m
2

(∫ ∞

0

e−2|λ|
1
2 z3 dz3

)1/2

‖χu0‖L2(R3
+)

. 2
m
2 ‖χu0‖L2(R3

+)|λ|
− 1

4 ,

(2.19)

where we used the Minkowski inequality in the first step. Finally, including the integral in λ, we obtain from (2.16),

‖pli,loc(t)‖L2(Ω) . 2
m
2 ‖χu0‖L2(R3

+)

∫

Γ

etReλ|λ|−
1
4 d|λ| . 2

q+1
2 m‖u0‖M2,q t−

3
4 ,

and the proof is concluded. �

Lemma 2.2 (Estimate for pli,nonloc). For every t > 0, we have

‖pli,nonloc(t)‖L∞(Ω) .q 2m+ q−4
2 m‖u0‖M2,q t−

3
4 ,

where q ∈ (0, 3).

Proof of Lemma 2.2. For every x ∈ Ω we use (2.5) to obtain

∣∣∣∣∣

∫

R
3
+

qλ,x,xΩ
(z)(1− χ)u0(z) dz

∣∣∣∣∣ . 2m
∫ ∞

0

∫

R2

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)3
|(1− χ)u0(z)| dz

′ dz3

. 2m


2−3m

m∑

k=n

∑

Q̃∈Sk

∫ ∞

0

e−|λ|
1
2 z3

∫

R2

χQ̃(z)|u0(z)| dz
′ dz3

+

∞∑

k=m+1

2−3k
∑

Q̃∈Sk

∫ ∞

0

e−|λ|
1
2 z3

∫

R2

χQ̃(z)|u0(z)| dz
′ dz3


 ,

where we write z = (z′, z3) to emphasize the horizontal and vertical components of z and ξ ∈ [x, xΩ], with [x, xΩ]
denoting the line segment between the points x and xΩ. We also used (2.2) in the first inequality above and (2.1) in

the second. We now apply the Cauchy-Schwarz inequality to the z3-integral to obtain
∫ ∞

0

e−|λ|
1
2 z3

∫

R2

χQ̃(z)|u0(z)| dz
′ dz3 ≤ ‖e−|λ|

1
2 z3‖L2

z3
(0,∞)

∥∥∥∥
∫

R2

χQ̃(z
′, z3)|u0(z

′, z3)| dz
′

∥∥∥∥
L2

z3
(0,∞)

. |λ|−
1
4 ‖u0‖L2(Q̃) 2

k . |λ|−
1
4 ‖u0‖M2,q 2

2+q
2 k



GLOBAL EXISTENCE FOR THE NAVIER-STOKES EQUATIONS IN THE HALF-SPACE 12

for every Q̃ ∈ Sk, where we applied the Cauchy-Schwarz inequality in the z′-integral in the second inequality.

Substituting this into the above estimate gives

∣∣∣∣∣

∫

R
3
+

qλ,x,xΩ
(z)(1− χ)u0(z) dz

∣∣∣∣∣ . 2m|λ|−
1
4 ‖u0‖M2,q


2−3m

m∑

k=n

2
2+q
2 k +

∞∑

k=m+1

2
q−4
2 k




. 2m+ q−4
2 m|λ|−

1
4 ‖u0‖M2,q ,

from which the lemma follows by integrating in λ and noting that |λ| ≥ κ. �

Lemma 2.3 (Estimate for ploc,H). For every t > 0, we have

‖ploc,H(t)‖
L

3
2 (R3

+)
≤ C‖u(t)‖2L3(Q∗∗∗).

Proof of Lemma 2.3. This follows directly by the Calderón-Zygmund estimate applied to each of the two components

of the Neumann kernel (2.8). �

Lemma 2.4 (Estimate for ploc,harm). There exists a function θ depending only on t such that

‖ploc,harm − θ‖
L

3
2 ((0,t);L

17
10 (R3

+))
. 2qm

(
‖α‖

13
34

L
39
5 (0,t)

β(t)
21
34 + 2−m‖α‖

L
3
2 (0,t)

)

for all q > 0.

Recall that we use the abbreviations α = αn and β = βn; see (1.8).

Let us briefly comment why we estimate ploc,harm in L
3/2
t L

17/10
x . We are interested in estimating a term of the

form
∫
Q
uploc,harm (see Lemma 3.3 below) for a given cube Q ∈ Cn, for which we can use a bound of the form

‖u‖
L

3/2
t Lr′ ‖ploc,harm − θ‖

L
3/2
t Lr , where r′ is the conjugate exponent to r. The borderline value of r is 9/5 as then

one can obtain ‖ploc,harm − θ‖
L

3/2
t L

9/5
x

. ‖∇ploc,harm‖L3/2
t L

9/8
x

. |Q|q/3α(t)2/3β(t)2/3, by considering the leading

order term only. However, in this case we obtain a power of α(t) on the right-hand side, instead of ‖α‖Lp(0,t) for

some p ∈ [1,∞), which makes it impossible to use an ODE-type argument in the a priori bound; note that Lemma 3.4

below requires that p < ∞. Taking r < 9/5 replaces the L∞ norm with a high Lp norm, which makes it possible

to use an ODE-type argument, but r also cannot be too low. For example taking r = 8/5 one can similarly obtain,

up to the leading order, ‖ploc,harm − θ‖
L

3/2
t L

8/5
x

. ‖∇ploc,harm‖L3/2
t L

24/23
x

. |Q|q/3‖α‖
7/16

L21/5(0,t)
β(t)9/16, while a

Gagliardo-Nirenberg-Sobolev argument for u gives ‖u‖
L3

tL
8/3
x

. |Q|q/6‖α‖
15/16

L15/7(0,t)
β(t)9/16. In this case the total

power of β is 9/8 > 1, which makes it impossible to absorb it by the dissipation term on the left-hand side of the local

energy inequality. Therefore we choose r = 17/10, as it settles both issues.

Proof of Lemma 2.4. By the Poincaré-Sobolev-Wirtinger inequality (see Theorem II.6.1 in [Ga]) we have, with θ
depending only on t,

‖ploc,harm(t)− θ(t)‖
L

17
10 (R3

+)
. ‖∇ploc,harm(t)‖

L
51
47 (R3

+)
,

and thus, using maximal regularity of the Stokes equation in the half-space ([SvW, GS]),

‖ploc,harm − θ‖
3
2

L
3
2 ((0,t);L

17
10 (R3

+))
. ‖P∇ · (χ∗∗u⊗ u)‖

3
2

L
3
2 ((0,t);L

51
47 (R3

+))

.

∫ t

0

‖u(s)‖
3
2

L
102
43 (Q∗∗∗)

‖∇(χ∗∗u)(s)‖
3
2

L2 ds

.

∫ t

0

(
‖u(s)‖

39
34

L2(Q∗∗∗)‖∇u(s)‖
6
17

L2(Q∗∗∗)‖∇(χ∗∗u)(s)‖
3
2

L2 + 2−
6
17m‖u(s)‖

3
2

L2(Q∗∗∗)‖∇(χ∗∗u)(s)‖
3
2

L2

)
ds

.

∫ t

0

(
‖u(s)‖

39
34

L2(Q∗∗∗)‖∇u(s)‖
63
34

L2(Q∗∗∗) + 2−
6
17m‖u(s)‖

3
2

L2(Q∗∗∗)‖∇u(s)‖
3
2

L2(Q∗∗∗)

+ 2−
3
2m‖u(s)‖

45
17

L2(Q∗∗∗)‖∇u(s)‖
6
17

L2(Q∗∗∗)

)
ds.
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Applying Young’s inequality on the last two terms in the integrand, we get

‖ploc,harm − θ‖
3
2

L
3
2 ((0,t);L

17
10 (R3

+))

.

∫ t

0

(
‖u(s)‖

39
34

L2(Q∗∗∗)‖∇u(s)‖
63
34

L2(Q∗∗∗) + 2−
63
34m‖u(s)‖3L2(Q∗∗∗)

)
ds

. 2
3q
2 m

((∫ t

0

α(s)
39
5 ds

) 5
68

β(t)
63
68 + 2−

63
34m

∫ t

0

α(s)
3
2 ds

)
.

where we used 23m . |Q∗∗∗| . 23m, and the proof is concluded. �

Lemma 2.5 (Estimate for pnonloc,H). We have

‖pnonloc,H(t)‖L∞(Ω) . 2m+(q−4)m‖u(t)‖2M2,q ,

for every t > 0 and q ∈ (0, 4).

Proof of Lemma 2.5. We omit the t variable in the notation. Recall that Q∗ is the union of the neighbors of Q, which

is a cover of Ω using cubes from Cn. For x ∈ Q∗ and z 6∈ Q∗∗ we have

|∂zi∂zjNx,xΩ
(z)| .

|x− xΩ|

|x− z|4
.

2m

|x− z|4
.

{
2m2−4m, z ∈ Q̃ ∈ Sk, k ≤ m,

2m2−4k, z ∈ Q̃ ∈ Sk, k ≥ m+ 1,

as in (2.1) and (2.2). Thus, for such x, (2.12) gives

|pnonloc,H(x)| . 2m
∑

k≥n

∑

Q̃∈Sk,Q̃ 6⊂Q∗∗

∫

Q̃

|u(z)|2

|x− z|4
dz

. 2m


2−4m

m∑

k=n

∑

Q̃∈Sk

∫

Q̃

|u|2 +
∑

k≥m+1

∑

Q̃∈Sk

2−4k

∫

Q̃

|u|2




. ‖u‖2M2,q2m


2−4m

m∑

k=n

∑

Q̃∈Sk

2qk +
∑

k≥m+1

∑

Q̃∈Sk

2(q−4)k


 . ‖u‖2M2,q2m+(q−4)m

for any q < 4. �

Lemma 2.6 (Estimate for pharm,≥1). If T > 0, then

‖pharm,≥1‖Lr((0,T );L∞(Ω))

.r,q,δ,γ 2m+(q−4)m

(
22(δ−γ)mT γ‖α‖1−δ

L
r(1−δ)
1−rδ (0,T )

β(T )δ + (1 + T γ2−2γm + T
1
2 2mq−(1+q)m)‖α‖Lr(0,T )

)

for every r ∈ [1,∞), q ∈ (0, 3), δ ∈ (0,min{1/r, 3/4, 3q/2}), and γ ∈ (0, δ/3).

Proof of Lemma 2.6. Recall that by (2.13) we have

pharm,≥1(x, t) =
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ,x,xΩ
(z)(1− χ∗)(FA(z, s) + FB(z, s)) dz dλ ds

= pA(x, t) + pB(x, t).

In Step 1 below we provide an estimate for pA. Next, in Step 2 we show that ‖fB‖L∞(Ω) . |Q|(q−2)/3‖u‖2M2,q for

every Q ∈ Cn, where FB is a sum of terms of the form ∇′ ⊗∇′fB which satisfy

m(D′)∇′ ⊗∇′

∫ ∞

0

((P (·, |z3 − y3|) + P (·, z3 + y3)) ∗ ((1− χ∗∗)v ⊗ w)(y3)) (z
′, s) dy3 =: ∇′ ⊗∇′fB ,

where v and w denote 2D vectors whose components are chosen among u1, u2, and u3 (recall (2.10)). We then use

this estimate in Step 3 to prove the required bound on pB.
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Step 1. We show the required estimate for pA.

For x ∈ Ω, we have, using (2.5) with m = 2, as well as (2.1) and (2.2),
∣∣∣∣∣

∫

R
3
+

qλ,x,xΩ
(z)(1− χ∗)FA(z) dz

∣∣∣∣∣

. 2m
∫

R
3
+

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
|(1− χ∗)u⊗ u(z)| dz + 2−m

∫

supp∇χ∗

|qλ,x,xΩ
(z)||u(z)|2 dz

= 2m
∫ ∞

2m

∫

R2

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
|(1− χ∗)u⊗ u(z)| dz′ dz3

+ 2m
∫ 2m

0

∫

R2

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
|(1− χ∗)u⊗ u(z)| dz′ dz3

+ 2−m

∫

supp∇χ∗

|qλ,x,xΩ
(z)||u(z)|2 dz

= 2m(I1 + I2 + I3),

(2.20)

where ξ is a point on the line segment joining x and xΩ. We denote the corresponding (pointwise) bound on |pA| by

pA1 + pA2 + pA3, i.e.,

pAj(x, t) =
2m

2π

∫ t

0

∫

Γ

e(t−s) ReλIj d|λ| ds, (2.21)

for j = 1, 2, 3.

For pA1 we observe that e−|λ|
1
2 z3 ≤ e−|λ|

1
2 2m .γ |λ|−γ2−2γm and use (2.1) to obtain

I1 . 2−2γm|λ|−γ


2−4m

m∑

k=n

∑

Q̃∈Sk

∫

Q̃

|u|2 +
∑

k≥m+1

∑

Q̃∈Sk

2−4k

∫

Q̃

|u|2




. 2−2γm|λ|−γ‖u‖2M2,q


2−4m

m∑

k=n

2qk +
∑

k≥m+1

2(q−4)k




. 2(q−4−2γ)m|λ|−γ‖u‖2M2,q .

Thus (2.21) gives

‖pA1(t)‖L∞(Ω) .γ 2m+(q−4−2γ)mα(t)

∫ t

0

∫

Γ

|λ|−γe(t−s) Reλ d|λ| ds

. 2m+(q−4−2γ)mα(t)

∫ t

0

(t− s)γ−1 ds

. 2m+(q−4−2γ)mα(t)tγ

for every t ∈ [0, T ], as required.

Next, we bound pA2. We set

a =
1

1− γ
, b =

3

2δ
.

The assumptions on δ and γ guarantee that

a ∈ (1, 2), a′ =
1

γ
> 2b, b >

3r

2
, b > 2 and q >

1

b
, (2.22)

where 1/a+ 1/a′ = 1.

Hölder’s inequality gives that
∣∣∣∣
∫

Γ

e(t−s) Reλe−|λ|
1
2 z3 d|λ|

∣∣∣∣ .p,Γ (t− s)−
1
a z

− 2
a′

3 .
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Therefore, using Tonelli’s theorem,

|pA2(x, t)| ≤ 2m
∫ t

0

∫

Γ

∫ 2m

0

∫

R2

e(t−s) Reλ e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u⊗ u(z)| dz′ dz3 d|λ| ds

.p 2m
∫ t

0

(t− s)−
1
a

∫

R2

∫ 2m

0

z
− 2

a′

3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u⊗ u(z)| dz3 dz

′ ds.

(2.23)

We write R
2 =

⋃
k≥n

⋃
Q̃′∈S′

k
Q̃′, where Q̃′ denotes the projection of Q̃ onto R

2 and S′
k denotes the collection of

projections onto ∂R3
+ of the cubes from Sk that touch ∂R3

+. We also set

pA2,Q̃(x, t) =

∫ t

0

(t− s)−
1
a

∫

Q̃′

∫ 2m

0

z
− 2

a′

3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u⊗ u(z)| dz3 dz

′ ds,

so that

|pA2(x, t)| ≤ 2m
∑

k≥n

∑

Q̃′∈S′

k

pA2,Q̃(x, t). (2.24)

Letting b′ = b/(b− 1) < 2 we have, for each Q̃ ∈ Sk,

∫ 2m

0

∫

Q̃′

|u⊗ u(z)|z
− 2

a′

3 dz′ dz3 ≤ 2
2
b k

(∫ 2m

0

z
− 2b

a′

3 dz3

) 1
b

‖u‖2
L2b′ (Q̃)

.a,b 2
( 1

b−
2
a′ )m2

2
b k
(
‖u‖

2b−3
b

L2(Q̃)
‖∇u‖

3
b

L2(Q̃)
+ 2−

3
b k‖u‖2

L2(Q̃)

)
,

(2.25)

where we used the Gagliardo-Nirenberg-Sobolev inequality. Thus, for Q̃ ∈ Sk with k ≥ m+1, we use (2.1) to obtain,

for any T > 0,

pA2,Q̃ ≤

∫ t

0

(t− s)−
1
a

∫

Q̃′

∫ 2m

0

z
− 2

a′

3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u⊗ u(z)| dz3 dz

′ ds,

which implies

‖pA2,Q̃‖Lr((0,T );L∞(Ω))

.a,b 2
( 1

b−
2
a′ )m2(−4+ 2

b )k
∥∥∥∥
∫ t

0

(t− s)−
1
a

(
‖u(s)‖

2b−3
b

L2(Q̃)
‖∇u(s)‖

3
b

L2(Q̃)
+ 2−

3
b k‖u(s)‖2

L2(Q̃)

)
ds

∥∥∥∥
Lr

t (0,T )

.a 2(
1
b−

2
a′ )m2(−4+ 2

b )kT
1
a′

(∫ T

0

(
‖u(s)‖

2b−3
b

L2(Q̃)
‖∇u(s)‖

3
b

L2(Q̃)
+ 2−

3
b k‖u(s)‖2

L2(Q̃)

)r
ds

) 1
r

.a 2(
1
b−

2
a′ )m2(−4+ 2

b )kT
1
a′

((∫ T

0

‖u(s)‖
2r(2b−3)
2b−3r

L2(Q̃)
ds

) 2b−3r
2br

(∫ T

0

‖∇u(s)‖2
L2(Q̃)

ds

) 3
2b

+ 2−
3
b k

(∫ T

0

‖u(s)‖2r
L2(Q̃)

ds

) 1
r
)

.a 2(
1
b−

2
a′ )m2(−4+ 2

b+q)kT
1
a′

(
‖α‖

2b−3
2b

L
r(2b−3)
2b−3r (0,T )

β(T )
3
2b + 2−

3
b k‖α‖Lr(0,T )

)
,

where we used Young’s inequality ‖f ∗ g‖r ≤ ‖f‖1‖g‖r in t in the second inequality (which gives the constraint

a > 1), and Hölder’s inequality in t in the third (note that 3r < 2b by (2.22)). For k ≤ m we obtain a similar estimate,
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except that 2(−4+ 2
b+q)k is replaced by 2−4m+( 2

b+q)k. Thus (2.24) gives

‖pA2‖Lr((0,T );L∞(Ω)) .a,b 2
( 1

b−
2
a′ )m2mT

1
a′




2−4m

m∑

k=n

2(
2
b+q)k +

∑

k≥m+1

2(−4+ 2
b+q)k


 ‖α‖

2b−3
2b

L
r(2b−3)
2b−3r (0,T )

β(T )
3
2b

+


2−4m

m∑

k=n

2(q−
1
b )k +

∑

k≥m+1

2(−4− 1
b+q)k


 ‖α‖Lr(0,T )




. 2m+( 3
b−

2
a′ +q−4)mT

1
a′

(
‖α‖

2b−3
2b

L
r(2b−3)
2b−3r (0,T )

β(T )
3
2b + 2−

3
bm‖α‖Lr(0,T )

)

= 2m+(2δ−2γ+q−4)mT γ

(
‖α‖1−δ

L
r(1−δ)
1−rδ (0,T )

β(T )δ + 2−2δm‖α‖Lr(0,T )

)
,

as required. Note that the infinite sum converges since −4 + 2/b + q < 0, by (2.22), and for the finite sum in the

second line we use q > 1/b, recalling (2.22).

Finally, we bound pA3. First, by (2.5), we have

I3 = 2−m−m

∫

supp∇χ∗

|qλ,x,xΩ
(z)||u(z)|2 dz . 2−4m

∫

Q∗∗

e−|λ|
1
2 z3 |u(z)|2 dz,

where in the second inequality, we used that ||x′ − z′| + x3 + z3| & 2m and |x − xΩ| . 2m hold on supp∇χ∗ (see

(2.1) and (2.2)). Now, we apply the same analysis as for pA2 yielding the same bound on pA3 as we obtained for pA2.

The only difference is that here we do not need to sum in Q̃ ∈ Cn.

Step 2. We show that, at each time, ‖fB‖L∞(Q) . |Q|
q−2
3 ‖u‖2M2,q for every Q ∈ Cn. (Analogously we can obtain

‖FB‖L∞(Q) . |Q|
q−4
3 ‖u‖2M2,q .)

Note that in this step the sets Q, Q∗, Q∗∗, Q∗∗∗ are not related to Ω, but to a fixed cube Q. We shall use the estimate

|m(D′)P (y′, y3)| .
y3

(|y′|+ y3)3+α
, (2.26)

where m(D′) is a multiplier (in the y′ variables) that is homogeneous of degree α > −2, see [MMP1, p. 576]. Let

z ∈ Q, and suppose that Q ∈ Sm. We only consider P (z3 + y3), as the part with P (|z3 − y3|) is similar. We have

|fB(z)| .
∑

Q̃∈Cn,Q̃ 6∈Q∗∗

∫ ∞

0

∫

R2

z3 + y3
(|z′ − y′|+ z3 + y3)3

(1− χ∗∗)χQ̃|u⊗ u(y′, y3)| dy
′ dy3

. 2m


2−3m

m∑

k=n

∑

Q̃∈Sk

‖u‖2
L2(Q̃)

+
∑

k≥m+1

∑

Q̃∈Sk

2−3k‖u‖2
L2(Q̃)




. 2m‖u‖2M2,q


2−3m

m∑

k=n

∑

Q̃∈Sk

2qm +
∑

k≥m+1

∑

Q̃∈Sk

2(q−3)k




. 2(q−2)m‖u‖2M2,q ,

(recall (2.10) for the definition of FB = ∇′ ⊗∇′fB) where, in the second inequality, we used

z3 + y3
(|z′ − y′|+ z3 + y3)3

.

{
2−2m, k ≤ m,

2m−3k, k ≥ m+ 1

whenever z ∈ Q and y ∈ Q̃ for some cube Q̃ ∈ Sk that is disjoint with Q∗∗ (which is an analogous claim to (2.1) and

(2.2)).
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Step 3. We show that ‖pB(t)‖L∞(Ω) . α(t)2m(1+q)−5mt
1
2 for q ∈ (0, 3).

Note that this, together with Step 1, finishes the proof. We have

|pB(x, t)| .

∫ t

0

∫

Γ

e(t−s) Reλ

∫

R
3
+

(∣∣D2qλ,x,xΩ
(z)(1− χ∗)

∣∣+ |∇qλ,x,xΩ
(z)∇χ∗|

+
∣∣qλ,x,xΩ

(z)D2χ∗

∣∣) |fB(z, s)| dz d|λ| ds.
(2.27)

Using (2.1), (2.2), and (2.5), we get

∫

R
3
+

∣∣D2qλ,x,xΩ
(z)(1− χ∗)fB(z, s)

∣∣ dz . 2m
∑

Q̃∈Cn

∫

Q̃

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)5
(1− χ∗)|fB(z, s)| dz

′ dz3

. 2m


2−5m

m∑

k=n

∑

Q̃∈Sk

∫

Q̃

e−|λ|
1
2 z3 |fB(z, s)| dz

′ dz3

∑

k≥m+1

∑

Q̃∈Sk

2−5k

∫

Q̃

e−|λ|
1
2 z3 |fB(z, s)| dz

′ dz3




. 2m
(∫ ∞

0

e−|λ|
1
2 z3 dz3

)
‖u‖2M2,q


2−5m

m∑

k=n

2qk +
∑

k≥m+1

2(q−5)k




. 2m+(q−5)m|λ|−
1
2 ‖u‖2M2,q .

Similarly, we have

∫

R
3
+

(
|∇qλ,x,xΩ

(z)∇χ∗|+
∣∣qλ,x,xΩ

(z)D2χ∗

∣∣) |fB(z, s)| dz . 2m−5m

∫

Q∗∗\Q∗

e−|λ|
1
2 z3 |fB(z, s)| dz

′ dz3

. 2m−5m
m+2∑

k=m−2

∑

Q̃∈Sk

∫

Q̃

e−|λ|
1
2 z3 |fB(z, s)| dz

′ dz3 . 2m−5m|λ|−
1
2

m+2∑

k=m−2

2qk

. 2m−5m|λ|−
1
2 ‖u‖2M2,q

m+2∑

k=m−2

2qk . 2m(q+1)−5m|λ|−
1
2 ‖u‖2M2,q .

Using these estimates in (2.27), we obtain

‖pB(t)‖L∞(Ω) . α(t)2m(1+q)−5m

∫ t

0

∫

Γ

e(t−s) Reλ|λ|−
1
2 d|λ| ds . α(t)2m(1+q)−5mt

1
2 ,

and the proof is complete. �

Lemma 2.7 (Estimate for pharm,≤1). For every t ≥ 0 and q ∈ (0, 3), we have

‖pharm,≤1(t)‖L∞(Ω) . 2
m
4 +(q−4)mα(t)t

3
8 .

Recall from (1.8) that α(t) = sups∈[0,t] ‖u(s)‖
2
M2,q

Cn

.

Proof of Lemma 2.7. By (2.13), we have

pharm,≤1(x, t) =
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ(x
′ − z′, x3, z3)χ∗FB(z, s) dz dλ ds,
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where FB is as in pharm,≥1. As in Lemma 2.1, we use (2.5) to obtain

|pharm,≤1(x, t)| .

∫ t

0

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3

∫

R2

(|x′ − z′|+ x3 + z3)
−2 |χ∗FB(z, s)| dz

′ dz3 d|λ| ds

≤

∫ t

0

‖FB(s)‖L∞(Q∗)

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3

∫

{|z′|≤C2m}

(|z′|+ x3 + z3)
−2 dz′ dz3 d|λ| ds

. 2(q−4)m+m
4 α(t)

∫ t

0

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3(x3 + z3)

− 1
4 dz3 d|λ| ds

. 2(q−4)m+m
4 α(t)

∫ t

0

∫

Γ

e(t−s) Reλ|λ|−
3
8 d|λ| ds

. 2(q−4)m+m
4 α(t)

∫ t

0

(t− s)−
5
8 ds

. 2(q−4)m+m
4 α(t)t

3
8

for every x ∈ Ω and t > 0, where in the third inequality we used the estimate ‖FB‖L∞(Q̃) . |Q̃|
q−4
3 ‖u‖2M2,q .

2(q−4)m‖u‖2M2,q , for every Q̃ ⊂ Q∗ (recall Step 2 above), as well as the fact
∫
|y′|≤a

(|y′|+ b)−2 dy′ . (a/b)1/4, as in

the proof of Lemma 2.1. �

3. A PRIORI BOUND

We now establish our main a priori bound for solutions to (1.1) for initial data in M2,q
Cn

. We work under the

assumption

0 < q ≤ 2. (3.1)

Recall from (1.8) the notation

αn(t) = sup
s∈[0,t]

‖u(s)‖2
M2,q

Cn

and βn(t) = sup
Q∈Cn

1

|Q|
q
3

∫ t

0

∫

Q

|∇u|2.

Note that, for the sake of brevity, we have omitted “ dx ds” in the last integral. We continue this convention below in

the instances that do not cause confusion. Since in Lemma 6.3 below we show that α and β are continuous functions

of t, we define αn(0) = ‖u0‖
2
M2,q

Cn

.

Theorem 1.4 follows from the following statement.

Proposition 3.1 (A priori bound). Assume that (3.1) holds. There exists γ ≥ 1 with the following property. Let n ∈ N,

suppose that u0 ∈ M̊2,q
Cn

, and assume that (u, p) is a local energy solution on R
3
+ × (0,∞) with the initial data u0

such that

αn(t) + βn(t) <∞,

for all t <∞. Let T = Tn be the solution of

a = b(1 + T )γ
(
(2a)3T

3
8 + (2a)

3
2T

3
16 + a2−

n
2 T

1
8

)
, (3.2)

where b > 0 is a constant and a = ‖u0‖
2
M2,q

Cn

. Then

αn(Tn) + βn(Tn) ≤ 2bαn(0).

The claim of Theorem 1.4 follows form Proposition 3.1 by taking γ0 = (10γ)−1, for example. Indeed, in order

to verify the lower bound (1.10) on the solution T of (3.2), note that if it is false then T < ηd−γ0 , where d =
max{2−n, a1/2} and η = η(‖u0‖M2,q

C1

) ∈ (0, 1), and so

1 = b(1 + T )γ
(
8a2T

3
8 + 2

3
2 a

1
2T

3
16 + 2−

n
2 T

1
8

)

≤ 8b(1 + ηd−
1

10γ )γ
(
η

3
8 d2−

3
80γ + η

3
16 d

1
2−

3
160γ + η

1
8 d

1
2−

1
80γ

)

≤ Cγη
1
8 (1 + d)3,
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which gives a contradiction if η is chosen sufficiently small so that Cγη
1
8

(
2 + ‖u0‖M2,q

C1

)3
≤ 1/2.

Before proving Proposition 3.1, we recall an interpolation-type lemma from [BKT] which enables us to estimate

the cubic term appearing on the right-hand side of the local energy inequality (1.4).

Lemma 3.2. Let u : R3
+ × (0, T ) → R

3. Given ǫ > 0, we have

1

|Q|
1
3

∫ t

0

∫

Q

|u|3 ≤ Cǫ|Q|q−
4
3

∫ t

0

(
1

|Q|
q
3

∫

Q

|u(s)|2
)3

ds

+ ǫ

∫ t

0

∫

Q

|∇u|2 + C|Q|
q
2−

5
6

∫ t

0

(
1

|Q|
q
3

∫

Q

|u(s)|2
) 3

2

ds, t ∈ (0, T ),

(3.3)

for any cube Q ⊂ R
3
+.

The inequality (3.3) implies

1

|Q|
1
3

∫ t

0

∫

Q

|u|3 ≤ Cǫ|Q|q−
4
3 ‖α‖3L3(0,t) + ǫ|Q|

q
3 β(t) + |Q|

q
2−

5
6 ‖α‖

3
2

L
3
2 (0,t)

(3.4)

for every Q ∈ Cn and t > 0, suppressing the dependence of α and β on n in the rest of the section. Similarly, one can

show that

‖u‖
L3((0,t);L

17
7 (Q))

. |Q|
q
6 ‖α‖

25
68

L
75
41 (0,t)

β(t)
9
68 + |Q|

q
6−

3
34 ‖α‖

1
2

L
3
2 (0,t)

. (3.5)

We now use the pressure estimates developed in the previous section to deduce a bound on the pressure term appearing

in the local energy inequality (1.4).

Lemma 3.3. Let Q ∈ Cn, and let φQ be such that φQ = 1 on Q, φQ = 0 outside Q∗, and |∇φQ| . |Q|−
1
3 . Then

∫ t

0

∫
pu · ∇φQ ≤ Cǫ|Q|

q
3 (1 + t)γ

(
‖α‖3L8(0,t) + ‖α‖

3
2

L8(0,t) + |Q|−
1
6 ‖α‖L8(0,t)

)
+ ǫ|Q|

q
3 β(t)

for 0 < q ≤ 2 and ǫ > 0, where γ ≥ 1.

Proof of Lemma 3.3. We have

∫ t

0

∫
(pli,loc + pli,nonloc)u · ∇φQ

. |Q|−
1
3

∫ t

0

‖pli,loc‖L2(Q∗)‖u‖L2(Q∗) ds+ |Q|−
1
3

∫ t

0

‖pli,nonloc‖L∞(Q∗)‖u‖L1(Q∗) ds

. |Q|
q−1
6

∫ t

0

‖u0‖M2,q
Cn

‖u‖L2(Q∗)s
− 3

4 ds+ |Q|
q−4
6

∫ t

0

‖u0‖M2,q
Cn

‖u‖L1(Q∗)s
− 3

4 ds

. |Q|
q−1
6

∫ t

0

‖u‖L2(Q∗)‖u0‖M2,q
Cn

s−
3
4 ds

. |Q|
q
3−

1
6

∫ t

0

α(s)s−
3
4 ds . |Q|

q
3−

1
6 t

1
8 ‖α‖L8(0,t),

(3.6)

where we used the first two inequalities of (2.15) in the second step.

Next, by the third estimate in (2.15), we may bound

∫ t

0

∫
ploc,H u · ∇φQ . |Q|−

1
3

(∫ t

0

∫

Q∗

|u|3 +

∫ t

0

∫

Q∗

|ploc,H|
3
2

)
. |Q|−

1
3

∫ t

0

∫

Q∗∗∗

|u|3

. Cǫ|Q|
q
3 |Q|

2q
3 − 4

3 ‖α‖3L3(0,t) + ǫ|Q|
q
3 β(t) + |Q|

q
3 |Q|

q
6−

5
6 ‖α‖

3
2

L
3
2 (0,t)

,

(3.7)
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by (3.4). With θ = θ(t) as in (2.15), we write

∫ t

0

∫
ploc,harm u · ∇φQ =

∫ t

0

∫
(ploc,harm − θ)u · ∇φQ

. |Q|−
1
3 ‖u‖

L3((0,t);L
17
7 (Q∗))

‖ploc,harm − θ‖
L

3
2 ((0,t);L

17
10 (R3

+))

. |Q|
q
3

(
|Q|

q−2
6 ‖α‖

25
68

L
75
41 (0,t)

β(t)
9
68 + |Q|

q
6−

43
102 ‖α‖

1
2

L
3
2 (0,t)

)

×

(
‖α‖

13
34

L
39
5 (0,t)

β(t)
21
34 + |Q|−

4
51 ‖α‖

1
2

L3(0,t)β(t)
1
2 + |Q|−

21
51 ‖α‖

L
3
2 (0,t)

)

. |Q|
q
3 |Q|

q−2
6

(
t

253
1632 ‖α‖

25
68

L8(0,t)β(t)
9
68 + |Q|−

3
34 t

13
48 ‖α‖

1
2

L8(0,t)

)

×
(
t

1
816 ‖α‖

13
34

L8(0,t)β(t)
21
34 + |Q|−

4
51 t

5
48 ‖α‖

1
2

L8(0,t)β(t)
1
2 + |Q|−

21
51 t

13
24 ‖α‖L8(0,t)

)
,

(3.8)

where we applied (3.5) in the second inequality. Therefore,

∫ t

0

∫
ploc,harm u · ∇φQ

. |Q|
q
3 (1 + t)

(
‖α‖

3
4

L8(0,t)β(t)
3
4 + ‖α‖

59
68

L8(0,t)β(t)
43
68 + ‖α‖

93
68

L8(0,t)β(t)
9
68

+ ‖α‖
15
17

L8(0,t)β(t)
21
34 + ‖α‖L8(0,t)β(t)

1
2 + ‖α‖

3
2

L8(0,t)

)

. Cǫ|Q|
q
3 (1 + t)C

(
‖α‖3L8(0,t) + ‖α‖

3
2

L8(0,t)

)
+ ǫ|Q|

q
3 β(t),

where we used |Q| & 1 to remove |Q|
q−2
6 and other non-positive powers of |Q| in the parentheses in the first inequality.

Next,

∫ t

0

∫
pnonloc,H u · ∇φQ . |Q|−

1
3

∫ t

0

‖u(s)‖L1(Q∗)‖pnonloc,H(s)‖L∞(Q∗) ds

. |Q|
q
3−

5
6

∫ t

0

‖u(s)‖L2(Q∗)‖u(s)‖
2
M2,q

Cn

ds . |Q|
q
2−

5
6

∫ t

0

α
3
2 (s) ds

= |Q|
q
3 |Q|

q
6−

5
6 ‖α‖

3
2

L
3
2 (0,t)

.

(3.9)

Using the estimate for pharm,≥1 in (2.15) with r = 3/2, δ = q/6, and γ = q/12 we have

∫ t

0

∫
pharm,≥1 u · ∇φQ . |Q|−

1
3 ‖u‖L3((0,t);L1(Q∗))‖pharm,≥1‖

L
3
2 ((0,t);L∞(Q∗))

. |Q|
1
6 ‖u‖L3((0,t);L2(Q∗))‖pharm,≥1‖

L
3
2 ((0,t);L∞(Q∗))

. |Q|
1
6+

q
6 ‖α‖

1
2

L
3
2 (0,t)

‖pharm,≥1‖
L

3
2 ((0,t);L∞(Q∗))

. |Q|
q
2−

5
6 ‖α‖

1
2

L
3
2 (0,t)

(
|Q|

q
18 t

q
12 ‖α‖

6−q
6

L
6−q
4−q (0,t)

β(t)
q
6 +

(
1 + t

q
12 |Q|−

q
18 + t

1
2 |Q|−

1
3

)
‖α‖L3/2(0,t)

)

. |Q|
q
2−

5
6 ‖α‖

1
2

L3(0,t)t
1
2

(
|Q|

q
18 t−

1
36 ‖α‖

6−q
6

L3(0,t)β(t)
q
6 +

(
1 + t

1
2 |Q|−

1
3

)
‖α‖L3(0,t)

)

. Cǫ|Q|
−q2+10q−15

18−3q t
18−q
36−6q ‖α‖

9−q
6−q

L3(0,t) + ǫ|Q|
q
3 β(t) + |Q|

3q−5
6 t

1
2

(
1 + t

1
2 |Q|−

1
3

)
‖α‖

3
2

L3(0,t)

. Cǫ,q|Q|
q
3 (1 + t)

(
‖α‖8L3(0,t) + ‖α‖

3
2

L3(0,t)

)
+ ǫ|Q|

q
3 β(t),
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and, from the last bound in (2.15),
∫ t

0

∫
pharm,≤1 u · ∇φQ . |Q|−

1
3

∫ t

0

‖u(s)‖L1(Q∗)‖pharm,≤1(s)‖L∞(Q∗) ds

. |Q|
q
3−

13
12

∫ t

0

‖u(s)‖L2(Q∗)α(s)s
3
8 ds . |Q|

q
2−

13
12

∫ t

0

α(s)
3
2 s

3
8 ds

. |Q|
q
3 |Q|

q
6−

13
12 t

19
16 ‖α‖

3
2

L8(0,t),

(3.10)

and the proof is complete. �

The following lemma contains the necessary barrier statement needed for the a priori bound in Proposition 3.1.

Lemma 3.4. Suppose that f ∈ L∞
loc([0, T0); [0,∞)) satisfies

f(t) ≤ a+ b(1 + t)γ
(
‖f‖pLp(0,t) + ‖f‖qLp(0,t) + c‖f‖Lp(0,t)

)
,

where p, q > 1, p ∈ [1,∞), γ ≥ 0 and a, b, c > 0. Then

f(t) ≤ 2a,

for t ≤ min{T, T0}, where T > 0 is the solution of

a = b(1 + T )γ
(
(2a)pT

p
p + (2a)qT

q
p + 2acT

1
p
)
. (3.11)

Observe that T → ∞ if max{a, c} → 0.

Proof of Lemma 3.4. By (3.11), the function g(t) = 2a satisfies

g(t) ≥ a+ b(1 + t)γ
(
‖g‖pLp(0,t) + ‖g‖qLp(0,t) + c‖g‖Lp(0,t)

)
,

for t ∈ [0, T1], where T1 = min{T, T0}. The inequality f(t) ≤ g(t) for t ∈ [0, T1] then follows by a standard barrier

argument. �

Proof of Proposition 3.1. Let Q ∈ Cn. Using the local energy inequality (1.4) with φ(x, t) = φQ(x)ψm(t) where ψm

is a suitable sequence of functions, and weak continuity in time, we obtain
∫

|u(t)|2φQ + 2

∫ t

0

∫
|∇u|2φQ ≤

∫
|u(0)|2φQ +

∫ t

0

∫
|u|2∆φQ +

∫ t

0

∫
(|u|2 + p)u · ∇φQ, (3.12)

from where, using (3.4) and Lemma 3.3.
∫

|u(t)|2φQ + 2

∫ t

0

∫
|∇u|2φQ

≤ C|Q|
q
3α(0) + Cǫ|Q|

q
3 (1 + t)γ

(
‖α‖3L8(0,t) + ‖α‖

3
2

L8(0,t) + |Q|−
1
6 ‖α‖L8(0,t)

)
+ ǫ|Q|

q
3 β(t),

for all t > 0, where we used the restriction q ≤ 2 to write |Q|
2q
3 − 4

3 . 1. Dividing by |Q|
q
3 , taking supQ∈Cn

, and

absorbing the last term on the right-hand side, we obtain

α(t) + β(t) ≤ Cα(0) + C(1 + t)γ
(
‖α‖3L8(0,t) + ‖α‖

3
2

L8(0,t) + 2−
n
2 ‖α‖L8(0,t)

)
, (3.13)

where γ ≥ 0 is a constant and we used the fact that |Q| & 23n. The claim now follows from Lemma 3.4, applied with

f(s) = α(s) + β(s), a = Cα(0), b = C, c = 2−
n
2 , p = 8, p = 3, and q = 3/2, where C is the constant in (3.13).

Note that the definition (3.11) of T given by the lemma then becomes (3.2), as required. �

Note that, using the Gagliardo-Nirenberg inequality, we have

1

|Q|

∫ Tn

0

∫

Q

|u|3 . T
1
4
n |Q|

q−2
2 α(Tn)

3
4 β(Tn)

3
4 + |Q|

q−3
2 ‖α‖

3
2

L3/2(0,Tn)
. (3.14)

This inequality is used in Section 6 below.
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4. STABILITY

In this section, we prove the stability theorem. In the following, we use the notation

‖(f, g)‖X = 2max{‖f‖X , ‖g‖X}.

Proof of Theorem 1.5. Consider n ∈ N. Since u
(k)
0 → u0 in M2,q

C and, using (1.7), we have that for any ǫ > 0 there

exists K(n) so that

‖u
(k)
0 − u0‖M2,q

Cn

< ǫ

for all k ≥ K(n). Let Tn be given by (3.2) for ‖u0‖M2,q
Cn

, and let T
(k)
n be the same for ‖u

(k)
0 ‖M2,q

Cn

. The above

observation implies that, for sufficiently large k, we have T
(k)
n ≥ Tn/2. Since we will ultimately pass to a subsequence,

we ignore the finitely many terms not satisfying T
(k)
n ≥ Tn/2. Hence, we can apply Theorem 1.4 to conclude that u(k)

are uniformly bounded in L∞(0, Tn/2;L
2(Bn ∩R

3
+)) ∩ L

2(0, Tn/2;H
1(Bn ∩R

3
+)), where {Bn}n≥1 is a sequence

of expanding balls (e.g. Bn = B(0, n)). Note that Tn is an unbounded, non-decreasing sequence.

We need to show that ∂tu
(k) are uniformly bounded in the dual space of L5(0, Tn/2;W

1,3
0 (Bn ∩ R

3
+)). Let Q be

a cube containing Bn ∩R
3
+. Based on local estimates for u(k) and pressure estimates in Section 2, this follows nearly

identically to [MMP1, p. 561]. The only added work here involves our treatment of p
(k)
loc,harm, for which we have

∣∣∣∣
∫ Tn/2

0

∫

Bn

p
(k)
loc,harm∇ · φ

∣∣∣∣ ≤
(∫ Tn/2

0

(∫

Q

|p
(k)
loc,harm|

17/10 dx

) 10
17

3
2

dt

)2/3

·

(∫ Tn/2

0

(∫

Q

|∇φ|
17
7 dx

) 7
17 ·3

dt

) 1
3

.Q,Tn

(∫ Tn/2

0

(∫

Q

|p
(k)
loc,harm|

17/10 dx

) 10
17

3
2

dt

)2/3

‖∇φ‖L5(0,Tn/2;L3(Bn∩R
3
+)),

where we have used Hölder’s inequality in both space and time variables; here φ ∈ C∞
0 (Bn)

3. The terms involving

p
(k)
loc,harm are uniformly bounded by Lemma 2.4. Hence, following [MMP1, p. 561], we have obtained the claimed

uniform bound on ∂tu
(k).

By repeatedly applying the Lions-Aubin lemma and using a diagonalization argument, we obtain that there exists

u : R3
+ × (0,∞) → R

3 such that, for every n ∈ N,

u(k) → u weakly-∗ in L∞(0, Tn/2;L
2(Bn ∩ R

3
+)),

u(k) → u weakly in L2(0, Tn/2;H
1(Bn ∩ R

3
+)),

u(k) → u strongly in L2(0, Tn/2;L
2(Bn ∩ R

3
+)),

after passing to a subsequence of {u(k)}. By interpolation, the strong convergence can be extended to

u(k) → u strongly in Lr(0, Tn/2;L
p(Bn ∩ R

3
+)), (4.1)

for any p, r > 2 such that 2/r + 3/p < 3/2 and p < 6. By (3.14), the convergence in L3(0, Tn/2;L
3(Bn ∩ R

3
+))

implies

sup
Q∈Cn

1

|Q|
q
2

∫ Tn/2

0

∫

Q

|u|3 ≤ CT
1
4
n ‖u0‖

3
M2,q

Cn

+
CTn
23n/2

‖u0‖
2
M2,q

Cn

,

since this estimate is satisfied by all u(k) for sufficiently large k.

Note that, since Tn → ∞ as n → ∞, the convergence properties listed above on Bn ∩ R
3
+ × (0, Tn/2) extend to

any cube Q ⊂ R
3
+ and T > 0. We next show that for any n ∈ N and T > 0, letting αn and βn be as in (1.8) for u, we

have αn(T ) + βn(T ) <∞. By our remark about convergence in Q× (0, T ), for any Q ∈ Cn,

sup
0<s<T

1

|Q|q/3
‖u(s)‖2L2(Q) ≤ lim sup

k→∞
sup

0<s<T

1

|Q|q/3
‖u(k)(s)‖2L2(Q), (4.2)

which is uniformly bounded in k by the bounds for u(k) inM2,q
C . For the gradient terms, the weak convergence implies

1

|Q|q/3

∫ T

0

∫

Q

|∇u|2 ≤ lim inf
k→∞

1

|Q|q/3

∫ T

0

∫

Q

|∇u(k)|2, (4.3)
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which is again uniformly bounded. We now take a supremum over Q ∈ Cn to obtain the boundedness of αn(T ) and

βn(T ).
Given a bounded open set Ω ⊂ R

3
+ we define p via the local pressure expansion,

p := pli,loc + pli,nonloc + ploc,H + ploc,harm + pnonloc,H + pharm,≤1 + pharm,≥1,

where we use the formulas (2.4), (2.7), (2.11), (2.12), and (2.13) for each of the pressure parts. We similarly define

p(k) as the local pressure expansion of each u(k), where k ≥ 1, and we set

p(k) = p(k) − p.

We also use analogous notation for the differences between each part of the local pressure expansion. We now claim

that, for every compact set K ⊂ R3
+,

• the following parts converge to zero in L
3
2 (0, T ;L

3
2 (K)): p̄

(k)
loc,H, p̄

(k)
nonloc,H, p̄

(k)
harm,≥1, p̄

(k)
harm,≤1,

• the following parts converge to zero in Lp(0, T ;L2(K)) for p < 4
3 : p̄

(k)
li,loc, p̄

(k)
li,nonloc.

• the sequence p̄
(k)
loc,harm is bounded inLp(0, T ;Lp(K)) for every p < 3/2 and that ‖p̄

(k)
loc,harm‖L

3
2 (0,T ;L

3
2 (K̃))

→

0 as k → ∞ for every K̃ ⋐ R
3
+ (i.e., locally away from the boundary).

These convergence properties guarantee that (u, p) satisfies the Navier-Stokes equations (1.1) in the sense of distribu-

tions on R
3
+ as well as the local energy inequality (1.4) for non-negative test functions φ ∈ C∞

c (R3
+× [0,∞)). Indeed,

using the above convergence modes (of u(k) and of each part of the pressure function) the only nontrivial convergence

is ∫ t

0

∫
p
(k)
loc,harmu

(k) · ∇φ→

∫ t

0

∫
ploc,harmu · ∇φ,

for each t > 0 and each nonnegative φ ∈ C∞
c (R3

+ × [0,∞)). For this, let K ⋐ R3
+ be such that suppφ(s) ⊂ K for

all s, fix ǫ > 0, and let K̃ ⋐ R
3
+ be such that

‖u‖
L

19
6 ((K\K̃)×(0,t))

≤ ǫ
(
2‖(p

(k)
loc,harm, ploc,harm)‖L

19
13 (K×(0,t))

)−1

.

Then
∫ t

0

∫

K

∣∣∣p(k)u(k) − pu
∣∣∣ ≤

∫ t

0

∫

K

∣∣∣u(p(k) − p)
∣∣∣+
∫ t

0

∫

K

∣∣∣(u(k) − u)p(k)
∣∣∣

≤ ‖u‖
L

19
6 ((K\K̃)×(0,t))

‖(p(k), p)‖
L

19
13

+ ‖u‖L19/6‖p(k) − p‖
L

19
13 (K̃×(0,t))

+ ‖u(k) − u‖
L

19
6
‖p(k)‖

L
19
13

≤
ǫ

2
+ C

(
‖p(k) − p‖

L
19
13 (K̃×(0,t))

+ ‖u(k) − u‖
L

19
6

)

≤ ǫ

for sufficiently large k, as required, where for brevity we omitted the notation “loc, harm” and we set Lq = Lq(K ×
(0, t)).

Moreover, the local pressure expansion for u (recall Definition 1.1(6)) then follows for every open and bounded

Ω ⊂ R
3
+ by the uniqueness argument as in (2.14). The remaining properties of local energy solutions (i.e., that

u(t) → u0 in L2
loc and that u(t) is weakly continuous in L2

loc) can be proven using well-known techniques, see

e.g. [KS, KwT]. Finally, since we have shown (u, p) satisfies the assumptions of Theorem 1.4, the asserted a priori

bounds now follows by applying Theorem 1.4 to (u, p).
We now fix K ⋐ R

3
+ and prove the convergence properties for the pressure listed above.

For pli,loc and pli,nonloc, we have

‖p̄
(k)
li,loc(t)‖L2(K) .K,Q ‖u

(k)
0 − u0‖L2(Q∗)t

− 3
4

and

‖p̄
(k)
li,nonloc(t)‖L∞(K) .K,Q ‖u

(k)
0 − u0‖M2,2

C

t−
3
4 ,

as in Lemmas 2.1 and 2.2. Since u
(k)
0 → u0 ∈ M2,q

C , it follows that p
(k)
li → pli ∈ Lp(0, T ;L2(Q)) for every T < ∞

and p < 4
3 .
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The local part of the pressure is expanded into the harmonic and the Helmholtz parts. For the Helmholtz part, we

have

∫ T

0

‖p̄
(k)
loc,H(t)‖

3
2

L
3
2 (R3

+)
dt .

∫ T

0

‖(u(k) ⊗ u(k) − u⊗ u)(t)‖
3
2

L
3
2 (Q∗∗∗)

dt

. ‖(u, u(k))‖
3
2

L3(0,T ;L3(Q∗∗∗))‖u
(k) − u‖

3
2

L3(0,T ;L3(Q∗∗∗)),

where the first inequality follows as in Lemma 2.3. The right-hand side vanishes as k → ∞ for every T <∞ by (4.1).

Thus p
(k)
loc,H → ploc,H ∈ L3/2(0, T ;L3/2(Q)).

We next treat p
(k)
loc,harm. For other pressure components, we are able to refer heavily to the work in Section 2. This

term requires a different approach. We have

ploc,harm(x, t) = pA + pB :=
1

2πi

∫ t

0

∫

Γ

e(t−s)λ

∫

R
3
+

qλ(x
′ − z′, x3, z3) · (FA(z, s) + FB(z, s)) dz dλ ds,

where, recalling (2.11), FA is a 2D vector function whose components are sums of terms of the form ∂j (χ∗∗ukul) =:
∂jfA, where j, k, l ∈ {1, 2, 3}, and FB(z, s) = FB(z

′, z3, s) is a sum of 2D vectors of the form

m(D′)∇′ ⊗∇′

∫ ∞

0

((P (·, |z3 − y3|) + P (·, z3 + y3)) ∗ (χ∗∗v ⊗ w)(y3)) (z
′, s) dy3

=: ∇′ ⊗ fB(z, s),

where v and w denotes various 2D vectors whose components are chosen among u1, u2, or u3; also, m(D′) denotes

a multiplier in the horizontal variable z′ that is homogeneous of degree 0, and P̂ (ξ′, t) := e−t|ξ′|, i.e., P is the

2D Poisson kernel. Thus, using ‖m(D′)P (·, s)‖L1(R2) . 1, which is a consequence of (2.26) and |y3| .Q 1, we

obtain

‖fB(z
′, z3, s)‖Lp

z′
(R2) .Q ‖∇′(χ∗∗v ⊗ w)(s)‖Lp(R3

+)

for every z3 > 0, s > 0, p ≥ 1. Thus, by (2.5), we get

‖pB(t)‖Lp(R3
+) .

∫ t

0

∫

Γ

e(t−s) Reλ

∥∥∥∥∥

∫ ∞

0

e−|λ|
1
2 z3

∥∥∥∥
∫

R2

(|x′ − z′|+ z3 + x3)
−3fB(z, s) dz

′

∥∥∥∥
Lp

x′ (R
2)

dz3

∥∥∥∥∥
Lp

x3

d|λ| ds

.

∫ t

0

‖∇′(χ∗∗v ⊗ w)(s)‖Lp(R3
+)

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3
∥∥(x3 + z3)

−1
∥∥
Lp

x3
(0,∞)

dz3 d|λ| ds

.

∫ t

0

‖∇′(χ∗∗v ⊗ w)(s)‖Lp(R3
+)

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3z

−1+ 1
p

3 dz3 d|λ| ds

.

∫ t

0

‖∇′(χ∗∗v ⊗ w)(s)‖Lp(R3
+)

∫

Γ

e(t−s) Reλ|λ|−
1
2p d|λ| ds

.

∫ t

0

‖∇′(χ∗∗v ⊗ w)(s)‖Lp(R3
+)(t− s)

1−2p
2p ds,

(4.4)

where we used
∫
R2(|y

′|+ a)−3 dy′ . a−1 and
∫∞

0
e−|λ|

1
2 vvb dv . |λ|−

1+b
2 . Thus

‖pB‖Lp((R3
+)×(0,T )) . ‖∇′(χ∗∗v ⊗ w)(s)‖L1((0,T );Lp(R3

+))T
−1+ 3

2p .

Note that we have

‖∇′(χ∗∗v ⊗ w)(s)‖L1((0,T );Lp(R3
+)) .Q

∫ T

0

‖u(s)‖
L

2p
2−p

‖∇u(s)‖L2(Q∗∗∗) ds+ ‖u‖2L2((0,T );L2p(Q∗∗∗))

. ‖u‖
L2((0,T );L

2p
2−p (Q∗∗∗))

‖∇u‖L2((0,T );L2(Q∗∗∗)) + ‖u‖2L2((0,T );L2p(Q∗∗∗)),
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which is bounded due to (4.1) for p < 3/2. Thus both pB and p
(k)
B , k ≥ 1, are bounded in Lp(0, T ;Lp(K)), for every

p < 3/2. On the other hand, on a set K̃ = K ′ ×K3 compactly embedded in R
3
+,

‖p
(k)
B (·, x3, t)‖

L
3
2
x′ (K

′)
.

∫ t

0

‖|u(k)(s)|2 − |u(s)|2‖
L

3
2 (Q∗∗∗)

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3(x3 + z3)

−2 dz3 d|λ| ds

.K

∫ t

0

‖|u(k)(s)|2 − |u(s)|2‖
L

3
2 (Q∗∗∗)

∫

Γ

e(t−s) Reλ|λ|−
1
2 d|λ| ds

.

∫ t

0

‖|u(k)(s)|2 − |u(s)|2‖
L

3
2 (Q∗∗∗)

(t− s)−
1
2 ds

for every x3 ∈ K3 and t > 0, where the first inequality follows in the same way as the first two inequalities in (4.4),

except that we now put both derivatives from ∇′ ⊗∇′ onto qλ (rather than one onto qλ and one onto (χ∗∗v⊗w)), and

the second inequality follows simply by bounding x3 + z3 &K 1. Thus

‖p
(k)
B ‖

L
3
2 ((0,T );L

3
2 (K̃))

.K T
1
2 ‖|u(k)(s)|2 − |u(s)|2‖

L
3
2 ((0,T );L

3
2 (Q∗∗∗))

for every T > 0, which vanishes in the limit k → ∞ due to (4.1).

For p
(k)
A , we have that f

(k)
A converges to fA in L

3
2 ((0, T );L

3
2 (R3

+) by (4.1); recall that fA is a sum of the term of the

form χ∗∗ulum, l,m = 1, 2, 3, and f
(k)
A is defined analogously. For every t ∈ (0, T ), T > 0, and every q ∈ (3/2, 5/3),

‖pA(t)‖
L

3
2 (K)

.

∫ t

0

∫

Γ

e(t−s) Reλ

∥∥∥∥∥

∫ ∞

0

e−|λ|
1
2 z3

∥∥∥∥
∫

R2

(|x′ − z′|+ z3 + x3)
−3fA(z, s) dz

′

∥∥∥∥
L

3
2
x′ (R

2)

dz3

∥∥∥∥∥
L

3
2
x3

d|λ| ds

.K,Q

∫ t

0

∫

Γ

e(t−s) Reλ

∥∥∥∥
∫ ∞

0

e−|λ|
1
2 z3(x3 + z3)

−1 ‖fA(·, z3, s)‖
L

3
2
z′
(R2)

dz3

∥∥∥∥
L

3
2
x3

(K3)

d|λ| ds

.K

∫ t

0

∫

Γ

e(t−s) Reλ

∫ ∞

0

e−|λ|
1
2 z3z

− 1
3

3 ‖fA(·, z3, s)‖
L

3
2
z′
(R2)

dz3 d|λ| ds

.Q,q

∫ t

0

‖fA(s)‖Lq(R3
+)

∫

Γ

e(t−s) Reλ|λ|
1
6−

1
2q′ d|λ| ds

.

∫ t

0

‖fA(s)‖Lq(R3
+) (t− s)

1
2q′

− 7
6 ds,

where q′ ∈ (5/2, 3) is the conjugate exponent to q. Therefore, we have the required estimate

‖pA‖
L

3
2 ((0,T );L

3
2 (K))

.K,Q,q T
1

2q′
− 1

6 ‖fA‖Lq((0,T );Lq(Q∗∗∗))

for any q ∈ (3/2, 5/3) (we can choose any such q), and similarly for p
(k)
A . By replacing fA by f

(k)
A − fA we also

obtain the convergence ‖p
(k)
A ‖

L
3
2 ((0,T );L

3
2 (K))

→ 0, as required.

The nonlocal components are p̄
(k)
nonloc,H, p̄

(k)
harm,≥1, and p̄

(k)
harm,≤1. The first of these is similar to the case of R3 in

[BK, BKT], but we include the details to illustrate the main approach. We set

AT = sup
t∈(0,T )

sup
k

‖(u(t), u(k)(t))‖2
M2,2

C

, BT = sup
k

sup
Q∈C

|Q|−
2
3

∫ T

0

∫

Q

(
|∇u(k)|2 + |∇u|2

)
.

Note that although the statement of Theorem 1.5 is for M2,q
C , due to M2,q

C ⊂ M2,2
C , we also have uniform bounds for

AT and BT .

Recalling the details of the proof of Lemma 2.5, we have

|p̄
(k)
nonloc,H(x, t)| .K

∑

l>M

∑

Q̃∈Sl

∫

Q̃

|u(k)(z)⊗ u(k)(z)− u(z)⊗ u(z)|

|x− z|4
dz +

∫

QM

|u(k) ⊗ u(k) − u⊗ u| dz

. AT

∑

l>M

2−2l +

∫

QM

|u(k) ⊗ u(k) − u⊗ u| dz
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for every x ∈ K, where M ∈ N is such that 2M ≫ dist(K, 0), and QM =
⋃

k≤M

⋃
Q̃∈Sk

Q̃. Since the series above

can be estimated by 2−2M , we can choose M sufficiently large so that
∫ t

0

‖p̄
(k)
nonloc,H(s)‖L∞(K) ds ≤

ǫ

2
+ CK

∫ t

0

∫

QM (0)

|u(k) ⊗ u(k) − u⊗ u| dz ds ≤ ǫ

for any preassigned ǫ, where we have taken large k in the last inequality. Due to the uniform bounds of both

p
(k)
nonloc,H and pnonloc,H in L∞(0, T ;L∞(K)), due to Lemma 2.5, we obtain the required convergence p̄

(k)
nonloc,H → 0

in L3/2(0, T ;L3/2(K)).

For p
(k)
harm,≥1, we write

|p
(k)
harm,≥1| ≤ p

(k)
A1 + p

(k)
A2 + p

(k)
A3 + |p

(k)
B |,

as in the proof of Lemma 2.6, except that now we apply a cutoff at z3 = 1, instead of z3 = 2m in the z3 integral (recall

(2.20)). For example, for p
(k)
A1 we have for x ∈ K that

|p̄
(k)
A1 (x, t)|

.K

∫ t

0

∫

Γ

e(t−s) Reλ

∫ ∞

1

∫

R2

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u

(k) ⊗ u(k) − u⊗ u|(z) dz′ dz3 d|λ| ds,
(4.5)

where ξ belongs to the line segment between x and xK , which is a fixed point inside K. Denote by I the double

integral in (4.5) with respect to the variables z′ and z3. As in Lemma 2.6 (recall the calculation below (2.21)), we have

e−|λ|
1
2 z3 . |λ|−

1
2 , which gives

I .K |λ|−
1
2

∑

l>M

∑

Q̃∈Sl

2−4l

∫

Q̃

(|u|2 + |u(k)|2) + |λ|−
1
2

∫

QM

(1− χ∗(z))
|u(k) ⊗ u(k) − u⊗ u|(z)

(|ξ′ − z′|+ ξ3 + z3)4
dz

.K |λ|−
1
2AT

∑

l>M

2−2l + |λ|−
1
2 ‖u(k) ⊗ u(k) − u⊗ u‖L1(QM )

. |λ|−
1
2AT 2

−2M + |λ|−
1
2 ‖|u(k) ⊗ u(k) − u⊗ u|‖L1(QM )

for large M , where we used (2.1) in the first inequality. Inserting this into the above integral in λ and s leads to

‖p̄
(k)
A1 (t)‖L∞(K) .K t

1
2AT 2

−2M +

∫ t

0

(t− s)−
1
2 ‖u(k) − u‖L2(QM )‖(u, u

(k))‖L2(QM ) ds.

Thus, applying Young’s inequality for the convolution in time we obtain

‖p̄
(k)
A1‖L2((0,T );L∞(K)) .K,T AT 2

−2M + sup
0<s<T

‖(u(s), u(k)(s))‖L2(QM )‖u
(k) − u‖L2(QM×(0,T )),

which converges to 0 (by first choosing large M and then large k).

For p̄
(k)
A2 , we have, similarly to (2.23),

|p̄
(k)
A2 (x, t)| .K

∫ t

0

(t− s)−
9
10

∫

R2

∫ 1

0

z
− 1

5
3

(|ξ′ − z′|+ ξ3 + z3)4
(1− χ∗)|u

(k) ⊗ u(k)(z)− u⊗ u(z)| dz3 dz
′ ds,

and, similarly to (2.25) considered in the case a = 10
9 , a′ = 10, δ = 1

2 , b = 3, r = 3
2 , we have, for every Q̃ ∈ Sm,

∫ 1

0

∫

Q̃

|u(k) ⊗ u(k) − u⊗ u|z
− 1

5
3 dz′ dz3 . ‖u(k) ⊗ u(k) − u⊗ u‖

L
3
2 (Q̃)

. 2
2
3m
(
‖(u, u(k))‖L2(Q̃)‖(∇u, ∇u

(k))‖L2(Q̃) + 2−m‖(u, u(k))‖2
L2(Q̃)

)
. 2

8
3m
(
(ATBT )

1
2 +AT

)
.

Using Young’s inequality for the convolution in time, we thus obtain

‖p̄
(k)
A2‖L

3
2 ((0,T );L∞(K))

.K,T

(
(ATBT )

1
2 +AT

) ∑

m>M

2−
4
3m + CM‖u(k) ⊗ u(k) − u⊗ u‖

L
3
2 ((0,T );L

3
2 (QM ))

,

where, for the first term, we used (|ξ′− z′|+ ξ3+ z3) & 2m for z ∈ Q̃ ∈ Sm for m ≥M (recall (2.1)); for the second

term, we used the first step in the inequality above. We now choose M sufficiently large, and then a large k to obtain

the required convergence.
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For p̄
(k)
A3 we have, using (2.21),

|p̄
(k)
A3 (x, t)| .K

∫ t

0

∫

Γ

e(t−s) Reλ

∫

supp ∇χ∗

e−|λ|
1
2 z3

(|ξ′ − z′|+ ξ3 + z3)4
|u(k) ⊗ u(k)(z, s)− u⊗ u(z, s)| dz d|λ| ds

.K

∫ t

0

∫

Γ

e(t−s) Reλ|λ|−
1
6 d|λ|‖u(k) ⊗ u(k)(s)− u⊗ u(s)‖

L
3
2 (Q∗∗)

ds

.

∫ t

0

(t− s)−
5
6 ‖u(k) ⊗ u(k)(s)− u⊗ u(s)‖

L
3
2 (Q∗∗)

ds,

which gives ‖p̄
(k)
A3‖L

3
2 ((0,T );L

3
2 (K))

→ 0 by applying Young’s inequality for the convolution in time.

As for p̄
(k)
B , recalling (2.27), we write

|p̄
(k)
B (x, t)| .

∫ t

0

∫

Γ

e(t−s) Reλ

∫

R
3
+

∣∣∣qλ,x,xK
(z)(1− χ∗)F̄

(k)
B (z, s)

∣∣∣ dz d|λ| ds,

where F̄
(k)
B (defined in the same way as FB in Step 2 of the proof of Lemma 2.6, but with u ⊗ u replaced by

u(k) ⊗ u(k) − u⊗ u), can be estimated by

|F̄
(k)
B (z)| .Q 2−MAT + CM‖u(k) ⊗ u(k) − u⊗ u‖L1(QM ) (4.6)

for any fixed Q ⊂ R
3
+, and z ∈ Q, where M > 0 large enough so that Q ⊂ QM/2. This can be obtained by an easy

modification of Step 2 of the proof of Lemma 2.6 by separating the integration region into QM and the rest, as above.

We then obtain

|p̄
(k)
B (x, t)| .Q

∫ t

0

∫

Γ

e(t−s) Reλ|λ|−
1
2


∑

l>L

∑

Q̃∈Sl

2−2l‖F̄
(k)
B (s)‖L∞(Q̃) + CL‖F̄

(k)
B (s)‖L∞(QL)


 d|λ| ds,

.

∫ t

0

(t− s)−
1
2

(
AT

∑

l>L

2−4l + CLAT 2
−M + CLCM‖u(k) ⊗ u(k)(s)− u⊗ u(s)‖L1(QM )

)
ds,

where, in the second line, we have used the estimate ‖F̄
(k)
B (s)‖L∞(Q̃) . |Q̃|−

2
3AT (from Step 2 of the proof of

Lemma 2.6) in the summation, and have assumed that M > 2L in order to use (4.6). This gives

‖p̄
(k)
B ‖

L
3
2 ((0,T );L∞(K))

.K,T AT 2
−4L + CLAT 2

−M + CLCM‖u(k) ⊗ u(k) − u⊗ u‖
L

3
2 ((0,T );L

3
2 (QM ))

,

which provides the required convergence by first choosing large L, then M and k.

Finally, for the remaining component of the nonlocal pressure, p̄
(k)
harm,≤1, we have

∣∣∣p̄(k)harm,≤1(x, t)
∣∣∣ = 1

2π

∣∣∣∣∣

∫ t

0

∫

Γ

e(t−s) Reλ

∫

R
3
+

qλ(x
′ − z′, x3, z3)χ∗F̄

(k)
B (z, s)′ dz dλ ds

∣∣∣∣∣

.K

∫ t

0

∫

Γ

e(t−s)Reλ‖F̄
(k)
B (s)‖L∞(Q∗)

∫

Q∗

|qλ(x
′ − z′, x3, z3)| dz d|λ| ds

for every x ∈ K. Thus noting that
∫
Q∗ |qλ(x

′ − z′, x3, z3)| dz .Q∗

∫∞

0
e−|λ|

1
2 z3z

− 1
4

3 dz3 . |λ|−
3
8 (recall (2.5) and

(2.18)) and using (4.6) gives

∣∣∣p̄(k)harm,≤1(x, t)
∣∣∣ .K

∫ t

0

(t− s)−
5
8

(
AT 2

−M + CM‖u(k) ⊗ u(k)(s)− u⊗ u(s)‖L1(QM )

)
ds,

where M is chosen in analogy to prior cases. This implies the convergence ‖p̄
(k)
harm,≤1‖L

3
2 ((0,T );L∞(K))

→ 0, as

required. �
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5. EXISTENCE

In this section we apply the stability result of Section 4 to obtain the existence of a global weak solution when

u0 ∈ M̊2,2
C and of scaling invariant solutions when u0 is additionally scaling invariant. Note that u0 ∈ M̊2,2

C implies

u0,3|x3=0 = 0.

We start with the general case.

Proof of Theorem 1.3. Let u
(k)
0 ∈ C∞

0 (R3
+) be divergence-free, satisfy u

(k)
0,3 |x3=0 = 0 and be such that u

(k)
0 →

u0 ∈ M2,2
C . By the Leray-Hopf theory, we obtain global-in-time finite energy solutions u(k) and pressure p(k) in the

Leray-Hopf class satisfying the local energy inequality (see [Tsai2, Chapter 3] for an exposition on the Leray-Hopf

weak solutions on R
3
+; the local energy inequality is not included for R3

+ in [Tsai2] but follows as a consequence

of the construction by adapting ideas from [MMP1].) Since these solutions satisfy the global energy inequality,

αk(t) + βk(t) < ∞ for every t > 0, where αk and βk are the quantities corresponding to (1.8) for u(k). These

solutions are also local Leray solutions in the sense of [MMP1], and, following [MMP1, Proposition 3.1], satisfy the

local pressure expansion tailored to C and Cn. Hence, these solutions satisfy the a priori bounds in Theorem 1.4 for

q = 2. The asserted global solution exists due to Theorem 1.5. �

We now address Theorem 1.6. For our foundation, we use the scaling invariant solutions of [BT2]. These belong

to the energy perturbed class which we now recall.

Definition 5.1 (EP-solutions to (1.1)). The vector field u defined on R
3
+ × (0,∞) is an energy perturbed solution to

(1.1), abbreviated ‘EP-solution,’ with divergence-free initial data u0 ∈ L3,∞(R3
+) if

∫ ∞

0

(
(u, ∂sf)− (∇u,∇f)− (u · ∇u, f)

)
ds = 0,

for all f ∈ {f ∈ C∞
0 (R3

+ × (0,∞)) : ∇ · f = 0}, we have

u− Su0 ∈ L∞(0, T ;L2(R3
+)) ∩ L

2(0, T ;H1(R3
+)),

for any T > 0, and

lim
t→0+

‖u(t)− Su0(t)‖L2(R3
+) = 0,

where Su0(t) ∈ L∞(0,∞;L3,∞(R3
+)) is the solution to the time-dependent Stokes system with initial data u0 and

zero boundary value.

Energy perturbed solutions have played a role in several recent papers on the existence and regularity theory for

the Navier-Stokes equation. Most relevantly, the construction of self-similar solutions in [BT1] led naturally to this

structure. Additionally, Barker and Seregin [BS] used such solutions to show that, on the half-space, the L3 norm must

become infinite at a potential singularity, extending a result of [S1] from the whole-space. Energy perturbed solutions

and a modified argument compared to [S1] were needed in [BS] because the local Leray theory had not been extended

to the half-space. This has since been achieved in [MMP1]. Later the a priori estimates from [BS] were extended to

construct global weak solutions on the whole-space and analyze regularity and uniqueness issues for initial data in

scaling critical spaces [SS, BSS, AB]. Some of these ideas have been extended to the half-space in [TP].

The main theorem of [BT2] is the following.

Theorem 5.2 ([BT2]). If u0 ∈ L3,∞(R3
+) is SS (resp. λ-DSS), is divergence-free and such that u0,3|x3=0 = 0, then

there exists an EP-solution u on R
3
+×[0,∞) with initial data u0, which is SS (resp. λ-DSS). Moreover, u(x1, x2, 0, t) =

0 for almost every t > 0.

Our proof of Theorem 1.6 is by stability using the solutions of Theorem 5.2 as approximations. To connect these

with a scaling invariant datum in M̊2,2
C we need the following lemma.

Lemma 5.3. Assume u0 ∈ M̊2,2
C is λ-DSS, is divergence-free and such that u0,3|x3=0 = 0. Then there exists a

sequence {u
(k)
0 } ⊂ L3,∞(R3

+) so that u
(k)
0,3 |x3=0 = 0, all u

(k)
0 are λ-DSS, divergence-free and u

(k)
0 → u0 in M2,2

C . If

u0 is self-similar, then u
(k)
0 can also be taken to be self-similar.

The proof of this is similar to the proof of [BT3, Lemma 4.1] and the details are omitted.
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Proof of Theorem 1.6. Concerning the solutions of Theorem 5.2, it is an easy exercise to check that they are local

energy solutions. Indeed, Su0 is smooth and decays in the sense that it belongs to L2
uloc, where we adopt the notation

of [MMP1]. The L2 part also enjoys this decay. This is a sufficient condition for u to have the local pressure expansion

which follows by adapting [MMP1, Proof of Proposition 3.1] to C and Cn. Additionally, the quantities αn and βn
defined in (1.8) are finite for solutions of Theorem 5.2, a claim we now justify. Let u be an energy perturbed solution.

Then u− Su0 ∈ L∞(0, T ;L2(R3
+)) ∩ L

2(0, T ;H1(R3
+)). On the other hand, it can be shown that, for any t > 0,

sup
s∈[0,t]

‖Su0(s)‖
2
M2,2

Cn

+ sup
Q∈Cn

1

|Q|
2
3

∫ t

0

∫

Q

|∇Su0|
2 dx ds <∞,

by approximating u0 in M2,2
Cn

by elements of C∞
c and then extending analogous estimates for the solutions of the

Stokes equations with the approximated initial data to Su0 as in our proof of Theorem 1.5—see (4.2) and (4.3). Taken

together, this shows that u = (u− Su0) + Su0 satisfies (1.8).

Based on this, the solutions from Theorem 5.2 satisfy the conditions of Theorem 1.5.

Given u0, from Lemma 5.3 we obtain a sequence u
(k)
0 which converges to u0 in M2,2

C . By Theorem 5.2 we obtain

for each k a global EP-solution u(k). These solutions and data satisfy the assumptions of Theorem 1.5. Hence, there

exists a local energy solution u for initial data u0 which is a limit of u(k) in the sense given in the proof of Theorem 1.5.

This convergence is sufficient to guarantee u is DSS. The argument is identical when u is self-similar. �

6. EVENTUAL REGULARITY

The goal of this section is to prove Theorem 1.7, which asserts regularity in a parabolic region with an arbitrarily

small leading coefficient.

Let 0 < q ≤ 1, and suppose that

u0 ∈ M̊2,q
C ,

and assume that u is a local energy solution with initial data u0. As in (1.8) we set

αn(t) = sup
s∈[0,t]

‖u(s)‖2
M2,q

Cn

and βn(t) = sup
Q∈Cn

1

|Q|
q
3

∫ t

0

∫

Q

|∇u|2.

Assume that α1(t) + β1(t) <∞ for all 0 < t <∞. This implies that, for every n ∈ N and 0 < t <∞,

αn(t) + βn(t) <∞.

Observe that αn(0) → 0 as n→ ∞ by (1.7).

In the proof of Theorem 1.7, we shall use the following version of the Gronwall lemma.

Lemma 6.1. Suppose that f : [0, T0] → [0,∞) is a nonnegative increasing continuous function, which satisfies

f(t) ≤ af(0) +

(
1 +

t

T0

)(
1

8
f(t) + af(t)p

)
,

where p > 1. There exists ε > 0, depending on a and p such that if f(0) ≤ ε, then f(t) ≤ 4af(0) for t ∈ [0, T0].

Proof of Lemma 6.1. The proof is obtained by the barrier argument, comparing the solution f(t) with 4af(0). �

Another important ingredient in the proof of Theorem 1.7 is the following estimate on the pressure term in the

energy inequality.

Lemma 6.2. Let q ∈ (0, 1] and n ∈ N. If u0 and u are as above, then

1

|Q|
q
3

∫ t

0

∫
p u · ∇φQ ≤ Cαn(0) +

(
1 + t|Q|−

2
3

)2(1
8
αn(t) + C(αn(t) + βn(t))

3
)

(6.1)

for all Q ∈ Cn.

Proof of Lemma 6.2. In this proof we write α = αn and β = βn for brevity. We also set

t̃ =
t

|Q|
2
3

.
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From (3.6), we have

1

|Q|
q
3

∫ t

0

∫
(pli,loc + pli,nonloc)u · ∇φQ ≤ C|Q|−

1
6 t

1
4α(0)

1
2α(t)

1
2 = Ct̃

1
4α(0)

1
2α(t)

1
2 ≤

1

16
(1 + t̃)α(t) + Cα(0).

By (3.7), we have

1

|Q|
q
3

∫ t

0

∫
ploc,H u · ∇φQ . |Q|−

q+1
3

∫ t

0

∫

Q∗∗∗

|u|3 . |Q|
q
6−

1
3 t

1
4α(t)

3
4 β(t)

3
4 + |Q|

q
6−

5
6 tα(t)

3
2

= t̃
1
4 |Q|

q−1
6 α(t)

3
4 β(t)

3
4 + t̃|Q|

q−1
6 α(t)

3
2 ,

where we also used (3.14). Next, by (3.8),

1

|Q|
q
3

∫ t

0

∫
ploc,harm u · ∇φQ

. |Q|
q−2
6

(
t

253
1632 ‖α‖

25
68

L8(0,t)β(t)
9
68 + |Q|−

3
34 t

13
48 ‖α‖

1
2

L8(0,t)

)

×
(
t

1
816 ‖α‖

13
34

L8(0,t)β(t)
21
34 + |Q|−

4
51 t

5
48 ‖α‖

1
2

L8(0,t)β(t)
1
2 + |Q|−

21
51 t

13
24 ‖α‖L8(0,t)

)

. |Q|
q−1
6 (1 + t̃)(α(t) + β(t))

3
2 ,

where we used that α(t) is nondecreasing in the second inequality.

From (3.9), we have

1

|Q|
q
3

∫ t

0

∫
pnonloc,H u · ∇φQ . |Q|

q
6−

5
6 ‖α‖

3
2

L
3
2 (0,t)

. |Q|
q
6−

1
6 t̃α(t)

3
2 .

For pharm,≥1 we take r = 3/2 in Lemma 2.6 to obtain

‖pharm,≥1‖
L

3
2 ((0,t);L∞(Q))

.γ,δ |Q|
q−3
3

(
|Q|

2δ−2γ
3 tγ‖α‖1−δ

L
3(1−δ)
2−3δ (0,t)

β(t)δ + (1 + tγ |Q|−
2γ
3 + t

1
2 |Q|−

1
3 )‖α‖

L
3
2 (0,t)

)

. |Q|
q−3
3

(
|Q|

2δ−2γ
3 tγ+

2−3δ
3 α(t)1−δβ(t)δ + (1 + t

1
2 |Q|−

1
3 )t

2
3α(t)

)

. |Q|
q−3
3 t

2
3 (α(t) + β(t))

(
1 + (t

1
2 |Q|−

1
3 )2γ−2δ + t

1
2 |Q|−

1
3

)

(6.2)

for any q ∈ (0, 3), δ ∈ (0,min{2/3, 3q/2}) and γ ∈ (0, δ/3). This gives

1

|Q|
q
3

∫ t

0

∫

Q

pharm,≥1 u · ∇φQ . |Q|−
q
3−

1
3 ‖pharm,≥1‖

L
3
2 ((0,t);L∞(Ω))

‖u‖L3((0,t);L1(Ω))

. |Q|−
q
3−

1
3 |Q|

q−3
3 (α(t) + β(t))t

2
3

(
1 + (t

1
2 |Q|−

1
3 )2γ−2δ + t

1
2 |Q|−

1
3

)
|Q|

1
2+

q
6 ‖α‖

1
2

L
3
2 (0,t)

. |Q|
q
6−

5
6 (α(t) + β(t))

3
2 t
(
1 + (t

1
2 |Q|−

1
3 )2γ−2δ + t

1
2 |Q|−

1
3

)

= |Q|
q−1
6 (α(t) + β(t))

3
2 t̃
(
1 + t̃γ−δ + t̃

1
2

)

.q (α(t) + β(t))
3
2 (1 + t̃)

3
2 ,

where, in the last step, we have chosen γ = δ/6 with δ ∈ (0,min{2/3, 3q/2}) sufficiently small so that 1+γ−δ > 0.

Finally, we use (3.10) to obtain

1

|Q|
q
3

∫ t

0

∫

Q

pharm,≤1 u · ∇φQ . |Q|
q
6−

13
12 t

19
16 ‖α‖

3
2

L8(0,t) . |Q|
q−1
6 t̃

11
8 α(t)

3
2 .

Summing the above inequalities, we obtain (6.1), as required. �

Before the proof of Theorem 1.7, we also need the following fact.

Lemma 6.3. Let u be as above. Then αn + βn is a continuous function of t.
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Proof of Lemma 6.3. The proof is similar to [BK, Proof of Lemma 3.2]. We only sketch the continuity of αn on [0, T ],
where T > 0 is fixed, as the argument for βn is simpler. First, for every Q ∈ Cn, the function sups∈[0,t]

∫
Q
|u|2φ is

continuous in t. The rest follows by

lim
n→∞

sup
Q∈Cn;|Q|≥2m

1

|Q|
q
3

sup
t∈[0,T ]

∫

Q

|u(·, t)|2φ = 0

by finding m ∈ N such that Tm in Theorem 1.4 satisfies Tm ≥ T and by applying (1.7) and Theorem 1.4 with

m→ ∞. �

We are now ready to prove the main theorem on eventual regularity.

Proof of Theorem 1.7. By (3.14), we have

1

|Q|
2
3

∫ t

0

∫

Q

|u|3 . t
1
4 |Q|

q
2−

2
3αn(t)

3
4 βn(t)

3
4 + t|Q|

q
2−

7
6αn(t)

3
2 . (6.3)

for all Q ∈ Cn, from where

1

|Q|
q
3

∫ t

0

∫

Q

|u|2u · ∇φQ . t
1
4 |Q|

q−2
6 αn(t)

3
4 βn(t)

3
4 + t|Q|

q−5
6 αn(t)

3
2

= (t|Q|−
2
3 )

1
4 |Q|

q−1
6 αn(t)

3
4 βn(t)

3
4 + (t|Q|−

2
3 )|Q|

q−1
6 αn(t)

3
2 .

(6.4)

Note that the both terms on the right-hand side are dominated by the right-hand side of (6.1) by q ≤ 1. Thus,

applying Lemma 6.2 and (6.4) in the energy inequality (3.12), and estimating the linear term |Q|−q/3
∫ t

0

∫
|u|2∆φQ

by a constant multiple of t|Q|−2/3αn(t), we get

αn(t) + βn(t) ≤ Cαn(0) +
(
1 + σt|Q|−

2
3

)2 (1
8
(αn(t) + βn(t)) + C(αn(t) + βn(t))

3
)

(6.5)

for some σ ≥ 1, since the term t|Q|−
2
3αn(t) is also dominated by the right-hand side of (6.5).

We now fix

λ ∈

[
q + 2

3
, 1

]
, (6.6)

(in particular λ ∈ (2/3, 1]), and let ν ∈ (0, 1/2] be sufficiently small so that

⋃

n≥n0

((−2n, 2n)3 ∩ R
3
+)×

(
22nλ

4νσ
,
22nλ

νσ
,

)
⊃
{
(x, t) ∈ R

3
+ × (0,∞) : t ≥ ǫ0|x|

2λ +M
}

(6.7)

for n0 = 1, where M > 0 is a constant independent of the choice of λ. By letting M depend on n0 we see that then

(6.7) holds for all n0 ≥ 1. With ǫ ∈ (0, 1] to be determined, we find n0 ∈ N such that

νσ22n ≥ 22nλ and αn(0) ≤ ǫ for n ≥ n0.

(Recall (1.7) that αn(0) → 0 as n → ∞.) For every n ≥ n0 we consider Q ∈ S
(n)
n , i.e., Q ∈ Cn with the

side-length 2n, and

t =
22nλ

νσ
.

Due to our choice of n0 we see that t|Q|−2/3 ≤ 1. Moreover, applying Lemma 6.1 with f(t) = αn(t) + βn(t), which

is continuous by Lemma 6.3, we obtain that

αn(s) + βn(s) . ǫ, 0 ≤ s ≤ t, n ≥ n0,

if ǫ > 0 is sufficiently small. Note also that, having fixed n0 we have also fixed M > 0 in (6.7). We show below that

there exists θ(t) such that

1

t
‖u‖3L3((0,t);L3(Q)) +

1

t
‖p− θ(t)‖

3
2

L
3
2 (( 1

8 t,t);L
3
2 (Q))

. t
3q+6−9λ

8λ ǫ
3
2 , (6.8)

for all n ≥ n0. This, (6.7), and the boundary partial regularity criterion due to Seregin et al [SSS, Theorem 1.1] shows

that fixing ǫ sufficiently small gives regularity of (u, p), together with an upper bound

|u(x, t)| . ǫ
1
3 t

q+2−3λ
8λ − 1

2 = ǫ
1
3 t−

7
8+

q+2
8λ
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in {(x, t) ∈ R3
+ × (0,∞) : t ≥ ǫ0|x|

2λ +M}, which proves Theorem 1.7. We note that the regularity criterion in

[SSS] requires the integrability condition

∇p,D2u ∈ L
3
2

loc((0,∞);L
9
8

loc(R
3
+)),

which is the content of Lemma 6.4 stated next.

It remains to verify (6.8). For the velocity field, we use (6.3) to estimate

1

t
‖u‖3L3((0,t);L3(Q)) .

(
|Q|

q
2

t
3
4

+ |Q|
q−1
2

)
ǫ

3
2 ∼

(
t
3q−3λ

4λ + t
3q−3
4λ

)
ǫ

3
2 . t

3q−3λ
4λ ǫ

3
2 , (6.9)

where we used

|Q| ∼ t
3
2λ . (6.10)

For the local linear part of the pressure, pli,loc, we use Hölder’s inequality and the first inequality in (2.15) to get

1

t
‖pli,loc‖

3
2

L
3
2 (( 1

8 t,t);L
3
2 (Q))

.
|Q|

1
4

t
‖pli,loc‖

3
2

L
3
2 (( 1

8 t,t);L
2(Q))

.
|Q|

q+2
4

t
9
8

ǫ
3
2 ∼ t

3q+6−9λ
8λ ǫ

3
2 ,

where we used (6.10). Similarly, we have

1

t
‖pli,nonloc‖

3
2

L
3
2 (( 1

8 t,t);L
3
2 (Q))

.
|Q|

t
‖pli,nonloc‖

3
2

L
3
2 (( 1

8 t,t);L
∞(Q))

.
|Q|

q+2
4

t
9
8

ǫ
3
2 ∼ t

3q+6−9λ
8λ ǫ

3
2 .

By the third inequality in (2.15) and (6.9), we have

1

t
‖ploc,H‖

3
2

L
3
2 ((0,t);L

3
2 (Q))

. t
3q−3λ

4λ ǫ
3
2 .

Next, by the fourth inequality in (2.15), we have

1

t
‖ploc,harm − θ‖

3
2

L
3
2 ((0,t);L

3
2 (Q))

.
|Q|

2
17

t
‖ploc,harm − θ‖

3
2

L
3
2 ((0,t);L

17
10 (Q))

.
|Q|

q
2+

2
17

t

(
t

5
68 +

t

|Q|
21
34

)
ǫ

3
2 =

(
|Q|

q
2+

2
17

t
63
68

+ |Q|
q−1
2

)
ǫ

3
2

∼
(
t

3q
4λ+ 3

17λ− 63
68 + t

3q−3
4λ

)
ǫ

3
2 . t

3q+6−9λ
8λ ǫ

3
2 ,

where we used (6.6), along with q ≤ 1 in the last step. By the fifth inequality in (2.15), we have

1

t
‖pnonloc,H‖

3
2

L
3
2 ((0,t);L

3
2 (Q))

.
|Q|

t
‖pnonloc,H‖

3
2

L
3
2 ((0,t);L∞(Q))

.
|Q|

t
|Q|

q−3
2 ǫ

3
2

=
|Q|

q−1
2

t
ǫ

3
2 ∼ t

3q−3
4λ −1ǫ

3
2 .

Using inequality (6.2) with γ = δ/6, δ = q/8, and noting that t|Q|−2/3 = 22n(q−1)/3/νσ gives

1

t
‖pharm,≥1‖

3
2

L
3
2 ((0,t);L

3
2 (Q))

. |Q|
q−1
2 (αn(t) + βn(t))

3
2

(
1 + (t|Q|−

2
3 )γ−δ + t

1
2 |Q|−

1
3

) 3
2

. |Q|
q−1
2

(
t|Q|−

2
3

)− 5q
32

ǫ
3
2 ∼ t

29q
32λ− 3

4λ− 5q
32 ǫ

3
2 . t

3q+6−9λ
8λ ǫ

3
2 .

Finally, by the last inequality in (2.15), we get

1

t
‖pharm,≤1‖

3
2

L
3
2 (0,t);L

3
2 (Q))

.
|Q|

t
‖pharm,≤1‖

3
2

L
3
2 (( 1

8 t,t);L
∞(Q))

. |Q|
q
2−

7
8 t

9
16 ǫ

3
2 ∼ t

3q
4λ− 21

16λ+ 9
16 ǫ

3
2 . t

3q+6−9λ
8λ ǫ

3
2 ,

which completes the proof of (6.8). �

Lemma 6.4 (Integrability of ∇p and D2u). For any local energy solution (u, p), we have

∇p,D2u ∈ L
3
2 ((t0, T );L

9
8

loc(R
3
+)),

for every T > 0 and t0 ∈ (0, T ).
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The lemma can be proven using local boundary regularity of the Stokes system, due to [S2]. However, a more

direct proof can be obtained using the representation formulae (2.4)–(2.13) of the pressure function as well as maximal

parabolic regularity. We present this argument for the sake of completeness.

Proof of Lemma 6.4. Let Ω ⊂ R
3
+ be a bounded open set. We review the pressure estimates (2.15) and observe that the

gradients of each nonlocal part of the pressure, i.e., ∇pli,loc, ∇pnonloc,H, ∇pharm,≥1, belong to L
3
2 ((t0, T );L

9
8 (Ω)),

as the derivative falling onto the kernel qλ only improves the estimate (since we obtain faster decay on the pointwise

bound on qλ (2.5)). For the local parts, we obtain the required regularity by reexamining their estimates from (2.15),

as follows.

For pli,loc, we argue as in (2.16)–(2.19), with the L2 norms replaced by L
9
8 , to obtain

‖∇pli,loc(t)‖
L

9
8 (Ω)

.

∫

Γ

etReλ

∫ ∞

0

e−|λ|
1
2 z3‖χu0(·, z3)‖

L
9
8
z′

(∫ c(Ω)

0

(x3 + z3)
− 9

8 dx3

) 8
9

dz3 d|λ|

.Ω ‖χu0‖L2

∫

Γ

etReλ

(∫ ∞

0

e−2|λ|
1
2 z3z

− 2
9

3 dz3

) 1
2

d|λ|

= ‖χu0‖L2

∫

Γ

etReλ|λ|−
7
36 d|λ|

. ‖χu0‖L2t−
29
36 ,

where we used the Cauchy-Schwarz inequality in the second inequality.

For ploc,harm, we argue as in (2.17) to obtain

‖∇ploc,harm‖
L

3
2 ((0,T );L

9
8 (R3

+))
. ‖P∇ · (χ∗∗u⊗ u)‖

L
3
2 ((0,T );L

9
8 (R3

+))
.Ω αn(T ) + βn(T ),

where the dependence on Ω is via the cutoff function χ∗∗.

The estimate on ∇ploc,H follows by direct calculation and Calderón-Zygmund estimates, and the estimate on

∇pharm,≤1 follows in the same way as ∇pli,loc above, by observing that ‖χ∗FB(t)‖L2 .Ω αn(T ) for every t ∈ (0, T )
(which can be obtained in the same way as Step 2 of the proof of Lemma 2.6) and by integration in time. This gives

‖∇pharm,≤1(t)‖
L

9
8 (Ω)

.Ω αn(T )t
7
36 , and so ∇pharm,≤1 ∈ L

3
2 ((t0, T );L

9
8 (Ω)), as required.

In order to get the integrability assertion for D2u, let φ ∈ C∞
0 (R3

+ × (0,∞)) be arbitrary. Then we have

∂t(uφ)−∆(uφ) = f, (6.11)

where f = −φu · ∇u − φ∇p + u(∂tφ − ∆φ) − 2∇φ · ∇u. By the first part of the proof, we have φ∇p ∈

L
3
2 (([0,∞);L

9
8 (R3

+)). Also, φu · ∇u ∈ L
3
2 ((0,∞);L

9
8 (R3

+)) since u ∈ L6
loc((0,∞);L

18
7 (R3

+)) and

∇u ∈ L2
loc((0,∞);L2(R3

+)). Using also the local square integrability of u and ∇u, we get f ∈ L
3
2 ([0,∞);L

9
8 (R3

+)).
Applying the maximal parabolic regularity (see Section D.5 in [RRS], for example) to the equation (6.11) with

zero initial data, we obtain D2(uφ) ∈ L
3
2 ([0,∞);L

9
8 (R3

+)). By local square integrability of u,∇u, this implies

φD2u ∈ L
3
2 ([0,∞);L

9
8 (R3

+)), and since φ was an arbitrary test function supported in R3
+ × (0,∞), the proof is

complete. �
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