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DiSCo-SLAM: Distributed Scan Context-Enabled
Multi-Robot LiDAR SLAM with Two-Stage
Global-Local Graph Optimization

Yewei Huang!, Tixiao Shan?, Fanfei Chen® and Brendan Englot!

Abstract—We propose a novel framework for distributed,
multi-robot SLAM intended for use with 3D LiDAR observations.
The framework, DiSCo-SLAM, is the first to use the lightweight
Scan Context descriptor for multi-robot SLAM, permitting a
data-efficient exchange of LiDAR observations among robots.
Additionally, our framework includes a two-stage global and
local optimization framework for distributed multi-robot SLAM
which provides stable localization results that are resilient to
the unknown initial conditions that typify the search for inter-
robot loop closures. We compare our proposed framework with
the widely used distributed Gauss-Seidel (DGS) approach, over a
variety of multi-robot datasets, quantitatively demonstrating its
accuracy, stability, and data-efficiency.

Index Terms—Multi-Robot SLAM, Distributed Robot Systems,
Range Sensing.

I. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) is a

fundamental capability in robot navigation, in which a mo-
bile robot maps an unknown environment, while using relative
measurements of that environment as the basis for localizing
itself. Although many successful single-robot SLAM solutions
have been proposed, fast and accurate scene reconstruction
with a robot team remains an open problem. In multi-robot
SLAM, a group of robots traverse an unknown environment
and build a map cooperatively, by exchanging information.
Cooperative robot teams have the potential to be more efficient
than a single robot in time-sensitive tasks, such as search-
and-rescue, infrastructure inspection, household services, and
logistical and transportation applications.

Single-robot SLAM solutions incorporating 3D LiDAR have
become increasingly prevalent in recent years, since 3D Li-
DAR scans provide high-resolution point clouds spanning a
large volumetric field of view, and are robust to a wide range
of weather and lighting conditions. However, many robot teams
are equipped with either cameras or 2D LiDAR scanners, since
visual features and 2D LiDAR scans are lightweight and can
be exchanged between robots under low-bandwidth conditions.
Multi-robot SLAM has been successfully implemented with
3D LiDAR, but such frameworks have typically required a
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(a) Our Jackal UGV

instru- (b) SLAM-derived map, with pink, yel-
mented with LIDAR, IMU, and a low and blue lines indicating the esti-

GPS used for ground truth. mated trajectories of three robots.

Fig. 1: Our mobile UGV platform (a) and a representative three-robot
SLAM result using the proposed DiSCo-SLAM framework, over a
new outdoor SLAM dataset gathered using our UGV (b).

centralized server [1], or have not been applied in online
experiments with 3D LiDAR [2], [3].

In this paper, we propose a distributed multi-robot SLAM
framework intended for real-time use with 3D LiDAR, and
with a two-stage global-local graph optimization procedure de-
signed for robust compatibility with smoothing-and-mapping
optimizers [4]. We use Scan Context [5], a lightweight LIDAR
descriptor for loop closure detection, to compactly represent
LiDAR scans and permit a low-bandwidth exchange of infor-
mation with other robots. As descriptors are received from
other robots, the recipient robot performs a radius search
and requests the full set of point features from the best-
matched keyframe. Unlike intra-robot loop closures, inter-
robot loop closures often lack access to an accurate initial
guess from odometry information. Since a widely-used op-
timization method, the distributed Gauss-Seidel (DGS) ap-
proach, is not reliable with a poor initial guess, we propose a
two-stage global and local optimization strategy. In the global
step, a factor graph containing a robot’s local-frame to global-
frame transformations is optimized. In the subsequent local
step, a local pose graph encompassing (1) local odometry, (2)
intra-robot constraints, and (3) inter-robot constraints related
to the local robot is optimized.

We validate our framework using several multi-robot 3D
LiDAR datasets, including a unique dataset gathered with our
Jackal unmanned ground vehicle (UGV) (Fig. 1(a)), capable
of tightly-coupled lidar inertial odometry [6], equipped with a
single-band RTK GNSS receiver for ground truth.

In summary, the novel contributions of our work include:

o The first use of the Scan Context descriptor in multi-robot
LiDAR SLAM, for data-efficient communication.
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« A two-stage global-local optimization for each robot; op-
timizing a global coordinate transformation graph ensures
a high quality initial guess for stably and accurately
optimizing a robot’s local pose graph.

o A unique and publicly available large-scale three-robot
SLAM dataset with tightly-coupled 3D lidar and inertial
sensing, and GPS ground truth, gathered for this study.

The rest of our paper is organized as follows. After a review of
the relevant background literature in Section II, the definition
of distributed multi-robot SLAM and our proposed two-stage
optimization for distributed multi-robot SLAM are presented
in Section III. In Section IV, a framework for distributed multi-
robot SLAM using the Scan Context LiDAR descriptor is
presented. Experimental results are given in Section V, with
conclusions in Section VI.

II. RELATED WORK

It is pivotal for a multi-robot SLAM algorithm, especially
for distributed multi-robot SLAM [7], [8], whose communi-
cation bandwidth is limited, to establish accurate inter-robot
measurement constraints, or loop closures. In single-robot
SLAM, odometry measurements are frequently available to
provide an accurate initial guess. In multi-robot SLAM, inter-
robot constraints must be derived from perceptual data.

Since feature descriptors are easy to transfer and query,
many vision-based methods [9], [10], [11], [12], [13] extract
features from visual imagery and find potential data association
using Bag of Words (BoW). Feature extractions are also
widely used in 3D LiDAR SLAM methods. LeGO-LOAM
[14] and [15] extract point features representing edge and
planar structures to scale down the data while ensuring high
performance. Segmap [16] extracts segments from LiDAR
point clouds and describes them with CNN-based features.
Recent research [17] also discusses the possibility of using
visual features for LiDAR place recognition. DARE-SLAM
[18] extracts visual features from 2D occupancy grid maps
as geometric verification for inter-robot loop closures. We
choose Scan Context [5] as our feature descriptor since it is
lightweight and robust. Scan Context describes the raw LiDAR
point cloud by projecting the scan onto a low-resolution 2D
plane, which is easily searched and exchanged.

Although features enable robust performance in many cases,
they cannot distinguish among repeated scenes in the environ-
ment. Many works address this issue through selectivity in
accepting inter-robot loop closures. To ensure the correctness
of inter-robot data association, [2], [19], [20] use a smart
rendezvous approach; robots only exchange the present poses
and observations when they meet. These meeting places are
where inter-robot loop closures typically occur. However, a
rendezvous approach only provides rough position information
and may introduce uncertainties into subsequent optimization
steps. Recent methods introduce an outlier rejection procedure
to detect erroneous loop closures derived from feature match-
ing. Agarwal [21] adds a scale factor to the covariance matrix
to dynamically adjust the influence of each measurement. Pair-
wise consistent measurement set maximization (PCM) [22],
proposed for multi-robot map merging, checks the consistency
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Fig. 2: Differences between DGS and our proposed method. Green,
cyan and blue triangles indicate the poses of three different robots.

of inter-robot measurements. It has been adopted by others for
outlier rejection in multi-robot SLAM [3], and we also use it.

Another critical problem is the optimization of inter-robot
constraints. Centralized methods [1], [9], [10], [11], [12],
which collect all messages from local robots using a global
server, can easily handle this task by optimizing all measure-
ments in one factor graph. Distributed methods maintain sev-
eral graphs across robots, making it harder to resolve ambigui-
ties arising among them. In the widely-used distributed Gauss-
Seidel (DGS) approach [2], each robot optimizes its own
graph, considering other robots only when there are overlap-
ping constraints. DDF-SAM [23] optimizes a local pose graph
and constrains these local graphs using a constrained factor
graph (CFG) containing shared landmarks among robots.
DDF-SAM 2.0 [24] uses a decision tree in both local and
neighbor graphs to avoid double-counting measurements. Tian
[25] proposes Riemannian Block-Coordinate Descent (RBCD),
which achieves a better convergence than the DGS method
by solving a rank-restricted relaxation of the pose graph
optimization problem [26]. We adopt a two-stage optimization
approach that is tailored to LIDAR SLAM with a data-efficient
descriptor, with few restrictions on the prerequisites for relative
pose estimation, and, unlike other works [2], [3], we perform
local optimization in a single unified step that does not address
rotation/translation separately.

III. PRoBLEM FORMULATION AND APPROACH

Let X = {xq, -+ , X, } be a set of 6DoF robot poses from time
0 to time ¢, with X c SE(3). C contains all constraints between
robot poses. For each pair of poses defining a constraint
(i, j) € C, we define error e;; between observed transformation
z;; € SE(3) and expected transformation Z;; as:

e (X, Xj,Zij) = 2;; — 2 (Xi,X;), (1
. T
Zij(X,',Xj)ZX[- Xj- (2)

A single-agent SLAM problem can be represented as a non-
linear least squares problem [27]:

X* = arg min Z F;; 3)
X .5
(i,j)eC
Fij = ¢/,Q;je;;, “)
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where F;; denotes the negative log-likelihood function of
one constraint between x; and X;, and €;; is the covariance.
The SLAM system aims to find a set of robot poses which
minimizes the total observation error.

We define a set of n robots: N = {1,2,---,n}. YVa € N,
X, denotes the poses of robot @ and X = {X,|a € N} is a set
containing the poses of all n robots. C = {{i, j)|x;,x; € X} is
the set of all constraints. For the multi-agent SLAM problem,
we wish to solve the following equation:

X" = arg min{Fjns14(X) + Finger (X) }. o)
X

The cost function consists of two parts: intra-robot terms and
inter-robot terms. C, C C indicates the set of intra-robot
constraints between poses of robot @, and Cqpg C C indicates
inter-robot constraints between poses of robots @ and .

Finra(X) = ), >, Fy (©6)

aeN (i,j)eCqy

Finter (X) = Fij @)
a.BeEN,a#B (i,j)€Cap

In the distributed case, each robot optimizes its own contri-
butions to the objective. For robot @, we have:

Fintra Finter
—_——

X, = arg min( Z F;j+ Z Z Fij) (8

Ko (i,])eCa BEN,a#B (i,j)€Cap

} ; €))

where X, contains all poses related to robot a. Vx € X,,
the robot pose x consists of two parts, the rotation R and the
translation t. Since the rotation R € SO(3) is a non-convex
component [2], Eq. (8) may fall into local minima instead of
converging to a global minimal solution.

To address this, the widely used distributed Gauss-Seidel
(DGS) method [2] (illustrated in Fig. 2(a)) rewrites X, as
two subsets: R, containing the rotations of all poses, and
Lo, containing the translations of all poses. Additionally, DGS
entails a two-stage optimization process. For robot a, the DGS
method first approximates the rotation R,:

> Gy (10)

Rfl:arglmin( Z Gij + Z

Ra i veCa BEN.a#B (i,j)€Cap

Xj € X/g, <i,j> € Calg,

Xazxdu{"f VBEN,B % a.

G;; is the negative log-likelihood function only considering a
robot’s rotation:

Gij = [Cij - Cij(R.R)] wr[Ci; - Ci; (R, R))]. (11)
Similar to z;; and %;;, C;; and C;; are the observed and
expected relative rotation between R; and R;. We rewrite
WR

0 w
Then, the method performs a full-state graph optimization via
the Gauss-Newton method, with the optimized rotation guess
R, to solve Eq. (8). However, the full-state optimization step
requires a good rotation approximation, while the first step is

Q;j as , where wg is the rotation block of €;;.

still solving a non-convex problem. So DGS may require a
long time to converge with a poor initial guess.

Inspired by the DGS method, we propose a two-stage global-
local graph optimization. The initial global optimization step
solves the transformation among robots. V pairs of separator
poses (a;, ;) € Cap, With X, € Xq, xp, € Xp, we define the
local robot frame for robot @ as . Let ,X,, be the pose at
time i of robot « in its local cooﬁ)inates, while gXq; 1S Xq, in
robot f’s local coordinates. 3Tg,,, transforming X4, t0 gXq,
gives us:

pXa;i = Tpa -aXa; =pXp; p2p;a; (12)

Tpo = pXp; 28, a; * (aXar)" (13)

Once there are inter-robot loop closures between robot 8 and
robot a, T, can be determined. Tg, = {Tg()w - T/(;Z)} is the
set of estimations of Tg, obtained from m inter-robot loop
closures. Let us next assume the global frame ¥, is aligned
with the local frame of the first robot Zl (¢Xa = 1Xq). Let
T be the set of transformations from any robot frame to the

global frame:
T={Tga | Ve € N,a # g}. (14)

We aim to minimize the total transformation error between
local robot frames with the Levenberg-Marquardt method:

T* = arg min Z egaﬂﬁaeﬁa. (15)
T a,BeN
€g is the error of one transformation, and VT’(B?I € Tga:
eﬁ(x(TgB’ Tga/) = Tl(gl()l - Tg()l(Tgﬁs Tg(t) (16)

Next, all inter-robot constraints are transformed to local
robot frames, and the local graph optimization step is per-
formed. Let us suppose there are inter-robot constraints be-
tween robot @ and robot 8. To perform the local optimization
of robot a, we should transform the separator poses of robot
B into local coordinates. Accordingly, Vxs, € Xg U X, :

A A

oXp, =T, Tep - xp,. (17)

Finally, consider ,X, as the initial value for separator poses.
For any two sets of separator poses, {@;,8;), (@, y:), a virtual
intra-robot loop closure 4Zg,, can be computed by Eq. (21).

We perform pose graph optimization using the Levenberg-
Marquardt method on Eq. (8) with a modified inter-robot term,

Finter:
Finter = I Qe 18)
inter — € irsvir€yir (
a,B,vEN, <aiaﬁj>ecaﬁ,
a#p,ay <“’k"}’l>eca}/
T A
€yir = Zar,ﬁ_,— ‘arzﬁj)/[ : (Z(lky[) —Zg;qp (Xar,-sxak) (19)

This two-stage global and local optimization ensures a high-
quality initial guess for the local optimization step, which
results in faster convergence. Furthermore, the introduction
of local robot frames contributes to the numerical stability
and consistency of the estimates and error covariances of the
individual mobile robots. Thus, the SLAM systems of the local
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Fig. 3: Overview of the architecture of DiSCo-SLAM, our proposed distributed multi-robot SLAM system, with robot « as the local robot.

robots are only dealing with minor numerical changes in poses
due to odometry drifts, which is beneficial for applications in
active SLAM, path planning, and exploration.

IV. ALGORITHMS

An overview of our distributed multi-robot SLAM system
is shown in Figures 2 and 3. Per the architecture shown in
Fig. 3, once the system receives a LiDAR scan, the local
SLAM thread and feature extraction thread are activated
simultaneously. We adopt LIO-SAM [6] as our local SLAM
framework, and alternatively use LeGO-LOAM [14] when
tightly-coupled LiDAR-inertial data is unavailable. Scan Con-
text [5], a lightweight spatial feature descriptor for 3D LiDAR,
is used to describe and match features. Then, mobile robots
exchange scan context features and perform scan matching.
Once a potential inter-robot loop closure candidate is detected,
incremental pairwise consistent measurement set maximiza-
tion (PCM) [22] is performed to remove outliers, as in [3].
A two-stage optimization is performed by each robot, first
establishing a global-to-local coordinate transformation, which
informs a subsequent local pose graph optimization. Finally,
coordinate transformations are exchanged among robots for
further optimization.

A. Scan Context Feature Description and Matching

Scan Context (SC) [5] describes a LIDAR scan by projecting
the scan onto a 2D plane, where the z-coordinate value of
each 3D point is encoded in the intensity of the corresponding
2D point. The 2D scan image is then divided into grid cells
according to a specified number of sectors Ny and rings N,.
For the Velodyne VLP-16 Lidar employed in our work, we use
Ns; = 60 and N, = 16. The value of each grid cell I is the
maximum intensity of all points captured in the cell. Finally,
a ring key feature of dimension N, is extracted by counting
the non-zero values of each ring.

A ring key KD tree is then built for loop closure candidate
search. All SC features of the top N matched ring key
features are further compared to identify the best loop closure
candidate. The SC features are shifted along the sector axis
to ensure rotation invariance. The shifting angle also serves
as an initial rotation guess for the ICP scan-matching process
when there is no coordinate transformation history.

B. Incremental PCM

Unlike single-robot SLAM, for which incremental odometry
measurements are frequently available to support an accurate
initial guess, inter-robot loop closure candidates in multi-robot

Algorithm 1: Global-local optimization for robot @

Global: History of Separator Poses X, Global Graph
¢» Local Graph ,

Input: New Separator Pose Pair (xq,,Xg;), Scan
Matching Measurement zg, o,

Output: Optimized Coordinate Transformation T,

Optimized Poses X*

Tpo — 280, - X3, - (aXa;)”

UpdateGraph(y, Tge)

T < OptimizeGraph(y)

# Calculate separator pose under local coordinate

o Xs <« TransformSeparatorPose(T, Xj)

# Search for nearest inter-robot constraint

oXr < RadiusSearch(,Xj, Qxﬁj)

# Calculate virtual observation

aZpik < Between(gxﬁj, aXk)

UpdateGraph(;, 28, 0;> oZp;k)

X* « OptimizeGraph(;)

Xs — XS U X

return X*, T

SLAM are only estimated by feature matching. Incremental
pairwise consistent measurement set maximization (PCM) is
introduced to avoid the acceptance of erroneous loop closures,
which may result from different environmental regions with
similar appearance, or objects in the environment arranged in
repeating patterns.

PCM [22] checks the consistency of inter-robot constraints.
A loop closure is accepted if any two inter-robot constraints
23,q; and Zg o, meet the following condition:

2
“(Zﬁlﬁj "B “Zayar) Zﬁlak_1||2 <€ (20)

zg,p; is the intra-robot transformation of robot B between
timestamps ! and j; g, i the inter-robot transformation
relating timestamp j of robot S and timestamp i of robot a; €
is a small threshold (in our experiments to follow, we choose
€ = 5). To ensure robust real-time localization, we use a lazy
initialization: incremental PCM will not be performed until
there is a designated number of loop closure candidates. In
our case, incremental PCM is performed after more than five
loop closures are detected.

C. Two-Stage Global and Local Optimization

As mentioned in Sec. III, the robots in our proposed
framework perform a two-stage global and local optimization.
Alg. 1 presents the process of global and local optimization
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when a new inter-robot constraint pair is detected. In the global
step, coordinate transformations between robots are treated as
measurements. As shown in Eq. (15), only transformations
from local robots to the global coordinate frame are optimized.
The covariance matrices of these measurements are linearly
related to the timestamp, since each robot’s dead reckoning
error grows as time accumulates.

After global optimization, all separator poses from other
robots are transformed to the local coordinate frame accord-
ing to the latest coordinate transformation matrices. Then, a
euclidean distance based radius search is performed to find
the nearest inter-robot constraint. During the radius search,
separator poses whose timestamps are too close to the present
timestamp are discarded to avoid optimizing an ill-posed
graph. Present separator pose oXp; and nearest separator pose
o Xk are converted to a virtual intra-robot loop closure:

2Bk :axﬁjraxh (21

Finally, the virtual observations are added to the local pose
graph and the local pose graph is optimized.

D. Message Passing Between Robots

When two robots rendezvous, they share their past SC
features (which each robot stores in a last in, first out buffer)
as well as coordinate transformations between themselves and
other robots. The shared coordinate transformations are added
to the global factor graph for each robot’s global optimization
step. Each recipient robot searches for neighbors of the shared
SC features in its respective KD tree. If an SC feature match
is found, the recipient robot will query its neighbor for a
feature point cloud containing edge and planar features, and its
corresponding pose in the neighbor robot’s local coordinates.
The feature point cloud is then used for scan matching. If an
inter-robot loop closure is detected, the recipient robot will
send the resulting transformation to the related robot when it
is feasible to do so. Our use of SC permits data-efficient com-
munication, even when there are no communication constraints
and message-passing can occur at all times. An overview of
sizes/quantities of messages passed in a practical use-case is
given in Sec. V-D.

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

In the experiments to follow, we present results using
four customized datasets configured for compatibility with 3D
LiDAR-based, distributed multi-robot SLAM. We refer to the
four datasets as (1) the KITTI 08 dataset, (2) the KITTI 00
dataset, (3) the Stevens dataset, and (4) the Park dataset. We
adapt our first two datasets from the KITTI Vision Benchmark
raw data sequences 08 and 00 [28]. In sequence 08, 100Hz raw
inertial measurement unit (IMU) data is recorded with suitable
temporal consistency to be used with LIO-SAM [6]. We use
LeGO-LOAM [14] to run sequence 00 with LiDAR scans
only. Since both LIO-SAM and LeGO-LOAM are configured
to work with a 16-channel LiDAR, we downsample the KITTI
LiDAR data from 64 beams to 16. We have modified sequences
08 and 00 into a synthetic two-robot dataset and a synthetic
three-robot dataset respectively, where time-stamps have been
adjusted to incorporate overlap and rendezvous.

5366 5367 5368 5360 5370 5371 5366 5367 5368 5369 5370 5371
X (m) 1es x(m) les

(a) DiSCo-SLAM, with global (b) DiSCo-SLAM, w/ global and lo-

transformation optimization, and cal optimization, no inter-robot con-

locally, only odometry. straints in local pose graphs.
N

45020 45020
45019 45019

45018 45018

>45017 >45017

45016 45016

5366 5367 5368 5369 5370 5371 5366 5367 5368 5369 5370 5371
X (m) 1 x(m) 1e5

(c) DiSCo-SLAM as proposed, full
global and local optimization.

(d) DGS optimization with PCM.

Fig. 4: Representative trajectory estimation results over the three-
robot Park dataset, with different multi-robot SLAM configurations.

The Stevens dataset is adapted from a dataset previously
gathered on our campus [14] with a Clearpath Jackal UGV
equipped with a Velodyne VLP-16 LiDAR, and only LiDAR
data is used for LeGO-LOAM [14]. The dataset from this
earlier paper has been modified into a two-robot dataset which
includes overlap and rendezvous. Lacking RTK-GPS ground
truth in this dataset, we use satellite imagery to qualitatively
evaluate our experimental results.

Finally, the Park dataset was gathered specifically for this
study, using a single Clearpath Jackal UGV, which is pictured
in Fig. 1(a). Our UGV is equipped with a Velodyne VLP-
16 LiDAR, a MicroStrain 3DM-GX5-25 IMU, and a Single-
band RTK GNSS receiver, to both apply LIO-SAM [6] and
evaluate it using RTK-GPS derived ground truth information.
The data was collected in a suburban park environment. To
generate a synthetic three-robot dataset from this single-robot
mission, we rewrote the timestamps of each synthetic robot’s
trajectory to achieve a meaningful synchronization of three
intersecting robot trajectories. Each robot executes a “figure-
eight" trajectory comprised of two large loops; the individual
robots will accumulate errors along these loops, but there
is sufficient overlap among robots that inter-robot constraints
can alleviate these errors. This dataset has been made freely
available, along with our optimization framework!. DiSCo-
SLAM'’s application to this dataset is shown in our video.

thttps://github.com/RobustField AutonomyLab/DiSCo-SLAM
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With inter-robot
constraints (as in Fig. 4(c)).

(a) No inter-robot constraints (b)
(as in Fig. 4(b)).

Fig. 5: Park dataset, at a location where there is overlap among all
three robot trajectories. The "jackal 2" robot from the plots of Fig. 4
(pink) is completing a large loop with no intra-robot constraints.

In all four datasets, KITTI (08 and 00), Stevens, and Park,
each robot trajectory includes intra-robot and inter-robot loop
closures, and each robot encounters at least one rendezvous
with every other robot. When GPS is available, it is used as
ground truth for quantitative analysis, and not used for SLAM.
We project the GPS measurements onto Universal Transverse
Mercator (UTM) coordinates and perform a coordinate trans-
formation to facilitate comparisons with our SLAM results.
All experimental comparisons are performed using playback
of previously gathered data on a desktop computer equipped
with an Intel i19-9900K CPU, 62.7 GB memory using the robot
operating system (ROS) in Ubuntu Linux 18.04. All robot
threads run concurrently on the same processor, and do not
utilize GPUs.

B. Performance of Two-Stage Optimization

In this section, we perform comparisons of multiple configu-
rations of our proposed DiSCo-SLAM two-stage optimization
framework, using the three-robot Park dataset. Displayed in
Fig. 4 are multi-robot SLAM results for increasing levels of
optimization. These comparisons are intended to display the
efficacy of the proposed global and local optimization pro-
cedures in combination, versus their standalone performance.
In Fig. 4(a), only the global optimization step is applied,
and neither inter-robot nor intra-robot loop closure constraints
are included in the local optimization step; it is produced
using odometry only. Accordingly, overlap and rendezvous
among robots fails to inform local pose-graph constraints,
and thus results in a visible buildup of localization error in
the result. The inclusion of intra-robot loop closures into the
local optimization procedure, seen in Fig. 4(b), noticeably im-
proves robot localization performance. Further improvements
are apparent in Fig. 4(c), where inter-robot constraints are
also added to each vehicle’s local pose graph, including them
in the local optimization step. A further inspection of the
benefits of utilizing inter-robot constraints in local pose graphs
can be seen in Fig 5. There, one can clearly note the higher
consistency in pose estimates across overlapping robots, when
leveraging these constraints.

Quantitative pose estimation error metrics for a represen-
tative SLAM execution trace over the Park dataset are listed
in Table I. To compute these errors relative to ground truth
information, GPS data is collected at a rate of SHz, while
we generate one LiDAR keyframe per second. We match
each keyframe pose with the nearest GPS pose according to
their timestamps. The estimated trajectories are transformed

y(m)
y(m)

(a) DGS optimization with PCM. (b) DiSCo-SLAM, with full global

and local optimization.

Fig. 6: Optimization result on the KITTI 08 dataset.

from local SLAM coordinates into UTM coordinates using
the starting points of the “jackal 1" and “jackal 2" trajectories
as geometric constraints (the jackal 1 and jackal 2 trajectories
are denoted in the plots of Fig. 4). The result in Table I with
both intra- and inter- robot constraints added to the local pose
graph achieves the highest accuracy.

TABLE I: Root Mean Square Error (RMSE) w.r.t. GPS

Dataset Configure X@m) Y (@m) Total (m)
DiSCo-Odometry 4.87 3.35 591
Park DiSCo-Local 1.39 1.11 1.78
Full DiSCo-SLAM 1.31 0.52 143
DGS with PCM 11.84 5.38 13.00
KITTI 08 Full DIS(?O—SLAM 5.57 4.39 7.09
DGS with PCM 14.81 19.47 24.46
KITTI 00 Full DISCO-SLAM 3.48 5.61 6.60
DGS with PCM 14.54 14.78 20.73

C. Comparison with Distributed Gauss-Seidel (DGS)

Due to its data-efficiency and relevance to real-time multi-
robot SLAM applications, we next compare our method
against DGS optimization with PCM (summarized in Fig. 2
and Egs. (10)-(11)), which comprises the back-end of DOOR-
SLAM [3], a framework that has supported distributed multi-
robot SLAM across different platforms and sensing modalities,
including LiDAR. We test both DGS with PCM and DiSCo-
SLAM with the same front-end on four datasets, (1) our
modified KITTI 08 dataset, (2) our modified KITTI 00 dataset,
(3) the Stevens campus dataset and (4) the Park dataset. The
RMSE with respect to GPS is given in Table L.

Fig. 6 shows representative results optimized by DGS over
the KITTI 08 dataset. We transform the trajectories to align
them with the GPS data according to the starting point of
both robots, although the GPS data undergoes a small amount
of erroneous drift in this dataset. The rotation angles are
incorrectly estimated by DGS at several corners in Fig. 6(a)
where turns occur, while there are no significant errors in the
result of DiSCo-SLAM when turning corners in Fig. 6(b).

The KITTI 00 dataset is challenging since only LiDAR
scans are used, and the LiDAR frame spacing is larger than
our VLP-16 datasets. Both DiSCo-SLAM and DGS with PCM
achieve low accuracy since the LiDAR frame rate is low,
and thus fewer inter-robot loop closures are detected. The
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Fig. 8: Optimization result on the Stevens campus dataset.

optimized robot trajectories of DGS with PCM (Fig. 7(a))
align well where there are inter-robot loop closures. However,
their rotation estimation falls into local minima and introduces
errors. Fig. 7(b) shows the result for DiSCo-SLAM. Since drift
accumulates locally due to a lack of intra-robot loop closures,
we lower the threshold for PCM and model the covariances of
inter-robot loop closure measurements as Cauchy distributions.
Although the resulting trajectory aligns with GPS well for most
parts, errors occur along the z-axis of “jackal 1" at the ending
point due to the lack of intra-robot loop closures.

For the Stevens dataset, GPS measurements along the path
are not available, so we transform the trajectory estimates into
UTM coordinates and project them onto satellite imagery. Fig.
8 shows the optimized trajectories using DiSCo-SLAM (Fig.
8(b)), and DGS with PCM (Fig. 8(a)). The yellow robot trajec-
tory, aligned with the global frame, is well-optimized in both
methods. DGS’s estimate of the pink robot trajectory drifts as
time accumulates, while this robot’s trajectory estimate in our
DiSCo-SLAM method aligns with the roadways depicted in
the imagery.

The Park dataset was gathered with GPS signal available
throughout, so we compared our method and the DGS method
using the GPS data as ground truth. Figs. 4(d) and 4(c) show
results from the Park dataset using DGS optimization and our
method, respectively. For this dataset, we run multiple trials
to examine the robustness of our method. After each trial, the
SLAM trajectory estimates are compared against the GPS data,

TABLE II: Relative pose estimation error at traj. connecting points

Total
)
0.83
0.25
3.21

Total
(m)
1.74

0.16

Pitch Yaw

0.50 0.60
0.01 0.22
2.56 1.75

X Y Z

052 095 136
0.16 0.04 0.03
0.28 0.16 0.23 0.40
340 3.64 501 1.61 132 045 213
099 045 1.54 3.60 4.28 0.27 5.6
1.25 14.03 14.19 22.58 7.82 0.37 23.90
299 110 3.20 6.38 194 1.21 6.78
1.57 14.84 18.76 14.92 26.35 14.15 33.42
743 0.62 748 2.08 6.74 14.00 15.67
040 0.75 0.87 0.67 11.35 1.49 11.47
507 026 6.01 032 099 0.23 1.07
3.63 428 5.84 050 128 099 1.70

Dataset Configure Roll
0.30

DGs with PcM - 0.12
0.85
pGs with PcM - 0.55
1.09
1.79
0.38
DGS with pcM 11.38
0.56
DGS with PcM 0,20
3.22
1.61

DiSCo-SLAM

Park

DiSCo-SLAM

DiSCo-SLAM
KITTIO8
DGS with PCM

DiSCo-SLAM

KITTIOO

DiSCo-SLAM

DiSCo-SLAM
Stevens
DGS with PCM

TABLE III: RMSE w.r.t GPS for 40 trials

RMSE
DiSCo-SLAM
DGS with PCM

Min (m)
1.01
2.87

Max (m)
2.51
14.37

Mean (m)
1.52
6.23

STD (m)
0.34
2.72

following the same procedure described in Sec. V-B. Table III
shows the RMSE with respect to GPS ground truth data, across
40 trials of re-playing the same recorded dataset, using both
methods. Although the lowest error in all the trials for DGS
and our method is close, our method offers a more stable,
consistent output. The DGS method’s rotation optimization
step often hinders convergence to a global minimum under
the infrequent arrival of inter-robot constraints, as evidenced
by the buildup of drift for “jackal 2" in Fig. 4(d).

Because our RTK-GPS data only covers two translational
degrees of freedom, we also compare relative pose estimation
error. Since all of our multi-robot datasets are obtained by
dividing single-robot datasets into several parts, we use the
coincidence of the ending point of one robot’s trajectory and
the starting point of the next as the basis for quantifying
the rotational and translational errors across a representative
inter-robot “rendezvous point" from each dataset, which are
captured in Table II for all of our datasets. Although DiSCo-
SLAM is not always superior, its worst-case performance is
well below the levels occasionally reached by DGS.

D. Communication and Computational Efficiency

To quantify the bandwidth requirements of the proposed
SLAM framework, we have examined the sizes of the messages
sent between robots during execution of the datasets. The
results for Velodyne VLP-16 and VLP-64 LiDAR are shown
in Tables IV and V respectively, which catalog the mean, min-
imum, and maximum size of each type of message exchanged,
as well as the total quantity of each type of message exchanged,
between robots during their execution of the trajectories. We
assume there is no maximum communication range, so that
messages can be exchanged between robots at any time. While
a single laser scan from the Velodyne VLP-16 is 1.04 MB, the
message size needed for our DiSCo-SLAM method for each
LiDAR keyframe is around 200 KB.

Table VI shows the computation time of each key step of
DiSCo-SLAM, using the computer described in Sec. V.A. The
groupings of rows correspond to the groupings given in Tables
IV and V (i.e., the algorithmic steps in one grouping yield
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messages in the other). Feature description and matching
by far, the most frequently performed steps, serving as an

efficient filtering mechanism that permits costly point cloud
matching to be invoked less frequently.

TABLE IV: Data Sizes of Messages Sent (VLP-16)

Message Info Mean Min Max No. Total Msgs.

(kB) (kB)  (kB)  Stevens Park

SC Feature & Local Pose 4.08 4.04 4.12 3936 4222
Feature Cloud (Edge) 9.65 5.08 15.90 37 837
Feature Cloud (Planar) 71.31 54.74 8598 37 837
Feature Cloud (Other) 7091 50.58 83.99 37 837
Coordinate Transformation  0.70 0.70 0.70 3 711
Inter-Robot Loop Closure 0.12 0.12  0.12 3 72

TABLE V: Data Sizes of Messages Sent (VLP-64)

Message Info Mean Min Max  No. Total Msgs.
(kB)  (kB)  (kB) KITTIO0O KITTIO8

SC Feature & Local Pose 15.75 1575 15.75 1134 2333
Feature Cloud (Edge) 30.60 16.76 42.62 198 12
Feature Cloud (Planar)  309.70 242.39 383.03 198 12
Feature Cloud (Other) 89.18 69.46 115.96 198 12
Coordinate Transformation 0.70 0.70 0.70 130 8
Inter-Robot Loop Closure  0.12  0.12  0.12 24 7

TABLE VI: Processing Time for Each Algorithmic Step (ms)

. Park KITTIO8 KITTIO0  Stevens
Subroutine

Mean Max Mean Max Mean Max Mean Max

SC Feature Description <1 9 <1 6 <1 6 <1 10
SC Feature Matching 61 188 34 67 2 68 24 90
Cloud Scan Matching 193 614 112 147 19 147 314 677
Incremental PCM 55 346 7 10 <1 10 5 20

Global Optimization 4 12 <1 1 <1 1 <1 <1
Local Optimization 7 36 2 14 <1 14 7 20

VI. CoNCLUSIONS

In this paper we have presented DiSCo-SLAM, a distributed
multi-robot SLAM framework for 3D LiDAR observations,

whi
for

ch requires a relatively low communication bandwidth
message passing. In DiSCo-SLAM, LiDAR scans are

efficiently described using Scan Context descriptors and shared
between robots. We also propose a two-stage global-local
graph optimization procedure that offers robust output for
relatively large scale multi-robot SLAM problems with limited
occurrences of rendezvous, finding transformations relating
robots that may be distant from one another. We compare our
optimization strategy with the widely used distributed Gauss-
Seidel method, showing the relative stability of our method.

(1]

(2]

(31

REFERENCES

R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart and C. Cadena,
“An online multi-robot SLAM system for 3D lidars,” Proc. IEEE/RSJ
Int. Conf. Intelligent Robots Syst., 1004—-1011, 2017.

S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. Christensen, and
F. Dellaert, “Distributed trajectory estimation with privacy and com-
munication constraints: a two-stage distributed Gauss-Seidel approach,”
Proc. IEEE Int. Conf. Robotics Automation, 5261-5268, 2016.

P. Lajoie, B. Ramtoula, Y. Chang, L. Carlone and G. Beltrame, “DOOR-
SLAM: Distributed, online, and outlier resilient SLAM for robotic
teams,” IEEE Robotics and Automation Lett., 5(2):1656-1663, 2020.

(4]

(5]

(6]

(71

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

F. Dellaert, “Factor Graphs and GTSAM: A Hands-on Introduction,”
Georgia Institute of Technology, Tech. Rep. No. GT-RIM-CP&R-2012-
002, 2012.

G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor for
place recognition within 3D point cloud map,” Proc. IEEE/RSJ Int.
Conf. Intelligent Robots Syst., 48024809, 2018.

T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and D. Rus,
“LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” Prof. IEEE/RSJ Int. Conf. Intelligent Robots Syst., 5135-
5142, 2020.

S. Saeedi, M. Trentini, M. Seto, H. Li “Multiple-robot simultaneous
localization and mapping: A review* J. Field Robotics, 33:3-46, 2016.
M. Kegeleirs, G. Grisetti, M. Birattari, “Swarm SLAM: Challenges and
Perspectives,” Frontiers in Robotics and Al, 8:23, 2021.

L. Riazuelo, J. Civera and J. Montiel, “C2tam: A cloud framework for
cooperative tracking and mapping,” Robotics and Autonomous Syst.,
62(4):401-413, 2014.

I. Deutsch, M. Liu and R. Siegwart, “A framework for multi-robot pose
graph SLAM,” Proc. IEEE Int. Conf. Real-time Computing Robotics,
567-572, 2016.

M. Karrer, P. Schmuck and M. Chli, “CVI-SLAM — Collaborative
visual-inertial SLAM,” IEEE Robotics and Automation Lett., 3(4):2762—
2769, 2018.

P. Zhang, H. Pengfei, B. Ding and S. Shang, “Cloud-based framework
for scalable and real-time multi-robot SLAM,” Proc. IEEE Int. Conf.
Web Services, 147-154, 2018.

Y. Chang, Y. Tian, J. How and L. Carlone, “Kimera-Multi: a System
for Distributed Multi-Robot Metric-Semantic Simultaneous Localization
and Mapping,” Proc. IEEE Int. Conf. Robotics Automation, 11210-
11218, 2021.

T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain,” Proc.
IEEE/RSJ Int. Conf. Intelligent Robots Syst., 4758-4765, 2018.

H. Ye, Y. Chen, M. Liu “Tightly coupled 3d lidar inertial odometry
and mapping® Proc. IEEE Int. Conf. Robotics Automation, 3144-3150,
2019.

R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart and C. Cadena
“SegMap: 3d segment mapping using data-driven descriptors® Proc.
Robotics: Science and Syst., 2018.

L. Di Giammarino, I. Aloise, C. Stachniss and G. Grisetti “Visual
Place Recognition using LiDAR Intensity Information arXiv preprint
arXiv:2103.09605, 2021.

K. Ebadi, M. Palieri, S. Wood, C. Padgett, A. Agha-mohammadi
“DARE-SLAM: Degeneracy-Aware and Resilient Loop Closing in
Perceptually-Degraded Environments” J. Intelligent & Robotic Syst.,
102, 2021.

M. Lazaro, L. Paz, P. Pinies, J. Castellanos and G. Grisetti, ‘“Multi-
robot SLAM using condensed measurements,” Proc. IEEE/RSJ Int.
Conf. Intelligent Robots Syst., 1069—-1076, 2013.

W. Wang, N. Jadhav, P. Vohs, N. Hughes, M. Mazumder and S. Gil,
“Active rendezvous for multi-robot pose graph optimization using
sensing over Wi-Fi,” arXiv preprint arXiv:1907.05538, 2019.

P. Agarwal, G. Tipaldi, L. Spinello, C. Stachniss and W. Burgard,
“Robust map optimization using dynamic covariance scaling,” Proc.
IEEE Int. Conf. Robotics Automation, 62—69, 2013.

J. Mangelson, D. Dominic, R. Eustice and R. Vasudevan, “Pairwise
consistent measurement set maximization for robust multi-robot map
merging,” Proc. IEEE Int. Conf. Robotics Automation, 2916-2923,
2018.

A. Cunningham, M. Paluri and F. Dellaert, “DDF-SAM: Fully
distributed SLAM using constrained factor graphs,” Proc. IEEE/RSJ
Int. Conf. Intelligent Robots Syst., 3025-3030, 2010.

A. Cunningham, V. Indelman and F. Dellaert, “DDF-SAM 2.0:
Consistent distributed smoothing and mapping,” Proc. IEEE Int. Conf.
Robotics Automation, 5220-5227, 2013.

Y. Tian, K. Khosoussi, D. Rosen and J. How, “Distributed certi-
fiably correct pose-graph optimization,” IEEE Trans. Robotics, doi:
10.1109/TR0O.2021.3072346, 2021.

D. Rosen, L. Carlone, A. Bandeira and J. Leonard, “SE-Sync:
A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group,” Int. J. Robotics Res., 38(2-3):95-125, 2019.

G. Grisetti, R. Kiimmerle, C. Stachniss and W. Burgard “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Syst. Mag.,
2(4):31-43, 2010.

A. Geiger, P. Lenz, C. Stiller and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” Int. J. Robotics Res., 32(11):1231-1237, 2013.


https://www.researchgate.net/publication/357319383

	DiSCo_SLAM__RA_L_ (4)

