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Abstract: SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to
fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews
the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as
well as various biomedical applications based on SU-8 are also discussed. Although SU-8 might not
be completely biocompatible, existing surface modification techniques, such as O, plasma treatment
or grafting of biocompatible polymers, might be sufficient to minimize biofouling caused by SU-8.
As a result, a great deal of effort has been directed to the development of SU-8-based functional
devices for biomedical applications. This review includes biomedical applications such as platforms
for cell culture and cell encapsulation, immunosensing, neural probes, and implantable pressure
sensors. Proper treatments of SU-8 and slight modification of surfaces have enabled the SU-8 as one
of the unique choices of materials in the fabrication of biomedical devices. Due to the versatility of
SU-8 and comparative advantages in terms of improved Young’s modulus and yield strength, we
believe that SU-8-based biomedical devices would gain wider proliferation among the biomedical
community in the future.
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1. Introduction

SU-8 is an epoxy-based negative-tone photoresist consisting of EPON SU-8 resin,
solvent and a photoacid generator. Ever since its first introduction by IBM in the late 1980s,
SU-8 has gained significant popularity in fabricating a wide range of devices including
microelectromechanical systems (MEMS) devices. The primary reason for this popularity
lies in the versatility of properties of SU-8. For example, SU-8 offers compatibility to
conventional micromachining techniques such as spin-coating and photolithography to
create well-defined features ranging from sub-micrometers to micrometers. Moreover, SU-8
can be coated to achieve films with thickness greater than 500 pm with a single layer and
over 2 mm with multiple layers [1,2], which is very rare in microfabrication. Along with its
unique very thick film, SU-8 is also known for its high resolution, and microstructures with
height-to-width aspect ratios up to 100 have been demonstrated [3,4]. These capabilities
have rendered SU-8 one of the ideal photoresists in microfluidic applications, such as
microfluidic channels [5] and master molds for polydimethylsiloxane (PDMS) [6]. SU-8 is
highly transparent in wavelengths greater than 400 nm, and exhibits large refractive index
as well as low loss, which has allowed them to be a great material for optical waveguide
application [7] as well.

In recent years, the emergence of biomedical MEMS applications has further advanced
the utilization of SU-8 into innovative biomedical applications including wearable and
implantable devices. Compared to conventional silicon, polymeric SU-8 offers excellent
mechanical properties in terms of relatively low Young’s modulus (2~3 GPa) [8] and high
yield strength. This has allowed SU-8 to be flexible but good to be utilized as a structural
or functional component. With proper treatments, implantable MEMS devices, such as
physiological pressure sensor [9], cantilever [10], neural probe [11], among others have been
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demonstrated. SU-8 surfaces can also be tailored via surface modification techniques to
accommodate specific biomedical applications, such as the immobilization of biomolecules
for biosensing [12], or the reduction in nonspecific adsorption of proteins for improved
biocompatibility [13].

This review paper focuses on the biocompatibility of SU-8 and SU-8-based biomedical
device applications. Its biocompatibility, surface modification techniques as well as various
in vitro and in vivo applications are discussed, including platforms for cell culture and cell
encapsulation, immunosensing, neural probes, and implantable pressure sensors. So far,
comprehensive reviews on SU-8 biocompatibility and its surface modification techniques
are scarce. It is our hope that this review paper would help elucidate the progress on the
study of SU-8 biocompatibility and surface modifications to compensate the increasing
interests of fabricating functional biomedical devices using SU-8.

2. Biocompatibility

Biocompatibility is often used to define the ability of a certain material to interface with
biological tissues without inducing severe harm to the body in a specific application [14,15].
The biocompatibility of SU-8 has been extensively tested to evaluate SU-8 as a structural or
functional material for wide range of biomedical applications. Depending on the specific
application, the biocompatibility of SU-8 can be evaluated in vitro and/or in vivo. In vitro
studies often involve the detection of leachates, toxicity to cells (also called cytotoxicity),
cell attachment, and cell culturing. On the other hand, in vivo studies typically include
implantation of the device and inspection of tissues at the site of use after a prolonged
period. Although in vitro studies are easier to perform and potentially provide more
quantitative results to evaluate biocompatibility, in vivo studies are more relevant. For
example, neural devices are often implanted in the nervous system surrounded by delicate
tissue and cells. Mismatch in the mechanical properties such as weight, shape and flexibility
can cause severe adverse effects, such as cell and tissue damages, as well as inflammatory
responses in the nervous system [16]. As a result, in vivo studies are often carried out in
implantable devices to capture macroscopic systemic responses of host tissues.

2.1. In Vitro Studies

In vitro studies of SU-8 biocompatibility have been reported extensively. Interestingly,
there are two contradictory conclusions about the biocompatibility of bare SU-8: one conclu-
sion says bare SU-8 is not biocompatible and the other conclusion says it is biocompatible.

Several in vitro studies have reported the adverse effects caused by SU-8. Vernekar et al.
reported that untreated SU-8 2000 is not cytocompatible to primary cortical or hippocampal
neuronal cultures with only less than 10% of primary neurons surviving [17]. Assessment
using cortical neuronal cell cultures showed that cortical neuronal cell viability next to
SU-8 samples was significantly lower than control groups (plain polystyrene) at 21 days
in vitro. Marelli et al. also reported that SU-8 does not support cell growth and adhesion
of PC12 cell lines [18]. It was found that cell adhesion to pure SU-8 substrate is scarce
compared to gold plated SU-8. Weisenberg et al. studied the hemocompatibility of SU-8
along with other common MEMS materials (i.e., silicon, silicon nitride, silicon dioxide, etc.)
using human platelets [19]. Their results showed that platelet adhesion on SU-8 surface
was significantly higher on SU-8, silicon, and silicon nitride surfaces, suggesting enhanced
adhesion compared to control groups of polyurethane, parylene, and silicon dioxide.
Since enhanced platelet adhesion is commonly used as a measure of thrombogenicity,
it was suggested that SU-8 surfaces may be more reactive to human platelets and more
thrombogenic. It has been postulated that the cytotoxic source of SU-8 might come from
antimony (Sb) salt (i.e., triarylsulfonium hexafluoroantimonate) existing in the photoacid
generator of SU-8 [20]. However, numerous subsequent studies have suggested that
antimony leaching of cross-linked SU-8 may be small. X-ray photoelectron spectroscopy
(XPS) and energy-dispersive X-ray spectroscopy (EDX) have been utilized to study the
surface chemistry of SU-8. Ereifej et al. reported the presence of antimony on SU-8 using
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EDX. However, further analysis using XPS did not detect antimony, suggesting that the
antimony presence on SU-8 surface is below the detection limit of 1% [21]. Walther et al.
also confirmed the antimony on untreated SU-8 surface to be as small as 0.2 atm% [22].

In vitro studies in favor of SU-8 biocompatibility have also been extensively reported.
Kotzar et al. first evaluated the cytotoxicity of SU-8 among other MEMS materials per ISO
10993-5 standards [23]. Their results showed that SU-8 can be classified as a low cytotoxic
material with less than Grade 2 reactivity. Ereifej et al. reported in vitro test results utilizing
C6 rat astrocytoma cell cultures, also confirming the cytocompatibility of SU-8. It is shown
that cell viability on the SU-8 surface was at least 93% for up to 1 day in vitro with a higher
initial cell attachment rate compared to control surfaces (silicon, platinum, or polymethyl
methacrylate (PMMA)). These results have led the authors to conclude that SU-8 is a
cytocompatible material. Numerous other studies utilizing different cell models such as
SH-SY5Y human neuroblastoma cells [24] and primary cortical neurons [11] also favor
SU-8 to support cell growth.

In a deeper study on identifying the potential cause of cytotoxicity, Nemani et al. stud-
ied the leaching of antimony from SU-8 in various solvents and buffers, such as phosphate-
buffered saline (PBS), isopropanol, vegetable oil and phosphate buffers at different pH,
and the antimony leachate was quantitatively evaluated using inductively coupled plasma
mass spectrometry (ICP-MS) [25]. Their results showed that room temperature isopropanol
sample with pH 5.5 exhibited maximum leaching of Sb of 23.4 ppb, while hydrophobic
vegetable oil and hydrophilic PBS demonstrated reduced leaching. It is suggested that
the enhanced Sb leaching observed at acidic pH might be a result of SU-8 etching in an
acidic environment. Further quantitative analysis of the cytotoxicity of Sb leachates was
performed by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay on 9L glioma cell line. The results showed that SU-8 extracts with PBS did not
inhibit viable cell growth for 2.5% and 5% extracts, while 10% extract exhibits a significant
inhibition of cell growth. Hemolytic activities of SU-8 sample were also found to be of a
comparable level to three Food and Drug Administration (FDA)-approved biocompatible
control groups, including silicon elastomer (SE), Buna N, and medical steel (MS).

The apparent inconsistent conclusions about the biocompatibility of bare SU-8 have
been observed by many other researchers. It has been suggested that the biocompatibility
of SU-8 may be influenced by cell lines, photoresist formula, and fabrication variances,
such as ultraviolet (UV) exposure and baking time [25,26]. Therefore, it is advisable to
test the biocompatibility of fabricated SU-8 structures with specific cell lines with specific
fabrication recipes in interest in vitro before building SU-8-based biomedical devices.

It is known that various surface treatments including heat treatment, isopropanol
ultrasonication, O, plasma treatment, and parylene coating, can be used to improve
the biocompatibility of SU-8. Vernecker et al. evaluated the effectiveness of various
surface treatments in terms of cell viability cultured on treated SU-8 surfaces [17]. Their
results showed that 3-day heat treatment at 150 °C under vacuum improves the viability
rate to 45.8% =+ 4.5%, while combined treatments with 25 um parylene coating, heat
and isopropanol ultrasonication further enhance the viability of cells to 86.4% + 1.9%.
Hennemeyer et al. found that O, plasma treatment greatly improve cell proliferation of
SU-8 from 50 cells/mm? to 350 cells/mm? [27]. Figure 1 shows the cell proliferation of
untreated and treated SU-8 for MRC-5 cells.

2.2. In Vivo Studies

In vivo studies of SU-8 based implants have also been reported extensively, which
involve the implantation of SU-8 structure or device at the site of use. Although bio-
compatibility of implants is generally more complicated in nature affected by numerous
factors (i.e., flexibility, shapes, material, etc.), in vivo assays are more relevant and able to
capture macroscopic biological responses for implantable MEMS devices [16]. Kotzar et al.
performed in vivo tests of SU-8 implants following ISO 10993-6 guidelines [23]. Rabbit
model was used for SU-8 implantation with periods of 1 and 12 weeks, and subsequently
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Figure 1. Representative images (10x) of MRC-5 cells after 3 days of cultivation on (a) plasma
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glass, (b) an untreateqr&gﬁsgggpce (¢) an oxygen plasma activated SU-8 with a dose of 2.77 J/em?* and (d) 22.2
J/em?, Reprinted from Hennemeyer et al, [27] with permission from Elsevier.
owever, these studies are mostly limited to SU-8 flat substrates which do not mimic
intricate 3D microstructures found on many SU-8-based functional devices. While the
results indicate the material biocompatibility of SU-8, biocompatibility tests with com-
letely fabricated SU-8 devices are more relevant. Cho et al. reported the test results of the
In vivo studies of SU-8 asgdhiteplprsbhavie i inbeien rspentcdissicnsideliechdieh inebes thasmplentationahell-8
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periph heral nerve érs, and neurons from’explanted dorsal root ganglia DR for the
growth of sensory fibers in peripheral nerves. Figure 2A-D shows the optical images
of nerve cell cultures thrive at the site where the SU-8 microprobe was at direct contact
with DRG explants, as well as nerve fibers which grew away from the explants along the
SU-8 microprobes. Their results showed that SU-8 neural probes provide a biocompatible
platform for the growth and migration of DRG cells and nerve fibers without any signs
of cytotoxicity. The microprobes were implanted in rat model to test the functionality of
the microprobes. Subsequent examination of the nerve tissues at the implantation sites
showed no evidence of infection or inflammation. Figure 2E shows the cross-section of a
recovered SU-8 microprobe 17 weeks after tubulization with nerve tissues covering the
groove electrodes, and showed no signs indicating fibrous encapsulation caused by the
implanted SU-8 microprobes.

2.2. In Vivo Studies
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Figure 2. Optical images of: (A) explanted DRG from four-day old rat, cultured for 14 days on two separate SU-8
microprobes shown placed at 8 and 2 o’clock relative to the DRG explant; (B) neural fibers growing away from the DRG
explants, adhering to every surface along the full length of the SU-8 microprobes which appear to be guiding the growth of

fibers along its shaft (arrows); (C) its flexible wing extensions (calibration 75); (D) close up of neurons (arrows) migrating
away from the DRG explants along the shaft of the SU-8 microprobe; and (E) cross-sectional view of the SU-8 microprobes
recovered from regenerated peripheral nerves 17 weeks after tubulization showing that groove electrodes were filled with
nerve tissue. Robust fiber spike signals (signal-to-noise ratio > 3) were recorded throughout this implantation period using
these grooved electrodes © 2008 IEEE. Reprinted from Cho et al. [29] with permission.

Marton et al. conducted a quantitative study on the biocompatibility of SU-8-based
neural probes implanted in neocortex regions for 2 months period using rat model [30].
Their results showed that neuron density decreased to 24 & 28% with respect to controls
at distance less than 20 pm from the implant, 74 4+ 39% at 20 to 40 um distance, and
comparable level at distance greater than 40 um. Examinations also revealed that the
glial scar thickness was only 5 to 10 um thick. The results suggest that the adverse effects
induced by SU-8 neural probes are localized to a very small region around the implants.

3. Surface Modification

Surface modifications have been reported to functionalize SU-8 for biomedical appli-
cations. As shown in Figure 3a, cross-linked SU-8 consists of eight epoxy rings on each
monomer. Various dry and wet chemical treatments to SU-8 surfaces have been reported
to open the epoxy rings to hydrophilize SU-8 or immobilize biomolecules.

SU-8 is generally considered as a hydrophobic material with static contact angle
ranging from 74° to 90° [22]. The hydrophobicity has greatly limited SU-8 in biological
applications due to increased nonspecific adsorption of biomolecules and reduced cell
attachment. Oxygen plasma treatment [27] has been utilized as an effective method to
render SU-8 surfaces hydrophilic with a water contact angle (WCA) less than 5°. The
decrease in contact angle is attributed to the generation of functional groups such as car-
boxyl groups due to the opening of epoxy rings as well as increased surface roughness [31].
The increased number of functional groups has been utilized to enhance hydrophobicity
for cell proliferation [27] and immobilize biomolecules [32]. Similar to plasma treatment,
Ozone/UV treatment [33] has also been reported to render SU-8 surfaces hydrophilic with
water contact angles less than 30°.

However, these treatments impose additional challenges as well. The hydrophilic
behavior resulted from plasma treatment is temporary rather than permanent. The
hydrophilic SU-8 recovers to hydrophobic within a time period ranging from days to
months [22]. In addition, plasma treatment causes significant increase in antimony from
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3. Surface Modification

0.2 atm% to 2.6 atm% on the surface of SU-8, which might induce cytotoxicity [22,31].
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Figure 3. (a) Chemical composition of SU-8 photoresist. (a) SU-8 2075 comprises SU-8 monomer, (b) a solvent, cyclopen-
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with permission from Elsevier.
cyclopentanone, and (¢) a photoacid initiator, mixed triarylsulfonium hexafluoroantimonate salts. Reprinted from

Physifiahpésarpition Wﬁﬁk}gﬂiﬁg&i@pﬁﬁiﬁaﬂm\h@ye also been reported to modify
SU-8 surfaces. Various biomolecules, such as collagen or gelatin, have been utilized

to coat SU-8 surfaces for improved hydrophilicity and enhanced cell attachment and
proliferation [35-37]. Chemical modifications on SU-8 surfaces have also been reported
using sulfuric acid [37,38] or cerium (IV) ammonium nitrate (CAN) [39]. The water contact
angles were found to decrease from an average of 103.8° to 45.1° on gelatin-coated SU-8
surfaces, and 81.7° on sulfuric acid treated surfaces [37]. These methods rely on residual
epoxy rings on cross-linked SU-8 surfaces by converting them into hydroxyl groups to
improve hydrophilicity. These modification methods, however, are limited in their ability
to tailor surface properties of SU-8 for the specific adsorption of biomolecules and relatively
low density of surface functional groups. Moreover, the use of sulfuric acid or CAN is
undesirable as these wet chemicals are highly corrosive and impose significant health
risks to human health. Stangegaard et al. also found that SU-8 surfaces treated with only
HNOj3-CAN induced different gene expression levels between HeLa cells grown on these
treated SU-8 surfaces and control groups [40].

An alternative strategy to modify SU-8 is the grafting of functional groups or poly-
mers to tailor SU-8 surfaces for enhanced cell attachment or biomolecule immobilization.
Joshi et al. utilized hot wire chemical vapor deposition (HWCVD) to graft amine groups
onto SU-8 surfaces for the immobilization of biomolecules [38]. Marie et al. reported the im-
mobilization of deoxyribonucleic acid (DNA) to SU-8 by the condensation of amine groups
with epoxy rings on the surface of SU-8 [41]. On the other hand, SU-8 surfaces have been
modified by graft polymerization with a wide variety of monomers, including polyacrylic
acid (PAA), polyethylene glycol (PEG) or its analogues. These polymers have been known
to minimize nonspecific protein adsorption and thus reduces biofouling [15], as well as
enhance wettability and cell attachment [42]. Various methods have been reported by using
wet chemical CAN treatment [42], UV irradiation [20], or O, plasma treatment [43,44] to
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Figure 4. Scanning electron microscopy (SEM) images showing cross-sectional profiles of the 50-um
Figure 4. Scadiaimgteleetianwealdoadepys (8 B)Enghizldes ¥ho wills arlivgad oniciay piofiletibédnistiqmeodidecter
microwell pHﬁQﬁﬁ‘ié%}’ah&’%*ﬁf%‘?%‘%@?ﬁeéwﬁf?e]cﬁéﬁ‘ﬁhﬁ?& b diferenthdion B e PR {8 B dpattern

f Wi 49] with
thlcknesgggnwe}lee E% | a Her'smss rom b Yie]i?:ar =200 pm. Reprinted from Wu et al. [49] with

SU-8 surfaces with nanoppmﬁ@gv@lﬁh}@lheglséa’hmcated and investigated for enhanced
cell attachment. Kim et al. utilized a combination of polystyrene (PS) nanoparticles and
patterned chromium (Cr) layer as an etching mask to create nanopores in SU-8 [50]. Figure 5
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Figure 5. SEM images during nanoporous SU-8 substrate fabrication. (a) A monolayer of polystyrene nanoparticles on

the SU-8 substrate, (b) etched polystyrene nanogarncles on the SU-8 substrate and the inset showmg uniformly etched

Figpge 3, SEMdnages dring sanpnereus, s spbrtiats {aheisationn(@k Aumonalpyer oL e lxstreneRanppaiicles
anctsesSHeBSubstratethdnstohed potis/sehstrmandpepticted HorthKiSl 23 is{ihHtraiit pedntissimstosh@isenguniformly

etched PS nanoparticles over tlAe SI{ tz; subs trate, and ((cl)l fa,tlgrl ated panopores an B}B rfa e of SU-8 an% the uas?t

om € arfcm grow SHUSRTES 2an 8150 Be tise
showing the cross-s m&w&ﬂﬁ&w&w&&%&%&&&w&;ﬁ%@@m&m%@tler{ﬁﬁl Wéthment
purposes. Howevgerﬂmsgrmmhﬁ}m‘bfesuch cells requires a nanoporous structure to
isolate large immune proteins, yet allows the passage of nutrients (i.e., oxygen), waste,
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microcontainer with nanopores within the surface of the container [51, £ The fabrication
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cells. Figure 7 shows the phase contrast micrograph and fluorescence image of ~3000 cells encapsulated in the

4.2. B
microcontainer. Their results show tﬁat Cells encapsulated in mlcrocontamers w1th0ut nanoporous membrane
U-8-based biosensors have been extensively rtgl in recent years thanks to_their
\ fﬁ% e

yielded markedly higher bl%%ﬂ&é&%&%}&tﬁ@ E}&%é’ainrﬂéaﬁ’ﬁ%E%}‘%ﬁH‘éﬁéi{ﬁ%a PRdicates IREQEMRRt St

oxygenation of cells throughpihe/denges anrayflirdaapetes. are often utilized to immobilize biomolecules like antigens or
antibodies. The immobilization of biomolecules onto SU-8 surfaces often includes the opening
of epoxy rings to form surface functional groups, such as hydroxyl or amino groups [31].
Afterwards, biomolecules are covalently bonded to these surface functional groups. Various
treatments, including dry and wet chemical treatments have been reported to open residue
epoxy rings on cross-linked SU-8. O, plasma treatment similar to the hydrophilization of
SU-8 has been utilized to immobilize human Immunoglobulin (IgG) antibody or similar
biomolecules [44,53]. Figure 8 shows the schematic diagram of IgG immobilization through
O; plasma treatment. Alternatively, wet chemicals such as CAN (cerium(IV) ammonium
nitrate) [54] or silanization treatment with APTMS (3-aminopropyltrimethoxysilane) and GTA
(Glutaraldehyde) [32] can be used to create surface functional groups for the covalent binding
of biomolecules onto SU-8. Additionally, it has been found that DNA can be directly coupled
to SU-8 surfaces through the condensation of primary and secondary amine groups from
DNA with the residual epoxy rings from SU-8 [41].
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like temperature, pH or ion concentratlon fluctuations, and resulted in reduced noises and improved sensitivity.

4.3. Functional Devices for In Vivo Applications

Other approaches utilizing photondcanjsshpdehieva hesnabBuisliHetgadieieiahsutilizadanyhi-8ataapilter esraysuct
based biomolecule detectoriIBB]aIF?glﬂf—’edf‘s‘iﬁ?&sf@hé’SEM(ﬁﬁﬁg@BP]til‘ié@@l%Cba%é@ ﬂ%f@ﬁ%%%ﬂéﬁg'THéOdUMS
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een tabricate Teporte , Inclu ng micronee es, neura %3 robes, and sensors.
responses of the reflective spectra. Their results showed that the device exhibits a maximum detection sensitivity of

4.3.1. SU-8 Based Microneedles

As a promising replacement for traditional hypodermic needles, polymer-based mi-
croneedles have attracted significant attentions. Since SU-8 offers favorable properties such
as sufficient mechanical strength, improved biocompatibility as well as ease of fabrication,
it has been utilized to create microneedles for transdermal drug delivery. Wang et al.
reported an SU-8 microneedle array with hollow pyramid structures using a combination
of PDMS mold casting and UV lithography processes [58]. The fabricated SU-8 microneedle
arrays are 825 um in height and 400 um in width (Figure 10). Mechanical characterizations
using porcine skin showed that the insertion force and fracture force of a single needle are
2.4 N and 90 N, respectively.
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Alternatively, due to the high optical transparency of SU-8, it has also been used as waveguide materials in vario

Micromachines 2021 12 7ggplications including biosensors. Mach-Zehnder Interferometer (MZI) [57] and evanescent wave Specfoscopy I

nHade-Ssetup-have-a o-been-reportedto-dete MRURorea on i a a /mLand

Figure 9. (A) SEM micrograph of a SU-8-based BICELL, (B) SEM micrograph of one single nano-pillar

Figure 9.7¢)SERMMsicsepapirep i QUi LBt FAtioB S RP ticrogriPRb A GhORREIIMA8S Yiflar and a

biochip with a numb ICELLs, onfoca] i Leica DCM3 f one. of the BICELLs after, . .
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number of BICELLS, (D) Confocal image (Leica DCM3D) of one of the BICELLSs after the infiltration
SU-&hperatrniemeprpledtedivgstaid highiasperiviatipedh i macsoneadiies. There
have been numerous works on microneedles that utilized SU-8 either as a structural

4.3. Fun ctionmaﬁ%ﬁj?cleg‘sjgo_ﬁm Ph% %ﬂéﬂf&g&ating hollow metallic microneedles [62-64]. Figure 11
shows the SEM image of one the fabricated SU-8 microneedle arrays using SU-8 itself

as micronee; uctural material. Mishra et al.’s work started with t abrication of . .
s potrfl R, 1 B IR A A ) RIS IS omedi
apphCaﬂonaﬁ%%(ﬁ%ﬁtfywﬁﬁga% SRS UsniBWRF st seength Avd picostpa hlithute i range of
SU-8 funcipdad dexibesrhetreibaerefatiivatdd suydcetiwste oo vndinig ivitredke dheswial talprab¥enang sensors.
modulus and hardness compared to SU-8 before pyrolysis. Chaudhri et al. demonstrated
4.3.1. SU-8 B3kkd Microneedles with an inner diameter of 100 um and a wall thickness of 15 um, as well
as a height of 1540 um and an achieved height-to-width aspect ratio of ~103 [61].

Asa promisin% r%%acement for traditional hypodermic needles, polymer-based microneedles have attracted
o 4.3.2. SU-8 Neural Probes . . . .
significant attentions. Since SU-§ offers favorable properties such as sufficient mechanical strength, improved
Neural implants have been a major research topic in the field of neuro prosthetics during

past few decades. Implantable neural probes can be utilized to interface with neurons and
electronics to record neural signals or to stimulate of neurons. These devices can potentially be
used to deepen the understanding of cerebral functions as well as control external prosthetic
limbs or robots by neural signals [66]. Silicon-based neural probes have been developed using
standard microfabrication processes [67], however, it was found that these devices are quite
limited in neuronal applications due to the rigid and brittle nature of silicon. These silicon
probes are prone to break during operation, as well as increased risks of tissue inflammation
or traumatic damage to brains [66]. Polymeric materials like SU-8 have been subsequently
utilized as structural material for neural probes due to their improved flexibility, yield strength
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Figure 10. (a) An SEM image of bird’s-eye view of fabricated microneedle array coated by 15 nm

Cr/150 nm Au for SEM imaging. (b) An optical micrograph showing a fabricated hollow microneedle
Figure 10. (a) An SEM imagr ebhiegdisteye)vAevsrNfiabsicatedonicgonegdhe ity apatachbyldd e gerihhnmuppetor
SEM imaging. (b) An @i}ﬁﬁbéﬂh@ﬁé@lﬁg‘?aph SHoRvi AR 4 Mabiieh?ed 1vlio v iidesnediielw @17l BAEES dteprefeslirSEM
image revealing the pyram%cfala 155\)\11%1 Riais %([))%nmg and upper shaft. The scale bar is 2 mm, 400 pm, and 250

um in (a—c), respiutivehl. @eplolBetERU-Repuricgrbas Withgactaalg] fid iwathepernoskionin grooves
design for neural spike signal recording [29]. Figure 12 shows the optical as well as SEM

SU-8 has also been expl MABES fcHie fﬁgﬁi%s&s@bﬁ%ﬁ&s@m@%&balégm%%@%%ﬁ%mw%wa
microncedles that utilize SO ST TR G R 0L K SR HoTlow el sults
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microneedles [62-64]. Figuisgdd istrmisrHaci SENE HH%&gQﬁ@H@tibﬁs@@Iﬂﬁ%%&&M%@%ﬂeréﬂgﬂﬁgﬁb}ﬁ 8
itself as microneedle str&lwﬂekmwiﬁhlsmﬂ@@hﬁfwtﬂ@hﬁm@ﬂé startmi spitketHetRdiivendoniog hﬁ@ﬁm@p@d@aﬁ@rw 8

hollow structures [65]. T(Plle h%&\?}i g%ﬁs’ugtlﬁ Es }QN reﬂl allgﬁe%q fog e 92@31}?13 a i r%o ﬁ?be

evices ubeh et rep orte neura T e ect oc emlca

900 °C to convert the SUsg e tieiointa %g%&%&%b?“rﬁé‘%ﬁ%‘é%téﬁla&l?ééw?ﬁ&bﬂ%HMBB?&Q&B@%WW
higher Young’s modulusduphhrirdnis potasgiarad-hddt1d Sebedondypipaysasti@ibianl dhreletad s pliowalotis frh toeb Sdd R ely.
microneedles with an 1nr§@sﬂ'ﬁ?ﬂéfé?5?11é@%ﬁ?ﬁﬁ&t&%ﬂeﬁﬁkﬁé@?%w} tﬁ]ﬂ Savqureriderrtrostye fouseakime
tection of dopa ine . Altuna et al. demonstrated an SU-8-based microprobe with
an achieved height-to-w gl%qpeel%tc{%{?eg 53[ hVed peak-to-peak amplitude ranging up to 400 to 500 uV [71].
Figure 13 shows the SEM images of the fabricated neural probe. Fernandez et al. demon-
strated a neural device with microfluidic channels and electrode arrays for drug delivery
and recording of neural activities all in one platform [72]. It is worth commenting that this
work compared the mechanical damage in a rat’s brain produced by the SU-8 device and
a standard rigid stereotaxic needle during surgical insertions. Their results led them to
conclude that tissue damage by SU-8 is mitigated due to its improved flexibility compared
to standard needles.



13 of 19

Micromachines 201, 12, 794, 2021, 12, x FOR PEER REVIEW 1:
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4.3.2. SU-8 Neufalrspesensors is one the most researched areas. Extensive studies have demonstrated
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with a maxXimum operation distante of 6 mm between coil5 in open air.
electrode. These advantages have rendered SU-8 a superior material to be utilized in neural probes or

microelectrode arrays (MEA).



recording [29]. Figure 12 shows the optical as well as SEM images of the fabricated SU-8 microprobe. The device

was successfully implanted into the sciatic nerves of rats for evaluation of long-term in vivo biocompatibility. Their

results showed that the 13 rats surgically implanted with the SU-8 neural probes exhibit no signs of tissue
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continuous neural spike detection during this extended period.
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Apart fromA ittinel essadefisin gy ithdprrtivis sionifitg sevherology can also be utilized to

transfer power for an application-specific integrated circuit (ASIC) chip. Cho et al. reported

4.3.3. SU-8-Based Wirelexs Buplaatahbeitdetietfator chip consisting of a spiral inductor to wirelessly power the
ASIC chip using inductive coupling, Schottky diodes for rectification of RF power, and
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Xue et al. demonstrated an SU-8-based battery-free intraocular pressure sensor incorporated with passive inductive

coupling principle for wireless sensing [9]. Flgure 14 shows the schematic of the wireless pressure sensor and the
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nerve of a rat. Figure 15 shows the implantation sites as well as in vivo experimental
setup in which the external coil was placed over the skin aligned with the implant. At the
Micromachines 2021, 12, x FOR PEER REMHPMng power of 21 dBm (125 mW) at 394 MHz resonant frequency, stable and 1obfiast

this implanted SU-8-based neurostimulator.
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Figure 15. Photomicrographs of the fabricated wireless neurostimulator: (a) Conductive epoxy was applied to the socket
contact pads, and a couple of Schottky diodes and the ASIC chip were cemented; (b) the device was completely sealed by
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with permission. . .
completely sealed by SU-8 and released from the substrate; and (c¢) Acute surgical rat preparation for

subcutaneous placement of microstimulator implants to record the cortical response to wireless stimulation of the
hind limb. © 2013 IEEE. Reprinted from Cho et al. [75] with permission.

Wireless sensing or power transfer removes the need for a battery or subsequent change of battery through invasive
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Wireless sensing or power transfer removes the need for a battery or subsequent
change of battery through invasive surgeries to ensure long term implantation inside of
biological bodies.

5. Conclusions

As a versatile polymeric material, SU-8 has been extensively utilized to fabricate
innovative MEMS devices, including many unique devices in the biomedical applications.
Although the surface biocompatibility of SU-8 might not be completely biocompatible and
suffers from toxic leachates, it seems that numerous methods exist to modify the surface of
SU-8 to accommodate different needs, such as improved wettability and biocompatibility
and the ability to immobilize biomolecules. As a result, SU-8 has widely been utilized
in fabricating microstructures that have previously been difficult to achieve for in vitro
applications, such as 3D scaffold structures for neuronal cell culturing. Furthermore,
SU-8 has allowed biosensors based on immobilization of biomolecules utilizing various
detecting principles. Compared to rigid silicon-based devices, functional devices based on
SU-8 exhibit lower Young’s modulus and higher yield strength, which make them more
suitable to fabricate implantable devices with reduced risks of tissue inflammation and
damages. This review paper summarizes the current studies of SU-8 biocompatibility,
surface modification techniques, as well as various SU-8-based biomedical devices for
in vitro and in vivo applications. It is our view that SU-8 based biomedical devices will gain
wider proliferation among the biomedical community in the future, including microfluidics-
based lab-on-a-chip and implantable functional device applications.
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