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Abstract
Nonadherence to medication is a major public health problem. To combat nonadherence, some clinicians have suggested

using ‘‘forgiving’’ drugs, which maintain efficacy in spite of delayed or missed doses. What pharmacokinetic (PK) and

pharmacodynamic (PD) factors make a drug forgiving? In this paper, we address this question by analyzing a linear PK/PD

model for a patient with imperfect adherence. We assume that the drug effect is far from maximal and consider direct

effect, effect compartment (biophase), and indirect response PD models. We prove that the average drug effect relative to

the clinically desired effect is simply the fraction of prescribed doses actually taken by the patient. Hence, under these

assumptions, drug forgiveness cannot be defined in terms of the average effect. We argue that forgiveness should instead be

understood in terms of effect fluctuations. We prove that the rates of PK absorption, PK elimination, and PD elimination

are exactly equivalent for determining effect fluctuations. We prove all the aforementioned results for any pattern of

nonadherence, including late doses, missed doses, drug holidays, extra doses, etc. To obtain quantitative estimates of effect

fluctuations, we consider a simple statistical pattern of nonadherence and analytically calculate the coefficient of variation

of effect. We further show how effect fluctuations can be reduced by taking an extra ‘‘make up’’ dose following a missed

dose if any one of the aforementioned PK/PD rates is sufficiently slow. We illustrate some of our results for a nonlinear

indirect response model of metformin.
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Introduction

Medication adherence is the process by which patients take

their medications as prescribed [1]. Nonadherence to

medication is a well-documented problem. It is estimated

that medication nonadherence accounts for over 100,000

preventable deaths and over $100 billion in pre-

ventable healthcare costs every year in the United States

[2]. In fact, the World Health Organization claimed that

‘‘increasing the effectiveness of adherence interventions

may have a far greater impact on the health of the popu-

lation than any improvement in specific medical treat-

ments’’ [3, 4].

To combat the problem of nonadherence, some clini-

cians have suggested using so-called ‘‘forgiving’’ drugs [2].

Forgiveness is sometimes defined as the difference between

the medication’s post-dose duration of action and the pre-

scribed time interval between doses [5]. However, it is

difficult to precisely quantify the forgiveness of a specific

drug in terms of a single number, as evidenced by the

variety of mathematical definitions of drug forgiveness

presented in the literature [6–13]. Nevertheless, the gen-

eral, more qualitative notion of drug forgiveness is cer-

tainly an important characteristic of a drug. Indeed, it is

well-established that some drugs require strict adherence to

achieve therapeutic benefits (i.e. less forgiving drugs),

whereas the benefits of some drugs are quite robust to

lapses in adherence (i.e. more forgiving drugs) [14].

What makes a drug forgiving? In particular, what

pharmacokinetic (PK) factors make a drug forgiving? A

long drug half-life, which is related to a slow PK elimi-

nation rate, is generally considered to make a drug for-

giving. Are there other PK factors which have an equally

strong effect on forgiveness?

Furthermore, what pharmacodynamic (PD) factors make

a drug forgiving? In an interesting computational study
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[15], it was shown in one example that a drug with an

effect compartment (biophase) PD model was more for-

giving than a drug with a direct effect PD model. Does this

example represent a more general principle about effect

compartment PD models versus direct effect PD models? Is

a drug with a long PK half-life and a direct effect PD

model more or less forgiving than a drug with a short PK

half-life and an effect compartment PD model? How do

drugs with an indirect response PD model compare?

The purpose of this paper is to address these questions.

We consider a patient who is instructed to take a drug

repeatedly at a fixed dosing interval, but whose actual

adherence deviates from this prescription. In the taxonomy

of [1], this analysis thus concerns the implementation phase

of adherence, which is the extent to which a patient’s actual

dosing follows the prescribed dosing regimen. We employ

a PK/PD model, where the PK model consists of an

absorption compartment and a plasma (main) compartment

with first-order kinetics. For PD, we consider a direct effect

model, an effect compartment (biophase) model, and an

indirect response model [16]. Figure 1 illustrates these PK/

PD models. We focus on the case that the drug effect is far

from maximal, in which case the PD models are linear (see

‘‘Discussion’’ for more on this assumption). We use rig-

orous mathematical analysis to study these models, rather

than computational simulations of specific numerical

examples. This approach allows us to arrive at strong

conclusions which apply to all such PK/PD models.

To describe our results, let hEperfi denote the long-term

average drug effect for a perfectly adherent patient. From a

clinical perspective, hEperfi is thus the desired drug effect.

If hEi denotes the long-term average drug effect for an

imperfectly adherent patient, then we prove that

hEi ¼ lhEperfi; ð1Þ

where l denotes the long-term fraction of prescribed doses

actually taken by the imperfectly adherent patient (l is a

multiplicative factor in (1)). This result implies that drug

forgiveness cannot be defined in terms of the average drug

effect. To see this, observe that (1) means that the ratio of

the average drug effect to the desired drug effect,

hEi=hEperfi, is simply the fraction of doses taken, l, which

is independent of drug characteristics. For example, if the

patient takes l ¼ 80% of the prescribed doses, then the

patient receives 80% of the clinically desired drug effect,

regardless of the PK or PD drug parameters. We illustrate

this point in Fig. 2, which plots time courses of the relative

effect for a variety of adherence patterns and a variety of

PK/PD parameters. Despite the different parameters and

different adherence patterns, each curve has the same

adherence rate l (we take l ¼ 80% in this figure), and thus

the average relative effect hEi=hEperfi for each curve is l.

Rather than a property of the average drug effect, this

analysis suggests that forgiveness is a property of drug

effect fluctuations. Indeed, the usual objective during long-

term pharmacotherapy is to maintain continuity of action of

the prescribed drug [14]. A prominent feature of Fig. 2 is

that the curves differ wildly in their fluctuations around

their average. To quantify these fluctuations, we consider

the coefficient of variation of the drug effect, denoted by

CVðEÞ, which is the ratio of the standard deviation to the

mean. We prove that CVðEÞ is a symmetric function of the

PK absorption rate, the PK elimination rate, and the PD

elimination rate (meaning the value of CVðEÞ is unchanged

if we permute the values of these three rates). Hence, drug

effect fluctuations, which are a proxy for drug forgiveness,

depend equally on these three rates. Therefore, the PK

elimination rate does not uniquely contribute to forgive-

ness, and these other rates should receive equal attention

regarding forgiveness.

We prove all of the aforementioned results for any

pattern of nonadherence, including any combination of late

doses, missed doses, drug holidays, extra doses, etc.

However, to obtain quantitative estimates of drug effect

fluctuations, we must make assumptions on the patterns of

patient nonadherence. Thus, for some of our analysis, we

assume that the patient misses each dose with a fixed

probability, independent of their prior behavior. We then

obtain an explicit formula for CVðEÞ as a function of this

probability, the prescribed dosing interval, and the PK/PD

rates described above. We note that this formula (and all

the results above) are valid for the direct effect PD model,

the effect compartment PD model, and the indirect

response PD models. We illustrate the use of this formula

by applying it to a PK/PD model of metformin [17]. We

also obtain an explicit formula for CVðEÞ in the case that

the patient takes an extra ‘‘make up’’ dose when they take

the drug following one or more missed doses. This analysis

shows that taking make up doses reduces fluctuations in the

drug effect if any of the PK/PD rates described above are

sufficiently slow compared to the prescribed dosing

interval.

The rest of the paper is organized as follows. We

describe the PK/PD models in ‘‘Methods’’ and present the

results of analyzing these models in ‘‘Results’’. We con-

clude in ‘‘Discussion’’ by discussing model limitations,

relations to prior work, and future directions. We collect

some technical aspects of the mathematical analysis in the

‘‘Appendix’’.

Methods

We now describe the PK/PD models used in this study.
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Fig. 2 Drug effect E(t) relative to the clinically desired drug effect

hEperfi as a function of time t relative to the dosing interval s. The

three solid curves correspond to different adherence patterns and

different drugs with different PK/PD parameters. Nevertheless, the

average drug effect relative to the clinically desired drug effect is

simply the fraction of prescribed doses actually taken by the patient,

which is l ¼ 80% for each curve. However, the three curves differ

markedly in their fluctuations
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Fig. 1 Diagram of PK/PD

models. The PK model is the

same in a–d. The PD model is

direct effect in a, effect

compartment (biophase) in b,

indirect response with

stimulation of response in c, and

indirect response with inhibition

of response in d
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PK model

Consider the standard PK model consisting of an absorp-

tion compartment and a plasma (main) compartment as

depicted in Fig. 1. Let caðtÞ denote the concentration in the

absorption compartment at time t� 0 and suppose ca sat-

isfies the following ordinary differential equation (ODE),

d

dt
ca ¼ �kapca þ

IðtÞ
V

; ð2Þ

where I(t) describes the drug input and kap denotes the PK

absorption rate. The PK absorption rate is commonly

denoted ‘‘ka’’ in the literature, but instead we adopt the

convention that kij denotes the transfer rate from com-

partment i to j, where i; j 2 fa; p; e; 0g and ‘‘a’’ denotes

absorption compartment, ‘‘p’’ denotes plasma compart-

ment, ‘‘e’’ denotes effect compartment, and ‘‘0’’ denotes

elimination. We let V denote the volume of distribution and

without loss of generality let each compartment have vol-

ume V in order to simplify notation.

The concentration in the plasma compartment is denoted

by cpðtÞ and satisfies

d

dt
cp ¼ kapca � kp0cp; ð3Þ

where kp0 denotes the PK elimination rate. If the drug input

is a single dose of size D[ 0 taken at time zero, then the

concentration in the plasma compartment is

cpðtÞ ¼
DF

V

kap

kap � kp0

�
e�kp0t � e�kapt

�
; t� 0; ð4Þ

if kap 6¼ kp0 and F 2 ð0; 1� denotes the bioavailability.

PD: direct effect model

Perhaps the simplest PD model is the so-called direct effect

model, in which the effect of the drug at time t� 0, EdeðtÞ,
is the following function of the drug concentration in the

plasma compartment [16],

EdeðtÞ :¼ EmaxcpðtÞ
EC50 þ cpðtÞ

: ð5Þ

We use the superscript ‘‘de’’ for ‘‘direct effect’’ to distin-

guish this model from other PD models described below. In

(5), Emax is the maximum possible effect and EC50 is the

drug concentration which produces one half of the maxi-

mum effect. The direct effect model is depicted in Fig. 1a.

PD: effect compartment model

Another common PD model is the ‘‘effect compartment’’

or ‘‘biophase’’ model [16] depicted in Fig. 1b. In this

model, the drug can pass from the plasma compartment to

an effect compartment, whose concentration ce satisfies

d

dt
ce ¼ kpecp � ke0ce: ð6Þ

In (6), kpe denotes the transfer rate from the plasma to

effect compartments and ke0 denotes the PD elimination

rate. In keeping with standard assumptions (for example,

see [16]), the amount of drug moving in and out of the

effect compartment is negligible compared to the amount

in the plasma compartment and therefore does not influ-

ence the PK of the drug (i.e. ce does not appear in (3)). The

effect of the drug on the body is given by

EecðtÞ :¼ EmaxceðtÞ
EC50 þ ceðtÞ

; ð7Þ

where the superscript ‘‘ec’’ distinguishes this effect com-

partment model from other PD models.

PD: indirect response model

Another common PD model is the ‘‘indirect response’’

model [16], in which the drug response R(t) evolves

according to an ODE of the form,

d

dt
R ¼ kin

�
1 þ Smaxcp

SC50 þ cp

�
� koutR; ð8Þ

or

d

dt
R ¼ kin

�
1 � Imaxcp

IC50 þ cp

�
� koutR: ð9Þ

In (8)–(9), the response R(t) models a biomarker whose

production is either stimulated (in the case of (8)) or

inhibited (in the case of (9)) by the concentration of the

drug in the plasma compartment. The indirect response

models in (8) and (9) are depicted respectively in Fig. 1c

and d. We note that some indirect response models allow

the drug to affect the dissipation of the biomarker [16], but

we do not consider this type of model in this paper.

In order to unify our analysis of the indirect response

model with the other PD models described above, we

relabel the parameters in (8)–(9) as

kout ¼ ke0; kin ¼ ke0Rbase; IC50 ¼ SC50 ¼ EC50;

Imax ¼ Smax ¼ Emaxkpe=ðRbaseke0Þ:
ð10Þ

In particular, the ODEs (8)–(9) can be written using the

notation in (10) as

d

dt
R ¼ ke0Rbase

�
1 � Emaxkpe=ðRbaseke0Þcp

EC50 þ cp

�
� ke0R: ð11Þ
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We emphasize that there is no loss of generality in using

(11) rather than (8)–(9), as it amounts to merely relabeling

parameters as in (10).

In the absence of the drug (i.e. cp ¼ 0), (9) implies that

the baseline value of the biomarker R is Rbase. It is therefore

natural to define the effect of the drug to be the change

from baseline,

EirðtÞ :¼ �ðRðtÞ � RbaseÞ; ð12Þ

where the superscript ‘‘ir’’ stands for indirect response.

Plugging (12) into (9) implies that Eir evolves according to

d

dt
Eir ¼ kpeEmaxcp

EC50 þ cp

� ke0E
ir: ð13Þ

Comparing the PD models

We now compare the PD models introduced above. We

first note that the direct effect model is a limiting case of

both the effect compartment model and the indirect

response model. To see this, observe that the ODE for the

effect compartment model in (6) is equivalent to

ceðtÞ ¼
Z t

0

e�ke0ðt�sÞkpecpðsÞ ds; ð14Þ

assuming ceð0Þ ¼ 0 for simplicity. If we take kpe ¼ ke0 !
1 in (14) and use Laplace’s method [18], then we obtain

lim
kpe¼ke0!1

ceðtÞ ¼ cpðtÞ:

Using the concentration–effect relations in (5) and (7), we

thus have that

lim
kpe¼ke0!1

EecðtÞ ¼ EdeðtÞ:

Hence, the direct effect model is a special case of the more

general effect compartment model.

Similarly, the ODE for the indirect response model in

(13) is equivalent to

EirðtÞ ¼
Z t

0

e�ke0ðt�sÞ kpeEmaxcpðsÞ
EC50 þ cpðsÞ

ds; ð15Þ

assuming Eirð0Þ ¼ 0 for simplicity. Taking kpe ¼ ke0 ! 1
in (15) and using Laplace’s method yields

lim
kpe¼ke0!1

EirðtÞ ¼ EdeðtÞ:

Hence, the direct effect model is also a special case of the

more general indirect response model.

We now show that the effect compartment model is

equivalent to the indirect response model if the drug effects

are much less than maximal. More precisely, if ce\EC50,

then we can write the concentration–effect relation in (7) as

a geometric series,

EecðtÞ ¼ Emax

X
j� 1

ð�1Þjþ1
� ceðtÞ

EC50

� j

¼ Emax

�
ceðtÞ
EC50

�
� ceðtÞ

EC50

�2

þ . . .

�
:

ð16Þ

If

ce � EC50; ð17Þ

then EecðtÞ is well-approximated by taking only the first

term in (16) which yields the following linear concentra-

tion–effect relation,

EðtÞ :¼ Emax

EC50

ceðtÞ � EecðtÞ: ð18Þ

By the same argument, if

cp � EC50; ð19Þ

then Eir in (15) is well approximated by

EðtÞ ¼ Emax

EC50

Z t

0

e�ke0ðt�sÞkpecpðsÞ ds � EirðtÞ: ð20Þ

However, notice that (14) implies that E(t) in (20) is

identical to E(t) in (18).

To summarize, the direct effect model is a special case

of both the effect compartment model and the indirect

response model. Furthermore, if the drug effect is far from

maximal (in which case the PD models are linear), then the

indirect response model and the effect compartment model

are equivalent. The upshot of this is that if the drug effect is

far from maximal (meaning (17) or (19)), then we do not

need to analyze the direct effect, effect compartment, and

indirect response PD models separately. That is, our anal-

ysis of the effect E(t) in (18) applies equally well to all of

these PD models.

Drug effect for general adherence

If the concentration in the plasma compartment is given by

(4) (corresponding to a single dose of the drug given at

time zero), then we show in the ‘‘Appendix’’ that

EðtÞ ¼ Emax

EC50

DF

V

�
bp0e

�kp0t þ bape
�kapt þ be0e

�ke0t
�
; ð21Þ

where
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bp0 ¼ kpekap

ðkp0 � kapÞðkp0 � ke0Þ
;

bap ¼ kpekap

ðkap � ke0Þðkap � kp0Þ
;

be0 ¼ kpekap

ðke0 � kapÞðke0 � kp0Þ
:

ð22Þ

We assume kp0, kap, and ke0 are distinct throughout this

paper.

Suppose the patient takes a dose of an amount Dfn � 0 at

time tn � 0 for n� 0, where ffngn� 0 is any nonnegative

sequence of dose sizes and

0 ¼ t0\t1\t2\ � � � ð23Þ

is any increasing sequence of times. In this case, the drug

input I(t) in (2) is

IðtÞ ¼ DF
X
n� 0

ddiracðt � tnÞfn; ð24Þ

where ddirac denotes the Dirac delta function. Applying the

superposition principle to (21) yields that effect at time

t� 0 is

EðtÞ :¼ Emax

EC50

DF

V

X
n:tn 	 t

�
bp0e

�kp0ðt�tnÞ þ bape
�kapðt�tnÞ

þ be0e
�ke0ðt�tnÞ

�
fn;

ð25Þ

where the sum is over all indices n such that tn 	 t. We

emphasize that (25) holds for any sequence of nonnegative

dose sizes ffngn� 0 taken at any increasing sequence of

times ftngn� 0.

If the patient is instructed to take a dose of size D[ 0

every s[ 0 units of time, then in the special case of perfect

adherence we have for n� 0,

fn ¼ 1 and tn ¼ ns: (perfect adherence) ð26Þ

In this case of perfect adherence, (25) can be written in the

following form,

EperfðNsþ tÞ :¼ Emax

EC50

DF

V

�
bp0e

�kp0t
XN
n¼0

ðe�kp0sÞn

þ bape
�kapt

XN
n¼0

ðe�kapsÞn

þ be0e
�ke0t

XN
n¼0

ðe�ke0sÞn
�
;

ð27Þ

where t 2 ½0; sÞ denotes the time elapsed since the ðN þ 1Þ-
st dose. If the patient continues their perfect adherence for

a long time, then it follows from (27) that the effect at time

t 2 ½0; sÞ since the most recent dose is

lim
N!1

EperfðNsþ tÞ

¼ Emax

EC50

DF

V

� bp0e
�kp0t

1 � e�kp0s

þ bape
�kapt

1 � e�kaps
þ be0e

�ke0t

1 � e�ke0s

�
:

To study the effects of imperfect adherence, we allow the

dose sizes ffngn� 0 and times ftngn� 0 to deviate from (26).

Results

We now use the mathematical models introduced above to

investigate how drug effects depend on patient adherence

and PK/PD parameters. We study long-term average drug

effects, and toward this end we denote the long-term

average of any time course fxðtÞgt� 0 by

hxi :¼ lim
T!1

1

T

Z T

0

xðtÞ dt:

We also study how drug effects fluctuate around their

averages, and we denote the coefficient of variation of any

time course fxðtÞgt� 0 by

CVðxÞ :¼ 1

hxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T

Z T

0

�
xðtÞ � hxi

�2
dt

s
: ð28Þ

As in ‘‘Methods’’, we suppose that the patient is instructed

to take a dose of size D[ 0 every s[ 0 units of time. We

also assume that the drug effect is far from maximal so that

the PD models are linear, and hence the effect E(t) in (18)

applies to all the PD models described in ‘‘Methods’’ (see

‘‘Comparing the PD models’’ for details).

Average relative effect is the average drug
intake

Drugs are said to be ‘‘forgiving’’ if delayed or missed doses

only mildly change the effect on the body compared to

perfect adherence. For instance, drugs with long half-lives

(i.e. slow PK elimination rates kp0) are often said to be

forgiving. The point of this subsection is to show that if one

considers only how the long-term average drug effect

compares to the clinically desired effect, then the drug

characteristics are irrelevant and the only important quan-

tity is the long-term fraction of prescribed doses actually

taken by the patient.

If the patient has perfect adherence, then a straightfor-

ward calculation shows that the long-term average effect is
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hEperfi ¼ Emax

EC50

DF

V

1

s
kpe

kp0ke0

: ð29Þ

Hence, for a given drug and patient with PK/PD parameters

kpe, kp0, ke0, V, Emax, and EC50, the dose size D and dosing

interval s are prescribed so that hEperfi in (29) is the clin-

ically desired average effect.

Now consider an imperfectly adherent patient. Imperfect

adherence can take a variety of forms, such as delayed

doses, missed doses, drug holidays, extra doses, etc. [2].

Regardless of the particular form of the imperfect adher-

ence, let l denote the fraction of prescribed doses actually

taken by the patient. More precisely, assume that

lim
T!1

s
T

X
n:tn 	 T

fn ¼ l; ð30Þ

where the sum is over all times tn 	 T . Hence, l[ 0 is the

average number of doses taken in each prescribed dosing

interval.

Under the assumption in (30), we prove in the

‘‘Appendix’’ that the average effect hEi compared to the

desired average effect hEperfi is simply the fraction of

prescribed doses actually taken,

hEi ¼ lhEperfi: ð31Þ

We emphasize that (31) means that the ratio of the actual

average effect to the desired average effect is independent

of the PK/PD parameters. We further emphasize that (31)

follows from merely assuming the adherence rate

assumption in (30). In particular, the imperfect adherence

could be any combination of delayed doses, missed doses,

drug holidays, extra doses, etc. We illustrate (31) in Fig. 2,

as described in the Introduction. Of course, a striking

feature of Fig. 2 is that the curves differ wildly in their

fluctuations around the average (which we investigate

below).

To summarize, if one only considers how the average

drug effect compares to the clinically desired average

effect, then the PK/PD parameters are irrelevant and the

average drug intake is the only important quantity.

Therefore, the notion of a ‘‘forgiving’’ drug requires con-

sidering the fluctuations in drug effects, rather than mere

averages. We investigate how effect fluctuations depend on

PK/PD parameters in the subsections below.

PK absorption, PK elimination, and PD
elimination rates are equivalent for effect
fluctuations

The PK/PD models in ‘‘Methods’’ involve the four rate

parameters, kap, kp0, kpe, and ke0. How do these parameters

influence how E(t) fluctuates around its average?

We measure fluctuations in drug effect via the coeffi-

cient of variation, CVðEÞ, defined in (28). Assuming

merely that the patient has adherence l as in (30), the

relation in (31) implies that the coefficient of variation of

the effect E can be written as

CVðEÞ ¼ 1

hEi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T

Z T

0

�
EðtÞ � hEi

�2
dt

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T

Z T

0

� EðtÞ
lhEperfi � 1

�2

dt

s
:

ð32Þ

Using the general formula for E(t) in (25) and the formula

for hEperfi in (29), we have that

EðtÞ
hEperfi ¼

X
n:tn 	 t

�
ap0e

�kp0ðt�tnÞ þ aape
�kapðt�tnÞ

þ ae0e
�ke0ðt�tnÞ

�
fn;

ð33Þ

where

ap0 ¼ skapkp0ke0

ðkp0 � kapÞðkp0 � ke0Þ
;

aap ¼ skapkp0ke0

ðkap � ke0Þðkap � kp0Þ
;

ae0 ¼ skapkp0ke0

ðke0 � kapÞðke0 � kp0Þ
:

ð34Þ

By inspecting (33)–(34), we see that the ratio EðtÞ=hEperfi
is (i) independent of kpe and (ii) a symmetric function of the

rates kap, kp0, and ke0. Point (ii) means that the value of

EðtÞ=hEperfi is unchanged if we swap the values of kap, kp0,

and ke0. More precisely, if x1 [ 0, x2 [ 0, and x3 [ 0 are

any three distinct values, then

EðtÞ
hEperfi

				
ðkap;kp0;ke0Þ¼ðx1;x2;x3Þ

¼ EðtÞ
hEperfi

				
ðkap;kp0;ke0Þ¼ðxi;xj;xlÞ

ð35Þ

for any distinct indices i; j; l 2 f1; 2; 3g. Therefore, (32)

implies that the coefficient of variation CVðEÞ is (i) inde-

pendent of kpe and (ii) a symmetric function of the rates kap,

kp0, and ke0. In particular,

CVðEÞ
			
ðkap;kp0;ke0Þ¼ðx1;x2;x3Þ

¼ CVðEÞ
			
ðkap;kp0;ke0Þ¼ðxi;xj;xlÞ

ð36Þ

for any distinct indices i; j; l 2 f1; 2; 3g.

Therefore, the PK absorption rate kap, the PK elimina-

tion rate kp0, and the PD elimination rate ke0 are equally

important for determining how the effect E(t) fluctuates

around its average. In particular, while the PK elimination

rate kp0 is usually considered to be a determinative factor of
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a drug’s forgiveness (since kp0 controls the PK elimination

half-life), this analysis shows that kap and ke0 are just as

important for controlling effect fluctuations. We stress that

this result holds for any pattern of nonadherence.

We illustrate (35)–(36) in Fig. 3 by plotting sample time

courses of the relative plasma concentrations (left panel)

and relative effects (right panel) for three different choices

of kp0 and ke0. We note that the values of kap and s and the

adherence is identical for these three curves (we take

kaps ¼ 1 and the patient takes or misses doses at the exact

same times for the three curves). Looking at the plasma

time courses in the left panel (i.e. only considering PK), the

orange dotted curve seems to represent the most forgiving

drug and the green solid curve seems to represent the least

forgiving drug. Indeed, this matches with the PK elimina-

tion rates in that the orange dotted curve has a much slower

value of kp0 compared to the value of kp0 for the green solid

curve.

However, looking at the time courses of the relative

effect in the right panel of Fig. 3, we see that the orange

dotted curve is exactly the same as the green solid curve.

This is due to (35) since the difference in the PK/PD

parameters for the orange dotted curve and the green solid

curve is merely that the values of kp0 and ke0 have been

swapped. Furthermore, if one looks only at the plasma time

courses in the left panel, the drug represented by the purple

dashed curve seems to be much more forgiving than the

drug represented by the green solid curve. However, the

right panel of Fig. 3 shows that the purple dashed curve

actually represents the least forgiving drug in terms of the

effect fluctuations, and this is due to its very fast PD

elimination rate ke0.

Coefficient of variation estimate

To obtain quantitative estimates of the fluctuations in the

effect, we must specify more details about the patient’s

adherence. In this section, we assume simply that the

patient takes each scheduled dose with probability p 2
ð0; 1� and misses each scheduled dose with probability

1 � p 2 ½0; 1Þ, independent of their prior behavior. Math-

ematically, this means that the dosing times in (25) are

tn ¼ ns for n� 0, and the dose sizes are

fn ¼
1 with probability p;

0 with probability 1 � p;



ð37Þ

where fn and fm are independent if n 6¼ m. See ‘‘Discus-

sion’’ for more on this independence assumption.

It is immediate that (30) is satisfied with

l ¼ p; ð38Þ

and therefore (31) yields that the long-term average effect

is

hEi ¼ phEperfi:

In the ‘‘Appendix’’, we find the following exact formula for

the coefficient of variation of the effect,

CVðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1

p
þ g2 � 1

r
; ð39Þ

where

g1 :¼ h1ðkaps; kp0s; ke0sÞ;
g2 :¼ h2ðkaps; kp0s; ke0sÞ þ h2ðkp0s; kaps; ke0sÞ

þ h2ðke0s; kp0s; kapsÞ;
ð40Þ

and h1 and h2 are the functions,
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Fig. 3 Fluctuations in relative plasma concentration (left panel) and

relative effect (right panel) for imperfect adherence. The plasma

concentration time courses in the left panel are normalized by hcperf
p i,

which denotes the average plasma concentration for perfect

adherence. Though the solid green curve shows large fluctuations in

plasma concentration in the left panel, the corresponding effect

fluctuations in the right panel are quite small. See the text for details

(Color figure online)
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h1ðx; y; zÞ :¼
xyzðxþ yþ zÞ

2ðxþ yÞðxþ zÞðyþ zÞ ;

h2ðx; y; zÞ :¼
xy2z2

ðxþ yÞðxþ zÞðx� yÞðx� zÞðex � 1Þ :
ð41Þ

Even though we have assumed a very simple model of

nonadherence in this section, the formulas in (39)–(41) are

quite complicated. Nevertheless, it is straightforward to use

these formulas to plot CVðEÞ as a function of the various

parameters.

In the left panel of Fig. 4, we show a contour plot of

CVðEÞ using the formula in (39). In this plot, we set p ¼
0:8 and fix s and kap so that kaps ¼ 10, and we let kp0 and

ke0 vary. Note that, due to the symmetry in (36), this is

equivalent to fixing either kp0 or ke0 and letting the other

rates vary. This plot shows that CVðEÞ increases if any of

the rates kp0, ke0, or kap increases or if s increases. Indeed,

using the exact formula in (39), we have verified through

extensive numerical tests that for any p 2 ð0; 1�, s[ 0, and

any distinct values of the rates kp0, ke0, or kap,

o

ok
CVðEÞ[ 0;

o

os
CVðEÞ[ 0;

where k is any of the three rates kp0, ke0, or kap.

To illustrate what the CVðEÞ implies about actual time

courses of the effect, in the right panel of Fig. 4 we plot

sample time courses of the relative effect EðtÞ=hEperfi for

two different values of the PD elimination rate ke0 (corre-

sponding to the green circle and orange square markers in

the left panel of Fig. 4). This plot shows that the effect of

the drug with a fast PD elimination rate (green solid curve)

fluctuates greatly, whereas the drug with the slow PD

elimination rate maintains a fairly stable effect (orange

dashed curve). This agrees with the predictions of the

formula for CVðEÞ in (39), since CVðEÞ � 0:39 for the

green curve and CVðEÞ � 0:11 for the orange curve. We

emphasize that the only difference between these two time

courses are the different values of ke0; all of the other PK/

PD parameters and the adherence patterns are identical. We

note that the value of ke0 is sufficiently large that the PD is

essentially the direct effect model (see ‘‘Comparing the PD

models’’). Hence, Fig. 4 illustrates how a drug which is

well described by a direct effect model may yield very

large fluctuations in the effect.

Application to metformin

We now illustrate our results for a patient with type 2

diabetes mellitus taking metformin with imperfect adher-

ence. We take the PK/PD model developed by Hong et al.

[17] as our starting point. Hong et al. [17] describes the PK

of metformin with a model identical to our PK model.

Further, the PD model of [17] is identical to our indirect

response PD model. Specifically, Hong et al. [17] describes

the PD of metformin via the inhibitory indirect response

model in (9), where R is the plasma glucose, kin is the zero-

order rate constant for glucose production, kout is the first-

order rate constant for glucose utilization, cp is the met-

formin concentration in the plasma compartment, IC50 is

the concentration of metformin yielding half-maximal

antihyperglycemic effect, and Imax ¼ 1.

Fig. 4 Left: Contour plot of

CVðEÞ in (39). Right: Sample

time course of relative effect for

the parameter values indicated

by the green circle and orange

square markers in the left panel.

In both panels, we take kaps ¼
10 and p ¼ 0:8 (Color

figure online)

Table 1 Parameter values for

metformin PK/PD model

developed in [17]

Parameter Numerical value

kap 2:15 h�1

kp0 0:1219 h�1

kin 195:2 mg=ðdL � hÞ
kout 0:8 h�1

s 12 h

Imax 1

IC50 0:423 mg=dL

D 500 mg

V/F 6480 dL
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If we relabel the PD parameters as in (10) and define the

effect of metformin to be the change in glucose from the

baseline glucose Rbase ¼ kin=kout as in (12),

EirðtÞ :¼ Rbase � RðtÞ;

then EirðtÞ satisfies the nonlinear ODE in (13).

Using the numerical values of Hong et al. [17] (see

Table 1), the long-term average plasma compartment

concentration for a D ¼ 500 mg dose administered twice

per day (s ¼ 12 h) is

hcperf
p i ¼ DF

V

1

kp0s
� 0:05 mg=dL: ð42Þ

Furthermore, Hong et al. [17] estimated that

IC50 ¼ EC50 ¼ 0:423 mg=dL. Thus, the average plasma

concentration of metformin for perfect adherence is almost

an order of magnitude less than the concentration which

yields one half of the maximal effect,

hcperf
p i

EC50

� 0:05

0:423
� 0:12 � 1: ð43Þ

Hence, this model agrees with the assumption of ‘‘Meth-

ods’’ that the effect for perfect adherence is much less than

the maximal effect.

In particular, (43) suggests using the linear concentra-

tion–effect approximation in (20),

EðtÞ � EirðtÞ; ð44Þ

to estimate the drug effect. In the left panel of Fig. 5, we

plot CVðEÞ using the formula in (39) as a function the

adherence p. The green solid curve uses the population

average parameter values of [17] (see Table 1), including

the PK absorption rate of kap ¼ 2:15 h�1 corresponding to

the immediate release metformin used in [17] (between

subject variability in a population of patients is addressed

in ‘‘Discussion’’). The orange and purple curves use the

same parameter values except for slower PK absorption

rates of kap ¼ 0:215 h�1 (orange curve) and kap ¼
0:0215 h�1 (purple curve) corresponding to hypothetical

extended release metformin formulations. This plot shows

how CVðEÞ decreases for slower absorption rates.

The square markers in the left panel of Fig. 5 are values

of the coefficient of variation of the effect Eir for the full

nonlinear indirect response model described above. These

values of CVðEirÞ are obtained from numerical simulations

of Eir over many dosing intervals. In support of the

approximation in (44), these values of CVðEirÞ are each

within 10% of the corresponding value of CVðEÞ computed

from the formula in (39).

Therefore, this analysis predicts that extended release

formulations dosed at the same frequency as immediate

release formulations have the potential of maintaining a

more stable drug effect in spite of imperfect adherence.

This is illustrated in the right panel of Fig. 5, where we plot

sample time courses of the drug effect Eir for the param-

eters used in the left panel. We stress that these time

courses of Eir are the effect for the full nonlinear indirect

response model described above. This plot shows how the

drug effect (in this case, a decrease in glucose) persists

following a missed dose if the drug absorption rate is slow.

‘‘Make up’’ doses reduce variation for slow PK
or PD

Is it ever appropriate for a patient to take an extra ‘‘make

up’’ dose to compensate for a missed dose? To address this

question, we modify the adherence model presented in

‘‘Coefficient of variation estimate’’. In ‘‘Coefficient of

variation estimate’’, we assumed that the patient either

takes or misses each scheduled dose with respective

probabilities p and 1 � p. Importantly, the patient never

takes more than a single dose at a time in the model of

‘‘Coefficient of variation estimate’’.

In this section, we suppose that the patient takes a

double dose whenever they take their medication if they

happened to have missed their prior dose. More precisely,

we assume that the dosing times in (25) are tn ¼ ns for all

n� 0. To describe the dose sizes, let fnngn� 0 be a

sequence of independent Bernoulli random variables with
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Fig. 5 Left: Coefficient of

variation of effect of metformin

for linear E model (curves) and

nonlinear Eir model (square

markers). Right: Sample time

courses of decrease in blood

glucose for nonlinear Eir

metformin model. See the text

for details
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nn ¼
1 with probability p;

0 with probability 1 � p:

(
ð45Þ

The dose sizes in (25) are then f0 ¼ n0 and for n� 1,

fn ¼

0 if nn ¼ 0;

1 if nn ¼ nn�1 ¼ 1;

2 if nn ¼ 1; nn�1 ¼ 0:

8>><
>>:

ð46Þ

In words, (45) means that the patient ‘‘remembers’’ or

‘‘forgets’’ to take their medication at the nth dosing time

with respective probabilities p and 1 � p. Further, (46)

means that the patient does not take a dose when they

forget, they take a single dose if they remember and they

took their last scheduled dose, and they take a double dose

if they remember and they happened to have missed their

last scheduled dose. This adherence model first appeared in

[19] as an input to a simpler PK model. We refer to this

model as the ‘‘double dose protocol’’ and the model in

‘‘Coefficient of variation estimate’’ as the ‘‘single dose

protocol.’’

In the ‘‘Appendix’’, we prove that the double dose

protocol has the long-term average drug intake in (30) with

l ¼ ldouble :¼ pþ pð1 � pÞ:

As expected, the double dose protocol yields a higher

average drug intake than the intake rate of lsingle :¼ p in

(38) for the single dose protocol. Hence, from the per-

spective of increasing the average drug effect, the double

dose protocol is always superior to the single dose protocol.

How do the drug effect fluctuations for the double dose

protocol compare to the single dose protocol? Letting

EsingleðtÞ and EdoubleðtÞ denote the respective drug effects

for the single and double dose protocols, CVðEsingleÞ is

given in (39). We prove in the ‘‘Appendix’’ that the coef-

ficient of variation for the double dose protocol is

CVðEdoubleÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g3

pð2 � pÞ2
� 1

r
; ð47Þ

where

g3 :¼ h3ðkaps; kp0s; ke0sÞ þ h3ðkp0s; kaps; ke0sÞ
þ h3ðke0s; kp0s; kapsÞ;

and h3 is the function

h3ðx; y; zÞ
:¼ ðxyzÞ2



�
e�x �2p2 þ 7p� 4ð Þex þ 2p p2 � 3pþ 2ð Þ þ ð4 � 3pÞe2xð Þ

2 ex � 1ð Þxðy� xÞ2ðz� xÞ2

þ 2 p2 þ 3pey � 5p� 4ey þ 4ð Þ
ey � 1ð Þðy� xÞðz� xÞðy� zÞ2ðyþ zÞ

� 2 p3 � 4p2 þ 4pð Þ
ez � 1ð Þðy� xÞðz� xÞðy� zÞ2ðyþ zÞ

þ 2ðp� 2Þðp� 1Þpe�z

ðy� xÞðz� xÞðy� zÞ2ðyþ zÞ

� 2ðp� 2Þðp� 1Þpe�y

ey � 1ð Þðy� xÞðz� xÞðy� zÞ2ðyþ zÞ

�
:

In Fig. 6, we use the formulas in (39) and (47) to plot the

following normalized difference between the effect coef-

ficients of variation for the single and double dose

protocols,

d :¼ CVðEsingleÞ � CVðEdoubleÞ
CVðEsingleÞ 2 R:

Note that d\0 means that the single dose protocol yields

smaller fluctuations in drug effect and d[ 0 means that the

double dose protocol yields smaller fluctuations in drug

effect. Figure 6 shows that the double dose protocol yields

smaller fluctuations in drug effect compared to the single

dose protocol except in the case that all three rates kap, kp0,

and ke0 are much faster than 1=s.

To illustrate what these results imply about actual time

courses, in Fig. 7 we plot a path of the relative drug effect

for the single dose protocol (dashed orange curve) and the

double dose protocol (solid purple curve). Evidently, the

drug effect is much less perturbed by missed doses for the

double dose protocol compared to the single dose protocol.

Indeed, the time courses in Fig. 7 illustrate that the double

dose protocol has a larger average drug effect

(ldouble ¼ pþ pð1 � pÞ ¼ 0:96[ 0:8 ¼ p ¼ lsingle). Fur-

ther, these time courses show that the double dose protocol

has smaller effect fluctuations. In fact, for the values of

p ¼ 0:8, e�kaps ¼ 10�6, e�kp0s ¼ 0:5, and e�ke0s ¼ 0:8 used

in this plot, (39) and (47) yield

CVðEdoubleÞ � 0:08\CVðEsingleÞ � 0:15; ð48Þ

and thus d � 0:45. We emphasize that the times of missed

doses and all the PK/PD parameters are identical for the

two curves in Fig. 7.
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Discussion

In this paper, we used mathematical analysis to study how

PK and PD contribute to drug forgiveness. Assuming that

the drug effect is far from maximal (in which case the PD

models are linear), we found that drug forgiveness cannot

be defined in terms of the average drug effect, since the

average drug effect relative to the clinically desired effect

is simply the fraction of prescribed doses actually taken by

the patient, regardless of the drug characteristics and

adherence patterns. We therefore argued that forgiveness

should instead be understood in terms of fluctuations in

effect. We found that the PK absorption rate, PK

elimination rate, and PD elimination rate are equally

important for determining fluctuations and thus

forgiveness.

We further considered a simple model of patient non-

adherence which allowed us to calculate the drug effect

fluctuations as a function of the PK and PD rates. Using

this model of patient nonadherence, we also investigated

different ways of handling missed doses, referred to as the

single dose protocol (i.e. skip any missed doses) and the

double dose protocol (i.e. take an extra ‘‘make up’’ dose to

compensate for a missed dose). As one would expect, we

found that the double dose protocol increases the average

drug effect compared to the single dose protocol. In addi-

tion, we found that the double dose protocol decreases

effect fluctuations compared to the single dose protocol if

any one of the aforementioned PK/PD rates is slow com-

pared to the prescribed dosing rate.

Taking a double dose might be avoided out of concern

that it could cause the drug concentration to rise danger-

ously high. This issue was recently addressed in [20].

Assuming a slow PK absorption or PK elimination rate,

Theorem 5 in [20] implies that the double dose protocol

can at most cause the plasma concentration to rise only

slightly above the concentration in a perfectly adherent

patient. In the ‘‘Appendix’’, we briefly review this result

using the notation of the present paper.
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Fig. 6 Comparison of effect

fluctuations for the single dose

and double dose protocols. In

each panel, we plot the

normalized difference d :¼
ðCVðEsingleÞ �
CVðEdoubleÞÞ=CVðEsingleÞ of

effect coefficient of variations.

We take p ¼ 0:8 in each panel.

The regions in which d[ 0

(blue) are the regions where the

double dose protocol yields

smaller fluctuations than the

single dose protocol (Color

figure online)
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protocols. The times of missed doses and all the PK/PD parameters

are identical for the two curves. See the text for details
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In our model and analysis, we assumed fixed values of

the model parameters (PK/PD rates, volume of distribution,

bioavailability, etc.). It is well-known that there is often

significant population variability in these parameters. This

means that, for example, any two individual patients in a

population likely have different values of kap, kp0, and ke0.

Our analysis can thus be interpreted as concerning any

single patient in a population. Our result that the average

drug effect relative to the clinically desired effect is the

fraction of prescribed doses taken by the patient thus holds

for any patient in a population. The reason for this is that

the desired effect is defined as the effect that this particular

patient would have if they had perfect adherence, which

depends on parameters specific to that patient. Put another

way, this result is expressed mathematically in (1), and the

patient-specific PK/PD parameters in the lefthand side of

(1) cancel out. In addition, our result that kap, kp0, and ke0

are equally important for determining forgiveness also

holds for any patient in the population by the same rea-

soning. Finally, it is straightforward to use the formulas

(39) and (47) for CVðEÞ to investigate how population

variability affects the coefficient of variation of effect for a

particular drug. In particular, one obtains a distribution of

CVðEÞ by merely evaluating these formulas for many

realizations of kap, kp0, and ke0 sampled from given prob-

ability distributions which describe the population vari-

ability in these PK/PD rates.

The present work follows a line of previous works

which have used PK, PD, and coupled PK/PD models to

study medication nonadherence. Much of this previous

work employed numerical computations

[6, 11, 15, 21, 21–32], which allowed for detailed study of

specific PK/PD models, some of which are too complicated

for mathematical analysis. Previous works which have

utilized detailed mathematical analysis include

[19, 20, 33–36]. These prior analytical works considered

isolated PK models rather than the coupled PK/PD models

considered in the present work.

As a theoretical investigation, our model and analysis

necessarily makes many simplifying assumptions. For

example, while the PK/PD models studied in this paper are

quite standard, certainly many drugs have been described

by more complicated models (for example, models with

more compartments such as transit compartment models

[37, 38]). In addition, we assumed a continuous drug effect,

whereas the more clinically relevant effect in some settings

is binary. In a more general model, we would not be

assured that the PK absorption, PK elimination, and PD

elimination rates would be exactly equivalent in their

contributions to effect fluctuations, as we found for the

models in this paper. Nevertheless, this work demonstrates

the general result that the PK elimination rate is not a

uniquely determinative factor for drug forgiveness. This

result is not surprising, but it emphasizes the point that

other PK rates and PD rates must be considered when

estimating forgiveness.

While the results in ‘‘Average relative effect is the

average drug intake’’–‘‘PK absorption, PK elimination, and

PD elimination rates are equivalentfor effect fluctuations’’

were proven for any pattern of nonadherence, the simple

model of patient adherence in ‘‘Coefficient of variation

estimate’’–‘‘‘‘Make up’’ doses reduce variation for slow PK

or PD’’ assumes that a patient misses a dose independently

of their prior behavior. However, some data shows corre-

lations in the doses taken by some patients [39], meaning

that, for example, a patient may be more likely to miss a

dose if they missed their prior dose. We ignored any such

correlations and assumed independence in order to simplify

the analysis and results. Indeed, even in this simplified

scenario, the formulas obtained in ‘‘Coefficient of variation

estimate’’ and ‘‘‘‘Make up’’ doses reduce variation for slow

PK or PD’’ are quite complicated. Furthermore, the exis-

tence of such correlations for all or even most patients is

debatable. Indeed, in a detailed statistical analysis of the

data in [40], Sun et al. [41] found that only one third of the

patients studied showed sufficient evidence to reject the

hypothesis of independent dosing.

One key assumption of this work is that the drug effect

is far from maximal, which makes the PD models linear.

This assumption follows the computational study of Bois-

sel and Nony [15], who noted that this is the exact scenario

in which adherence is most critical. In particular, due to the

plateauing nature of typical dose–response curves (such as

the concentration–effect relations in the PD models in

‘‘Methods’’), missing doses only mildly reduces the drug

effect if the prescribed dose is near the effect plateau. In

contrast, in the scenario studied in the present paper in

which the prescribed dose is much less than the dose

yielding maximal effect, missed doses cause a significant

decrease in drug effect. Nevertheless, investigating the

effects of nonadherence in the case that the drug effect is

not necessarily far from maximal remains an important

area for future research.

Appendix

In this appendix, we present the mathematical proofs and

derivations of some results in the main text.

Proof of formula for E(t) in (21)

To verify (21), note first that (21) and the definitions in (22)

imply that Eð0Þ ¼ 0, as desired. Next, the definition of E(t)

in (18) and the ODE for ce in (6) imply that E(t) satisfies
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d

dt
E ¼ Emax

EC50

kpecp � ke0E: ð49Þ

Differentiating (21) with respect to t and using the value of

cp in (4) shows that (21) indeed satisfies (49), which ver-

ifies (21). h

Proof that hEi=lhEperfi

To prove hEi ¼ lhEperfi, we let k[ 0 and consider the

large T behavior of

FðT ; kÞ :¼ 1

T

Z T

0

X
n:tn 	 t

e�kðt�tnÞfn dt:

Interchanging the sum and integral yields

FðT ; kÞ ¼ 1

T

X
n:tn 	 T

Z T

tn

e�kðt�tnÞfn dt

¼ 1

k

1

T

X
n:tn 	T

fn �
1

k

1

T

X
n:tn 	T

e�kðT�tnÞfn:

ð50Þ

By (30), the first term in (50) has the large T limit,

lim
T!1

1

k

1

T

X
n:tn 	 T

fn ¼ l
1

ks
: ð51Þ

We claim that the second term in (50) vanishes as T ! 1.

To see this, let e 2 ð0; 1Þ and observe that

1

T

X
n:tn 	 T

e�kðT�tnÞfn

¼ 1

T

X
n:tn 	ð1�eÞT

e�kðT�tnÞfn þ
1

T

X
n:ð1�eÞT\tn 	 T

e�kðT�tnÞfn

	 e�ekT 1

T

X
n:tn 	ð1�eÞT

fn þ
1

T

X
n:ð1�eÞT\tn 	 T

fn:

Since (30) implies that

lim
T!1

e�ekT 1

T

X
n:tn 	ð1�eÞT

fn ¼ 0;

it follows that

lim
T!1

1

T

X
n:tn 	 T

e�kðT�tnÞfn 	 lim
T!1

1

T

X
n:ð1�eÞT\tn 	T

fn: ð52Þ

To estimate the upper bound in (52), let e2 [ 0 and observe

that (30) implies that if T is sufficiently large, then

1

T

X
n:tn 	 Tð1�eÞ

fn þ
1

T

X
n:Tð1�eÞ\tn 	 T

fn 	 l=sþ e2; ð53Þ

and

l=s� e2 	
1

Tð1 � eÞ
X

n:tn 	Tð1�eÞ
fn: ð54Þ

Combining (53)–(54) yields

lim
T!1

1

T

X
n:Tð1�eÞ\tn 	T

fn 	 l=sþ e2 � ð1 � eÞðl=s� e2Þ

¼ 2e2 þ el=s� ee2:

Since e 2 ð0; 1Þ and e2 [ 0 are arbitrary, we conclude from

(52) that

lim
T!1

1

T

X
n:tn 	 T

e�kðT�tnÞfn ¼ 0;

and therefore (50) and (51) imply

lim
T!1

FðT ; kÞ ¼ l
1

ks
: ð55Þ

Finally, using the expression for E(t) in (25), the values of

fn and tn in (26) for perfect adherence, and the result in

(55), we conclude that

hEi ¼ l
Emax

EC50

DF

V

� bp0

kp0s
þ bap

kaps
þ be0

ke0s

�
¼ lhEperfi:

h

Derivation of CV(EsingleÞ

Using the model of nonadherence introduced in ‘‘Coeffi-

cient of variation estimate’’, applying (33) gives

wðtÞ :¼ EðtÞ
lhEperfi ¼

1

l

Xbt=sc

n¼0

�
ap0e

�kp0ðt�nsÞ

þ aape
�kapðt�nsÞ þ ae0e

�ke0ðt�nsÞ
�
fn;

where the coefficients ap0, aap, and ae0 are defined in (34),

bt=sc denotes the largest integer less than or equal to t=s,

and ffngn2Z are as in (37). Note that we now take the

sequence ffngn2Z to be bi-infinite (i.e. n 2 Z), which is

convenient for the analysis below.

For t 2 ½0; s�, define

WðtÞ :¼ 1

l
ðap0e

�kp0tAp0 þ aape
�kaptAap þ ae0e

�ke0tAe0Þ;

ð56Þ

where

Aij :¼
X1
n¼0

ðe�kijsÞnf�n; for i; j 2 fa; p; 0g: ð57Þ

Note that Aij converges almost surely by the Weierstrass

M-test since jfnj is bounded by a deterministic constant for

all n 2 Z (namely, jfnj 	 1 in this case). Random variables
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of the form in (57) are often referred to as random pullback

attractors [42–46].

It then follows from (32) and Theorem 1 in [20] that

CVðEsingleÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T

Z T

0

�
wðtÞ � 1

�2

dt

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

Z s

0

E
h�
WðtÞ � 1

�2
i

dt

s
;

ð58Þ

where E denotes mathematical expectation. Using the

definition of WðtÞ in (56), equation (58) implies that

CVðEsingleÞ requires calculating expectations of the form

E½Aij� and E½AijAlm�; for i; j; l;m 2 fa; p; 0g: ð59Þ

These expectations are obtained immediately from Corol-

lary 3 in [20]. In particular, we have that

E½Aij� ¼
p

1 � e�kijs
;

E½AijAlm� ¼
p

1 � e�kijse�klms

þ p2
� 1

ð1 � e�kijsÞð1 � e�klmsÞ

� 1

1 � e�kijse�klms

�
:

Plugging these formulas into (58) and performing the

integration yields for the formula for CVðEsingleÞ in (39).

Derivation of ldouble

For the double dose protocol in ‘‘‘‘Make up’’ doses reduce

variation for slow PK or PD’’, it is immediate that ffngn2Z
is an irreducible, time-homogeneous Markov chain with

the following transition probabilities,

Pðfnþ1 ¼ 0 j fn ¼ iÞ ¼ 1 � p if i 2 f0; 1; 2g;

Pðfnþ1 ¼ 1 j fn ¼ iÞ ¼
0 if i ¼ 0;

p if i ¼ 1;

p if i ¼ 2;

8><
>:

Pðfnþ1 ¼ 2 j fn ¼ iÞ ¼
p if i ¼ 0;

0 if i ¼ 1;

0 if i ¼ 2:

8><
>:

Using standard Markov chain results (for example, see

section 1.7 in [47]), a quick calculation shows that the

stationary distribution of ffngn2Z is

Pðfn ¼ iÞ ¼
1 � p if i ¼ 0;

p2 if i ¼ 1;

pð1 � pÞ if i ¼ 2:

8><
>:

Using (30), Birkhoff’s ergodic theorem (for example, see

section 7.2 in [48]) thus implies that the long-term fraction

of doses taken for the double dose protocol is

ldouble ¼ lim
N!1

1

N

XN�1

n¼0

fn ¼
X2

i¼0

iPðfn ¼ iÞ ¼ pþ pð1 � pÞ:

Derivation of CV(EdoubleÞ

The derivation of the formula for CVðEdoubleÞ in (47) is

identical to the derivation presented in ‘‘Derivation of

CVðEsingleÞ’’ above except the formulas for the expecta-

tions in (59) are given by the formulas for the double dose

protocol in Corollary 3 in [20].

Maximum plasma concentration for double dose
protocol

Theorem 5 in [20] yields the following upper bound for

the maximum possible plasma compartment concentration

obtained by following the double dose protocol,

cdouble
p ðtÞ	 max

s� 0
cperf

p ðsÞ þ uhcperf
p i; ð60Þ

where u is the following dimensionless factor,

u :¼ sðkapÞ
kp0

kp0�kapðkp0Þ
kap

kap�kp0 ; ð61Þ

and hcperf
p i ¼ DF

V
1
s

1
kp0

is the long-term average plasma con-

centration for perfect adherence. The upper bound in (60)

is valid for any time t� 0 and any sequence of remem-

bering or forgetting fnngn� 0 for the adherence model in

‘‘‘‘Make up’’ doses reduce variation for slow PK or PD’’

above. The first term in the righthand side of (60) is the

maximum plasma concentration obtained by a patient with
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Fig. 8 Contour plot of the factor u in (61) which bounds the

maximum increase in plasma concentration caused by following the

double dose protocol (see (60))
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perfect adherence. The second term in the righthand side of

(60) bounds the maximum possible increase in plasma

concentration caused by the double dose protocol.

In Fig. 8, we plot the factor u in (61). This plot shows

that u � 1 if kaps � 1 and/or kp0s � 1. This means that if

the PK absorption rate is slow compared to the dosing

interval (kaps � 1) and/or the PK elimination rate is slow

compared to the dosing interval (kp0s � 1), then the dou-

ble dose protocol can at most cause the plasma concen-

tration to rise only slightly above the concentration for

perfect adherence.
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