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Abstract

Nonadherence to medication is a major public health problem. To combat nonadherence, some clinicians have suggested
using “forgiving” drugs, which maintain efficacy in spite of delayed or missed doses. What pharmacokinetic (PK) and
pharmacodynamic (PD) factors make a drug forgiving? In this paper, we address this question by analyzing a linear PK/PD
model for a patient with imperfect adherence. We assume that the drug effect is far from maximal and consider direct
effect, effect compartment (biophase), and indirect response PD models. We prove that the average drug effect relative to
the clinically desired effect is simply the fraction of prescribed doses actually taken by the patient. Hence, under these
assumptions, drug forgiveness cannot be defined in terms of the average effect. We argue that forgiveness should instead be
understood in terms of effect fluctuations. We prove that the rates of PK absorption, PK elimination, and PD elimination
are exactly equivalent for determining effect fluctuations. We prove all the aforementioned results for any pattern of
nonadherence, including late doses, missed doses, drug holidays, extra doses, etc. To obtain quantitative estimates of effect
fluctuations, we consider a simple statistical pattern of nonadherence and analytically calculate the coefficient of variation
of effect. We further show how effect fluctuations can be reduced by taking an extra “make up” dose following a missed
dose if any one of the aforementioned PK/PD rates is sufficiently slow. We illustrate some of our results for a nonlinear
indirect response model of metformin.
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Introduction Forgiveness is sometimes defined as the difference between

the medication’s post-dose duration of action and the pre-

Medication adherence is the process by which patients take
their medications as prescribed [1]. Nonadherence to
medication is a well-documented problem. It is estimated
that medication nonadherence accounts for over 100,000
preventable deaths and over $100 billion in pre-
ventable healthcare costs every year in the United States
[2]. In fact, the World Health Organization claimed that
“increasing the effectiveness of adherence interventions
may have a far greater impact on the health of the popu-
lation than any improvement in specific medical treat-
ments” [3, 4].

To combat the problem of nonadherence, some clini-
cians have suggested using so-called “forgiving” drugs [2].

DX Sean D. Lawley
lawley @math.utah.edu

Department of Mathematics, University of Utah,
Salt Lake City, UT 84112, USA

Published online: 13 February 2022

scribed time interval between doses [5]. However, it is
difficult to precisely quantify the forgiveness of a specific
drug in terms of a single number, as evidenced by the
variety of mathematical definitions of drug forgiveness
presented in the literature [6—13]. Nevertheless, the gen-
eral, more qualitative notion of drug forgiveness is cer-
tainly an important characteristic of a drug. Indeed, it is
well-established that some drugs require strict adherence to
achieve therapeutic benefits (i.e. less forgiving drugs),
whereas the benefits of some drugs are quite robust to
lapses in adherence (i.e. more forgiving drugs) [14].

What makes a drug forgiving? In particular, what
pharmacokinetic (PK) factors make a drug forgiving? A
long drug half-life, which is related to a slow PK elimi-
nation rate, is generally considered to make a drug for-
giving. Are there other PK factors which have an equally
strong effect on forgiveness?

Furthermore, what pharmacodynamic (PD) factors make
a drug forgiving? In an interesting computational study
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[15], it was shown in one example that a drug with an
effect compartment (biophase) PD model was more for-
giving than a drug with a direct effect PD model. Does this
example represent a more general principle about effect
compartment PD models versus direct effect PD models? Is
a drug with a long PK half-life and a direct effect PD
model more or less forgiving than a drug with a short PK
half-life and an effect compartment PD model? How do
drugs with an indirect response PD model compare?

The purpose of this paper is to address these questions.
We consider a patient who is instructed to take a drug
repeatedly at a fixed dosing interval, but whose actual
adherence deviates from this prescription. In the taxonomy
of [1], this analysis thus concerns the implementation phase
of adherence, which is the extent to which a patient’s actual
dosing follows the prescribed dosing regimen. We employ
a PK/PD model, where the PK model consists of an
absorption compartment and a plasma (main) compartment
with first-order kinetics. For PD, we consider a direct effect
model, an effect compartment (biophase) model, and an
indirect response model [16]. Figure 1 illustrates these PK/
PD models. We focus on the case that the drug effect is far
from maximal, in which case the PD models are linear (see
“Discussion” for more on this assumption). We use rig-
orous mathematical analysis to study these models, rather
than computational simulations of specific numerical
examples. This approach allows us to arrive at strong
conclusions which apply to all such PK/PD models.

To describe our results, let (EP) denote the long-term
average drug effect for a perfectly adherent patient. From a
clinical perspective, (EP*) is thus the desired drug effect.
If (E) denotes the long-term average drug effect for an
imperfectly adherent patient, then we prove that

(E) = u(E™), (1)

where p denotes the long-term fraction of prescribed doses
actually taken by the imperfectly adherent patient (i is a
multiplicative factor in (1)). This result implies that drug
forgiveness cannot be defined in terms of the average drug
effect. To see this, observe that (1) means that the ratio of
the average drug effect to the desired drug effect,
(E)/(EPT), is simply the fraction of doses taken, y, which
is independent of drug characteristics. For example, if the
patient takes p = 80% of the prescribed doses, then the
patient receives 80% of the clinically desired drug effect,
regardless of the PK or PD drug parameters. We illustrate
this point in Fig. 2, which plots time courses of the relative
effect for a variety of adherence patterns and a variety of
PK/PD parameters. Despite the different parameters and
different adherence patterns, each curve has the same
adherence rate u (we take yu = 80% in this figure), and thus
the average relative effect (E)/(EP*T) for each curve is p.
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Rather than a property of the average drug effect, this
analysis suggests that forgiveness is a property of drug
effect fluctuations. Indeed, the usual objective during long-
term pharmacotherapy is to maintain continuity of action of
the prescribed drug [14]. A prominent feature of Fig. 2 is
that the curves differ wildly in their fluctuations around
their average. To quantify these fluctuations, we consider
the coefficient of variation of the drug effect, denoted by
CV(E), which is the ratio of the standard deviation to the
mean. We prove that CV(E) is a symmetric function of the
PK absorption rate, the PK elimination rate, and the PD
elimination rate (meaning the value of CV(E) is unchanged
if we permute the values of these three rates). Hence, drug
effect fluctuations, which are a proxy for drug forgiveness,
depend equally on these three rates. Therefore, the PK
elimination rate does not uniquely contribute to forgive-
ness, and these other rates should receive equal attention
regarding forgiveness.

We prove all of the aforementioned results for any
pattern of nonadherence, including any combination of late
doses, missed doses, drug holidays, extra doses, etc.
However, to obtain quantitative estimates of drug effect
fluctuations, we must make assumptions on the patterns of
patient nonadherence. Thus, for some of our analysis, we
assume that the patient misses each dose with a fixed
probability, independent of their prior behavior. We then
obtain an explicit formula for CV(E) as a function of this
probability, the prescribed dosing interval, and the PK/PD
rates described above. We note that this formula (and all
the results above) are valid for the direct effect PD model,
the effect compartment PD model, and the indirect
response PD models. We illustrate the use of this formula
by applying it to a PK/PD model of metformin [17]. We
also obtain an explicit formula for CV(E) in the case that
the patient takes an extra “make up” dose when they take
the drug following one or more missed doses. This analysis
shows that taking make up doses reduces fluctuations in the
drug effect if any of the PK/PD rates described above are
sufficiently slow compared to the prescribed dosing
interval.

The rest of the paper is organized as follows. We
describe the PK/PD models in “Methods” and present the
results of analyzing these models in “Results”. We con-
clude in “Discussion” by discussing model limitations,
relations to prior work, and future directions. We collect
some technical aspects of the mathematical analysis in the
“Appendix”.

Methods

We now describe the PK/PD models used in this study.
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Fig. 2 Drug effect E(r) relative to the clinically desired drug effect
(EP) as a function of time ¢ relative to the dosing interval 7. The
three solid curves correspond to different adherence patterns and
different drugs with different PK/PD parameters. Nevertheless, the

t/T

average drug effect relative to the clinically desired drug effect is
simply the fraction of prescribed doses actually taken by the patient,
which is = 80% for each curve. However, the three curves differ
markedly in their fluctuations
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PK model

Consider the standard PK model consisting of an absorp-
tion compartment and a plasma (main) compartment as
depicted in Fig. 1. Let ¢,(¢) denote the concentration in the
absorption compartment at time ¢ > 0 and suppose c, sat-
isfies the following ordinary differential equation (ODE),
%Ca = _kapca + @7 (2)
where I(f) describes the drug input and k., denotes the PK
absorption rate. The PK absorption rate is commonly
denoted “k,” in the literature, but instead we adopt the
convention that k; denotes the transfer rate from com-
partment i to j, where i,j € {a,p,e,0} and “a” denotes
absorption compartment, “p” denotes plasma compart-
ment, “e” denotes effect compartment, and “0” denotes
elimination. We let V denote the volume of distribution and
without loss of generality let each compartment have vol-
ume V in order to simplify notation.

The concentration in the plasma compartment is denoted
by ¢,(#) and satisfies

d
—Cp = kypCa

dr - prCpa (3)

where ko denotes the PK elimination rate. If the drug input
is a single dose of size D > 0 taken at time zero, then the
concentration in the plasma compartment is

DF  kyp ( —kpot __ —k z)
t) = pol __ ap t > 0
CP( ) V kap _ pr e € I — Y (4)

if kyp # kpo and F € (0, 1] denotes the bioavailability.
PD: direct effect model

Perhaps the simplest PD model is the so-called direct effect
model, in which the effect of the drug at time t >0, E%(z),
is the following function of the drug concentration in the
plasma compartment [16],

Ede (l) R EmaxCp (t)

" ECso+ (1) ®)

We use the superscript “de” for “direct effect” to distin-
guish this model from other PD models described below. In
(5), Emax is the maximum possible effect and ECs is the
drug concentration which produces one half of the maxi-
mum effect. The direct effect model is depicted in Fig. la.

PD: effect compartment model

Another common PD model is the “effect compartment”
or “biophase” model [16] depicted in Fig. 1b. In this
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model, the drug can pass from the plasma compartment to
an effect compartment, whose concentration c. satisfies

%Ce = kpecp - ke()ce- (6)
In (6), ky denotes the transfer rate from the plasma to
effect compartments and k.y denotes the PD elimination
rate. In keeping with standard assumptions (for example,
see [16]), the amount of drug moving in and out of the
effect compartment is negligible compared to the amount
in the plasma compartment and therefore does not influ-
ence the PK of the drug (i.e. ¢, does not appear in (3)). The
effect of the drug on the body is given by

EeC(t) L Emaxce(t)

T ECS() —+ Ce(l) ’ (7)

where the superscript “ec” distinguishes this effect com-
partment model from other PD models.

PD: indirect response model
Another common PD model is the “indirect response”

model [16], in which the drug response R(f) evolves
according to an ODE of the form,

d SinaxCp
—R:hwl—————)fkR,

dt + SCso + ¢p out (8)
or

d I .cC

SR=k (I_M) — kouR.

dt " ICso + ¢p out )

In (8)—(9), the response R(f) models a biomarker whose
production is either stimulated (in the case of (8)) or
inhibited (in the case of (9)) by the concentration of the
drug in the plasma compartment. The indirect response
models in (8) and (9) are depicted respectively in Fig. 1c
and d. We note that some indirect response models allow
the drug to affect the dissipation of the biomarker [16], but
we do not consider this type of model in this paper.

In order to unify our analysis of the indirect response
model with the other PD models described above, we
relabel the parameters in (8)—(9) as

kout = keo,  kin = keoRbase;  ICso = SCso = ECso,
Inax = Smax = Emaxkpe/(RbasekeO)-
(10)

In particular, the ODEs (8)—(9) can be written using the
notation in (10) as

Emaxkpe/(RbasekeO)Cp
ECsy + Cp

d
—R = keORbase (1 +

= )—@w. (11)
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We emphasize that there is no loss of generality in using
(11) rather than (8)—(9), as it amounts to merely relabeling
parameters as in (10).

In the absence of the drug (i.e. ¢, = 0), (9) implies that
the baseline value of the biomarker R is Rp,se. It is therefore
natural to define the effect of the drug to be the change
from baseline,

Eir(t) = i(R(l‘) — Rbase) (12)

I3 PRl

where the superscript “ir
Plugging (12) into (9) implies that E™ evolves according to

g ir _ kpeEmaxCp .
dt ECso + Cp

stands for indirect response.
keoE™. (13)

Comparing the PD models

We now compare the PD models introduced above. We
first note that the direct effect model is a limiting case of
both the effect compartment model and the indirect
response model. To see this, observe that the ODE for the
effect compartment model in (6) is equivalent to

t
celt) = / Rl e (5) ds, (14)
0

assuming ¢.(0) = 0 for simplicity. If we take kp. = ko —
oo in (14) and use Laplace’s method [18], then we obtain
kpezllggl—’oo Ce(t) - cp(t).
Using the concentration—effect relations in (5) and (7), we
thus have that

lim  E*(r) = E*(r).
kpe=keo—00
Hence, the direct effect model is a special case of the more
general effect compartment model.

Similarly, the ODE for the indirect response model in
(13) is equivalent to

~ ! kpe EmaxCp(s)
E"(t) = e_keU(l_‘Y) Zpemmaxp\T/ ds, 15
0= ECs + () (15)

assuming E'"(0) = 0 for simplicity. Taking kpe = kep — 00
in (15) and using Laplace’s method yields

lim E"(r) = E*(z).
p m () ()
Hence, the direct effect model is also a special case of the
more general indirect response model.

We now show that the effect compartment model is

equivalent to the indirect response model if the drug effects
are much less than maximal. More precisely, if c. <ECsy,

then we can write the concentration—effect relation in (7) as
a geometric series,

E*(t) = Emax ;(—1)141 (;%(2))1‘ .

Ce(t) Ce(’) 2
=FEpx| —— | == R
e (EC50 (EC50> +
If
ce < ECs, (17)

then E*¢(¢) is well-approximated by taking only the first
term in (16) which yields the following linear concentra-
tion—effect relation,

E(r) == S&O celt) ~ E<(1). (18)

By the same argument, if
cp K ECs, (19)

then E™ in (15) is well approximated by

—_ Emax
EC50

t
E(t) / e R0k (5) ds ~ E(1). (20)
0
However, notice that (14) implies that E(¢) in (20) is
identical to E(¢) in (18).

To summarize, the direct effect model is a special case
of both the effect compartment model and the indirect
response model. Furthermore, if the drug effect is far from
maximal (in which case the PD models are linear), then the
indirect response model and the effect compartment model
are equivalent. The upshot of this is that if the drug effect is
far from maximal (meaning (17) or (19)), then we do not
need to analyze the direct effect, effect compartment, and
indirect response PD models separately. That is, our anal-
ysis of the effect E(¢) in (18) applies equally well to all of
these PD models.

Drug effect for general adherence

If the concentration in the plasma compartment is given by
(4) (corresponding to a single dose of the drug given at

time zero), then we show in the “Appendix” that
t) = Emax E
ECso V

(a1 + e 1 ge), (21)

where
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by = kpekap
PP (kpo — kap) (kpo — ko)’
koek
by = L J , 22
ap (kap - keo)(kap - kpo) ( )
kpeks
beO = La.

(keO - kap)(keO - kp ) .

We assume kpo, kap, and keo are distinct throughout this
paper.

Suppose the patient takes a dose of an amount Df,, > 0 at
time #, >0 for n>0, where {f,},-, is any nonnegative
sequence of dose sizes and

O=t<thh<tr<--- (23)

is any increasing sequence of times. In this case, the drug
input I(¢) in (2) is

I(t) =DF > Sdirac(t — tn)fy, (24)

n>0

where 4, denotes the Dirac delta function. Applying the
superposition principle to (21) yields that effect at time
t>01is

En.x DF
E(t) . Emax

= EC v Z (bpoefkpo(zfzn) _'_bapefkmp(zfrn)
50

nt, <t

+ beoe_kw(t_m )fm
(25)

where the sum is over all indices »n such that 7, <t. We
emphasize that (25) holds for any sequence of nonnegative
dose sizes {f,},-, taken at any increasing sequence of
times {t,},- -

If the patient is instructed to take a dose of size D > 0
every T > ( units of time, then in the special case of perfect
adherence we have for n >0,

fr=1 and (perfect adherence) (26)

t, = nt.

In this case of perfect adherence, (25) can be written in the
following form,

' Epax DF N
Epert (N‘C + t) — E(n;ax 7 (bpoe—kpoz Z(e—kpoz)n
50 n=0

N

+ bype o'y (e k)" (27)

n=0
N

+ brgehr 3 (e ),

n=0

where ¢ € [0, 7) denotes the time elapsed since the (N + 1)-
st dose. If the patient continues their perfect adherence for
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a long time, then it follows from (27) that the effect at time
t € [0,7) since the most recent dose is

lim EP (Nt + 1)
N—oo
_ Enax DF [ bppe "'
N EC507 ( 1 — e kwrt
bape—kapt beoefkeot )
1 —eH® 1 — e kot )’

To study the effects of imperfect adherence, we allow the
dose sizes {f,}, - and times {,}, -, to deviate from (26).

Results

We now use the mathematical models introduced above to
investigate how drug effects depend on patient adherence
and PK/PD parameters. We study long-term average drug
effects, and toward this end we denote the long-term
average of any time course {x(¢)},-, by

1 (T

(x) :== lim =

fim 7 ) x() dr.

We also study how drug effects fluctuate around their
averages, and we denote the coefficient of variation of any
time course {x(¢)},- o by

CV(x) := % \/TILIEO;/O (x(t) — () dr. (28)

As in “Methods”, we suppose that the patient is instructed
to take a dose of size D > 0 every t > 0 units of time. We
also assume that the drug effect is far from maximal so that
the PD models are linear, and hence the effect E(¢) in (18)
applies to all the PD models described in “Methods” (see
“Comparing the PD models” for details).

Average relative effect is the average drug
intake

Drugs are said to be “forgiving” if delayed or missed doses
only mildly change the effect on the body compared to
perfect adherence. For instance, drugs with long half-lives
(i.e. slow PK elimination rates k,o) are often said to be
forgiving. The point of this subsection is to show that if one
considers only how the long-term average drug effect
compares to the clinically desired effect, then the drug
characteristics are irrelevant and the only important quan-
tity is the long-term fraction of prescribed doses actually
taken by the patient.

If the patient has perfect adherence, then a straightfor-
ward calculation shows that the long-term average effect is
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 Emwx DF1 ke

Eperf )
< > EC50 \%4 ‘Ekpoke()

(29)

Hence, for a given drug and patient with PK/PD parameters
kpe, kpo, keo, V, Emax, and ECs, the dose size D and dosing
interval t are prescribed so that (EP®™) in (29) is the clin-
ically desired average effect.

Now consider an imperfectly adherent patient. Imperfect
adherence can take a variety of forms, such as delayed
doses, missed doses, drug holidays, extra doses, etc. [2].
Regardless of the particular form of the imperfect adher-
ence, let ¢t denote the fraction of prescribed doses actually
taken by the patient. More precisely, assume that
lim z = U,
fim g 2 = (30)
where the sum is over all times 7, < T. Hence, p > 0 is the
average number of doses taken in each prescribed dosing
interval.

Under the assumption in (30), we prove in the
“Appendix” that the average effect (E) compared to the
desired average effect (EP*T) is simply the fraction of
prescribed doses actually taken,

(E) = p(E™T). (31)

We emphasize that (31) means that the ratio of the actual
average effect to the desired average effect is independent
of the PK/PD parameters. We further emphasize that (31)
follows from merely assuming the adherence rate
assumption in (30). In particular, the imperfect adherence
could be any combination of delayed doses, missed doses,
drug holidays, extra doses, etc. We illustrate (31) in Fig. 2,
as described in the Introduction. Of course, a striking
feature of Fig. 2 is that the curves differ wildly in their
fluctuations around the average (which we investigate
below).

To summarize, if one only considers how the average
drug effect compares to the clinically desired average
effect, then the PK/PD parameters are irrelevant and the
average drug intake is the only important quantity.
Therefore, the notion of a “forgiving” drug requires con-
sidering the fluctuations in drug effects, rather than mere
averages. We investigate how effect fluctuations depend on
PK/PD parameters in the subsections below.

PK absorption, PK elimination, and PD
elimination rates are equivalent for effect
fluctuations

The PK/PD models in “Methods” involve the four rate
parameters, Kap, kpo, kpe, and keo. How do these parameters
influence how E(¢) fluctuates around its average?

We measure fluctuations in drug effect via the coeffi-
cient of variation, CV(E), defined in (28). Assuming
merely that the patient has adherence p as in (30), the
relation in (31) implies that the coefficient of variation of
the effect E can be written as

ww=é¢mﬁlwwﬁm%

1 (T/ E 2
- lim—/ ( (1) 71) dr.
T=ocT Jo \p(EreT)
Using the general formula for E(?) in (25) and the formula
for (EPT) in (29), we have that

E(t) = Z (apoefkpo(rftn) _’_aape*kw(t*tn)

(32)

perf
<E > nit, <t ( 33)
+ ane_kCU(t_t”))fm
where
Tkapkpoke()
apo = )
(pr - kap)(kpo - keO)
TkapprkeO
Ay = , 34
= o — ke Uhp — ) 4
ey = Tkapkpokeo

(keO - kap)(keO - kp ) '

By inspecting (33)—(34), we see that the ratio E(z)/(EP)
is (i) independent of kpe and (ii) a symmetric function of the
rates kap, kpo, and keo. Point (ii) means that the value of
E(t)/(EP™) is unchanged if we swap the values of kqp, kpo,
and k¢y. More precisely, if x; > 0, x, > 0, and x3 > 0 are
any three distinct values, then

E(7) __EQ
<Eperf>

<Eperf> (kapakp()skc(]):(xi Xj AX[)
(35)

(Kap skp0 ke )= (x1,X2,X3)

for any distinct indices i,j,/ € {1,2,3}. Therefore, (32)
implies that the coefficient of variation CV(E) is (i) inde-
pendent of k. and (ii) a symmetric function of the rates k,p,
kpo, and keo. In particular,

CV(E) = CV(E)

(Kap kpo k)= (21 ,%2,%3) (Kap ko0 ke ) = (i . X1)

(36)

for any distinct indices i,j,1 € {1,2,3}.

Therefore, the PK absorption rate k,p, the PK elimina-
tion rate kyp, and the PD elimination rate k.o are equally
important for determining how the effect E(¢) fluctuates
around its average. In particular, while the PK elimination
rate ky is usually considered to be a determinative factor of
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a drug’s forgiveness (since ko controls the PK elimination
half-life), this analysis shows that k,, and ko are just as
important for controlling effect fluctuations. We stress that
this result holds for any pattern of nonadherence.

We illustrate (35)—(36) in Fig. 3 by plotting sample time
courses of the relative plasma concentrations (left panel)
and relative effects (right panel) for three different choices
of kpo and keo. We note that the values of k., and 7 and the
adherence is identical for these three curves (we take
kapt = 1 and the patient takes or misses doses at the exact
same times for the three curves). Looking at the plasma
time courses in the left panel (i.e. only considering PK), the
orange dotted curve seems to represent the most forgiving
drug and the green solid curve seems to represent the least
forgiving drug. Indeed, this matches with the PK elimina-
tion rates in that the orange dotted curve has a much slower
value of k) compared to the value of kg for the green solid
curve.

However, looking at the time courses of the relative
effect in the right panel of Fig. 3, we see that the orange
dotted curve is exactly the same as the green solid curve.
This is due to (35) since the difference in the PK/PD
parameters for the orange dotted curve and the green solid
curve is merely that the values of kyo and ke have been
swapped. Furthermore, if one looks only at the plasma time
courses in the left panel, the drug represented by the purple
dashed curve seems to be much more forgiving than the
drug represented by the green solid curve. However, the
right panel of Fig. 3 shows that the purple dashed curve
actually represents the least forgiving drug in terms of the
effect fluctuations, and this is due to its very fast PD
elimination rate k.

0.8

)

0.6

Jperf
P

() /{c

0.4

-_ k'poT = 27 k’coT =0.05
= "k‘p(ﬂ' = 0057 k?eoT =2
=== kp()'/' = 02 ke()’f' =10

0 5 10 15 20
t/T

0.2

Fig. 3 Fluctuations in relative plasma concentration (left panel) and
relative effect (right panel) for imperfect adherence. The plasma
concentration time courses in the left panel are normalized by <cge"f),
which denotes the average plasma concentration for perfect

@ Springer

Coefficient of variation estimate

To obtain quantitative estimates of the fluctuations in the
effect, we must specify more details about the patient’s
adherence. In this section, we assume simply that the
patient takes each scheduled dose with probability p €
(0,1] and misses each scheduled dose with probability
1 —p €[0,1), independent of their prior behavior. Math-
ematically, this means that the dosing times in (25) are
t, = nt for n >0, and the dose sizes are

with probability p,

1
Jn= . o (37)
0 with probability 1 — p,

where f,, and f;, are independent if n # m. See “Discus-
sion” for more on this independence assumption.

It is immediate that (30) is satisfied with
1=p, (38)

and therefore (31) yields that the long-term average effect
is

(E) = p(EP™T).

In the “Appendix”, we find the following exact formula for
the coefficient of variation of the effect,

CV(E)=1/%+gz—1, (39)
where

81 = hl(kap'57kp0'c7keor)7

g = hz(kap‘[,kpo‘[7keo‘f) + hz(kpo‘f,kapf, ke()T) (40)

+ hy (keof, prTa kapf)a

and &y and h, are the functions,

B(t)/(E>)

-_ kpoT = 2, k(;()T =0.05
= "kp(ﬂ' = 0057 k?e()T =2
mm— k?p()T = 0.2., ke()T =10

0 5 10 15 20
t/T

0.2

25 30

adherence. Though the solid green curve shows large fluctuations in
plasma concentration in the left panel, the corresponding effect
fluctuations in the right panel are quite small. See the text for details
(Color figure online)
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Fig. 4 Left: Contour plot of
CV(E) in (39). Right: Sample
time course of relative effect for
the parameter values indicated
by the green circle and orange
square markers in the left panel.
In both panels, we take ky,7 =
10 and p = 0.8 (Color

figure online)

exp(—kyoT)

 xyzlx+y+2)

R o v rwwe)

h _ xy22? w
2(x,3,2) = (x+y)x+2)x—y)(x—z)(e* = 1)

Even though we have assumed a very simple model of
nonadherence in this section, the formulas in (39)—(41) are
quite complicated. Nevertheless, it is straightforward to use
these formulas to plot CV(E) as a function of the various
parameters.

In the left panel of Fig. 4, we show a contour plot of
CV(E) using the formula in (39). In this plot, we set p =
0.8 and fix 7 and k,;, so that k,,t = 10, and we let ko and
keo vary. Note that, due to the symmetry in (36), this is
equivalent to fixing either kyy or k.o and letting the other
rates vary. This plot shows that CV(E) increases if any of
the rates kpo, keo, OT kyp increases or if 7 increases. Indeed,
using the exact formula in (39), we have verified through
extensive numerical tests that for any p € (0, 1], 7 > 0, and
any distinct values of the rates ky, ke, OF kyp,

0 0
&CV(E) > 0, §CV(E) > 0,
where k is any of the three rates kyo, keo, or kgp.

To illustrate what the CV(E) implies about actual time
courses of the effect, in the right panel of Fig. 4 we plot
sample time courses of the relative effect E(t)/(EPT) for
two different values of the PD elimination rate k., (corre-
sponding to the green circle and orange square markers in
the left panel of Fig. 4). This plot shows that the effect of
the drug with a fast PD elimination rate (green solid curve)
fluctuates greatly, whereas the drug with the slow PD
elimination rate maintains a fairly stable effect (orange
dashed curve). This agrees with the predictions of the
formula for CV(E) in (39), since CV(E) ~ 0.39 for the
green curve and CV(E) = 0.11 for the orange curve. We
emphasize that the only difference between these two time
courses are the different values of k.q; all of the other PK/
PD parameters and the adherence patterns are identical. We

0.5
0.4
03 &
S
=
02 =
&
0.1
wm fig7 = 0.1
1 1 1 1 1 il
0 %5 10 15 20 25 %0
t/T

note that the value of k. is sufficiently large that the PD is
essentially the direct effect model (see “Comparing the PD
models”). Hence, Fig. 4 illustrates how a drug which is
well described by a direct effect model may yield very
large fluctuations in the effect.

Application to metformin

We now illustrate our results for a patient with type 2
diabetes mellitus taking metformin with imperfect adher-
ence. We take the PK/PD model developed by Hong et al.
[17] as our starting point. Hong et al. [17] describes the PK
of metformin with a model identical to our PK model.
Further, the PD model of [17] is identical to our indirect
response PD model. Specifically, Hong et al. [17] describes
the PD of metformin via the inhibitory indirect response
model in (9), where R is the plasma glucose, kj, is the zero-
order rate constant for glucose production, ko is the first-
order rate constant for glucose utilization, ¢, is the met-
formin concentration in the plasma compartment, I1Csq is
the concentration of metformin yielding half-maximal
antihyperglycemic effect, and I, = 1.

Table 1 Parameter values for

metformin PK/PD model Parameter  Numerical value
developed in [17] Kap 2.15h7!

kpo 0.1219h™!

kin 195.2mg/(dL - h)

Kout 0.8h™!

T 12h

Tnax 1

ICs 0.423mg/dL

D 500 mg

VIF 6480dL
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If we relabel the PD parameters as in (10) and define the
effect of metformin to be the change in glucose from the
baseline glucose Ryuse = kin/kow as in (12),

E™(t) := Rpase — R(1),

then E'(¢) satisfies the nonlinear ODE in (13).

Using the numerical values of Hong et al. [17] (see
Table 1), the long-term average plasma compartment
concentration for a D = 500 mg dose administered twice
per day (t = 12h) is

DF 1
perfy — 2~ ~0.05 dL.
(W) = g = 005 me/ (42)
Furthermore, Hong et al. [17] estimated that

ICso = ECsp = 0.423mg/dL. Thus, the average plasma
concentration of metformin for perfect adherence is almost
an order of magnitude less than the concentration which
yields one half of the maximal effect,

(b)) 005

~——~0.12 < 1. 43
ECsop 0423 < (43)

Hence, this model agrees with the assumption of “Meth-
ods” that the effect for perfect adherence is much less than
the maximal effect.

In particular, (43) suggests using the linear concentra-
tion—effect approximation in (20),

E(1) ~ E*(1), (44)

to estimate the drug effect. In the left panel of Fig. 5, we
plot CV(E) using the formula in (39) as a function the
adherence p. The green solid curve uses the population
average parameter values of [17] (see Table 1), including
the PK absorption rate of k,, = 2.15 h~! corresponding to
the immediate release metformin used in [17] (between
subject variability in a population of patients is addressed
in “Discussion”). The orange and purple curves use the
same parameter values except for slower PK absorption
rates of Kk, = 0.215 h! (orange curve) and ky, =

0.0215h~! (purple curve) corresponding to hypothetical

Fig. 5 Left: Coefficient of
variation of effect of metformin 0.41
for linear E model (curves) and
nonlinear E™ model (square
markers). Right: Sample time
courses of decrease in blood

e,
.
.
"

CV of metformin effect

extended release metformin formulations. This plot shows
how CV(E) decreases for slower absorption rates.

The square markers in the left panel of Fig. 5 are values
of the coefficient of variation of the effect E for the full
nonlinear indirect response model described above. These
values of CV(E™) are obtained from numerical simulations
of E™ over many dosing intervals. In support of the
approximation in (44), these values of CV(E™) are each
within 10% of the corresponding value of CV(E) computed
from the formula in (39).

Therefore, this analysis predicts that extended release
formulations dosed at the same frequency as immediate
release formulations have the potential of maintaining a
more stable drug effect in spite of imperfect adherence.
This is illustrated in the right panel of Fig. 5, where we plot
sample time courses of the drug effect E for the param-
eters used in the left panel. We stress that these time
courses of E' are the effect for the full nonlinear indirect
response model described above. This plot shows how the
drug effect (in this case, a decrease in glucose) persists
following a missed dose if the drug absorption rate is slow.

“Make up” doses reduce variation for slow PK
or PD

Is it ever appropriate for a patient to take an extra “make
up” dose to compensate for a missed dose? To address this
question, we modify the adherence model presented in
“Coefficient of variation estimate”. In “Coefficient of
variation estimate”, we assumed that the patient either
takes or misses each scheduled dose with respective
probabilities p and 1 — p. Importantly, the patient never
takes more than a single dose at a time in the model of
“Coefficient of variation estimate”.

In this section, we suppose that the patient takes a
double dose whenever they take their medication if they
happened to have missed their prior dose. More precisely,
we assume that the dosing times in (25) are ¢, = nt for all
n>0. To describe the dose sizes, let {fn}ngo be a
sequence of independent Bernoulli random variables with

— kap = 2.15hr !
* kyp = 0.215 !
ki, = 0.0215hr ™!

.
e,
.
e
.

E"(t) (mg/dL)

glucose for nonlinear E' 04p -

metformin model. See the text D.'."'I'_'I--.

for details 0.2F "
506 o7

w (adherence)
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- { 1 'with proba.lt')ility p, (45)
0 with probability 1 — p.

The dose sizes in (25) are then fy = &, and for n> 1,
0 if £, =0,

=g 1 & =4=1, (46)

2 ifén:Lén—l:O'

In words, (45) means that the patient “remembers” or
“forgets” to take their medication at the nth dosing time
with respective probabilities p and 1 — p. Further, (46)
means that the patient does not take a dose when they
forget, they take a single dose if they remember and they
took their last scheduled dose, and they take a double dose
if they remember and they happened to have missed their
last scheduled dose. This adherence model first appeared in
[19] as an input to a simpler PK model. We refer to this
model as the “double dose protocol” and the model in
“Coefficient of variation estimate” as the “single dose
protocol.”

In the “Appendix”, we prove that the double dose
protocol has the long-term average drug intake in (30) with

double

p=p =p+p(l-p).

As expected, the double dose protocol yields a higher
average drug intake than the intake rate of "¢ :=p in
(38) for the single dose protocol. Hence, from the per-
spective of increasing the average drug effect, the double
dose protocol is always superior to the single dose protocol.

How do the drug effect fluctuations for the double dose
protocol compare to the single dose protocol? Letting
E*ngle (1) and E%Ule(¢) denote the respective drug effects
for the single and double dose protocols, CV(E*n¢l) is
given in (39). We prove in the “Appendix” that the coef-
ficient of variation for the double dose protocol is

CV(Edouble) _ 83

—= 1,
p(2—p)

(47)

where

83 ‘= h3 (kapT7 kpo‘ﬁ keOT) + h3 (kpo‘f, kapfv keOT)
+ h3 (ke()fa kp()fa kapf)a

and A3 is the function

hs(x,y,2)
= (xyz)’
e *((=2p* +Tp — 4)e* +2p(p* —3p +2) + (4 — 3p)e™)
2(e — Dx(y —x)*(z — x)°
2(p* 4 3pe® — 5p — de +4)
@-Dr-x(=00r-2"0+2)
2(p* —4p* +4p)
(e-Dy-x)—x)r-2"F+2)
2(p =2)(p = I)pe”*
G-0)E-x)-2+2)
2(p =2)(p = 1)pe™
(@ -1y -xc-x)0-2"(+2)

X

In Fig. 6, we use the formulas in (39) and (47) to plot the
following normalized difference between the effect coef-
ficients of variation for the single and double dose
protocols,

CV(Esingle) —CV (Edouble)
- CV(Esingle)

d: eR.

Note that 6 <0 means that the single dose protocol yields
smaller fluctuations in drug effect and 6 > 0 means that the
double dose protocol yields smaller fluctuations in drug
effect. Figure 6 shows that the double dose protocol yields
smaller fluctuations in drug effect compared to the single
dose protocol except in the case that all three rates kp, kpo,
and ke are much faster than 1/7.

To illustrate what these results imply about actual time
courses, in Fig. 7 we plot a path of the relative drug effect
for the single dose protocol (dashed orange curve) and the
double dose protocol (solid purple curve). Evidently, the
drug effect is much less perturbed by missed doses for the
double dose protocol compared to the single dose protocol.
Indeed, the time courses in Fig. 7 illustrate that the double
dose protocol has a larger average drug effect
(U = p 4 p(1 — p) =0.96 > 0.8 = p = "), Fur-
ther, these time courses show that the double dose protocol
has smaller effect fluctuations. In fact, for the values of
p =08, efw® = 1076, ¢~ ® = (.5, and e %7 = 0.8 used
in this plot, (39) and (47) yield

CV(E%™l) ~ 0.08 <CV/(E*"*) ~ 0.15, (48)

and thus 0 ~ 0.45. We emphasize that the times of missed
doses and all the PK/PD parameters are identical for the
two curves in Fig. 7.
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efimination rate, and PD elimination rate are equally
important for determining fluctuations and thus
forgiveness.

We further considered a simple model of patient non-
adherence which allowed us to calculate the drug effect
fluctuations as a function of the PK and PD rates. Using
this model of patient nonadherence, we also investigated
different ways of handling missed doses, referred to as the
single dose protocol (i.e. skip any missed doses) and the
double dose protocol (i.e. take an extra “make up” dose to
compensate for a missed dose). As one would expect, we
found that the double dose protocol increases the average
drug effect compared to the single dose protocol. In addi-
tion, we found that the double dose protocol decreases
effect fluctuations compared to the single dose protocol if
any one of the aforementioned PK/PD rates is slow com-
pared to the prescribed dosing rate.

Taking a double dose might be avoided out of concern
hat it could cause the drug concentration to rise danger-
high. This issue was recently addressed in [20].
uming a slow PK absorption or PK elimination rate,
in [20] implies that the double dose protocol
most_cause the plasma concentration to rise only
shghily above the concentration in a perfectly adherent
N 'en n the KAppendix”, we briefly review this result
\ ing the\notation\of the present paper.

\

E(t)/(EP)
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In our model and analysis, we assumed fixed values of
the model parameters (PK/PD rates, volume of distribution,
bioavailability, etc.). It is well-known that there is often
significant population variability in these parameters. This
means that, for example, any two individual patients in a
population likely have different values of kyp, kyo, and keg.
Our analysis can thus be interpreted as concerning any
single patient in a population. Our result that the average
drug effect relative to the clinically desired effect is the
fraction of prescribed doses taken by the patient thus holds
for any patient in a population. The reason for this is that
the desired effect is defined as the effect that this particular
patient would have if they had perfect adherence, which
depends on parameters specific to that patient. Put another
way, this result is expressed mathematically in (1), and the
patient-specific PK/PD parameters in the lefthand side of
(1) cancel out. In addition, our result that kup, kpo, and keo
are equally important for determining forgiveness also
holds for any patient in the population by the same rea-
soning. Finally, it is straightforward to use the formulas
(39) and (47) for CV(E) to investigate how population
variability affects the coefficient of variation of effect for a
particular drug. In particular, one obtains a distribution of
CV(E) by merely evaluating these formulas for many
realizations of kyp, kpo, and keo sampled from given prob-
ability distributions which describe the population vari-
ability in these PK/PD rates.

The present work follows a line of previous works
which have used PK, PD, and coupled PK/PD models to
study medication nonadherence. Much of this previous
work employed numerical computations
[6, 11, 15, 21, 21-32], which allowed for detailed study of
specific PK/PD models, some of which are too complicated
for mathematical analysis. Previous works which have
utilized  detailed  mathematical  analysis  include
[19, 20, 33-36]. These prior analytical works considered
isolated PK models rather than the coupled PK/PD models
considered in the present work.

As a theoretical investigation, our model and analysis
necessarily makes many simplifying assumptions. For
example, while the PK/PD models studied in this paper are
quite standard, certainly many drugs have been described
by more complicated models (for example, models with
more compartments such as transit compartment models
[37, 38]). In addition, we assumed a continuous drug effect,
whereas the more clinically relevant effect in some settings
is binary. In a more general model, we would not be
assured that the PK absorption, PK elimination, and PD
elimination rates would be exactly equivalent in their
contributions to effect fluctuations, as we found for the
models in this paper. Nevertheless, this work demonstrates
the general result that the PK elimination rate is not a

uniquely determinative factor for drug forgiveness. This
result is not surprising, but it emphasizes the point that
other PK rates and PD rates must be considered when
estimating forgiveness.

While the results in “Average relative effect is the
average drug intake”—“PK absorption, PK elimination, and
PD elimination rates are equivalentfor effect fluctuations”
were proven for any pattern of nonadherence, the simple
model of patient adherence in “Coefficient of variation
estimate”—*“*“Make up” doses reduce variation for slow PK
or PD” assumes that a patient misses a dose independently
of their prior behavior. However, some data shows corre-
lations in the doses taken by some patients [39], meaning
that, for example, a patient may be more likely to miss a
dose if they missed their prior dose. We ignored any such
correlations and assumed independence in order to simplify
the analysis and results. Indeed, even in this simplified
scenario, the formulas obtained in “Coefficient of variation
estimate” and ““Make up” doses reduce variation for slow
PK or PD” are quite complicated. Furthermore, the exis-
tence of such correlations for all or even most patients is
debatable. Indeed, in a detailed statistical analysis of the
data in [40], Sun et al. [41] found that only one third of the
patients studied showed sufficient evidence to reject the
hypothesis of independent dosing.

One key assumption of this work is that the drug effect
is far from maximal, which makes the PD models linear.
This assumption follows the computational study of Bois-
sel and Nony [15], who noted that this is the exact scenario
in which adherence is most critical. In particular, due to the
plateauing nature of typical dose-response curves (such as
the concentration—effect relations in the PD models in
“Methods”), missing doses only mildly reduces the drug
effect if the prescribed dose is near the effect plateau. In
contrast, in the scenario studied in the present paper in
which the prescribed dose is much less than the dose
yielding maximal effect, missed doses cause a significant
decrease in drug effect. Nevertheless, investigating the
effects of nonadherence in the case that the drug effect is
not necessarily far from maximal remains an important
area for future research.

Appendix

In this appendix, we present the mathematical proofs and
derivations of some results in the main text.

Proof of formula for E(t) in (21)
To verify (21), note first that (21) and the definitions in (22)

imply that E(0) = 0, as desired. Next, the definition of E(r)
in (18) and the ODE for c. in (6) imply that E(?) satisfies
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dE_ Emax

—E =2 kecp — keoE.
dr ECsp <0

kpecp (49)

Differentiating (21) with respect to ¢ and using the value of
cp in (4) shows that (21) indeed satisfies (49), which ver-
ifies (21). O

Proof that (E) = u(EPe)

To prove (E) = u(EP™), we let k > 0 and consider the
large T behavior of

/ Z e—k(l f,,f dt
0

nit, <t

Interchanging the sum and integral yields

1 T
F(T,k) = ; )y / e K, dr
n: 1‘,, <TYh (50)
Z fomg= Y e g,
n L, <T nt <T
By (30), the first term in (50) has the large T limit,
11 1
lim —— = U—.
M 20 = e &

We claim that the second term in (50) vanishes as T — oc.
To see this, let ¢ € (0,1) and observe that

1 _K(T—
? Z e k(T tn)ﬁl
nt, <T
! —k(T—1,) 1 —k(T—1,)
s S
nity, < (1—¢)T n:(1—e)T<t, <T
1 1
—ekT
<e™o Y htn DL h
nity < (1—¢)T n:(1—e)T<t, <T

Since (30) implies that

ir 1
lim e > fi=0,

T—o0
nity, < (1—¢)T

it follows that

1
- 2 : —k(T—t, - 2 :
TIEISO ¢ hs TIEEOT I

nt,,<T n:(1—e)T<t, <T

(52)

To estimate the upper bound in (52), let &, > 0 and observe
that (30) implies that if T is sufficiently large, then

RS BpY

n:ty, <T(1—¢) T(l—e)<t, <T

fu Su/t+ e, (53)

and
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p/t—e<

>k

n:ty <T(1—¢)

1
= (54

Combining (53)—(54) yields

. 1
fimz >

n:T(1—e)<t, <T

feSu/t+e —(1—&)(n/t—e)

=26 + &eu/1 — g&y.
Since ¢ € (0,1) and & > 0 are arbitrary, we conclude from
(52) that

1
Jim — > e HTE =0,

nit, <T

and therefore (50) and (51) imply

lim F(T,k) = ,ui. (55)

T—o0 kt
Finally, using the expression for E(f) in (25), the values of
f» and ¢, in (26) for perfect adherence, and the result in
(55), we conclude that

<E> _ 'uEmax % (@ bap beO )
ECso V

= (P,

kpot = kapT  keoT

Derivation of CV(ESingle)

Using the model of nonadherence introduced in “Coeffi-
cient of variation estimate”, applying (33) gives

E(l‘) 1 [t/]

AT TP

<apoeikp()(t7nf)

where the coefficients apo, dap, and aeo are defined in (34),
|#/7] denotes the largest integer less than or equal to ¢/,
and {f,},, are as in (37). Note that we now take the
sequence {f,},c; to be bi-infinite (i.e. n € Z), which is
convenient for the analysis below.

For € [0, 7], define

Y(r) =

— (apoe’kPOtApo + aape’k*"”Aap + agpe *"Ay),
(56)

where

o0

Z “kinyrg o for i,j € {a,p,0}.

n=0

(57)

Note that A; converges almost surely by the Weierstrass
M-test since |f;| is bounded by a deterministic constant for
all n € Z (namely, |f,| <1 in this case). Random variables
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of the form in (57) are often referred to as random pullback
attractors [42—46].
It then follows from (32) and Theorem 1 in [20] that

e
:\/;/O [E[(‘P(t)—l)z] dr,

where E denotes mathematical expectation. Using the
definition of W¥(¢r) in (56), equation (58) implies that
CV/(E®"ek) requires calculating expectations of the form

E[A;] for i,j,1,m € {a,p,0}. (59)

W(t) — 1)2 dt
(58)

and  E[A;Aum),

These expectations are obtained immediately from Corol-
lary 3 in [20]. In particular, we have that

P
ElAy] =%
pP
ElAsAm] = T e

+ 2( 1
Pla—ewni—e

_klmf)

1
1 — e kit )
Plugging these formulas into (58) and performing the
integration yields for the formula for CV(E*"#*) in (39).

Derivation of pdcuble

For the double dose protocol in ““Make up” doses reduce
variation for slow PK or PD”, it is immediate that {f,},.,
is an irreducible, time-homogeneous Markov chain with
the following transition probabilities,

P(far1 =0fu=0)=1-p ifie{0,1,2},
0 ifi=0,
Pl =11fa=i)=1{ p ifi=1,
p ifi=2,
p ifi=0,
P =21fa=0) =30 ifi=1,
0 ifi=2.

Using standard Markov chain results (for example, see
section 1.7 in [47]), a quick calculation shows that the
stationary distribution of {f,},., is

1—p ifi=0,
P(f, =i) = p? ifi=1,
p(l—p) if i=2.

Using (30), Birkhoff’s ergodic theorem (for example, see

section 7.2 in [48]) thus implies that the long-term fraction
of doses taken for the double dose protocol is

2
jdouble _ lim _an S iP(f,=i)=p+p(l-p).
i=0

Derivation of CV(Edouble)

The derivation of the formula for CV(E%U) in (47) is
identical to the derivation presented in “Derivation of
CV(Es"&)” above except the formulas for the expecta-
tions in (59) are given by the formulas for the double dose
protocol in Corollary 3 in [20].

Maximum plasma concentration for double dose
protocol

Theorem 5 in [20] yields the following upper bound for
the maximum possible plasma compartment concentration
obtained by following the double dose protocol,

A (1) < max ¥ (s) + (), (60)

where ¢ is the following dimensionless factor,

kpo kap

0 1= (k) (ko)™ (61)

and <cgerf) DVF i Too is the long-term average plasma con-
centration for perfect adherence. The upper bound in (60)
is valid for any time 7> 0 and any sequence of remem-
bering or forgetting {¢,},~, for the adherence model in
“*“Make up” doses reduce variation for slow PK or PD”
above. The first term in the righthand side of (60) is the

maximum plasma concentration obtained by a patient with

0.8
° 0.6
’:;‘él'
= 0.4
b
[}

0.2

02 04 06 0

exp(—kapT)

Fig. 8 Contour plot of the factor ¢ in (61) which bounds the
maximum increase in plasma concentration caused by following the
double dose protocol (see (60))
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perfect adherence. The second term in the righthand side of
(60) bounds the maximum possible increase in plasma
concentration caused by the double dose protocol.

In Fig. 8, we plot the factor ¢ in (61). This plot shows

that ¢ < 11if kypt < 1 and/or kot < 1. This means that if
the PK absorption rate is slow compared to the dosing
interval (k,pt < 1) and/or the PK elimination rate is slow
compared to the dosing interval (kpt < 1), then the dou-
ble dose protocol can at most cause the plasma concen-
tration to rise only slightly above the concentration for
perfect adherence.

Funding SDL was supported by the National Science Foundation
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