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Abstract
In insect respiration, oxygen from the air diffuses through a branching system of air-
filled tubes to the cells of the body and carbon dioxide produced in cellular respiration
diffuses out. The tracheal system has a very large surface area, so water loss is a
potential threat and the question of how insects regulate oxygen uptake and water
loss has been an important issue in insect physiology for the past century. The tracheal
system starts at spiracles on the surface of the body that insects can open and close, and
three phases are observed experimentally, open or closed for relatively long periods
of time and opening and closing rapidly, which is called fluttering. In previous work
we have shown that during this flutter phase, no matter how small the percentage of
time that the spiracles are open, the insect can absorb almost as much oxygen as if the
spiracle were always open, if the insect flutters fast enough. This left open the question
of water loss during the flutter phase, which is the question addressed in this paper.
We formulate a stochastic diffusion-convection model for the concentration of water
vapor in the tracheae.Mathematical analysis of themodel yields an explicit formula for
water loss as a function of six non-dimensional parameters and we use experimental
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data from various insects to show that, for parameters in the physiological ranges,
water loss during the flutter phase is approximately proportional to the percentage of
time open. This means that the insect can solve the oxygen uptake versus water loss
problem by choosing to have their spiracles open a small percentage of time during
the flutter phase and fluttering rapidly.

Keywords Stochastic switching · Stochastic hybrid system · Random PDE ·
Piecewise deterministic Markov process · Randomly switching boundary

Mathematics Subject Classification 92C30 · 60J60 · 60H15 · 35R60

1 Introduction

Insects have an efficient mechanism of respiration in which atmospheric air is taken
directly to every cell in the body via a progressively more finely branching system
of air-filled tubes called the tracheae. Tracheae open to the outside air via a set of
openings called spiracles (Wigglesworth 1965). Typically, there is one pair of spiracles
per segment, although this arrangement varies considerably among different taxa of
insects. Topologically, the tracheal system is an invagination of the body wall, and
accordingly, it is lined with a non-living cuticle that is homologous to the exoskeleton.
The tracheal system is the principal route for oxygen uptake and for the removal of
carbon dioxide produced bymetabolism. Because of its large surface area, the tracheal
system is also potentially a major avenue of water loss.

Insects have a muscular system by which they can close the spiracles. Closing the
spiracles greatly reduces water loss. For instance, when insects are forced to keep
their spiracles open, by exposing them to 5% carbon dioxide, their rate of water loss
increases two- to ten-fold; the blood-sucking bug Rhodnius prolixus, an otherwise
drought resistant species that can live for weeks without access to water, dies from
desiccation within 3 days when its spiracles are forced to remain open (Wigglesworth
1965; Wigglesworth and Gillett 1936). Many insects, particularly those that live in
dry environments or have little access to water, keep their spiracles closed much of
the time, but also exhibit a pattern of discontinuous respiration in which the spiracles
alternately open and close for brief periods of time, a phenomenon called fluttering
(Wigglesworth 1931; Schneidermann 1956; Contreras et al. 2014). There are also
brief periods of time during which the spiracles remain open. These open phases
are associated with the rapid release of carbon dioxide, whereas the fluttering phase is
associated with oxygen uptake (Buck et al. 1953; Schneiderman 1960; Lighton 1996a;
Marias et al. 2005; Matthews and Terblanche 2015). The open phases allow for gas
exchange, but also allow water loss, and this presents a dilemma. Ideally, insects
need a respiratory system that simultaneously allows for efficient oxygen uptake and
minimizes water loss.

We previously studied how the rate of oxygen uptake during the flutter phase
depends on the rate of fluttering. Using a mathematical model of oxygen diffusion
in the insect tracheal system, we derived a formula for oxygen uptake during the flut-
ter phase that shows how oxygen uptake depends on the length of the tracheal system,
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the percentage of time open during the flutter phase, and the flutter rate (Lawley et al.
2020). Our results showed that an insect can have its spiracles closed a high percent-
age of time during the flutter phase and yet receive almost as much oxygen as if the
spiracles were always open, provided that the spiracles open and close rapidly. Thus,
insects can regulate their rate of oxygen uptake by varying the rate of fluttering while
keeping the spiracles closed a large fraction of the time during the flutter phase.

However, those results left open the question of whether water loss is also increased
by rapid fluttering or whether water loss remains proportional to the percentage of time
open during the flutter phase. This is the question addressed in this paper. We develop
and analyze a stochastic mathematical model to show that water loss in the flutter
phase is approximately proportional to the percentage of time the spiracles are open.
Thus, insects can achieve both high oxygen intake and low water loss by keeping the
spiracles closed most of the time and fluttering rapidly.

The rest of the paper is organized as follows. In Sect. 2, we formulate themathemat-
ical model, which is a one-dimensional diffusion-convection equationwith a boundary
condition that stochastically switches between two discrete states. The diffusion-
convection equation models the water vapor concentration in a tracheal tube, and
the switching boundary condition models the opening and closing spiracle. In Sect. 3,
we analyze the probability distribution of the solution to this random partial differ-
ential equation (PDE) model at large time. In particular, we find the support of this
distribution and find an explicit formula for this distribution in a certain physiologi-
cally relevant parameter limit. In Sect. 4, we find and analyze the mean of the random
PDE by solving an associated deterministic diffusion-convection-reaction boundary
value problem. This analysis yields an explicit formula for the average water loss,
which we then analyze in several parameter limits. In Sect. 5, we estimate parameter
ranges from experimental data on various insects and investigate the physiological
implications of the model. In particular, we show that during the flutter phase, water
loss is approximately proportional to the percentage of time the spiracles are open.
We conclude by discussing our results in the context of prior work.

2 Model formulation

2.1 Dimensional model

Following Lawley et al. (2020), we consider a single spiracle opening to a trachea that
branches and ends in a set of tracheoles. We assume that the tracheae branch in such
a way that the cross-sectional area remains constant, and this assumption is supported
by studies of several types of insects (see Locke (1958) forRhodnius, Krogh (1920) for
Cossus larva, Thorpe and Crisp (1947) for Aphelocheirus, and Weis-Fogh (1964) for
Aeshna and Schistocerca gregaria). Since tracheael tubes are thin, we treat each tube
in the tracheal network as one-dimensional. Furthermore, since the cross-sectional
area of the tracheae is constant along the tracheal network, we ignore the branching
structure (Bressloff and Lawley 2016). In particular, we consider an interval of length
L > 0, where L is the total length of the tracheal tubes that connect the spiracle to a
tracheole.
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In our model, the tracheoles are at x = 0, the spiracle is at x = L , and w(x, t)
denotes the water vapor concentration in the trachea at position x ∈ [0, L] at time
t ≥ 0. We assume thatw(x, t) satisfies the diffusion-convection (advection) equation,

∂

∂t
w = Dw

∂2

∂x2
w − v

∂

∂x
w + k(Iw − w), x ∈ (0, L), t > 0, (1)

where Dw = 0.282 cm2/s is the water vapor diffusivity (Cussler 2009). The second
term in the righthand side of (1) models bulk flow of air into the trachea with velocity
v ≤ 0. The final term in (1) models transfer of water into the trachea through the
walls of the trachea. The parameter k > 0 is the water transfer rate and Iw > 0 is the
equilibrium water concentration in the trachea if the spiracle is always closed.

We impose a no flux boundary condition at the tracheoles,

−Dw

∂

∂x
w(0, t) + vw(0, t) = 0,

and switching boundary conditions at the spiracle

−Dw

∂

∂x
w(L, t) + vw(L, t) = −b(Aw − w(L, t)), when spiracle open, (2)

−Dw

∂

∂x
w(L, t) + vw(L, t) = 0, when spiracle closed. (3)

Naturally, (3) imposes a no flux condition when the spiracle is closed. When the
spiracle is open, (2) guarantees that the flux out of the spiracle is proportional to the
difference between the water vapor concentration at x = L and the ambient water
vapor concentration, Aw > 0. The constant of proportionality is b = 4Dw/(πa)

(Bezrukov et al. 2000), where a > 0 is the radius of the spiracle. In the case that the
tube is long and thin (a/L � 1), the boundary condition (2) becomes the Dirichlet
condition, w(L, t) = Aw (one can see this from the dimensionless model in Sect. 2.2
below).

The open and closed durations are known to fluctuate during the flutter phase
(Schneiderman 1960; Heinrich et al. 2013), and we take them to be exponentially
distributed with a mean that is estimated from experimental data. This means that the
boundary condition at x = L switches between (2) and (3) according to a two-state
Markov process,

open � closed,

where α0 > 0 is the closing rate and α1 > 0 is the opening rate. Also, it is sometimes
convenient to work with the percentage of time in the open state and the overall
opening/closing rate,

p0 := α1

α0 + α1
, r := α0 + α1.
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A simplified version of this model appeared in our previous work (Lawley et al. 2020)
with v = 0 and b = ∞.

2.2 Dimensionless model

If we rescale space and time, x → 1
L x and t → Dw

L2 t , and define a new dimen-
sionless water concentration w := w/Iw, then the model reduces to the following
dimensionless set of equations

∂

∂t
w = ∂2

∂x2
w − V

∂

∂x
w + K (1 − w), x ∈ (0, 1), t > 0, (4)

− ∂

∂x
w(0, t) + Vw(0, t) = 0, (5)

− ∂

∂x
w(1, t) + Vw(1, t) = −(1 − n(t))B(A − w(1, t)), (6)

where n(t) ∈ {0, 1} is a two-state Markov jump process that leaves state n ∈ {0, 1}
at the dimensionless rate αn > 0. This model has the following 6 dimensionless
parameters,

V := vL

Dw

≤ 0, K := kL2

Dw

, B := bL

Dw

= 4L

πa
,

A := Aw

Iw
, α0 := α0L2

Dw

, α1 := α1L2

Dw

. (7)

Furthermore, it is sometimes convenient to work with the dimensionless overall open-
ing/closing rate,

R := r L2

Dw

= α0 + α1. (8)

Note that when n(t) = 0, the boundary condition at x = 1 is

− ∂

∂x
w(1, t) + Vw(1, t) = −B(A − w(1, t)). (9)

Similarly, when n(t) = 1, the boundary condition at x = 1 is

− ∂

∂x
w(1, t) + Vw(1, t) = 0. (10)

3 Probability distribution of the solution to the random PDE

In this section, we construct the random solution to (4)–(6), prove it converges in
distribution at large time, and analyze this limiting distribution. In particular, we find
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the support of this limiting distribution and find an explicit formula for this distribution
in a certain parameter limit. The analysis in this section is similar to section 3 in Lawley
and Keener (2019) which modeled electrodiffusion in a gated ion channel.

3.1 Construction of the solution

Weconstruct the random solution to (4)–(6) by repeatedly composing the deterministic
solution operators for open and closed boundary conditions. Let

�t
0 : L2[0, 1] → L2[0, 1]

denote the solution operator which takes an initial condition f ∈ L2[0, 1] and maps
it to the solution �t

0( f ) of the deterministic PDE (4) with fixed boundary conditions
(5) and (9) at time t > 0. Similarly, let �t

1 denote the solution operator for (4) with
fixed boundary conditions (5) and (10). These solution operators are given in Lemma 1
below.

Wedenote the standard L1[0, 1] and L∞[0, 1] norms by ‖·‖1 and ‖·‖∞ respectively.
Define the weighted L2[0, 1] inner product,

( f , g)w :=
∫ 1

0
f (x)g(x)e−V x dx, (11)

and the corresponding norm, ‖ f ‖w := √
( f , f )w. The inner product in (11) is chosen

so that the spatial differential operators in (4) are self-adjoint.
Since we want to compute explicit formulas in various asymptotic limits, we need

explicit formulas for �t
0 and �t

1 as well as their eigenfunctions and eigenvalues.

Lemma 1 The solution operator, �t
0 : L2[0, 1] → L2[0, 1], which takes an initial

condition f ∈ L2[0, 1], and maps it to the solution of (4) with boundary conditions
(5) and (9) is

(�t
0( f ))(x) := wss

0 (x) +
∞∑
k=0

e−μ
(k)
0 t(φ(k)

0 , f − wss
0

)
w
φ

(k)
0 (x), (12)

where wss
0 (x) is the steady-state solution of (4), (5), (9), the eigenvalues are

−μ
(k)
0 := −

(
V 2

4
+ λ

(k)
0 + K

)
< 0, k ≥ 0,

where λ
(k)
0 > 0 is the kth positive solution of the transcendental equation,

tan
(√

λ
(k)
0

)
= B

√
λ

(k)
0

V 2/4 − (V /2)B + λ
(k)
0

, k ≥ 1,
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and the orthonormal (with respect to (·, ·)w) eigenfunctions are

φ
(k)
0 (x) := ν

(k)
0 e

V
2 x

[
V
2 sin

(√
λ

(k)
0 x

)
+

√
λ

(k)
0 cos

(√
λ

(k)
0 x

)]
, k ≥ 1,

where ν
(k)
0 is such that ‖φ(k)

0 ‖w = 1. Furthermore, if B(1 + V /2) < V 2/4, then

−λ
(0)
0 ∈ (0, V 2/4) is the unique positive solution to

tanh
(√

−λ
(0)
0

)
= B

√
−λ

(0)
0

V 2/4 − (V /2)B + λ
(0)
0

,

and

φ
(0)
0 (x) := ν

(0)
0 e

V
2 x

[
V
2 sinh

(√
−λ

(0)
0 x

)
+

√
λ

(0)
0 cosh

(√
−λ

(0)
0 x

)]
,

where ν
(0)
0 is such that ‖φ(0)

0 ‖w = 1. If B(1 + V /2) ≥ V 2/4, then φ
(0)
0 (x) ≡ 0 and

the value of λ(0)
0 is irrelevant.

Similarly, the solution operator of (4) with boundary conditions (5) and (10) is

(�t
1( f ))(x) := wss

1 (x) +
∞∑
k=0

e−μ
(k)
1 t(φk, f − wss

1

)
w
φ

(k)
1 (x), (13)

where wss
1 (x) is the steady-state solution of (4), (5), (10), the eigenvalues are

−μ
(k)
1 := −

(
V 2

4
+ λ

(k)
1 + K

)
< 0, k ≥ 0,

where λ
(0)
1 = −V 2/4 and λ

(k)
1 = k2π2 for k ≥ 1, and the orthonormal (with respect

to (·, ·)w) eigenfunctions are

φ
(0)
1 (x) := ν

(0)
1 e

V
2 x

[
sinh( V2 x) + cosh( V2 x)

]
= ν

(0)
1 eV x ,

φ
(k)
1 (x) := ν

(k)
1 e

V
2 x

[
V
2 sin(kπx) + kπ cos(kπx)

]
, k ≥ 1,

where ν
(k)
1 is such that ‖φ(k)

1 ‖w = 1 for k ≥ 0.

We note that we can solve for the steady-states wss
0 (x) and wss

1 (x) explicitly, but
the formulas are quite complicated so we collect them in the Appendix.

Proof of Lemma 1 Let n ∈ {0, 1}. It is immediate that if (�t
n( f ))(x) = wss

n (x) +
h(x, t), then h(x, 0) = f (x)−wss

n (x) and h(x, t) satisfies the homogeneous problem,

∂

∂t
h = ∂2

∂x2
h − V

∂

∂x
h − Kh, x ∈ (0, 1), t > 0,
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− ∂

∂x
h(0, t) + Vh(0, t) = 0,

− ∂

∂x
h(1, t) + Vh(1, t) = (1 − n)Bh(1, t).

Further, it is straightforward to check that if h(x, t) = e−( V
2
4 +K )t e( V2 )xu(x, t), then

u(x, t) satisfies the diffusion equation with Robin boundary conditions,

∂

∂t
u = ∂2

∂x2
u, x ∈ (0, 1), t > 0,

− ∂

∂x
u(0, t) + V

2
u(0, t) = 0,

− ∂

∂x
u(1, t) + V

2
u(1, t) = (1 − n)Bu(1, t).

Solving for u(x, t) by a standard separation of variables calculation completes the
proof. ��

The solution of (4) with randomly switching boundary conditions (4)–(6) is then
constructed by repeatedly composing �0 and �1 according to the Markov process
{n(t)}t≥0 (for similar constructions, see Lawley et al. 2015; Lawley 2018a; Lawley
and Keener 2019). To describe this precisely, we need some more notation.

Let {ξk}∞k=1 denote the sequence of states visited by {n(t)}t≥0. Specifically, let
ξ1 ∈ {0, 1} be a Bernoulli random variable with mean p0 = α1/(α0 + α1) and define
ξk = 1 − ξk−1 for k ≥ 2. Next, let

{sk}∞k=1 (14)

be a sequence of independent exponential randomvariableswith unitmean,E[sk ] = 1.
The sequence of dwell times of {n(t)}t≥0 are then τk := sk/αξk for k ≥ 1, and the kth
switch happens at time

Sk :=
k∑

i=1

τi .

Define the number of jumps before time t ,

N (t) := sup
{
k ∈ N ∪ {0} : Sk < t

}
,

and let a(t) := t − SN (t) be the time elapsed since the most recent jump. The random
solution at time t ≥ 0 is then the iterative random composition,

w(x, t) = �
a(t)
ξN (t)+1

◦ �
τN (t)
ξN (t)

◦ · · · ◦ �
τ1
ξ1

(w(x, 0)). (15)
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3.2 Steady-state distribution of solution to random PDE

We now apply the mathematical methods developed in Lawley et al. (2015) to prove
that w(x, t) converges in distribution at large time and to analyze the limiting distri-
bution. These methods require that the operators �t

0 and �t
1 in (15) are contracting

in some average sense. The following lemma proves that these operators are in fact
contracting almost surely in the weighted norm corresponding to the inner product in
(11).

Lemma 2 For each n ∈ {0, 1}, there exists a constant ζn > 0 so that for all f , g ∈
L2[0, 1] and t ≥ 0, we have the following bound,

‖�t
n( f ) − �t

n(g)‖w ≤ e−ζn t‖ f − g‖w.

Proof This lemma is a direct consequence of Lemma 1 and the fact that μ(k)
n > 0 for

n ∈ {0, 1} and k ≥ 0. ��
Since�t

0 and�t
1 are contracting, the solutionw(x, t) defined in (15) must converge

in distribution at large time. We need some more notation to describe the limiting
distribution. Define the pair of compositions,

�s,t
n = �

s/αn
n ◦ �

t/α1−n
1−n , s, t ≥ 0, n ∈ {0, 1}.

For {sk}∞k=1 as in (14), define the pair of L
2[0, 1]-valued random variables,

Cn := lim
j→∞ �s1,s2

n ◦ �s3,s4
n ◦ · · · ◦ �

s2 j−1,s2 j
n ( f ), f ∈ L2[0, 1], n ∈ {0, 1}, (16)

which are termed random pullback attractors. In words, Cn takes an initial condition
( f ∈ L2[0, 1] in (16)) and “pulls it back” to the infinite past (Crauel 2001; Mattingly
1999; Schmalfuß 1996). Proposition 2.1 in Lawley et al. (2015) ensures that Cn exists
almost surely as a limit in L2[0, 1] since Lemma 2 implies that�s,t

n is a contraction in
L2[0, 1] with the weighted norm ‖ · ‖w for all s, t > 0. We note that the convergence
of this almost sure limit is in the weighted norm ‖ · ‖w, but convergence in ‖ · ‖w is
equivalent to convergence in ‖ ·‖2. In addition, Proposition 2.1 in Lawley et al. (2015)
ensures that Cn does not depend on the initial condition f in (16).

The steady state distribution ofw(x, t) is given in the following proposition, which
is a direct consequence of Corollary 2.5 in Lawley et al. (2015).

Proposition 1 Let η ∈ {0, 1} be a Bernoulli random variable with mean

E[η] = p1 := α0

α0 + α1
.

The following convergence in distribution holds,

(n(t), w(x, t)) →d (η,C(x)) as t → ∞,
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Fig. 1 At large time, the random solution w(x, t) must lie in the gray region between the two deterministic
steady states, wss

0 (green dotted curve) and wss
1 (purple dashed curve). The solid orange curve is the large

time mean of w computed in Sect. 4. We take K = 1 in the left panel and K = 10 in the right panel. We
take V = A = 0, B = 100, ρ0 = 0.2, and R = 1 in both panels

where C is the following mixture of the random pullback attractors in (16),

C(x) = (1 − η)C0(x) + ηC1(x). (17)

The pullback C0 is the steady state random solution conditioned on the spiracle
being open, and similarly C1 is the steady state random solution conditioned on the
spiracle being closed. Therefore, Proposition 1 states that the large-time distribution
is given by Cη, where η ∈ {0, 1} determines whether the spiracle is open or closed.

The following proposition gives the intuitive result that the limiting distribution of
w(x, t) is smooth and must be between the two deterministic steady states, wss

0 and
wss
1 . This region between wss

0 and wss
1 is illustrated in Fig. 1.

Proposition 2 For each x ∈ [0, 1], define

w−(x) := min{wss
0 (x), wss

1 (x)},
w+(x) := max{wss

0 (x), wss
1 (x)}.

Define the set of smooth functions between wss
0 and wss

1 ,

S := {g ∈ C∞[0, 1] : w−(x) ≤ g(x) ≤ w+(x) for all x ∈ [0, 1]}. (18)

Then, C(x) ∈ S almost surely, and �t
n : S → S for n ∈ {0, 1} and t ≥ 0.

Proof Let g ∈ S. The function �t
n(g) is infinitely differentiable in x if t > 0 since

�t
n( f ) is infinitely differentiable in x for each f ∈ L2[0, 1] and t > 0.
Let u(x) := wss

0 (x)−wss
1 (x). It is immediate that u satisfies the following boundary

value problem,

0 = u′′ − Vu′ − Ku, x ∈ (0, 1),

− u′ + Vu = 0, x = 0,
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− u′ + Vu = B(A − wss
0 (1)), x = 1.

Solving this boundary value problem, we find that

u(x) = B(A − wss
0 (1))

e
1
2 V (x−1)

2K
csch

(
1

2

√
4K + V 2

)[
V sinh

(1
2
x
√
4K + V 2

)

+
√
4K + V 2 cosh

(1
2
x
√
4K + V 2

)]
, x ∈ [0, 1].

(19)

Therefore,

sgn(wss
0 (x) − wss

1 (x)) = sgn(B(A − wss
0 (1))), x ∈ [0, 1]. (20)

where sgn(z) is the signum function.
Suppose wss

1 (x) ≥ wss
0 (x) for some x ∈ (0, 1], and thus wss

1 (x) ≥ wss
0 (x) for all

x ∈ (0, 1] by (20). Observe that

�t
0(g)(x) − �t

0(w
ss
0 )(x) = �t

0(g − wss
0 )(x),

where �t
0 is the solution operator for the homogeneous problem

∂

∂t
v = ∂2

∂x2
v − V

∂

∂x
v − Kv, x ∈ (0, 1), t > 0, (21)

− ∂

∂x
v(0, t) + V v(0, t) = 0,

− ∂

∂x
v(1, t) + V v(1, t) = Bv(1, t). (22)

It is easy to check that �t
0 satisfies the property that if f ≥ 0, then �t

0( f ) ≥ 0.
Therefore, if g ∈ S, then g(x)−wss

0 (x) ≥ 0 for all x ∈ [0, 1], and thus (�t
0(g))(x) ≥

(�t
0(w

ss
0 ))(x) = wss

0 (x) for all x ∈ [0, 1] and t ≥ 0.
To check that �t

0(g) ≤ wss
1 , consider the function

h(x, t) := wss
1 (x) − (�t

0(g))(x).

Then, h satisfies (21)–(22), with a nonnegative initial condition, h(x, 0) = wss
1 (x) −

g(x) ≥ 0. Further, h satisfies

− ∂

∂x
h(1, t) + Vh(1, t) = B(A − (�t

0(g))(1)) ≤ B(A − wss
0 (1)) ≤ 0,

since (�t
0(g))(x) ≥ (�t

0(w
ss
0 ))(x) = wss

0 (x) for all x ∈ [0, 1] and t ≥ 0 and B(A −
wss
0 (1)) ≤ 0 by (20) and the assumption that wss

1 ≥ wss
0 . Hence, h(x, t) ≥ 0 for all

x ∈ [0, 1] and t ≥ 0, and therefore �t
0 : S → S.
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The argument that�t
1 : S → S is similar, and the case thatwss

1 ≤ wss
0 is analogous.

Since �t
n : S → S for n ∈ {0, 1}, Theorem 7 on page 24 of Lawley (2014) implies

that Cn ∈ S for n ∈ {0, 1}, and therefore C ∈ S. ��

3.3 Almost sure limiting behavior

We now analyze the almost sure limiting behavior in the case that the overall open-
ing/closing rate R = α0 + α1 = r L2/Dw is much slower than the water transfer rate
K = kL2/Dw,

α0 + α1

K
= R

K
= α0 + α1

k
= r

k
� 1. (23)

Theorem 1 Fix p0 ∈ (0, 1), V ≤ 0, B > 0, and A ≥ 0. If n ∈ {0, 1}, then

‖Cn(x) − wss
n (x)‖∞ → 0 as

α0 + α1

K
→ 0 almost surely.

Theorem 1 states that in the slow fluttering regime of (23), the pullbacks C0 and C1
converge to their corresponding steady states wss

0 and wss
1 . Since Proposition 1 gives

the large time distribution of w(x, t) as the Bernoulli mixture in (17) of C0 and C1,
we have that the large time distribution of w(x, t) in the regime of (23) is simply

(1 − η)wss
0 (x) + ηwss

1 (x), (24)

where η ∈ {0, 1} is as in Proposition 1. Thus, (24) gives the full probability distribution
of the random function w(x, t) in the regime of (23).

Proof of Theorem 1 Define

g1−n := lim
j→∞ �

s2/α1−n
1−n ◦ �s3,s4

n ◦ · · · ◦ �
s2 j−1,s2 j
n (wss

0 ), n ∈ {0, 1},

where {sk}∞k=1 are as in (14). Notice that g1−n is defined so that Cn = �
s1/αn
n (g1−n).

Using Proposition 2, we have that

‖Cn − wss
n ‖∞ = ‖�s1/αn

n (g1−n) − wss
n ‖∞

≤ e−( V
2
4 +K )s1/αn

∞∑
k=0

e−λ
(k)
n s1/αn |(φ(k)

n , g1−n − wss
n )w|‖φ(k)

n ‖∞

≤ e−( V
2
4 +K )s1/αn‖wss

0 − wss
1 ‖∞‖e−V x‖1

∞∑
k=0

e−λ
(k)
n s1/αn‖φ(k)

n ‖2∞.

(25)

Now, it is straightforward to check that the sum in (25) is convergent and independent
of α0+α1 and K . Furthermore, it is straightforward to check that ‖wss

0 (x)−wss
1 (x)‖∞
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is a bounded function of K ∈ (0,∞). Therefore, since s1 > 0 almost surely, we see
from (25) that taking (α0 + α1)/K → 0 completes the proof. ��

4 Mean solution and flux

The previous section focused on the probability distribution of the random solution. In
this section, we study the mean solution and flux by applying the methods developed
in Bressloff and Lawley (2015) and Lawley (2016).

4.1 Boundary value problem and solution

Define the pair of deterministic functions,

wn(x, t) := E[w(x, t)1n(t)=n], n ∈ {0, 1},

where 1n(t)=n is the indicator function,

1n(t)=n =
{
1 if n(t) = n,

0 if n(t) �= n.

Notice that mean solution is then given by

E[w(x, t)] = w0(x, t) + w1(x, t). (26)

Under the following regularity assumption,

E sup
x∈[0,1]

∣∣ ∂
∂x w(x, t)

∣∣ < ∞, for each t ≥ 0,

Theorem 1 in Lawley (2016) ensures that w0 and w1 satisfy

∂

∂t
w0 = ∂2

∂x2
w0 − V

∂

∂x
w0 + K (p0 − w0) − α0w0 + α1w1,

∂

∂t
w1 = ∂2

∂x2
w1 − V

∂

∂x
w1 + K (p1 − w1) + α0w0 − α1w1,

(27)

assuming n(t) starts in its equilibrium distribution,

P(n(0) = 0) = p0 := α1
α1+α0

, P(n(0) = 1) = p1 := 1 − p0.
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In addition, w0 and w1 satisfy the following boundary conditions

− ∂

∂x
wn(0, t) + Vwn(0, t) = 0, n ∈ {0, 1},

− ∂

∂x
w0(1, t) + Vw0(1, t) = −B(p0A − w0(1, t)),

− ∂

∂x
w1(1, t) + Vw1(1, t) = 0.

(28)

To explain (27)–(28) inwords, the time evolution ofwn in (27) is identical to that ofw in
(4) except for two differences. First, (27) contains reaction terms,−αnwn+α1−nw1−n ,
which describe the flow of probability out of and in to state n ∈ {0, 1}. Second, the
inhomogeneous term K in (4) is weighted by pn in (27), where pn is the equilibrium
probability that n(t) = n. Further, the boundary conditions in (28) forwn are identical
to those for w in (5)–(6) when n(t) = n, except the inhomogeneous term BA in (6)
is weighted by pn in (28). We note that if we did not assume that n(t) starts in its
invariant distribution, then pn in (27)–(28) would merely be replaced by the function
of time,

P(n(t) = n) = pn + e−(α0+α1)t
(
P(n(0) = n) − pn

)
,

which converges exponentially fast to pn as time increases. Summarizing, the mean
solution in (26) can be found by solving the deterministic boundary value problem in
(27)–(28).

The large-time mean flux at x = 1,

Wflutter := lim
t→∞

[
− ∂

∂x
(w0 + w1) + V (w0 + w1)

]∣∣∣
x=1

,

can be written as

Wflutter = fw(p0, α0 + α1, K , V , B)Wopen, (29)

where Wopen is the flux when the spiracle is always open,

Wopen :=
[

− ∂

∂x
wss
0 + Vwss

0

]∣∣∣
x=1

,

and

fw = fw(p0, α0 + α1, K , V , B) ∈ (p0, 1)

is a dimensionless factor that describes how fluttering reduces the flux compared to
always being open. We refer to fw as the water flutter factor. Solving the boundary
value problem (27)–(28) at steady state, we can find explicit formulas for Wflutter,
Wopen, and fw. However, these formulas are very complicated and so we relegate
them to the Appendix.
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4.2 Limiting behavior of mean solution and flux

We now investigate the behavior of the mean flux in various parameter limits using
the explicit formulas for fw, Wflutter, and Wopen given in the Appendix. We first note
that

lim
p0→0

fw = 0.

This is expected, since this merely states that if the spiracle is never open (p0 = 0),
then there is no water loss. Similarly, if the spiracle is always open (p0 = 1), then
Wflutter is the same as Wopen,

lim
p0→1

fw = 1.

If K → 0, then there is no water loss,

lim
K→0

Wflutter = lim
K→0

Wopen = 0, (30)

and the formula for fw in the Appendix implies limK→0 fw = 1. Furthermore,

lim
K→∞ fw = lim

V→−∞ fw = lim
α0+α1→0

fw = p0.

5 Physiological implications

In this section, we investigate the physiological implications of our mathematical
model. The model depends in a complicated way on 6 dimensionless parameters,
namely p0, R, V , B, A, and K (see (7)–(8) for parameter definitions). We thus begin
by estimating these parameters.

Recall that B = 4L/(πa) is a geometric parameter that compares the length of a
tracheal tube, L > 0, to its radius a > 0. The trachea of most insects are long and
thin, and indeed we estimate below (see Table 1) that the aspect ratio is typically in
the range

a

L
∈ [0.002, 0.05]. (31)

Therefore, for simplicity we set B = ∞ in our calculations in this section, though
we note that using finite values of B corresponding to the range of a/L in (31) would
have little effect on our results.

While convection is known to play a role during the flutter phase (Lighton 1996b),
the relative importance of convection and diffusion is debated (Chown et al. 2006).
For simplicity, we therefore ignore convection in this section by setting V = 0 in our
calculations (recall that V is the dimensionless convective velocity). Our main result is
that during the flutter phase water loss is approximately proportional to the percentage

123



   40 Page 16 of 26 S. D. Lawley et al.

Table 1 Estimates of tracheal length L > 0, tracheal radius a > 0, percentage of time open during the
flutter phase p0 ∈ (0, 1), flutter rate r = α0 + α1 > 0, and water transfer rate k > 0 for several types of
insects

Insect L (cm) a (cm) p0 r (1/s) k (1/s)

Giant saturniid silkworms 1 0.09 2.2

Cataglyphis bicolor 0.38 0.2 24

Gromphadorhina portentosa 1.6 0.28 2.33

Pine weevil 0.3 0.2 0.1

Rhodnius 0.25 0.002 ≥ 3.8 × 104

Flea 0.05 0.0025 ≥ 341

Mealworm 0.15 0.005 ≥ 7.7

The values in the first 4 rows were estimated in Lawley et al. (2020). The values in the final 3 rows are
estimated in Sect. 5.1 using data from Wigglesworth and Gillett (1936) and Mellanby (1934)

of time the spiracles are open, which means that fluttering conserves water. Since
the convective flow of air during the flutter phase is inward, it is clear that including
convection in our analysis would only strengthen this result.

By taking B = ∞ and V = 0, we obtain the following relatively simple formula
for the water flutter factor in (29),

f 0w := lim
V→0

lim
B→∞ fw =

(
1 + 1 − p0

p0

√
K tanh

√
K√

R + K tanh
√
R + K

)−1

∈ (p0, 1), (32)

which depends on the 3 dimensionless parameters, p0, R, and K ( fw is independent of
the parameter A describing the ambient water concentration since Wflutter and Wopen
are each proportional to 1 − A). Recall that p0 ∈ (0, 1) is the percentage of time the
spiracles are open during the flutter phase, R = r L2/Dw > 0 compares the fluttering
rate r = α0 +α1 to the diffusion timescale L2/Dw, and K = kL2/Dw > 0 compares
the water transfer rate k to the diffusion timescale. The formula in (32) appeared
in an equivalent form in our previous work (Lawley et al. 2020). In previous work,
we estimated p0 and R for different insects and we give these values in the first 4
rows of Table 1. It therefore remains to estimate the water transfer rate k to estimate
K = kL2/Dw.

5.1 Estimating the water transfer rate k

Wigglesworth and Gillett (1936) and Mellanby (1934) measured the rate of water loss
from insects that are forced to keep their spiracles permanently open. We now use this
data to estimate the water transfer rate k.

In the case that the spiracle is always open, the steady-state, dimensionless flux of
water vapor out of the spiracle is

Wopen = √
K tanh(

√
K ), (33)
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where we have set A = 0, since the data inWigglesworth and Gillett (1936);Mellanby
(1934) is for insects in dry air. To get (33) into units of (mass of water)per (time×area),
we recall the scalings in Sect. 2.2 and therefore multiply Wopen by IwDw/L . Taking
seconds as our time unit, we then obtain the mass of water lost per hour by multiplying
by (i) the cross-sectional area of a tracheal tube, πa2, (ii) the number of spiracles on
an insect, nspir, and (iii) the number of seconds in an hour, 602. Thus,

L := mass of water lost per hour = √
K tanh(

√
K )

IwDw

L
πa2nspir60

2. (34)

We take Dw = 0.282 cm2/s (Cussler 2009) and set nspir = 20which is typical formost
insects. The parameter Iw is difficult to estimate, but since it is a water vapor concen-
tration, it has amaximumvalue. In particular, we have that Iw ≤ 2.3×10−2 mg/cm3 at
24 degrees Celsius. By using this maximum value for Iw and experimentally measured
values of L, we can use (34) to obtain lower bounds for K .

Wigglesworth and Gillett (1936) found that Rhodnius loses 13 milligrams of water
per day when forced to keep its spiracles open, which yields L ≈ 0.54mg/h in (34).
For Rhodnius, we estimate a tracheal radius of a = 0.001 cm and tracheal length of
L = 0.25 cm. We thus obtain the following lower bound for Rhodnius from (34),

k ≥ 3.8 × 104 s−1. (35)

In similar experiments,Mellanby (1934) found that a flea losesL = 0.3mg/h of water.
For fleas, we estimate that a = 0.0025 cm and L = 0.05 cm, and thus (34) implies
the following lower bound for fleas,

k ≥ 341 s−1. (36)

In addition, Mellanby (1934) found that a mealworm loses L = 0.125mg/h of water.
For mealworms, we estimate that a = 0.005 cm and L = 0.15 cm, and thus (34)
implies the following lower bound for mealworms,

k ≥ 7.7 s−1. (37)

5.2 Fluttering conserves water

Before using our lower bounds for k and K = kL2/Dw, recall that if K � 1, then our
analysis in Sect. 4 shows that respiratory water loss is negligible (see 30). Therefore,
respiratory water loss threatens an insect only if K is not very small. In the limit of
large K , it follows from (32) that

lim
K→∞ f 0w = p0. (38)

This means that an insect can restrict water loss by keeping its spiracles open only a
small percentage of time (small p0) in the case that respiratorywater loss is a significant
threat (large K ).
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Fig. 2 Simplified water flutter
factor f 0w in (32) as a function of
water transfer rate k for 3 types
of insects
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However, to see if a particular insect is in the regime of f 0w ≈ p0, one has to
consider how the flutter rate compares to the water transfer rate. Indeed, if we define
the ratio of these rates,

β := R

K
= r

k
> 0, (39)

then a direct calculation with (32) yields

lim
β→0

f 0w = p0,

lim
β→∞ f 0w = 1. (40)

Unfortunately, we are not able to directly estimate β for a specific insect since our esti-
mates of r and our estimates of k come from two different sets of insects (see Table 1).
However, since the estimates of r are generally much smaller than the estimates of k,
it is likely that most insects are in the regime f 0w ≈ p0 of (40). We now investigate
this in more detail.

In Fig. 2, we plot the water flutter factor f 0w as a function of k for 3 insects for which
we have estimates of flutter rates. For these insects, we see that f 0w rapidly decreases
from 1 to p0 as k increases, with f 0w ≈ p0 as long as k ≥ 5 s−1. While we do not have
estimates of k that are specific to these insects, since our estimates of k in (35)–(37)
(which are actually lower bounds) range from 7.7 s−1 to more than 104 s−1, the flutter
factors for these insects are likely very close to p0.

Furthermore, using our estimates in (35)–(37) for Rhodnius, fleas, and mealworms,
it follows from (32) that the flutter factors for these insects are very close to p0, as
long as their flutter rates are not too large. Indeed, if we take the largest estimated
flutter rate of r = 24 s−1, then the flutter factors for Rhodnius, fleas, and mealworms
all satisfy f 0w − p0 < 0.02 for p0 = 0.2. Taking smaller flutter rates only make f 0w
closer to p0.
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Fig. 3 Simplified water flutter factor f 0w as a function of K = kL2/Dw and R = r L2/Dw for p0 = 0.2.
The 7 insects (Giant saturniid silkworm (GSS), Cataglyphis bicolor (CB), Gromphadorhina portentosa
(GP), Pine weevil (PW), Rhodnius (Rh), flea, mealworm (Mw)) are placed according to their estimates of
k, L , and r

In Fig. 3, we plot f 0w as a function of R = r L2/Dw and K = kL2/Dw for p0 = 0.2
and place the 7 insects of Table 1 in this two-dimensional parameter space. Since we
only have flutter rate data for 4 insects, we take r = 5 s−1 for the other 3 insects for this
figure. Similarly, since we only have water loss data for 3 insects, we set k = 100 s−1

for the other 4 insects for this figure. Notice that all 7 insects are in the region with
f 0w ≈ p0. Taking smaller values of r and larger values of k would make f 0w even closer
to p0. Summarizing, our analysis predicts that f 0w ≈ p0 for the 7 insects in Table 1.

5.3 Fluttering decouples water loss and oxygen uptake

In previous work (Lawley et al. 2015, 2020), we formulated and analyzed a model of
oxygen uptake during the flutter phase. We defined the oxygen flutter factor, foxy, as
the ratio of the average oxygen uptake during the flutter phase, Uflutter, to the average
oxygen uptake during the open phase, Uopen, and found the following formula

foxy := Uflutter

Uopen
=

⎛
⎝1 + 1 − p0

p0

tanh
√
R Dw

Do√
R Dw

Do

⎞
⎠

−1

∈ (p0, 1),

where Do = 0.176 cm2/s is the diffusion coefficient of oxygen (Cussler 2009).
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For about 200 different species,Woods and Smith (2010) looked at the ratio, ρ > 0,
of water loss to oxygen uptake. For our model, this ratio during the open phase is

ρopen = Wopen

Uopen
,

and during the flutter phase, this ratio is

ρflutter = Wflutter

Uflutter
.

To investigate the ability of fluttering to decouple water loss from oxygen uptake, we
define

� := ρflutter

ρopen
= f 0w

foxy
∈ (p0, 1/p0).

Notice that a decoupling of water loss and oxygen uptake in the flutter phase compared
to the open phase corresponds to � �= 1. Further, conserving water and maintaining
a high oxygen uptake corresponds to making � small.

Using the formulas above and that Dw/Do ≈ 1.6, the ratio � is

� = �(p0, R, K ) =
1 + 1−p0

p0
tanh

√
1.6R√

1.6R

1 + 1−p0
p0

√
K tanh

√
K√

R+K tanh
√
R+K

. (41)

In Fig. 4, we plot � as a function of the flutter rate r for different values of the
water transfer rate k. The squares in Fig. 4 indicate the physiological values of r from
Table 1. Notice that � is a non-monotonic function of the flutter rate. Further, while
larger values of k require larger values of r to exactly minimize the ratio�, notice that
taking r ∈ [2, 24] s−1 yields values of� which are (i) far from the case that water loss
and oxygen uptake are perfectly coupled (i.e. the case � = 1) and (ii) not far from
the minimal values of �.

Summarizing, from the perspective of simply increasing oxygen uptake during the
flutter phase, an insect is always better off by fluttering faster. However, if an insect
needs to balance a high oxygen uptake and low water loss, then there is an optimal
fluttering rate which minimizes �.

6 Discussion

As in all mathematical models of biological systems, we made various simplifying
assumptions tomake the problem tractable.We assumed that the tracheal cross-section
is approximately constant as a function of depth in the trachea. We assumed that
the waiting times for switching boundary conditions are exponentially distributed.
We assumed a relatively simple no-flux boundary condition for water vapor at the
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Fig. 4 Ratio � = f 0w/ foxy as a
function of flutter rate r for
different values of the water
transfer rate k with p0 = 0.2.
The squares are at the
physiological estimates of r in
Table 1
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tracheoles.Makingmore detailed and complicated assumptionswould almost certainly
not change themain conclusion thatwater loss during the flutter phase is approximately
proportional to the percentage of time open. Since oxygen uptake can be altered by the
rate of fluttering this shows thatwater loss and oxygen uptake are effectively decoupled
by fluttering.

We use stochastic methods because it is known that the lengths of open and closed
bouts during the flutter phase vary considerably (Schneiderman 1960; Heinrich et al.
2013). Our model consists of a one-dimensional diffusion-convection equation with
a stochastically switching boundary condition corresponding to “open” and “closed.”
After non-dimensionalizing, we obtained a PDEwith six non-dimensional parameters.
Using the techniques in (Lawley et al. 2015;Lawley2016)we computed the probability
distribution of the long-time solution and from that solution calculated an explicit
formula for the expected water loss as a function of the six parameters. The explicit
formula allowed us to calculate simpler formulas in asymptotic limits where various
parameters became large and small. Finally, we used experimental data from various
insects to estimate the ranges of the six parameters and this allowed us to conclude
that in the flutter phase, water loss is approximately proportional to the percentage of
time open. The calculations were long because of the need to derive explicit formulas
for water loss in terms of the parameters.

PDEs with stochastically switching boundary conditions have been used to model a
variety of other biological systems, including volume transmission in the brain (Law-
ley 2018b), the electrodiffusive flux of ions through a gated ion channel (Lawley
and Keener 2019), and intercellular communication through gap junctions (Bressloff
et al. 2020). A class of models which are mathematically similar and are also used to
describe various biological systems are PDEs with stochastically switching righthand
sides. For example, Klimasara et al. (2021) analyzed switching Liouville equations
modeling population dynamics and gene expression. In addition, the diffusion equa-
tion with a switching diffusion coefficient has been used to model protein gradient
formation in a zygote (Wu et al. 2018; Bressloff et al. 2019). Indeed, a variety of
systems in cell biology involve molecules whose diffusivities fluctuate (Weron et al.
2017; Sungkaworn et al. 2017) and several statistical methods have been developed
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to detect changes in diffusivity from particle tracking data (Das et al. 2009; Koo and
Mochrie 2016; Monnier 2013; Montiel et al. 2006; Persson et al. 2013; Slator and
Burroughs 2018; Slator et al. 2015). More generally, stochastically switching PDEs
are an example of a piecewise deterministic Markov process (Davis 1984), whose
applications in biology have been recently reviewed by Bressloff (2017), Cloez et al.
(2017) and Rudnicki and Tyran-Kamińska (2017).

Oxygen uptake and water loss have been important issues in insect physiology for
nearly a century since the pioneering work of Wigglesworth (Wigglesworth 1931;
Wigglesworth and Gillett 1936; Wigglesworth 1965). When the spiracles are open,
oxygen can diffuse in and carbon dioxide can diffuse out of the trachea, but water
can also diffuse out, which is a serious problem for insects since the surface area
of the tracheal trees is very large. When the spiracles are closed, there is no oxygen
uptake or water loss from the respiratory system. Many insects, particularly those
that live in dry environments or have little access to water, show a third dynamical
state called fluttering in which they keep their spiracles closed a high percentage of
time while also opening and closing rapidly for brief periods of time (Wigglesworth
1931; Schneidermann 1956; Contreras et al. 2014). In Lawley et al. (2020) we used
the mathematical analysis in Lawley et al. (2015) to show that, no matter how small
the percentage of time open, the insect could absorb oxygen almost as fast as if the
spiracle were open 100% of the time if it flutters fast enough. And, we explained the
intuition behind this surprising result and gave examples from specific insects.

Those results left open an important question, what happens to water loss during
the flutter phase, the question we addressed in this paper. We have shown that, in
parameter regimes corresponding to real insects, water loss during the flutter phase
is approximately proportional to the percentage of time open. This means that during
the flutter phase insects can achieve high oxygen intake and low water loss by keeping
the spiracles closed a high percentage of time and fluttering rapidly. If insects switch
between open and closed on a long time scale, then more oxygen uptake is the same as
more water loss. Our results show that fluttering decouples oxygen uptake and water
loss, and so insects can balance oxygen needs with energy expenditure independent
of water loss. This is almost certainly the reason for fluttering.

7 Appendix

7.1 Formulas forwss
0 andwss

1

Using Mathematica, it is straightforward to find that wss
0 (x) = ν0/δ0, where

ν0 = 2e
1
2

(
(3−2x)

√
4K+V 2−V

) (
B

(
2(A − 1)Ke

1
2

(
(3x−2)

√
4K+V 2+V x

)

+ (A − 1)
(
−V

√
4K + V 2 + 2K + V 2

)
e
1
2

(
(x−2)

√
4K+V 2+V x

)

+ V
(√

4K + V 2 − V
)
exp

(
1

2

(
3(x − 1)

√
4K + V 2 + V (x + 1)

))
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+ 2Ke
1
2

(
(2x−1)

√
4K+V 2+V

)

− V
(√

4K + V 2 − V
)
e
1
2

(
(x−1)

√
4K+V 2+V (x+1)

)

+
(
−V

√
4K + V 2 + 2K + V 2

)
e
1
2

(
(2x−3)

√
4K+V 2+V

))

− 2KV exp

(
1

2

(
3(x − 1)

√
4K + V 2 + V (x + 1)

))

+ 2KVe
1
2

(
(3x−2)

√
4K+V 2+V x

)

+ V
(
−V

√
4K + V 2 + 2K + V 2

)
e
1
2

(
(x−2)

√
4K+V 2+V x

)

−V
(
−V

√
4K + V 2 + 2K + V 2

)
e
1
2

(
(x−1)

√
4K+V 2+V (x+1)

)

− K
(√

4K + V 2 − V
)
e
1
2

(
(2x−3)

√
4K+V 2+V

)

+ K
(√

4K + V 2 − V
)
e
1
2

(
(2x−1)

√
4K+V 2+V

))
,

and

δ0 =
(√

4K + V 2 − V
) (

B
(√

4K + V 2 + e
√
4K+V 2

(√
4K + V 2 + V

))

− BV + 2K
(
e
√
4K+V 2 − 1

))
.

Furthermore, wss
1 (x) = ν1/δ1, where

ν1 = e− V
2

(
−2KVe

1
2

(
x
√
4K+V 2+V x+V

)
+ 2KVe

1
2

(
(x+1)

√
4K+V 2+V x

)

+ V
(
V

(
V −

√
4K + V 2

)
+ 2K

)
e
1
2

(
V x−(x−1)

√
4K+V 2

)

− V
(
V

(
V −

√
4K + V 2

)
+ 2K

)
e
1
2

(
V (x+1)−(x−2)

√
4K+V 2

)

− KeV /2
(√

4K + V 2 − V
)

+ Ke
√
4K+V 2+ V

2

(√
4K + V 2 − V

))
,

and

δ1 = K
(
e
√
4K+V 2 − 1

) (√
4K + V 2 − V

)
.

In the case that V = 0, these expressions simplify to wss
1 (x) = 1 and wss

0 (x) = ν′
0/δ

′
0,

where
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ν′
0 = e−√

K (x+1)
(
B

(
(A − 1)e

√
K (2x+1) + (A − 1)e

√
K + e

√
Kx + e

√
K (x+2)

)

+
(
e2

√
K − 1

) √
Ke

√
Kx

)
,

and

δ′
0 = 2

(
B cosh

(√
K

)
+ √

K sinh
(√

K
))

.

7.2 Expected water flux formulas

Solving the boundary value problem (27)–(28) at steady state explicitly yields that the
water flutter factor is given by fw = ν/δ, where

ν = p0(K + r)
(
V

(
e
√
4K+V 2 − 1

)

+
(
e
√
4K+V 2 − 2e

1
2

(√
4K+V 2+V

)
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)(
2BK

(
e
√
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(
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√
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(
e
√
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) (
e
√
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,
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(
e
√
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1
2

(√
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)
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(
e
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)
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√
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√
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.
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