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ABSTRACT: We present a procedure to reduce the depth of quantum circuits
and improve the accuracy of results in computing post-Hartree−Fock electronic
structure energies in large molecular systems. The method is based on molecular
fragmentation where a molecular system is divided into overlapping fragments
through a graph-theoretic procedure. This allows us to create a set of projection
operators that decompose the unitary evolution of the full system into separate
sets of processes, some of which can be treated on quantum hardware and others
on classical hardware. Thus, we develop a procedure for an electronic structure
that can be asynchronously spawned onto a potentially large ensemble of classical
and quantum hardware systems. We demonstrate this method by computing
Unitary Coupled Cluster Singles and Doubles (UCCSD) energies for a set of
[H2]n clusters, with n ranging from 4 to 128. We implement our methodology
using quantum circuits, and when these quantum circuits are processed on a
quantum simulator, we obtain energies in agreement with the UCCSD energies in the milli-hartree energy range. We also show that
our circuit decomposition approach yields up to 9 orders of magnitude reduction in the number of CNOT gates and quantum circuit
depth for the large-sized clusters when compared to a standard quantum circuit implementation available on IBM’s Quantum
Information Science kit, known as Qiskit.

1. INTRODUCTION

Computing accurate electronic properties, including the effect of
electron correlation and nuclear dynamics, is at the heart of
modern quantum chemistry, with potential impact on materials
discovery,1−3 and the accurate study of biological4−10 and
atmospheric11−13 processes. However, such studies are deeply
confounded by (a) the steep (algebraic) computational scaling
of accurate electron correlation methods,14−16 where, for
example, the gold standard of electronic structure theory,
namely, CCSD(T), scales as N( )6 7− and (b) the likely
exponential scaling of quantum nuclear dynamics. Over the
years, several classical algorithms have been developed to
improve the computational scaling of both problems.17−21 For
example, molecular fragmentation has recently become a critical
tool to compute electronic properties and has grown to provide
extremely accurate and effective computational paradigms.
Similarly, the effect of nuclear dynamics has also been an active
area of study for complex reactive processes.22−24

Recently, multiple quantum computing technologies, such as
ion traps,26−29 superconducting coils,30,31 Bosonic processors
with photons,32−34 solid-state devices and quantum dots inside
cavities,35−38 and Rydberg atoms,39−41 have emerged as
potential alternative computational platforms to address
complex computational challenges. Additionally, algorithms to
approximate electron correlation problems,42−63 for small

molecular systems, and quantum nuclear dynamics prob-
lems64−71 have been implemented on quantum hardware
devices using trapped atomic ions, photons, nuclear spins,
quantum dots, Rydberg atoms, and superconducting circuits.
However, as outlined in Figure 1, application of standard
quantum circuit models25 to treat electronic structure problems
leads to a rapid increase in the circuit depth and the number of
CNOT gates. This contributes greatly to the accumulated error
during quantum propagation. Quantum gate fidelity for CNOT
gates is generally of the order of 95%,72 and the improvement of
such gate fidelity is an active area of quantum hardware
development.73 This is related to the fact that the CNOT gates
require maximally entangling XX(π/2) gates and hence have
lower-quality performance72 as compared to small-angle XX
gates, and this aspect contributes to error propagation. As seen
in Figure 1, the number of quantum gates, the number of CNOT
gates, and the circuit depth increase exponentially with system
size. This leads to a dramatic increase in the error in quantum
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propagation thus restricting both the size and quality (in terms
of basis set sizes that can be routinely used) of performance.
Thus, despite the growing set of available quantum hardware
platforms and the accompanying set of complex quantum
algorithms, performing accurate, state-of-the-art quantum
chemical calculations will remain a significant challenge for the
foreseeable future. In this publication, we present a new hybrid
quantum/classical algorithm that helps reduce the number of
CNOT gates, the circuit depth, and the total number of gates by
several orders of magnitude. This paper outlines a new hybrid
algorithm based on a graph-theoretic approach to molecular
fragmentation and is geared toward performing electron
correlation calculations, potentially on an ensemble of quantum
and classical hardware systems. From here on, the algorithm
studied here is referred to as the “Graph-|Q⟩⟨C|” algorithm since
it contains an independent set of classical and quantum
algorithmic components inside a single umbrella. That is, the
overall computational workload is partitioned, through graph
theory based on computational complexity analysis, into (a)
classical computing sections that are carried out on traditional
classical electronic structure packages, such as Gaussian,74

Psi4,75 ORCA,76 and Quantum ESPRESSO,77 and (b) quantum
computing sections that are carried out using quantum circuit
models. Furthermore, the Graph-|Q⟩⟨C| algorithm is quantum
hardware-agnostic and is developed with the goal to be
implemented on all quantum hardware technologies, and, in
fact, is designed to be used on an ensemble of such quantum
hardware systems for any given calculation. In essence, our
Graph-|Q⟩⟨C| algorithm yields a new approach that reduces the
required quantum circuit depth, the number of quantum gates,
and the number of CNOT gates (by several orders of
magnitude) that contribute to error accumulation (the scaling
of these three properties is shown in Figure 1), through a graph-
theory-based projection operator formalism. Thus, given this
reduction, our algorithm, which is complementary to other ideas
in the literature53,59−61,63 that attempt to reduce quantum gate
complexity, potentially improves the quantum algorithmic
efficiency, provides a new avenue for quantum resource
management, and also reduces the accumulation of errors
during the demonstrated electronic structure calculations on
quantum hardware. Given the limitations of quantum circuit
gate fidelities within the gate model, this algorithm, which we
expect, will become a central piece in the quantum/classical
computing of chemical systems.
Our approach begins with a graph-theoretic molecular

fragmentation procedure introduced in refs 22, 23, and 78−

85, where the key idea begins with the well-known ONIOM
methodology;86 however, then, the “model” and “real” system
energies and gradients within ONIOM are now constructed
using many-body expansions up to an arbitrary rank.
Furthermore, these many-body expansions are obtained in a
general fashion using adaptive graph-theoretic techniques that
are computationally available within standard protocols in the
Python programing language. This paper is organized as follows:
in Sections 2 and 3, we outline our graph-theoretic molecular
fragmentation approach and also describe how these are to be
implemented within a hybrid ensemble of quantum and classical
hardware systems to yield reduced complexity of quantum
circuits. We show that the graph-theoretic approach yields a
unitary transformation applied to the quantum circuit model
corresponding to the full quantummolecular system to reduce it
into a family of decoupled, parallel quantum circuit models, each
of which has much lower complexity as compared to the parent
circuit. Thus, we expect that the error propagation in this new
family of circuits is far less as compared to that belonging to the
parent full system. In Section 4, we demonstrate the reduction in
quantum circuit complexity scaling that arises from our
algorithm through results for hydrogen molecular clusters.
Conclusions are given in Section 5.

2. GRAPHICAL REPRESENTATION OF LOCAL
MANY-BODY INTERACTIONS MAPPED TO
QUANTUM CIRCUIT MODELS

Thus far, the electronic structure of small systems42−46,50,87 or
low-classical scaling approximations of the same for larger
systems52 have been implemented on quantum technologies.
Here, we develop an approach, based on graph-theoretic
fragmentation of molecular systems, that provides a pathway
toward an accurate depiction of electron correlation on large
systems using hybrid quantum/classical algorithms appropriate
for an ensemble of quantum and classical computing environ-
ments. In a series of publications,22,23,78−85 we have developed
graph theory-based techniques to compute efficient and
adaptive many-body expansions that are then embedded within
the ONIOM86 multi-layer approach; the accuracy and efficiency
of these methods have been demonstrated on classical hardware
systems. In this paper, we develop algorithms that make this
approach applicable to a hybrid set of quantum and classical
hardware systems. The salient features of this approach are as
follows: the molecular assembly is partitioned into a set of nodes
or vertices. Generally, these nodes are determined on a chemical
basis and may include groups such as water and hydro-
nium22,23,83,85 or a single amino acid group in a poly-peptide
chain.81,82 These nodes are used to provide approximations to
local molecular 1-body electronic energy contributions. First-
order interactions between these discrete nodes are captured by
creating edges, that are the union of two nodes. Once the nodes
and edges are defined, the chemical system of interest is now
represented as a graph. (An illustration of our graph-theoretic
partitioning of the molecular structure is presented in Figure 2.)
Higher-order (or n-body) terms can then be considered based
upon the connectivity of the nodes, and the criteria to determine
this connectivity have been discussed in detail in refs 81 and 83.
As the rank or order of the terms increases, the graph-theoretic
fragmentation approximation rapidly converges toward accurate
electron correlation energies for single-geometry calculations
and during ab initio molecular dynamics simulations but at
progressively increasing computation cost.

Figure 1.Quantum circuit depth complexity as a function of system size
is illustrated here for a family of (H2)n clusters. As the system size grows,
a standard quantum circuit implementation afforded by the commonly
used Qiskit25 quantum computing model becomes prohibitively
complex.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01303
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the discussion below, the set of nodes described above is
represented as V0. Similarly, the set edges that represent the set
of first-order interactions between nodes are represented as V1.
Together, these nodes and edges define a graph, V V;0 1≡ { }
(see Figure 2). The graph, thus, comprises nodes, V0, edges, V1,
and rank-r simplexes, represented as Vr, that capture higher-
order interactions between the nodes and is given by

rV V V V0, 1, 2, ... , , , ...r 0 1 2{ | = } ≡ { } (1)

The above presented graphical description allows a dynamic
and flexible representation of local many-body interactions. The
energetic measure we begin with22,23,78−85 consists of a
perturbative, ONIOM-type correction to a result obtained at a
lower level of theory, where the perturbative correction is the
difference between two many-body expansions (replacing the
standard “model-high”minus “model-low” portion in ONIOM)
given by the graphical representation presented above.
Consistent with the notions behind ONIOM,86 we
have22,78−85 an energy expression

E E E Ex x x x( ) ( ) ( ) ( )MBE,gt
ONIOM level,0

MBE
level,1

MBE
level,0

̅ = ̅ + ̅ − ̅ (2)

where the left side, EMBE,gt
ONIOM(x  ), denotes the graph-theoretically

obtained many-body correction to ONIOM, and the term
EMBE
level,I(x ) on the right side may encompass the full system or a

chosen “active site”, and we have considered both options within
AIMD78−82,85 and quantum nuclear potential surface treat-
ments.22,23 In addition to the extrapolatory, ONIOM-like form
of eq 2, each term in the extrapolation is a many-body expansion,
that is now written in a general and computationally robust
fashion up to order (or rank) as
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where pα
r,m is the number of times the αth (r + 1)-body term (in

set Vr) appears in all (m + 1)-body terms (in set Vm for m ≥ r),

and consequently,
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑp( 1)r

m r
m r m,≡ ∑ −α α= is the overcount-

ing correction for the number of times the αth (r + 1)-body term
appears in all objects of rank greater than or equal to r. It is
important to emphasize that eq 3 is essentially identical to
standard many-body expressions but presented now using graph
theory. Thus, the full energy expression, which combines eqs 2
and 3, becomes
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(4)

In practice, the individual simplexes in eqs 3 and 4 are
computed independently and asynchronously,85 leading to a
general Python-based parallel implementation. Furthermore,
our implementation also allows use of separate electronic
structure packages for each level of treatment and currently
supports the simultaneous use of Gaussian,74 ORCA,76 Psi4,75

Quantum ESPRESSO,77 and OpenMX.88 A few key ideas
regarding our graph-theoretic formalism are presented in the
Supporting Information to facilitate the discussion in the paper.

3. GRAPH-THEORETICALLY DETERMINED PARALLEL
QUANTUM CIRCUITS FROM EQS 3 AND 4

As seen in the Introduction section, the problem of quantum
circuit depth is a serious limitation in obtaining accurate
quantum computing results. In this section, we present a general
solution to this problem based on the graph-theoretic paradigm
presented in the previous section. The graphical decomposition
of the instantaneous molecular structure is parsed, and the steep
scaling aspects (represented as “level, 1” in eq 4) are spawned to
a quantum computing or quantum simulation system, while the
lower scaling components are retained on classical hardware. To
achieve this, in Section 3.1, we develop a general projection
operator-based formalism, which when applied to a full-system
molecular quantum circuit, as shown in in Section 3.2, reduces
the circuit into a family of parallel quantum circuits. In the
Results and Discussion section, we have then shown that this
approach reduces the quantum circuit depth problem, shown in
Figure 1, by several orders of magnitude.

3.1. Graph-Theory-Based Projection Operators. In this
section, we introduce a new quantum circuit decomposition
technique that reduces the complexity of circuits (measured in
terms of circuit depth and number of CNOT gates as seen in
Figure 1) by several orders of magnitude. We begin with a
Hilbert space decomposition scheme using the set-theoretic
inclusion−exclusion principle.89 The projection technique is
then adapted to a graph problem, which in the next subsection is
used to decompose any arbitrary unitary operator (or quantum
circuit) into parallel, but overlapping, streams of computing
processes that can be executed on a cluster of quantum and
classical hardware systems.
Let us begin with a Venn diagram that divides a coordinate

representation |x⟩⟨x| into regions, A, B, C, and so forth. The
regions may intersect, and in Figure 3a, for concreteness, we
have superimposed the Venn diagram on top of a H2 molecular
cluster. Thus, the Venn divides a molecular system into several
regions. Using the principle of inclusion and exclusion,89 the
resolution of the identity for the Hilbert space depicted within
the Venn diagram may be written as

Figure 2. Here, a cluster of 16 hydrogen molecules is represented as a
graph. This graph presents a distance-based truncation of expensive
electron correlation treatments. This graphical representation also
allows for the reduction in complexity for the quantum circuit
representation of this system s discussed later in this paper.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01303
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01303/suppl_file/ct1c01303_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


x x x

x x x x x x x x x

x x x x x x x x x

x x x

I d

d d d

d d d

d

A B C

A B C

A B A C B C

A B C

A B C A B A C B C A B C

∫
∫ ∫ ∫
∫ ∫ ∫
∫

≡ | ⟩⟨ |

= | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |

− | ⟩⟨ | − | ⟩⟨ | − | ⟩⟨ |

+ | ⟩⟨ |
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∪ ∪

∩ ∩ ∩

∩ ∩

∩ ∩ ∩ ∩ ∩
(5)

where the left side is the identity since it sums over the entire
Hilbert space represented here by sets A, B, and C, and integrals
involving the dyadic terms, |x⟩⟨x|, are within a chosen set
depicted within the Venn diagram. Additionally, we have also
introduced projection operators

x x xdA
A

∫≡ | ⟩⟨ |
(6)

that project out portions of a Hilbert space depicted in eq 5 and
only include the portion of the diadic sum within a given set.
While eq 5 arises from the principle of inclusion and

exclusion89 well known in set theory and can be generalized to

Figure 3. In figure (b), we provide an illustration of the sets A, B, and C
for the system in figure (a). Figure (b) is used to construct eq 5. In figure
(c), the sets are provided a graph-theoretic form to make the transition
from eq 5 to 7 clear. Figure (c) can be realized through eq 9 which is a
special case of eq 7.

Figure 4.Quantum circuit decomposition based on graphical partitioning of molecular systems. The second-quantized Hamiltonians for node/edge/
face fragments, with molecular orbitals obtained from Hartree−Fock, are used as the input for the Qiskit quantum computing framework,25 to obtain
quantum circuit models shown on the right side of the figure, one circuit for each fragment. Details of this process are given in the Results and
Discussion section.
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an arbitrary number of sets, an alternate approach to divide the

space represented by the identity operator, I, can be obtained by

reintroducing the graph V V;0 1≡ { } from the previous section

(also see Figure 2). As usual, the graph comprises vertices, V0,

edges,V1, and rank-r simplexes. An equivalent expression for the

resolution of the identity in eq 5 may now be obtained in terms

of projectors that encompass nodes, edges, and higher-order

simplexes as

I ...

( 1)
r

r r
r

V V V

V

0
,0

1
,1

2
,2

0
,

0 1 2

r
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∑ ∑

= − + −

= −

α
α α

α
α α

α
α α

α
α α

∈ ∈ ∈

= ∈ (7)

Here, as in eqs 3 and 4,
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m r m,≡ ∑ −α α= and pα

r,m are

the number of times the αth rank-r term (in setVr) appears in all

rank-m terms (in set Vm), for m ≥ r. Consequently, r
α is the

overcounting correction for the number of times the αth rank-r

term appears in all objects of a rank greater than or equal to r. It

must be noted that pα
r,m are also the number of supersets of the

αth rank-r simplex, and the projectors, r,α , yield the α-th rank-r

simplex. These projection operators are used in the next section

to reduce the quantum circuit depth.
The parallels between eqs 7 and 5 may be further explored by

rewriting eq 7 in a decreasing order of rank, that is
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where the appearance of alternating signs is clear and resembles

that in eq 5, and the factor 1
α

− is the number of times the α-th

rank-( 1)− simplex appears in all rank- simplexes. Addi-
tionally, for 1= , eq 8 becomes

I
V V

,1
0

,0

1 0

∑ ∑= − +
α

α
α

α α
∈ ∈ (9)

which, for the graph in Figure 3c, leads to an identical result as in
eq 5, constructed for Figure 3b.

3.2. Quantum Circuit Depth Reduction through
Parallel Quantum Processing Using the Projection
Operators, r,{ }α . We now begin with a quantum circuit

depicted using the symbol , a unitary operator, that
propagates a state that represents the electronic structure for
the full molecular system on some quantum hardware system.
However, as noted in Figure 1, the complexity of such a circuit
and the associated resources may grow rapidly as system size
grows. To overcome this issue, we may apply the graph-
theoretically defined resolution of identity in eq 7 to to
decompose it into a family of parallel quantum circuits given by

Figure 5. Figure 4 presents a quantum circuit decomposition based on graphical partitioning ofmolecular systems. This helps compute {Eα,r
level,1} in eq 4.

To compute the lower-scaling {Eα,r
level,0; Elevel,0}, we use classical computing algorithms as seen on the left side of the figure here.
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where

r r, ,{ ≡ }α α (11)

represents here a set of projected quantum circuits, one for each
simplex. When a molecular system is divided using the graph, as
presented in Section 2, the set r,{ }α yields one quantum circuit
for eachmolecular fragment. This is illustrated in Figure 4. Thus,
using eq 10, it is possible to independently construct the unitary
quantum circuits, r,α , one for each molecular fragment and use
these in parallel on a family of decoupled quantum hardware
systems to perform the computations needed to obtain the
approximations in eqs 3 and 4.
In this publication, we use the individual quantum circuits,

r,{ }α , to obtain the family of fragment energies {Eα,r
level,1}, using

quantum circuit models, where level, 1 here is Unitary Coupled
Cluster Singles and Doubles (UCCSD), which when used in eq
10, or equivalently, eq 3, yields an approach to compute the left
side of eq 4, using a stream of parallel quantum processes. This
idea is presented in Figure 4. Because these independent circuits,

r,{ }α , are for much smaller fragments as compared to the full
system of interest, one may find the error propagation to be
limited. We indeed find this to be the case for the examples
discussed later.
Furthermore, eq 4 contains both level, 1 calculations and level,

0 calculations. This kind of composite approach has been shown
to converge faster as a function of maximum rank- 83,85 for
ground-state post-Hartree−Fock energies, AIMD trajectories,
and multi-dimensional potential calculations using post-
Hartree−Fock energies and gradients. Here, level, 1 is
UCCSD, whereas level, 0 will include a computationally less
expensive DFT approximations. Thus, the algorithm presented
here envisions spawning out a family of processes on an
ensemble of classical and quantum systems, and this process is
depicted in Figure 5 and, in more detail, in Figure 6.
It is critical to emphasize at this stage that it is now

accepted90,91 that universal, fully fault-tolerant quantum

computers are a rather distant dream,90 and new frontiers
such as Noisy Intermediate-Scale Quantum (NISQ)90 systems
have emerged. To effectively use suchNISQmachines with their
limited coherence times, a hybrid approach that interleaves
NISQ machines with classical computers has been proposed in
ref 91. This is complemented by orthogonal developments in
quantum chemical algorithm developments where the varia-
tional quantum eigensolver (VQE)62,63 is already known to be a
hybrid quantum/classical approach. In this regard, our approach
here, containing quantum and classical algorithmic components,
is a contribution that can be used for ground-state quantum
chemical calculations at enhanced accuracy with lower
computational complexity80−83,85 on a hybrid stream of
quantum and classical systems. The algorithm is built to be
asynchronous and parallel, and these computational aspects will
be considered in a future publication.
In general, a molecular system, and in future a molecular

surface,83 is coarse-grained to create a graphical representation
as explained at the top of Section 2. This yields simplexes that are
then used to create a “bucket of fragments” as referred to in
Figures 4 and 5. Each fragment needs to be used to compute
energies at two levels of theory, Eα,r

level,1 and Eα,r
level,0. As stated in

Figure 5, the quantity Eα,r
level,0 is computed on classical hardware

systems, whereas the quantity Eα,r
level,1 is to be computed on

quantum hardware using the quantum circuits r,α , as
facilitated by the graph-theoretic partitioning method, thus
expanding the realm of applications for quantum computation.
In this publication, we do not present results that use actual
quantum hardware, but we present results where the family of
quantum circuits, r,{ }α , is processed using the Qiskit system25

but implemented on a quantum simulator.25 Further computa-
tional details are presented in Section 4.1.

4. RESULTS AND DISCUSSION
In order to gauge the accuracy and reduction in computational
complexity arising from our Graph-|Q⟩⟨C| method presented
above, we have applied this approach to a range of hydrogen
molecular cluster problems. These systems are critical for
applications related to energy storage.92−97 In particular, the safe
and efficient storage95,97−100 of molecular hydrogen is of
paramount importance to potential developments in new fuel
cell technologies.101−103 Furthermore, the study of ortho- and
para-hydrogen104−109 at low-temperatures has been a funda-

Figure 6. The algorithm has classical as well as quantum counterparts. See also Figure 5.
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mental challenge that has implications toward the study of exotic
new states of matter that may have important applications in
low-temperature physics.110−112

While the key properties of such systems involve the detailed
study of electronic as well as nuclear degrees of freedom,113 in
this publication, our goal is to gauge the accuracy of the
approach introduced above the ability to reduce the complexity
of quantum circuits in obtaining post-Hartree−Fock (coupled
cluster)-level electronic energies for such systems. Thus, we
compute post-Hartree−Fock electronic energies using the
quantum circuit decomposition algorithm mentioned above
and compare these results with those obtained using classical
algorithms74,75 obtained at the unitary coupled cluster level of
theory (UCCSD).
Hydrogen molecular clusters of various sizes, (H2)n, (n = 2, ...,

128) have been treated with the Graph-|Q⟩⟨C| method to
demonstrate scalability and accuracy as the system size grows.
Specifically, the analysis of errors due to the truncation in the
rank ( in eq 10) and edge length cutoff used in the graph
definition allows us to gauge the fragment circuit complexity
needed to achieve an acceptable (milli-hartree) level of accuracy.
4.1. Computational Aspects. Figure 5 provides a brief

overview of the algorithm which is further elaborated upon in
Figure 6. Specifically, simplexes labeled (α, r), in eqs 10 and 4,
are pre-determined on classical hardware. Each hydrogen
molecule is treated as a node in the graph. The process of
defining a graph is controlled by two parameters, the maximum
edge length cutoff and the maximum order (or rank) of the
many-body terms which is represented in eqs 10 and 4 using the
symbol . As the maximum edge length increases, the fragments
(including higher-order simplexes) grow in number and size
rapidly, thus increasing computational complexity while also
presenting a significant challenge for parallel processing. The
edge length cutoff may be chosen to be high enough to include
all critical interactions. The maximum edge length has been
chosen here based on previous studies,81,85 as well as additional
analysis presented in the next subsection, and leads to the type of
graph presented in Figures 4 and 5.
Once the graph is generated, the system is decomposed into a

set of simplexes, or fragments, that essentially now can be
processed in a completely independent way. A stream of
fragments is thus generated with the goal to compute {Elevel,1(α,
r); Elevel,0(α, r)} and Elevel,0 for the full system. As discussed in ref
85, the stream of fragments generated can be processed in an
asynchronous (non-blocking) and parallel manner, to generate
the fragment energies Elevel,0 and Elevel,1, to be used in eq 4. In refs
83 and 85, this is done through an MPI parallelized hybrid C+
+/Python module, which is capable of using multiple electronic
structure packages within a single AIMD step and isolated
electronic structure calculations conducted during potential
surface evaluations.22 The implementation of the approach in
classical computing platforms currently supports the following
set of external electronic structure packages during a single
energy and gradient evaluation: Gaussian,74 ORCA,76 and
Psi4,75 for molecular and cluster calculations, and Quantum
ESPRESSO77 and OpenMX88 for condensed phase studies.
Here, this aspect is further expanded to also include the use of
quantum algorithms to determine Elevel,1. (See Figures 5 and 6.)
All level, 0 calculations shown in eq 4 were performed at the

level of DFT (B3LYP), using a classical algorithm on classical
hardware, and all level, 1 calculations were performed at the
UCCSD level of theory, on a quantum simulator using an
appropriate quantum circuit model. This choice of comple-

mentary levels of theory has been demonstrated to be
accurate79,80,85 and to yield a rapidly convergent sequence of
results85 with increasing graphical rank . The choice of basis
sets for all calculations in this publication is limited to the
minimal STO-3G since a larger basis set introduces more
Hartree−Fock orbitals, which are mapped to an even greater
number of excitation operators, thus significantly increasing the
number of qubits required as well as the associated quantum
circuit depth. While our approach will address all of these
challenges, by reducing the needed circuit depth, in this
publication, we probe the principle behind our execution
model for accuracy purposes. Furthermore, as we will see later, it
is straightforward to integrate the current scheme into other
circuit optimization techniques, to further increase the size of
systems that can be studied, and this will be considered as a part
of future publications.
The following steps are used to obtain {Elevel,1(α, r)} with

quantum algorithms:

1. Hartree−Fock orbitals for each molecular fragment are
classically pre-computed to create a family of second-
quantized Fermionic Hamiltonians, and these are
together provided as input to the Qiskit quantum
computing framework,25 as shown on the bottom-right
portion of Figure 6.

2. The family of fragment second-quantized Fermionic
Hamiltonians is then converted into quantum circuits,

r,{ }α , using a parity mapping protocol.114

3. Each fragment quantum circuit is then executed on the
Qiskit’s built-in state vector simulator without using a
noise model, and the resultant energies are optimized
using the SLSQP optimizer115 available within the
VQE.50 This yields the family of UCCSD energies,
{Elevel,1(α, r)}, used to obtain the molecular energy as per
eq 4.

The following comments are in order with respect to the steps
mentioned above. The hybrid quantum/classical formalism
developed here is transparent to the underlying quantum
mapping protocol used to convert the Fermionic Hamiltonians
for each individual molecular fragment into quantum circuits.
Thus, there are no restrictions on the kind of map used to treat
each individual fragment Hamiltonian, and in principle, we can
use the Jordan−Wigner,116 Bravyi−Kitaev,117 or parity map-
ping114 transformations. Here, we have tested the Jordan−
Wigner scheme as well as the parity mapping protocol, and we
found that the latter does in fact reduce the qubit resources
needed as suggested in ref 114. Specifically, for each quantum
circuit, two qubits are reduced with the spin-parity symmetries
of the system,114 as a separate optimization technique.
There have been several recent studies that allow the

implementation of variational quantum algorithms such as the
VQE,42,43,50,51,53,87 in combination with an appropriate trial
wavefunction such as the UCC ansatz118,119 on quantum
simulation systems. However, our approach is general enough to
allow the possibility to include other eigensolvers apart from the
VQE, such as the recently developed contracted quantum
eigensolver120 to compute the set of {Elevel,1(α, r)} values from
the associated two-particle reduced density matrices. These
aspects will be further investigated in future publications.

4.2. Reduction of Circuit Depth and Associated
Accuracy. The complexity of our algorithm is determined by
the maximum value of within the family of quantum circuits:

r r, 0...{ | }α = . Furthermore, these graph-based circuit complex-
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ities are also dictated by themaximum edge length that is used to
create the graphs. Thus, we first conducted a detailed analysis of
the accuracy of our algorithm when both the maximum edge
length as well as are varied and chosen to have values up to
their respective maximum possible values. We perform this
analysis for systems in the size range [H2]n, n = 1, ..., 8, and
present our results in Figure 7. For comparison, we provide
results where quantum circuits are used for r r, 0...{ | }α = within
the algorithm described above and depicted in Figure 6 and
when classical algorithms are used to compute the {Elevel,1(α, r)}
energies. For all these cases, the maximum edge length is chosen
such that all nodes are connected, that is, completely connected
graphs are used, and the rank is progressively increased to study
the accuracy as well as the efficiency in Figure 7. For all cases,
given the similarity of the behavior of the three measures
depicted in Figure 1, namely, the number of quantum gates, the
number of CNOT gates, and the circuit depth, and given the

sensitivity of CNOT gate fidelity as discussed in ref 46, for the
remaining portion of this paper, we use the number of CNOT
gates within a quantum circuit as a measure of computational
complexity and extent of error propagation.
As noted in Figure 7a, for each system shown along the

horizontal axis, the accuracy increases as the maximum rank is
increased and is already within 1/100th of a milli-hartree from
the correct result at = 2. In fact, for all cases in Figure 7a, = 1
provides results with acceptable accuracy. In Figure 7b, we
present the computational effort needed to obtain the results in
Figure 7a. That is, the larger rank calculations need an
exponentially greater number of CNOT gates, which is a
measurement of computational complexity, as seen in Figure 1.
However, Figure 7b should be compared with Figure 7c, where
the full-system computational complexity (or CNOT gate
count) is presented. The number of CNOT gates in 7c is several
orders of magnitude greater as compared to the truncated

Figure 7. Results for the fully connected graph where the edge length has been chosen to be the maximum value so that all nodes are connected. (a)
Errors from the Graph-|Q⟩⟨C|method at various values of in eq 10, as compared to the full UCCSD result. (b) Corresponding maximum quantum
circuit depth requirement as a function of rank. As the maximum rank of the graph increases, the quantum circuit complexity increases in a near-
exponential fashion. (c) Quantum circuit depth for the full system without the Graph-|Q⟩⟨C| treatment. For example, for (H2)8, the number of CNOT
gates and associated circuit depth reduce from approximately 106 to approximately 104, when 2= is used while resulting in an error less than 0.05
milli-hartree.

Figure 8. Number of fragment circuits for [H2]64 and [H2]128 at maximum edge lengths of 4 (a) and 7.5 Å (b) and various values of .
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-level calculations in Figure 7b; for example, using only 1=
results in a 1−3 orders of magnitude reduction in the number of
CNOT gates, as seen by comparison of Figure 7b,c, while
maintaining accuracy to within 0.15 milli-hartree. Furthermore,
the complexity for a specific choice of rank , which is dictated
by an expected accuracy for the result as shown in Figure 7a, is
constant across systems of all sizes. For example, for [H2]8 at

1= , instead of computing all interactions with the full system
circuit, only 1-body and 2-body interactions are accounted for by
a set of circuits representing [H2] and [H2]2. The approximation
takes advantage of the local nature of chemical systems.
However, there are some caveats. The computational expense

of an individual fragment circuit increases with increasing values
of , as seen in Figure 7b. In addition, as shown in Figure 8 and
illustrated in Figure 9 for [H2]128, the number of fragment
circuits also drastically escalates with respect to . Thus, the
benefit of complexity (or the CNOT count) reduction from
using fragments will also require the stream of quantum and

classical computations to be executed in parallel to attain
computational efficiency.
In this publication, we aim to achieve a milli-hartree-level

agreement between full UCCSD calculations and those obtained
from the algorithms presented here. Thus, based on our results
in Figure 7a, we now investigate larger [H2]n clusters, with n = 8,
..., 128, using 1= as the maximum rank. The maximum edge
length for these larger clusters was determined based on the
distribution of all edge lengths presented in Figure 10. This
figure indicates that a maximum edge length of 4.0 Å includes
most of the short-range interactions. Additional longer-range
interactions may also be included by raising the maximum edge
length to 7.5 Å; however, as stated above, the number of
simplexes grows rapidly as the edge length increases thus raising
the complexity of the algorithm.
The set of results for larger H2 clusters is presented in Figures

11 and 12. While Figure 11a summarizes the results for [H2]n
clusters, with n = 1, ..., 8, Figure 11b extends this out to [H2]64.
As the size of the molecular system grows, the corresponding

Figure 9. Complements Figure 8 and shows the drastically increasing number of fragments with increasing . (a) [H2]128. (b) Graphical
decomposition of [H2]128, where each H2 molecule is treated as a node, and edges connect all nodes within a 4.0 Å distance. (See also Figure 10 and
associated discussion on the edge length cutoff.) (c) Merged atomic and graphical images.

Figure 10. Radial distribution function for [H2]64 and [H2]128.

Figure 11. Results for larger H2 clusters. (a,b) 4.0 Å and 1= .

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01303
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01303?fig=fig11&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


circuit complexity, as represented by the number of CNOT
gates (red dots), increases exponentially. However, the
complexity of the current algorithm, as represented by the
yellow dots in Figure 11, grows in a gradual fashion while
maintaining accuracy in the milli-hartree range as can be seen
from the right vertical axis of Figure 11. Clearly, these figures also
show that while = 1 appears sufficient and does provide
accurate results, the error grows with system size. Thus, in Figure
12a,b, we present the accuracy and CNOT gate count for 2=
and 3= . Clearly, increasing the value of not only reduces
the error but also increases the number of CNOT gates as seen
in Figure 12c,d.
A more complete picture for circuit complexity can be seen

from Table 1, where we present the circuit depth, the number of
qubits, the number of CNOT gates, the total number of gates,
and the number of parameters needed to describe a quantum
circuit, using the standard implementation available in Qiskit,

for clusters of various sizes. Thus, as per Figure 11, when 1=
is used for these calculations, the resources needed are as
dictated by the second row (i.e., [H2]2) in Table 1. This provides
a significant reduction in the resources needed to perform these
computations, as noted in the figures mentioned above.
Thus, in general, choice of maximum and edge length cutoff

would be based on a compromise between the desired accuracy
and efficiency. However, in all cases, it appears that the current
algorithm presents a powerful mode to reduce the quantum
circuit depth problem in quantum computing, as summarized by
Figure 13.

5. CONCLUSIONS
The promise of solving exponentially complex problems
efficiently using quantum computing hardware and associated
quantum computing algorithms software is a rapidly evolving
research frontier.90 While we are in the early stages of this
quantum revolution, there are a wide set of scientific and
technological areas that can benefit from such developments.

Figure 12. Results for larger H2 clusters. (a) 4.0 Å and 2= . (b) 7.5 Å and 3= . (c) 4.0 Å and 2, 3= . (d) 7.5 Å and 2, 3= . These figures
show the progressive improvement in accuracy [(c,d)] and the associated increase in costs [see the relative vertical position of yellow dots in (a,b)].

Table 1. Quantum Circuit Resource Requirements When
Standard Techniques Are Used: Illustration for a Family of
H2 Clusters

a

system
circuit
depth

number
of qubits

number of
CNOT gates

total
number of

gates
number of
parameters

H2 11 2 3 16 3
(H2)2 924 6 615 1217 26
(H2)3 5920 10 4684 7370 117
(H2)4 21 361 14 16 285 27 021 360
(H2)5 57 402 18 47 312 70 204 875
(H2)6 128 469 22 107 190 156 081 1818
(H2)7 253 846 26 205 192 313 143 3381
(H2)8 458 233 30 389 472 550 279 5792

aClearly, as the system size grows, the circuit gets extremely complex.
The Graph-|Q⟩⟨C| approach reduces resource complexity by several
orders of magnitude.

Figure 13. Summary of reduction in CNOT gate-based complexity.
The red circles are the standard implementation, whereas the blue and
green circles arise from the circuit decomposition scheme discussed
here.
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However, true progress in such areas can only be achieved by a
rigorous study and understanding of the electronic structure and
dynamics of complex materials, thus requiring accurate
treatment of electron correlation effects in conjunction with a
rigorous treatment of quantum nuclear effects.
Many groups have contributed greatly to the development of

new quantum circuit-based methodologies to compute the
electronic structure in small molecular systems on quantum
hardware. Most of these efforts are deeply hindered by the so-
called quantum circuit depth problem where the complexity of
the quantum circuit, along with the limited fidelity of the
quantum gates currently available on state-of-the-art quantum
hardware, leads to an enormous increase in error propagation
and in stable implementation. This provides a strong upper
bound on the accuracy, system size, and levels of basis functions
that can be implemented in currently available quantum
hardware.
In this publication, we present a novel procedure to reduce the

depth of quantum circuits and reduce the extent to which this
influences the quality of results in computing post-Hartree−
Fock electronic structure energies. The method is based on
molecular fragmentation, and specifically, a molecular system is
divided into overlapping fragments through a graph-theoretic
technique. This then allows the construction of a series of
projection operators, that allow some overall model for quantum
computing obtained from an approximation to the unitary
evolution of the full system, into separate processes, some of
which can be treated on quantum hardware and others on
classical hardware. Thus, we develop a procedure for electronic
structure that can be spawned on to a potentially large ensemble
of classical and quantum hardware systems.
We demonstrate this methodology by computing UCCSD

energies for a set of [H2]n clusters, with n ranging from 4 to 128.
We implement our methodology using quantum circuits, and
when these quantum circuits are processed on a quantum
simulator, we obtain energies in agreement with the correct
UCCSD energies in the milli-hartree energy range. We also
show that our circuit decomposition approach yields up to 9
orders of magnitude reduction in the number of CNOT gates and
circuit depth for the larger-sized clusters when compared to a
standard quantum circuit implementation as available within
Qiskit. Future work will involve the implementation of these
methods on quantum hardware.
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