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In architecture and engineering, surfaces with positive Gaussian curvature such as domes are used for
their high stiffness-to-weight ratios and efficiency in enclosing a volume. These curved shapes are diffi-
cult to create due to time-consuming or scale-limited processes. In recent years, origami and kirigami
have risen as viable routes for the rapid fabrication of complex surfaces from flat sheets; however, these
methods typically lead to systems that are overly flexible due to their high number of degrees of freedom.
In this paper, we present a design for a pop-up kirigami system that achieves symmetric, positive
Gaussian curvature by taking advantage of an internal infinitesimal mechanism. The system is fabricated
from flat sheets using a hexagonal pattern, and the sheets remain flat locally as the system deforms into a
dome-like shape. We investigate the internal mechanism and deformation modes of the system, reveal-
ing the flexible mode that creates dome-like curvature. We discuss geometric variations of the system
and illustrate the possible shapes that result from changing the initial pattern parameters. Finally, we
demonstrate the high stiffness of the system that arises from restricting its one flexible mode in its final,
dome-like shape. The proposed pop-up kirigami system offers a method for fabricating dome-like sur-
faces with potential applications as deployable enclosures, concave reflectors, and more.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Surfaces with positive Gaussian curvature (dome-like shapes)
have useful characteristics that make them applicable to a variety
of fields. Such surfaces can be used to focus, refract, or attenuate
signals, making them useful in the design of antenna reflectors,
solar thermal systems, and auditoriums (Wulfrank et al., 2014;
Girija Vallabhan and Panneer Selvam, 1985; Tibert and
Pellegrino, 2002; Fonseca et al., 2018). In architecture and engi-
neering, curved surfaces such as arches and domes make excellent
structural systems due to their high stiffness to weight ratio.
Domes made using material systems such as block masonry,
poured concrete, and prestressed cables have been used for cen-
turies as efficient roofs that can enclose large areas (Huerta,
2007; Pedreschi and Theodossopoulos, 2007; Pellegrino, 1992;
Yuan et al., 2007).

It is a well-known phenomenon that adding curvature to a thin,
flat sheet greatly increases its stiffness (Pini et al., 2016). Any sur-
face created from a flat sheet without stretching or tearing has zero
Gaussian curvature; such surfaces are classified as developable
(Massey, 1962). It follows that introducing double curvature to a
developable surface would be desirable; however, achieving posi-
tive Gaussian curvature from a flat sheet is difficult because it
requires stretching, shrinking, crumpling, or tearing the sheet
(Callens and Zadpoor, 2018; Modes et al., 2011). Instead, doubly
curved surfaces are typically fabricated using processes such as
casting, molding, additive manufacturing, or assembly from indi-
vidual pieces. These processes have several drawbacks: casting
materials such as concrete is a slow process and often relies on
extensive formwork; molding and additive manufacturing are lim-
ited by scale and material while also requiring internal support;
and assembling a structure from individual pieces leads to compli-
cated and expensive construction requirements.

In recent years, origami has emerged as a way to rapidly assem-
ble complex structural geometries from flat sheets (Filipov et al.,
2015; Schenk and Guest, 2016). Foldable structures inspired by ori-
gami and designed using engineering principles can be deployed
quickly from compact or stowed configurations (Zirbel et al.,
2015; Thrall and Quaglia, 2014; Lee and Gattas, 2016). Origami
structures are also scale independent, viable at the microscale
(Leong et al., 2008; Zhu et al., 2020; Hawkes et al., 2010;
Kuribayashi et al., 2006) to human- and building-scale (Filipov
et al., 2019; Del Grosso and Basso, 2010).

Several origami methods have been explored to approximate
curved surfaces, as reviewed by Callens and Zadpoor (2008). Peri-
odic tesselations, such as the Miura-ori pattern, can be deformed
out-of-plane into surfaces with nonzero Gaussian curvature if the
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flat facets of the sheet, or panels, are allowed to bend (Schenk and
Guest, 2013; Dudte et al., 2016). Variations on the Miura-ori pat-
tern have been designed to approximate complex curvatures while
maintaining rigid folding characteristics, but the resulting struc-
ture remains flexible because of the possibility for bending (Feng
et al., 2020). Concentric pleating, as seen in the origami hypar,
can also result in negative Gaussian curvature (saddle shape), but
this technique also requires panels to bend and twist (Demaine
et al., 2011; Filipov and Redoutey, 2018). Tachi’s origami bunny
(Tachi, 2010; Demaine and Tachi, 2017) uses a tucking technique
to achieve highly complex surfaces with nonzero Gaussian curva-
ture, but this method is only possible with extremely thin materi-
als and quickly becomes untenable as systems are scaled up.
Kirigami methods, which allow for cutting of material, have been
explored as well. Curved kirigami surfaces often require a nonuni-
form tesselation pattern (Martin, 2015) and do not lead to a struc-
turally robust system (Cho et al., 2014). A kirigami core structure
with spherical curvature has been demonstrated, but its stiffness
properties have not been explored (Nojima and Saito, 2006). In
summary, creating surfaces with curvature, especially dome-like
curvature, from a flat sheet is a unique challenge that often
requires significant panel deformation, infinitesimally thin materi-
als, or nonuniform cutting and folding patterns. Furthermore, it is
difficult to reach high stiffness using these origami and kirigami
methods because thin sheets are prone to bending and folding.
Due to these flexible deformation modes, origami systems need a
large number of constraints to restrict movement and create a stiff
structure.

In this paper, we present a pop-up kirigami system that deforms
into a surface with dome-like curvature while the panels remain
near to flat. The system begins as a kirigami structure with many
Fig. 1. (a) The pop-up kirigami penguin by Haruki Nakamura inspired the structure prese
Pop-up kirigami structure in flat state, assembling into 3D array, and deforming into a do
and curved states. The prototype has a mass of 17 grams and supports a 500 g load wit
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flexible modes. As it deforms into a shape with positive Gaussian
curvature, only one flexible mode remains; when that mode is
restricted, the structure gains high stiffness. We show that the
pop-up kirigami can accommodate thickness, lending it to future
exploration as a system made of structural materials. The struc-
ture’s pattern is a repeating array of hexagons and trapezoids,
beginning from two flat sheets that have been cut and fastened
together. Its ability to achieve positive Gaussian curvature is due
to an intrinsic infinitesimal mechanism that leads to synclastic
(dome-forming) behavior.

This paper introduces and explores the properties of the pop-up
structures and is organized as follows: In Section 2, we define the
system geometry, including how thickness can be incorporated for
practical designs. The intrinsic properties of the system, including
the infinitesimal mechanism that allows for the dome-like curva-
ture deformation, are discussed in Section 3. Next, we explore
the possible geometric variations of the system and the effects of
the pattern geometry on the resulting shape (Section 4). Finally,
in Section 5 we demonstrate the stiffening properties of the result-
ing structure.
2. Geometric definition

The inspiration for this system is a pop-up kirigami penguin toy
made by Japanese artist Haruki Nakamura (Fig. 1(a)) (Nakamura,
2016). In his work, simple internal springs (usually made of rubber
bands) are prestretched and locked when the toy is flat and are
released when the toy is dropped, making the toy pop up into its
3D shape. We were intrigued by the structure of these toys because
they begin as flat sheets and pop up into a 3D structure, a feature
nted in this paper (Nakamura, 2016) (Images used with permission of the artist). (b)
me-like structure. (c) Paper prototype of pop-up structure, shown in flat, assembled,
h no noticeable deformation.
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that is widely sought after in origami and kirigami engineering,
especially for self-assembly at small scales (Bassik et al., 2009;
Zhang et al., 2015). The penguin body (which holds the internal
spring mechanism) is a cell constructed from two sheets of paper
cut into a central hexagonal panel and six surrounding trapezoidal
panels, which are fastened together along their outer edges
(Maker, 2017). Our design is an array made up of these cells con-
nected along those same outer edges, so that in places, four trape-
zoidal panels meet along one crease line. The result is a structure
that can ‘‘pop up” into 3D as shown as the assembly step in
Fig. 1(b). Here, we do not explore the internal spring mechanism
and instead rely on external forces for the pop-up motion. In prac-
tice, a cable connected around the perimeter of the structure could
be tightened to provide a radially confining force for assembly.

2.1. Planar geometric definition

The base of the pop-up system presented in this paper is a sin-
gle cell made of two sheets cut into hexagonal and trapezoidal pan-
els and connected along the bottom trapezoid edges. The pattern
geometry of a cell is determined by the panel angle, c and the panel
length, L (Fig. 2(a)). In this paper, we assume the hexagon side
length is always equal to 1 and scale all other units from this value.
The possible range of the panel angle c is 0 6 c < 30�. The assem-
bled (3D) shape of a single cell is defined by the folding angle
between two trapezoidal panels, h, along with the trapezoid
dimensions c and L. The range of h depends on c; a pattern with
a larger c has a smaller range of h (Fig. 2(b)). When c ¼ 30�, the pat-
tern cannot assemble into a 3D shape and remains a flat sheet. We
define the folding angle when the cell is closed as the closed angle
hc . The closed angle can be computed from the panel angle as:
hc ¼ 2 cos�1ðtanðp=3Þ tanðcÞÞ.

Individual cells are tessellated to create a larger cellular struc-
ture. The smallest of these structures has seven cells, and larger
structures (with nineteen cells, thirty-seven cells, etc.) are made
by adding cells radially outward from the center cell. In this and
the following section, we primarily focus on the properties and
behavior of a sample geometry of the seven-cell structure where
c ¼ 20� and L ¼ 1:5; in Section 4, we explore variations in c; L,
and the number of cells.
Fig. 2. (a) Geometry of a unit cell with c ¼ 20� and L ¼ 1:5. The angle between two trapez
cell becomes closed it is defined as hc . (b) Two examples of the seven cell structure wit
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2.2. Modified design with thickness

A critical challenge of designing and creating practical origami
and kirigami structures is accommodating the thickness of conven-
tional materials (Tachi, 2016; Lang et al., 2018; Zirbel et al., 2013).
In this subsection, we introduce a modified design of the pop-up
kirigami structure that can accommodate finite thickness. The
design adds thickness on both sides of the initially flat planes of
the panels. To allow for folding without restricting the kinematics,
we implemented a hinge-shift technique, which moves the rota-
tional hinges to the edges of the panels (Lang et al., 2018) (Fig. 3
(a)). The structure with thickness can fully assemble from flat into
3D with the addition of an angled cut along the bottom edge of
each trapezoidal panel, as shown in Fig. 3. The angle of the cut b
depends on the panel angle as:
b ¼ tan�1½tan½p=2� cos�1ð

ffiffiffi
3

p
tan cÞ� cos c�. This modification with

an angled cut applies for any thickness and any geometric defini-
tion of the cell. The angled cut allows for uninhibited rigid folding
kinematics, where the adjacent cells come into contact only when
the cell is fully closed.

We fabricated a prototype with thickness using foam board
(Fig. 3(c)). The geometric parameters of the prototype are
c ¼ 20�, hexagon side length ¼ 100; L ¼ 1:500, and thickness
t ¼ 3=1600. The angled cut allows for the cells to fully assemble into
the 3D shape, and the structure can deform into a dome-like shape,
similar to the paper prototypes.
3. Intrinsic properties of pop-up system

In this section, we used the bar and hinge method to simulate
the pop-up system and explore several interesting intrinsic proper-
ties. We first investigated the internal mechanism of the seven-cell
structure (Section 3.2). Next, we utilized the bar and hinge method
to simulate the system assembling from flat to 3D and deforming
into a dome-like shape (Section 3.3). Finally, we conducted an
eigenvalue analysis to confirm the existence of an infinitesimal
mechanism and explore other modes of deformation (Section 3.4).
oidal panels connected along their bottom edges is the folding angle h, and when the
h different geometries.



Fig. 4. (a) Bars are used to capture the in-plane stiffness of the trapezoidal and
hexagonal panels. Bending hinges (shown in dashed lines) capture bending stiffness of
the panels. Folding hinges (black lines) represent the folding stiffness of the crease
lines. The bars on the sides of the trapezoidal panels (red lines) are the only ones that
do not have bending or folding hinges defined along them. (b) Folding, bending, and
panel contact are all modeled used rotational springs. The angle of a spring is
calculated using adjacent triangles: for the folding hinge shown, we use two sets of
symmetric triangles 5-4-1 & 5-4-6 and 4-5-2 & 4-5-7; for the bending hinge, the
triangles 2-4-1 and 2-4-5; and for the contact spring, the triangles 1-6-3 and 1-6-4.

Fig. 3. (a) A 3D model of a single cell with the angled cut b shown on the
trapezoidal panels. (b) A subset of the seven-cell system modeled with thickness.
The angled cut b allows for the cells to fully assemble. (c) A prototype of the pop-up
structure fabricated with foam board (thickness = 3/1600).
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3.1. Bar and hinge model for pop-up system

The bar and hinge method models origami and kirigami struc-
tures as pin-jointed assemblages (Schenk and Guest, 2016). It can
capture in-plane deformations, crease folding, and panel bending
seen in origami structures (Liu and Paulino, 2017; Filipov et al.,
2017; Liu and Paulino, 2018). Our bar and hinge model is based
on the MERLIN2 origami modeling package because it can perform
large-displacement, highly nonlinear analyses (Liu and Paulino,
2018). With the bar and hinge model, the panels of the kirigami
structure are replaced by bars outlining the perimeter of the panels
and spanning across the panel diagonals. These bars capture in-
plane stretching and shearing deformations. Folding and bending
deformations (which occur at the crease lines of the kirigami struc-
ture and within the panels, respectively) are modeled using tor-
sional springs defined along the appropriate bars, as illustrated in
Fig. 4(a). For a more detailed discussion of the formulation of the
bar and hinge model and the MERLIN2 package, please see Liu
and Paulino (2017) and Liu and Paulino (2018).

The stiffness of the system, used to formulate equilibrium equa-
tions and solve for a force or displacement response, is comprised
of contributions from these components, as well as contact springs
that simulate adjacent panels coming into contact. The total strain
energy U of the system is a sum of these four contributions:

U ¼ US þ UF þ UB þ UC

where US is the strain energy due to bar stretching, UF is the energy
due to crease folding, UB is the energy due to panel bending, and UC

is the energy due to panel contact. These strain energy derivations
are presented in detail in Liu and Paulino (2017) and Zhu and
Filipov (2019).

We model all bars, including those with torsional springs, using
a material with Young’s modulus E ¼ 108, thickness t ¼ 0:01, and
Poisson ratio m ¼ 1=3. We use these arbitrary units of realistic rel-
ative magnitudes to demonstrate the fundamental characteristics
4

of the pop-up structures. The axial (stretching) bar stiffness KS is
EA=L, where A is the bar cross-sectional area and L is the bar length.
Formulations of bar cross-sectional areas for quadrilateral panels,
including skewed (parallelogram) panels, have been established
in the literature (Filipov et al., 2017), and a general approximation
for polygonal panels has also been proposed (Liu and Paulino,
2018). Our system includes hexagonal and trapezoidal panels,
which require new bar area definitions for accurate modeling of
their in-plane stiffness. We derive appropriate bar areas and pre-
sent them in Appendices A and B for hexagonal and trapezoidal
panels respectively.

The panel bending stiffness KB depends on the material param-
eters E; t; m and the panel geometry, as follows:

KB ¼ 0:55� 0:42
Ra
p

� �
Et3

12ð1� m2Þ
DS

t

� �1=3

; ð1Þ

where Ra is the sum of the outer angles of the panel corners adja-
cent to the shortest diagonal and DS is the length of the shortest
diagonal bar (Filipov et al., 2017). For trapezoidal panels, Ra ¼ p

and Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ð1þ L tan cÞ2

q
. For hexagonal panels, Ra ¼ 3p=2

and Ds ¼
ffiffiffi
3

p
. The magnitudes of Ra and Ds do not significantly

affect the simulation results. Torsional springs with stiffness KB

are defined at all bending hinges in the structure. For example, a
bending hinge is modeled on the bar connecting nodes 2 and 4 in
Fig. 4; the angle between the triangles 2-4-1 and 2-4-5 defines
the hinge. The stiffness of the fold lines KF is defined as KB=1000
in order to simulate a structure with panels that are stiff and folds
that provide near zero contribution to the rigidity of the structure.
Two torsional springs, each with stiffness KF=2, are defined at all
folding hinges in the structure. The angles of the folding hinges
are defined by two sets of adjacent triangles. Using two sets of sym-
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metric triangles to define the hinge angle allows us to capture the
displacement of all nodes adjacent to the folding hinge. An example
of a set of folding hinges is along the crease line connecting nodes 5
and 4 in Fig. 4(b). One hinge is defined by the angle between the tri-
angles formed by nodes 5-4-1 and 5-4-6; the other is defined by the
symmetric triangles 4-5-2 and 4-5-7.

An important and challenging aspect of origami modeling is
capturing when panels come into contact (Zhu and Filipov,
2019). To avoid panel intersections, we implement a simplified
contact model using a penalty function applied to a torsional
spring (Liu and Paulino, 2017). Contact torsional springs were
defined between adjacent trapezoidal panels with axes spanning
between the top and bottom sheets. For example, a contact spring
is defined connecting nodes 1–6 in Fig. 4(b). The rotation of the
spring is calculated as the angle between the triangles formed by
nodes 1-6-3 and 1-6-4, so that as nodes 3 and 4 approach each
other, contact is engaged. The initial stiffness of the contact hinge
is KC ¼ 20 � KF and the stiffness increases toward infinity as the
distance between nodes 3 and 4 approaches zero. The initial value
for KC is low because when contact is not engaged, neither folding
hinges nor contact springs contribute to the stiffness of the system.
After contact, the contact springs do contribute to the system stiff-
ness, so KC increases towards infinity. This increase in stiffness
avoids panel intersection and simulates the effect of the panels
coming into contact.

3.2. Mechanism analysis

Through informal experimentation with paper models of the
pop-up structure, we observed that the system has the ability to
deform into a shape with dome-like curvature (Fig. 1(c)). While
the unassembled structure has many flexible modes, when the
structure is assembled into 3D, the dome-forming mechanism is
the only flexible motion. Using the bar and hinge method described
in Section 3.1 along with several resources on the analysis of inter-
nal mechanisms, we verified that this motion is the result of a sin-
gle infinitesimal mechanism.

Pin-jointed assemblages (such as a structure modeled using
bars and hinges) can be described mechanically in terms of the
number of inextensional mechanisms (m) and states of self-stress
(s) that are possible for the structure (Calladine and Pellegrino,
1991). A mechanism is defined as a displacement that does not
cause internal forces to develop in the structure (excluding rigid
body motions of the full system in space). A state of self-stress is
a condition where nonzero internal forces in a structure can exist
in equilibrium without the application of external forces. The
quantities m and s are also referred to as the degrees of kinematic
(m) and static (s) indeterminacy (Tarnai, 2001; Pellegrino, 1988;
Kangwai and Guest, 1999). In certain cases, activating a structure’s
state of self-stress leads to a stiffening effect in one or more of its
mechanisms. These cases are known as infinitesimal mechanisms, in
contrast to finite mechanisms, which allow for large nodal dis-
placements with no stiffening (Pellegrino and Calladine, 1986).

The equilibrium and kinematic equations of a pin-jointed struc-
ture involve the following quantities: the internal bar forces t, the
external loads applied at the joints f, the joint displacements d, and
the bar elongations e. These quantities are related to each other by
the equilibrium matrix A:

At ¼ f;

and its transpose, the compatibility matrix B ¼ AT:

Bd ¼ e:

The quantities m and s are related to the number of bars (b),
non-support joints (j), and support reactions (k) in a structure
5

through an extension of Maxwell’s rule, which is typically used
to determine a structure’s degree of static indeterminancy:
s�m ¼ b� 3jþ k (Pellegrino and Calladine, 1986). However, the
exact values of m and s for a given structure cannot be found sim-
ply by counting the bars and joints. They require computing the
four vector subspaces of the structure’s equilibrium matrix: the
null space, left null space, column space, and row space. The null
space of the equilibrium matrix contains the structure’s indepen-
dent states of self-stress (and therefore s), and the left null space
gives the mechanism displacements D (and therefore the number
of mechanisms m). The column space identifies the non-
redundant bars of a structure, essentially describing the statically
determinate structure that would result if the redundant bars were
removed. The row space gives the set of geometrically compatible
bar elongations.

Pellegrino and Calladine developed an algorithm that evaluates
whether a pin-jointed structure’s internal mechanisms are
infinitesimal or finite (Calladine and Pellegrino, 1991; Pellegrino
and Calladine, 1986). The algorithm involves calculating the pro-
duct force vectors P associated with a particular mechanism, which
give the loads that occur at the joints as the structure moves into
the mechanism displacement and is no longer in equilibrium under
zero external load. A modified equilibrium matrix A’ is then con-
structed to include these product force vectors and describe the
new equilibrium state: A0 ¼ ½AjP�. If this modified equilibrium
matrix is full rank, the mechanism in question is infinitesimal.
An additional check for positive definiteness of A0 verifies the sta-
bility of the infinitesimal mechanism.

Following the algorithm approach, we discovered that the
seven-cell pop-up kirigami structure has one infinitesimal mecha-
nism. Using the bar and hinge model, we obtained the structure’s
equilibrium matrix and its four vector subspaces. The left null
space contains one set of mechanism displacements, thus giving
a value of m ¼ 1. When the mechanism displacements D are
applied to the structure, the resulting shape resembles a dome,
as we expected and as shown in Fig. 1. We then followed the pro-
cedure outlined in the literature to compute the product force vec-
tors and assemble the modified equilibrium matrix A0, we verified
that it is full rank, and performed the stability check. The seven-cell
structure has 432 degrees of freedom and 18 of them are restrained
at the bottom center hexagonal panel. The structure has 714 bars,
and the equilibrium matrix A has dimensions (714 � 432). The
modified equilibrium matrix A has dimensions (414 � 413), and
there are 301 possible independent states of self-stress (s ¼ 301).
These quantities, along with m ¼ 1 for the structure, satisfy the
extension of Maxwell’s rule. The result of the algorithm confirms
that the mechanism is infinitesimal. This means that after an initial
(infinitesimal) displacement into the dome-like shape, all energy
contributions of the system (stretching, folding, bending, and con-
tact) are engaged.
3.3. Achieving dome-like curvature

The mechanism analysis presented in Section 3.2 reveals that
the pop-up system has the ability to achieve dome-like curvature,
thanks to an internal infinitesimal mechanism. In this section, we
study the system as it follows the infinitesimal mechanism and
deforms into a dome-like shape. We used the bar and hinge
method described in Section 3.1 to perform a two-step, displace-
ment controlled analysis to simulate the structure as it assembles
from flat and subsequently deforms. The first step (assembly) runs
until the contact angle between the trapezoidal panels is suffi-
ciently small (< 3�). This angle limit ensures that the spaces
between cells are nearly closed and that adjacent trapezoidal pan-
els are engaging the contact hinges. The second step (mechanism)
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deforms the structure into a dome-like shape using a follower dis-
placement applied at the 12 nodes along the outer perimeter of the
structure and runs until the maximum bar strain (regardless of
whether in tension or compression) exceeds 0.01%. This threshold
was chosen to emulate realistic strain values that structural mate-
rials can experience without failure. The magnitudes of the bar
strains are representative of the forces required to deform the
structure into a dome-like shape. Since the dome-forming motion
is an infinitesimal mechanism, the strain (and force) magnitudes
are low, but not zero (as would be the case for a finite mechanism).
The structure has the ability to curve more if higher strains are
allowed.

Fig. 5 illustrates the two-step analysis for the pop-up structure.
We use two metrics to quantify how the geometry of the structure
changes during the analysis (shown in Fig. 5(a)): the clear rise,
defined as the vertical distance from the bottom nodes of the outer
cells to the bottom nodes of the center cell, and the clear span, the
horizontal distance between bottom nodes of opposite outer cells.
During the assembly step, the clear rise remains zero and the clear
span shortens as the structure comes together into its 3D shape.
Bar strains remain near zero during this step. During the mecha-
Fig. 5. (a) We use two metrics to quantify the change in geometry of the system during th
distance from the bottom nodes of the outer cells to the bottom nodes of the center cell, a
cells. (b)–(c) As bar strains increase during the analysis, the clear span decreases and th
increasing curvature of the structure during the analysis. (e) Distribution of bar strains

6

nism step, the system takes on the curved shape of the infinitesi-
mal mechanism discussed in Section 3.2. At this point panel
contact is engaged and the bar strains increase as a result. As the
strains increase, the clear span decreases and the clear rise
increases. A more descriptive parameter that we use to understand
the curvature of the structure is the ratio of clear rise to clear span.
The ratio increases during the mechanism step as the structure
becomes more curved.

For the seven-cell systemwith c ¼ 20� and L ¼ 1:5, the clear span
shortens from11to8during the two-stepanalysis.During themech-
anism step, the clear rise grows to 0.9, resulting in a final clear rise to
clear span ratio of 0.11. As the clear rise increases and the clear span
decreases during the deformation, the structure begins to take the
shapeofa spherical cap.Apractical limit to theclear rise to clear span
ratio is 0.5, corresponding to a hemisphere.

The mechanism displacements can occur without significant
panel bending, as can be shown using the two-step analysis. Dur-
ing the analysis, the bending angles of all panels remain less than
3� while the majority of the bending angles remain below 1�

(Fig. 6). These small bending angles confirm that the panels remain
nearly flat, especially when the infinitesimal mechanism is first
e two-step analysis: clear rise and clear span. We define the clear rise as the vertical
nd the clear span as the horizontal distance between bottom nodes of opposite outer
e clear rise increases. (d) The ratio of clear rise to clear span is used to describe the
at the end of the two-step analysis.



Fig. 6. Small bending angles develop in the structure during the two-step analysis.
Most of the angles are less than 1� . Some panels experience bending angles up to
� 3� (highlighted in blue).
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applied. Since the mechanism is infinitesimal, small stretching and
bending energies develop in the panels as the analysis progresses
and displacements become larger.
Fig. 7. Eigenvalues and eigenmodes of the pop-up structure. (a) Modes of the flat,
unassembled structure. Eigenvalues k1 � k6 of this configuration are the rigid body
motions in space. The next eigenvalue k7 is � 0, indicating that it is an internal
mechanism. (b) Modes of the assembled structure with the outer perimeter
constrained. The eigenvalue corresponding to the infinitesimal mechanism k1
remains near zero. (c) Connection bars are added to the nodes which come into
contact for the assembled structure, increasing the eigenvalues. The first eigenvalue
k1 remains small compared to k2 and k3. (d) Modes of the structure after it is
deformed into a dome-like shape. The first eigenvalue k1 is again near zero,
reflecting the infinitesimal mechanism, and the other modes remain relatively
flexible. (e) Modes of the curved structure with connections. All eigenvalues are
high, indicating a stiff structure.
3.4. Eigenvalue analysis

In addition to the mechanism analysis, we investigated the
eigenvalues and eigenmodes of the pop-up structure. The eigen-
modes provide information on the structure’s infinitesimal mecha-
nism, deformation characteristics, and self-stiffening property. The
eigenvalues and modes are found using the equation K/i ¼ ki/i,
where K is the structure’s full stiffness matrix obtained from the

bar and hinge model, /i is the ith eigenmode vector, and ki is the

ith eigenvalue. The magnitude of an eigenvalue k scales directly
with the energy required to deform a structure into the shape
described by the corresponding eigenmode. A higher eigenvalue
indicates a stiffer (more energetically expensive) deformation. An
eigenvalue of zero indicates a deformation that does not produce
any internal forces in a structure – either a rigid body motion or
an internal mechanism.

The eigenvalues and eigenmodes of the pop-up structure in var-
ious configurations are shown in Fig. 7. In addition to the flat struc-
ture, we conducted the eigenvalue analysis for the assembled
structure (Fig. 7)) and curved structure (Fig. 7(d)). These geome-
tries were found using the two-step analysis described in Sec-
tion 3.3. Due to the change in geometry, the global stiffness of
the structure is different for each of these configurations, therefore
the eigenvalues also change. We also explored how the eigenvalues
of these configurations change when the nodes of adjacent cells are
connected (Fig. 7(c) and (e)). For the connected cases, the nodes
that come into contact during assembly are connected by bars with
high stiffness. The connected design represents a practical scenario
where the individual cells of the structure are connected after
assembly. This connected scenario accounts for the increased stiff-
ness due to contact which can be captured by the large displace-
ment analyses (Fig. 5), but is not captured in the infinitesimal
eigenvalue simulations without connections.

The first six eigenvalues of the flat (unassembled) structure are
zero, and they represent the six rigid body motions in space. The
next eigenvalue (k7) is very close to zero, meaning it is an internal
mechanism. The 7th eigenmode of the flat structure is the dome-
like curved shape, as we found in the mechanism analysis (Sec-
tion 3.2). The 8th eigenmode is the assembly motion, where the
structure ‘‘pops up” from flat to 3D. The 9th eigenvalue is represen-
tative of the energy of a higher mode, where some cells are
squeezed.
7

For all configurations other than flat, additional boundary con-
straints were included to restrict the structure’s rigid body motions
in space; thus, in Fig. 7(b)–(e) the eigenvalues begin at k1. For these
configurations, the first eigenvalue k1 is significantly lower than k2
and k3. The jump between eigenvalues indicates a large increase in
stiffness between the modes; the first eigenmode (which resem-
bles the dome-like shape) is significantly more flexible than other
modes. The first eigenvalues k7 and k1 in parts (a, b, d) of Fig. 7 rep-
resent the infinitesimal mechanism and are much lower than the
subsequent eigenvalues. These eigenmodes require only folding
along the crease lines and minor bending in the panels. In contrast,
some of the eigenvalues for the connected structures are several
orders of magnitude higher because they require stretching and
shearing of the sheet. By itself, deforming the structure into the
curved shape only results in a modest increase in eigenvalues
because the infinitesimal eigenmodes can still exhibit self-
intersection and local squeezing deformations (k2 and k3 of Fig. 7
(d)). When we place a perimeter boundary and internal connec-
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tions (representing adjacent panels in contact) in the structure, all
eigenmodes are significantly stiffened as shown in Fig. 7(e). These
eigenvalue simulations show that the flexible infinitesimal mecha-
nism can be used to assemble the kirigami into the dome-like
shape which can then be stiffened by internal contacts and perime-
ter constraints.

4. Geometric properties from parameter variations

We performed a parametric study to compare the final dome-
like shapes of the kirigami structures with different panel angles
c, panel lengths L, and number of cells. To compare across all geo-
metric variations, we normalized the clear rise and clear span (de-
fined in Section 3.3) by dividing by the closed span, the horizontal
Fig. 8. (a) Geometric properties measured for the curved pop-up kirigami structures
normalized clear rise (clear rise/ closed span) plotted for various c and L. Larger c results
closed span) plotted for various c and L. Larger normalized clear spans result from system
mostly independent of L. (e) Larger L and c result in structures with larger clear volume

8

dimension of the structure in its 3D (fully assembled) state. The
clear volume is the volume underneath the structure, calculated

using the volume of a spherical cap (V ¼ 1=6phð3a2 þ h2Þ) where
the height h is equal to the clear rise and the base radius a is equal
to half of the clear span. The enclosed volume is the volume within
all cells of the structure, and the % clear volume is the ratio of the
clear volume to the total volume (clear plus enclosed). These met-
rics are illustrated in Fig. 8(a).

4.1. Changing c and L

The two-step analysis described in Section 3.3 was conducted
for structures with various panel angles (c ¼ 10� � 25�) and panel
lengths (L ¼ 0:75;1;1:25;1:5). Shown in Fig. 8, these parameters
: closed span, clear rise, clear span, clear volume, and enclosed volume. (b) The
in systems with smaller normalized clear rise. (c) Normalized clear span (clear span/
s with larger c. (d) The ratio of clear rise to clear span decreases as c increases, and is
s. (f) Interestingly, structures with smaller L results in higher % clear volumes.
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drastically influence the final appearance and geometric properties
of the final shape. We found that the normalized clear rise and the
normalized clear span depend only on c, with little variation for
different values of L. The normalized clear rise decreases as c
increases, while the normalized clear span increases slightly.
(Fig. 8(b, c)). The clear rise to clear span ratio of all geometries
ranges between 0.07 and 0.14. Many classical domes used in archi-
tecture have a clear rise to clear span ratio near to 0.5. One way to
increase the clear rise to clear span ratio of the proposed kirigami
structures is to add more cells, as discussed in Section 4.2.

Geometries with larger c and L result in structures with larger
clear volume, and for larger panel lengths an increase in c leads
to a more dramatic increase in clear volume (Fig. 8(e)). Interest-
ingly, the relationship between % clear volume and L is flipped; a
larger L gives a smaller % clear volume. This relationship indicates
that we can construct a structure with a higher fraction of usable
space to total occupied volume (larger % clear volume) using less
material (smaller L).
4.2. Adding cells

In addition to the seven-cell system, we also studied a larger
system with 19 cells. The nineteen-cell structure assembles and
deforms into a dome-like surface in the same manner as the
seven-cell version, as demonstrated by the bar and hinge simula-
tions and physical prototypes (Fig. 9(a)). We were interested in
whether adding cells would result in a more curved structure,
and we use the clear rise to clear span ratio as a measurement of
curvature. Fig. 9(b) shows that for a structure with c ¼ 20� and
L ¼ 1:5, when curved to reach the same bar strains, the nineteen-
cell system reaches a higher clear rise to clear span ratio: 0.15 up
from 0.11. This increase is a good indication that by continuing
to add cells, our design could reach the curvature levels of typical
domes found in architecture and structural engineering. Addition-
ally, this structure has a clear volume of 214 in comparison to the
clear volume of 24 for the seven-cell structure with the same geo-
metric parameters. This is about a nine (8.9) times increase in
usable clear volume for only about a three (2.7) times increase in
the total material used to construct the structure.
Fig. 9. (a) A nineteen-cell variant of the pop-up system, modeled with the bar and hin
nineteen-cell system is larger than that of the seven-cell system with the same geomet
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5. Dome stiffness

To investigate the stiffness of the pop-up kirigami structure, we
constrained the structure along the outer perimeter in the x-, y-,
and z-directions and applied small vertical displacements
(D ¼ �0:1) at the interior points where the cells meet (Fig. 10
(a)). The bar and hinge method described in Section 3.1 was used
to apply the displacement in 10 steps and calculate the resulting
vertical forces (F) at the supports. The force–displacement relation-
ship was linear in this range of deformation. A stiffness value rep-
resenting the full structure was found using the relationship
K ¼ RF=D.

Overall, we found that the stiffness of the curved structures
mostly depends on c, and the stiffness varies less significantly with
L (Fig. 10(c)). To better understand the characteristics of the pop-
up kirigami, we compare its stiffness with a curved sheet
restrained on two edges with clear rise and clear span values aver-
aged from the results in Section 4 and twice the material thickness
of the kirigami panels (to account for the two sheets used in the
pop-up structures). An analytical approximation for the stiffness
of the curved sheet is found using Castigliano’s theorem and pro-
vides a basepoint comparison for the stiffness values (Appendix
C). The comparison shows that our structures, with any c or L,
are as stiff as a curved sheet made of material with 10 to 17.5 times
the total pop-up kirigami thickness (tc ¼ 10 � 2 � t to
tc ¼ 17:5 � 2 � t). Because the bending rigidity of the sheet scales
with t3c , the pop-up kirigami is in fact � 1,000 to 5,000 times stiffer
than a simple sheet supported only along two edges. The high stiff-
ness is a result of the dome-like curvature and of the flexible defor-
mation mode (the mechanism displacements) being restrained. As
shown in Section 3.4, the curved structure only has one flexible
mode, corresponding to the mechanism displacements. When this
flexible mode is restrained, the structure gains high stiffness.

We also investigated the stiffness of the seven-cell structure
with c ¼ 20� and L ¼ 1:5 for different loading directions (Fig. 11).
The loads were applied at the same six interior nodes as the previ-
ous analysis, and the load direction was changed in the x-z and x-y
planes. The structure exhibits the highest stiffness in response to
horizontal loads in the x-y plane. While there are three axes of
ge method and as a paper prototype. (b) The clear rise to clear span ratio of the
ry when curved to reach the same magnitude of bar strains.



Fig. 10. (a) In the stiffness analysis, the outer perimeter was pinned and small
vertical displacements were applied to the interior nodes of the structure. (b) An
analytical solution for the stiffness of a curved sheet restrained along two edges is
used as a basepoint for stiffness comparison. (c) The stiffness of the pop-up kirigami
structures decreases as c increases. For comparison, the stiffness of curved sheets
with thickness tc are shown in dashed lines, where t is the thickness of the pop-up
kirigami. (d) From left to right: 7-cell paper structure (mass = 17 g), 19-cell paper
structure (mass = 28 g), and 7-cell foam board structure (mass = 57 g). Each holds a
500 g load without a noticeable deformation.

Fig. 11. The stiffness of the pop-up structure in the x-z and x-y planes shown as
radial plots where the distance from the center indicates the stiffness magnitude.
The angles / and w represents the loading direction in a given plane. The structure
exhibits the largest stiffness in the x-y plane (horizontal loading).
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radial symmetry for the structure, the stiffness is uniform in all x-y
directions, meaning there will be a high stiffness regardless of how
horizontal loads are applied. When loaded vertically in the z-direc-
tion, the structure has about half the stiffness in comparison to the
horizontal directions, but this stiffness is still high, as shown in
10
Fig. 11. These results indicate that the pop-up structures are adapt-
able to loads that change directions, such as wind loads.

6. Conclusion

In this paper, we presented a design for a pop-up structure that
achieves dome-like curvature from flat panels. The system starts
with a kirigami-inspired pattern of two sheets, cut into hexagonal
and trapezoidal panels and fastened to create an array of cells that
assemble into a 3D structure. We demonstrated that the system
can accommodate finite thickness and maintain nearly rigid panels
as it deforms into a structure with positive Gaussian curvature.
With this design, we have the potential to create large, dome-like
structures from flat sheets, taking advantage of the simplified fab-
rication and rapid deployment that are made possible by origami
and kirigami designs.

We identified the internalmechanism that leads to the formation
of a dome-like curved shape and showed that the higher deforma-
tion modes of the structure become restricted as the curvature
increases. We studied geometric variations of the structure by
changing the panel angle c and panel length L. Structureswith smal-
ler c result in a higher clear rise to clear span ratio, ametricweuse to
describe curvature. When studying the volume of the systems, we
found that structures with large c and small panel length L result
inmore geometrically efficient designs that can enclose a larger vol-
ume for a smaller volume of total structure. We also found that by
addingmore cells, the shape trends towards the classic dome shape
used in architecture. We showed that in the dome-like shape, the
pop-up kirigami structure has only one flexible deformation mode,
and a stiffness analysis showed that the dome-like shape makes
the structure 1,000 to 5,000 times stiffer than a curved sheet with
the same total thickness that is supported only along two edges.
We also showed that the structure has high stiffness regardless of
the loading direction. This system is the first self-stiffening kirigami
structure that can deform into a dome-like shape, and has potential
to beused for rapidlydeployable enclosures, reflectors, architectural
components, and other robust structures with dome-like curvature.
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Appendix A. Bar area formulations for hexagonal panels

The hexagonal panels are modeled using the bar and hinge
method with 15 bars, shown in Fig. A.1. Six bars connect the nodes
along the perimeter of the panels and have bar cross-sectional area
Aext . Three bars with area Aint1 connect the major diagonals of the
hexagon, and six bars with area Aint2 connect the shorter diagonals
of the hexagon.

The bar areas were chosen such that the stretching and shearing
behavior of the hexagonal panel matches the behavior of a block of
material with length and width s, the side length of the hexagonal
panel. The theoretical stretching stiffness of the block of material is



Fig. A.1. The stretching and shearing stiffness of the hexagonal panels was defined
to match the stiffness of a square block of material with comparable dimensions.
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K ¼ EA=L ¼ Est=s ¼ Et. The theoretical shear stiffness is
Ksh ¼ Gst=s ¼ Gt, where G ¼ E=ð2ð1þ mÞÞ. We assume the following
material properties: Young’s modulus E ¼ 108, thickness t ¼ 0:01,
and Poisson’s ratio m ¼ 1=3.
Fig. B.1. The stretching and shearing stiffness of the trapezoidal panels was defined to ma
on the right show the performance of different models for different panel angles c.
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We found the stretching and shearing behavior of the hexagonal
panel by assembling a stiffness matrix, applying a force of 0.5 on
the top two nodes (vertical for stretching, horizontal for shearing),
and solving for the nodal displacements D. The stiffness of the bar
and hinge panel is then calculated as KB&H ¼ 1:0=D. Conducting this
process where we systematically varied the bar areas, we found
that the following definitions led to stretching and shearing behav-
iors that matched the theoretical solutions:

Aext ¼ 0:13 � t � s Aint1 ¼ 0:13 � 0:5 � t � s

Aint2 ¼ 0:13 � 60 � t � s:

These definitions allow the bar areas to be scaled with the side
length of the hexagonal panel and panel thickness.
Appendix B. Bar area formulations for trapezoidal panels

Trapezoidal panels were modeled using the bar and hinge
method with 6 bars. Four of the bars connect the nodes around the
panel perimeter and two diagonal bars connect opposite corner
nodes. We calculated cross-sectional areas for the bars that match
the stretching and shearing behavior of the panel to the theoretical
stretching and shearingof ablockofmaterial. As anadditional check,
we also compared the bar and hinge model results to a discretized
finite element model using S4 elements. The following material
properties were used for all 3 models: Young’s modulus E ¼ 108,
thickness t ¼ 0:01, and Poisson’s ratio m ¼ 1=3 (see Fig. B.1).

We started with a block of material with a height of L, thickness
t, and width Wavg ¼ ðW þ sÞ=2, where L is the length of the trape-
zoidal panel and W is its bottom width. We applied an upward
force Fy ¼ 1:0 on the top surface of the block. The resulting vertical
tch the stiffness of a rectangular block of material with the same total area. The plots



Fig. C.1. The analytical stiffness of a curved sheet used as a basepoint stiffness
comparison. (a) The sheet was restrained along two edges and a load was applied at
the center. (b) The sheet dimensions CR and CS, related to the radius of curvature q.
(c) Free-body diagram of half of the curved sheet.
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displacement Dy can be calculated using stress–strain
relationships:

ry ¼ Fy

Wavgt
�y ¼ ry

E
¼ Fy

EWavgt
Dy ¼ �yL ¼ FyL

EWavgt

The horizontal displacement Dx and strain �x are found using
the Possion’s ratio, m:

Dx ¼ �mDy
Wavg

L
�x ¼ Dx

Wavg

We applied these displacements and strains to the bars of the
trapezoidal panel and found the change in length D of each bar.
Next we found the forces in each bar: F ¼ KD ¼ EAD=L, with the
bar cross-sectional area A still unknown. From this stretching case,
we obtained two independent equilibrium equations by summing
the forces in the x- and y-directions at the nodes.

Using a similar process to the stretching case, we also applied a
horizontal shear force to the top surface of the block of material,
calculated the displacements and strains, applied them to the bars
and nodes, and solved for the bar forces. The shearing case led to
one additional independent equilibrium equation after summing
the forces at the nodes. We obtain the fourth independent equation
needed to solve for the 4 bar areas by assuming that the top and
bottom bar areas are equal.

Solving the 4 equations gives expressions for the bar cross-
sectional areas in terms of geometric dimensions of the trapezoid
(W; L; s; t) and material parameters (E; m). The expressions for the
bar areas are lengthy; we encourage interested readers to contact
the authors for the full formulations. We performed a patch test
to compare the behavior of the bar and hinge trapezoidal panel
with the theoretical solution and a discretized FE model. The
results (shown in Fig. A.1) show that the bar and hinge model with
the calculated areas matches the behavior of the theoretical and FE
models well. The bar and hinge model follows the same trends as
the FE results, and only slightly overestimates the shear stiffness.
The bar and hinge model cannot capture the local deformations
that make the realistic shear case more flexible.

Appendix C. Analytical solution for stiffness of a curved sheet

The analytical solution for the stiffness of a curved sheet
restrained along two edges (Fig. C.1(a)) can be calculated using
Castigliano’s Theorem. The theorem states that the displacement
(or rotation) at a point on a beam due to a load (or moment) Q is
calculated as:

dq ¼ dU
dQ

¼
Z l

0

M
EI

dM
dQ

dx ðC:1Þ

where U is the potential energy, M is the bending moment, E is the
Young’s modulus, and x is the distance along the beam. We can use
Castigliano’s Theorem in cylindrical coordinates to solve for the ver-
tical displacement of a curved sheet due to a load applied at the
centerline (Fig. C.1(a)). Due to symmetry, we look at only half of
the sheet subjected to a vertical force F and compute the shear at
the free end to be V ¼ F=2. We consider a curved sheet with a
height equal to the average clear rise of the pop-up structures (=
0.7), denoted as CR. We assume the width and length of the sheet
is equal to the average clear span of the structures, CS (= 7). To
transform into cylindrical coordinates, we need to relate these
quantities to the radius of curvature (q) of the sheet (Fig. C.1(b)).

q2 ¼ ðq� CRÞ2 þ CR
2

� �2

ðC:2Þ

q ¼ 1
2
CR þ 1

8
CS2

CR
ðC:3Þ
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We need expressions for dMh
dV and dMh

dM0
to use Castigliano’s Theo-

rem, so we sum the moments at point A:

�Mh þ Vq sin h�M0 ¼¼ 0 ðC:4Þ
Mh ¼ Vq sin h�M0 ðC:5Þ
dMh

dV
¼ q sin h

dMh

dM0
¼ �1 ðC:6Þ

Now we can use the theorem to get an expression for the rota-
tion due to the end moment M0. We integrate from h ¼ 0 to h ¼ hB,

where hB is the angle at the support: hB ¼ p=2� sin�1ððq� CRÞ=qÞ.
The expression for the rotation due to M0 is

dM0 ¼
Z hB

0

Vqðsin h�M0Þ
EI

ð�1Þq dh

¼ Vq2

EI
cos hB � 1½ � þM0q

EI
hB; ðC:7Þ

and the expression for the displacement due to the end force V is

dV ¼
Z hB

0

ðVq sin h�M0Þ
EI

q2 sin hdh

¼ Vq3

2EI
hB � sin hB cos hB½ � þM0q2

EI
cos hB � 1½ �: ðC:8Þ

Due to symmetry, the rotation due to the moment M0 is zero at
the free end:

Vq2

EI
½cos hB � 1� þM0q

EI
hB ¼ 0 ðC:9Þ

�Vq
hB

½cos hB � 1� ¼ M0 ðC:10Þ

We can plug Equation (C.10) into Equation (C.8) to solve for the
end displacement in terms of V ;q; E; I; and hB, all of which are
known geometric or material properties. The stiffness of the curved
sheet is found using K ¼ F=D, where F ¼ 1 and D ¼ dV .
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