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Deployment Dynamics of Miura
Origami Sheets

Origami has great potential for creating deployable structures, however, most studies
have focused on their static or kinematic features, while the complex and yet important
dynamic behaviors of the origami deployment process have remained largely unexplored.
In this research, we construct a dynamic model of a Miura origami sheet that captures
the combined panel inertial and flexibility effects, which are otherwise ignored in rigid

folding kinematic models but are critical in describing the dynamics of origami deploy-

ment. Results show that by considering these effects, the dynamic deployment behavior
would substantially deviate from a nominal kinematic unfolding path. Additionally, the
pattern geometries influence the effective structural stiffness, and it is shown that subtle
changes can result in qualitatively different dynamic deployment behaviors. These differ-
ences are due to the multistability of the Miura origami sheet, where the structure may
snap between its stable equilibria during the transient deployment process. Lastly, we
show that varying the deployment rate can affect the dynamic deployment configuration.
These observations are original and these phenomena have not and cannot be derived
using traditional approaches. The tools and outcomes developed from this research ena-
ble a deeper understanding of the physics behind origami deployment that will pave the
way for better designs of origami-based deployable structures, as well as extend our fun-
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1 Introduction

Origami is an ancient paper-folding art that can transform a
two-dimensional (2D) sheet into a complex 3D structure. It has
emerged as a promising tool for the design of mechanical struc-
tures with various functionalities. Because origami principles are
scale independent, they can be adopted for the design of systems
of various sizes and applications, from large-scale space structures
[1,2] and civil architectures [3], to mesoscale origami robots [4],
and to microscale devices [5,6]. In addition, since that origami
can be compactly folded into small volumes and then unfolded to
become large systems, they are especially desirable for deployable
structure designs [7] that are easy to store and transport when
folded. Folding also allows for easy fabrication of these 3D struc-
tures, because the process can start with flat 2-D sheets, which are
often readily available. And yet, the folding process can allow for
advanced geometries including curved surfaces [8]. Previous
work has shown that origami sheets can be deformed into complex
shapes [9,10], and if the folding protocol is modified, they can
also be refolded into new patterns [11].

Origami-inspired material systems can provide extraordinary
mechanical properties [12], such as auxeticity [13], nonlinear and
tunable stiffness [14-20], multistability [18,21-24], and geometric
reconfiguration. Apart from the static/quasi-static features, recent
work has explored the suitability of origami for dynamic applica-
tions such as noise control [25,26], impact mitigation [27-30],
and vibration isolation [31-34]. Even origami-based structures
nominally designed for static operations may be subject to
dynamic loads from the environment. Thus, it is important to
understand the dynamics of origami to achieve desired performan-
ces and mitigate safety concerns.

Many of the characteristics and applications of origami struc-
tures stem from its ability to design deployable structures. The ori-
gami deployment is inherently a dynamic process, where its
dynamic characteristics may affect the accuracy, reliability, and
efficiency of the deployment transient process and final
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damental knowledge and expand our comfort zone beyond current practice.
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configuration. In practice, the compliance and the inertia of the
system may cause the deployment to deviate from the behaviors
predicted by the traditional origami rigid kinematic unfolding
analysis. Thus, it is crucial to understand the deployment dynam-
ics for the design and operation of such deployable origami
structures.

Origami sheets have been recognized to be a general and basic
building block for origami-based structures. Therefore, it is valua-
ble to understand the basic dynamic characteristics of deploying
an origami sheet in space. A recent study has analyzed the reac-
tion forces and torques of an origami flasher [35] as it is dynami-
cally deployed. While informative, this work is limited to a
specific application and the system transient and vibratory
responses during deployment are not explored. There are also
recent efforts to investigate the deployment dynamics of tubular
origami elements [36,37]; however, their interests are mainly on
the assembled tube structure deployed as a space boom, which is
very different from a sheet structure that could be much more flex-
ible and nonlinear. To advance the state of art, the goal of this
research is to investigate the transient dynamics and overall
behaviors of an origami sheet during deployment and develop
comprehensive understanding that would support better designs of
such structures. In contrast to previous works, the proposed effort
investigates the dynamics of sheet-like origami structures with
combined panel flexibility and inertial effects, which have been
ignored in traditional Miura origami kinematics and deployment
studies.

In this research, we select a Miura origami sheet as our plat-
form. The Miura pattern [38] (Fig. 1(a)) is a widely used origami
pattern design [39,40] that is rigid-foldable and flat-foldable,
meaning that the origami structure can be folded to a flat state
without deformation in the panels. A Miura origami sheet
(Fig. 1(b)) consists of an array of repeating Miura origami units.
Various actuation methods [41-45] have been proposed for ori-
gami deployment, such as actuation via pneumatic devices, stored
strain energy, centrifugal force, and shape-memory materials. To
focus on the deployment dynamics rather than the details of actua-
tion, in this investigation we select the simple concept of stored
strain energy actuation. That is, we consider the Miura origami
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Fig. 1 (a) A Miura origami unit, consisting of four panels con-
nected with fold lines. The dashed line represents a valley fold
while the solid lines represent mountain folds. (b) A Miura ori-
gami sheet consisting of three Miura origami units. Node num-
bering is denoted in the blocks. (¢) The folded configuration of
the Miura origami sheet with the dihedral angle p indicated. (d)
The bar and hinge model representation for the Miura origami
unit. The circular points represent nodes with nonzero mass,
which are connected by massless bars (shown as lines). Tor-
sional springs are used for both the fold creases (at both moun-
tain and valley folds), and for the bend lines (within a panel).

sheet deployment is powered by the strain energy stored in the
creases when the sheet is folded. We also assume that a point on
the moving boundary condition under deployment is controlled by
a given rate. Rather than assuming rigid panels as is common in
kinematic origami models, we use a bar and hinge approach
[46—49], which allows us to capture deployment behaviors associ-
ated with panel deformations and deviate from the traditional pure
rigid kinematic analysis. Inertial properties in the model are repre-
sented by a system of point masses that reflect the translational
and principal rotational inertias of each parallelogram panel in the
Miura-origami sheet.

Utilizing numerical analyses, we study the Miura origami sys-
tem to understand how the dynamic behaviors affect the deploy-
ment performance. More specifically, we explore how the panel
inertia and elastic deformation cause the dynamic deployment
path to differ from the paths predicted by a rigid body kinematic
model and a quasi-static model (flexible panels but without con-
sidering the inertial effect). We uncover new phenomena that
have not been observed previously and cannot be derived via tra-
ditional analyses. Some of the system behaviors derived in the
analysis are also shown experimentally on a test prototype. Over-
all, the novel tools and original outcomes developed in this inves-
tigation are especially valuable in raising awareness and
providing guidelines to create origami with design parameters
(e.g., material and geometric properties) and operating condi-
tions (e.g., deployment rate) that are within and outside the tradi-
tional range of consideration. In other words, this basic research
is impactful in extending our fundamental knowledge and
expanding our comfort zone with the deployment dynamics of
origami.

In Sec. 2, we introduce a nondimensionalized model that cap-
tures the pertinent dynamic behaviors of a Miura origami sheet.
Through exploring the influence of structural stiffness and geo-
metric parameters in Secs. 3 and 4, we build a foundation for the
design of origami sheets to achieve desired deployment perform-
ance. Section 5 discusses how the structural dynamic behaviors
change when different deployment control rates are applied, and
the role of inertia in the dynamic process. A summary and con-
cluding discussions are presented in the Conclusion section 6.

071005-2 / Vol. 17, JULY 2022

2 Model Formulation

2.1 Geometry. A Miura origami sheet is formed by repeating
a pattern of mountain and valley creases (Fig. 1(a)). A single unit
of the Miura origami pattern (Fig. 1(@)) is composed of four iden-
tical parallelogram panels. It is defined by three independent geo-
metric parameters: two crease lengths (@, b) and the smaller
interior angle, also known as the sector angle y. Under a rigid
folding assumption, all the panels are rigid with no deformation
during reconfiguration or folding. With this assumption, the Miura
origami theoretically possesses a single degree-of-freedom
(DOF). The 3D folded configuration of the whole structure can
then be determined by defining one of the dihedral angles inside
the Miura origami unit (or sheet). The dihedral angle p (shown in
Fig. 1(c)) is used to describe the sheet’s configuration under the
rigid folding assumption.

2.2 Stiffness. In our research, the panels are not assumed
rigid, but with compliance and finite stiffness. The panel stiffness
is modeled by a bar and hinge model [46—49], specifically the
N5BS8 representation where a node is placed in the middle of each
panel. By using the NSB8 model, we assume that: (1) the fold
creases between panels remain straight even when the adjacent
panels deform; and (2) the triangular elements of the panels
remain flat while the quadrilateral panels can undergo bending
along their diagonals. Each parallelogram panel of the Miura ori-
gami sheet is replaced by a N5SB8 system as shown in Fig. 1(d).
The bar and hinge model incorporates material characteristics in
its parameters, and reflects a reasonable approximation of scal-
able, isotropic, and realistic system behaviors, such as in-plane
and out-of-plane deformations. For more details about the bar and
hinge model, the reader is directed to Refs. [46—49].

The panel in-plane behaviors are represented by bar elements
with a stiffness of ks = EA/L, where E is the Young’s Modulus,
L is the length of the bar, and A is a representative cross-sectional
area of the bar [48] as defined in Eq. (1). The values Ay, Ay, Ap
refer to the cross-sectional areas of the bars located on the hori-
zontal side, the vertical side, and the diagonal of the parallelo-
gram, respectively. The panel thickness is #, the lengths of the two
sides of the parallelogram are H and W, and v is the Poisson’s
ratio, the values of which are in Table 1. As shown in Eq. (1),
changing the panel thickness and the shape of the parallelogram
such as the sector angle and side lengths will affect the bar cross-
sectional areas and the resulting stretching/shearing stiffness of
the panel. The in-plane stiffness of the panels scales linearly with
the thickness of the sheet and is orders of magnitude higher than
the bending or folding stiffness of the sheet that scale near cubi-
cally with the thickness [48]. While the stretching stiffness has
been found to be important for more complex origami system
such as tubes [50], in this work we found that it does not influence
the behaviors of the Miura sheet. Changing the in-plane stiffness
results in negligible quantitative, and no noticeable qualitative
influence on structural dynamics. Therefore, in the following
parametric analyses of the Miura sheet system, the stretching stift-
ness is kept constant, while other variables are systematically
varied

Table 1 Nominal material and geometric properties of the
Miura sheet

Parameter Nominal value
Young’s modulus £ 70 Gpa
Poisson ratio v 0.33
Panel size (side length of the parallelogram) 0.1m x 0.1 m
Sector angle y 60 deg
Panel thickness ¢ 10 m

Panel density p 3 x 10°kg/m?
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As for the out-of-plane stiffness of the panels, Eq. (2) shows the
relationship between the bending angle 0 and the reactive torque
M), representing panel bending. We assume a linear region for the
moment—rotation relationship, where the stiffness is denoted by &
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Equation (2) includes the sector angle 7, the length of short
diagonal Dy, the thickness ¢ of the panel, and the material con-
stants Young’s modulus £, and Poisson’s ratio v. The panel bend-
ing stiffness is computed to be k, = 406 N - m for a Miura panel
with nominal material and geometric parameters as stated in
Table 1. In our study, the panel bending stiffness k; and the crease
folding stiffness k; will be used to represent different types of
folded origami structures, and to acquire insights into a wider
range of origami dynamic behaviors. Here, we introduce a stift-
ness ratio 7, £kp,/ks, which is the ratio between panel bending
stiffness and crease folding stiffness. This ratio is kept higher than
five, which is generally true for most folded origami structures.

2.3 Inertia. To represent the inertia of the system in a manner
compatible with the bar-and-hinge model, the parallelogram pan-
els in the Miura origami sheet are replaced by sets of lumped
masses and the bars and hinges themselves are assumed to be
massless. As a result, the Miura origami sheet becomes a simpli-
fied finite DOF structure, as shown in Fig. 2(a).

We arrange five mass points with prescribed values at the posi-
tions of the five nodes in the N5SB8 model to represent the inertia
of the panel, as shown in Fig. 2(b). The values of the mass points
are denoted by m for the center mass point and m; and m, for the
mass points at the two different corners of the parallelogram. The
mass points along each diagonal share the same value. To capture
the inertia properties of the panel, we compute the values of the
mass points (mg, my, my) that make the first and second moments
of inertia of the discretized representation equivalent to those of
the continuous panel, as shown in Eq. (3). The value m, is the
mass of the whole panel, /. is the inertia of the panel, and /,,, is
the second moment of inertia of the mass point system

(@) m, +m, ()

my, +m, ¢

m

Fig. 2 (a) The lumped mass system that represents the inertia
of a Miura origami unit. Mass points are placed at the center
and four corners of the parallelogram panels. (b) The lumped
mass system for each panel, which is a quarter of the Miura ori-
gami unit. The vector x, is the axis parallel to the side b of the
parallelogram, and y, is a vector perpendicular to x,. The vec-
tors x, and y, are the principal axes of this parallelogram. The
angle between these two coordinate systems is «.
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mo + 2my + 2my = m,
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The principal moments of inertia /,, and /,, of the homogene-
ous parallelogram panel are derived in Eq. (4). In Fig. 2(b), the
coordinate systems x,, and y, are the principal axes of this contin-
uum parallelogram. The angle « is between the principal axis x,
and the axis x, which is parallel with side b of the parallelogram.
The area of the parallelogram is defined as §

_m o, 2 2
pr—ﬂ(a +b* =1/ (a® + b?) —4S2>

m 2
I, ,_<2 2 2 2)" _ 4 2>
% =g @+ b+ (a®+b?) S @
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cos(o) =
2\/(a® + 12)* — 452

Equation (5) calculates the second moment of inertia of the
mass point system in the principal directions of the continuum
parallelogram. The position of the ith mass point with respect to
the origin is defined as r;, and is used to compute the rotational
inertia of the node /;. The inertia of the full mass point system 1/,
is derived by summation of the rotational inertias of all the mass
points

[,‘ = m,»(|r,-|2 — r,-riT) (5)
]mp =ly+ 1L +5L+1+14
When the values of the mass points are defined as shown in
Eq. (6), the first and second moments of inertia of the model
match those of the parallelogram plate. Thus, the inertia of a panel
can be represented by the set of independent mass points with
these designated values

2
moy = —-meg

o ©)
ny ni ﬁmc

2.4 Nondimensional Equations of Motion. Having estab-
lished the stiffness and inertia elements of the system, the equa-
tions of motion (EOMs) are derived by Lagrange’s equations
(Eq. (7)). In the bar and hinge model, if no constraints are imposed
on the structure, each node will have three degrees-of-freedom

i(a_L)_a_Lﬁ_D,
dr \0x ox O

The Lagrangian is defined by L(x, x) = V(x) — T(x, x), where
V(x) is the strain energy of the system, and 7'(x, x) is the kinetic
energy. The nodal position is defined as x, and the nodal velocity
is X.

The total strain energy V(x) consists of contributions from
crease folding Viog, panel bending Viend, and panel stretching
Vitreten- The strain energy from crease folding Vigq results from
bending of torsional hinges at the folding creases. The panel bend-
ing strain energy Vpena is due to bending of the torsional hinges at
bend lines in the model. Finally, the strain energy from stretching
in the panels Viyecn s due to elongation and compression of the
bars. Strain energy from crease folding or panel bending is com-
puted as in Eq. (8), where 0; can be the folding angle 0y or the
bending angle 0,, and M is the reactive torque. The force gener-
ated on the related node j from the torque M is calculated by
Eq. (9). Each dihedral angle 0; is formed by its two adjacent trian-
gular panels, containing a total of four nodes; therefore, the partial

0 7
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derivative 00;/0x; results in four vectors. The element k,, in the
linearized stiffness matrix resulting from the torque is calculated
by Eq. (10)

0

Vi= ZJ M(0;)d0;
i 0

(i = fold, bend) 3)

N T a0;

F; = 2,26_9,8_)9 = Z:M(Hl)a—xj
(i = fold, bend; j =1,2,3,4) )

oV oM (0;) 00; 9%0;

= = M(0;
koq 0x,0x,4 Z( Ox, 0x, + M) 0x,0x,

(i = fold, bend; p,q =1,2,3,4) (10)

In the strain energy from panel stretching Vyeicn, the variable
W is the strain energy density function as expressed in Egs. (12
and 13), in which Ey is the Green—Lagrange strain tensor, with
material constants (o, p;, N), and axial stretch Z;. The corre-
sponding nodal force F acting on node i is derived by Eq. (14).
The element k), in the stiffness matrix resulting from stretching
deformation is derived by Eq. (15)

Varetch = Y JZS W (Es)Asdx (11)
s=bar 70

Es) :XN:%W' -1 (12)
i=1

Ay =/2Es+1 (13)

Fyi= Ovas‘):‘“’ (14)

kg = % (15)

Our dynamic model considers damping due to crease folding
and elastic panel deformations, including the panel bending and
stretching. The damping from crease folding and panel bending
are represented by damping at hinges in the bar-and-hinge model
with equivalent damping coefficient ¢; (crease folding) and ¢,
(panel bending), respectively. The nodal force Fy of damping
from crease folding or panel bending is derived in Eq. (16). The
angular velocity 0 is a function of the dihedral angle in the hinge
0 and the translational velocity : 0 = < 40(x) =494 The damping
from panel stretching is represented by damping of bar deforma-
tion in the bar-and-hinge model with damping coefficient c,;.
The nodal force Fy; from panel stretching is shown in Eq. (17),
where / is the length of a bar, and / is the rate of length change of
the bar.

.90

Fai = ¢ Z f)ia
(i = fold, bend) (16)
s = Cys Z lj (17)

j=bar
The kinetic energy 7'(x, x) is computed by a summation of

kinetic energy of each individual node as in Eq. (18). The parame-
ter m; is the mass of node i, and X; is its nodal velocity.

071005-4 / Vol. 17, JULY 2022
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T = Ezzm,-xi2

i

(18)

We perform nondimensionalization to the EOMs as presented
below. The general form of the EOM for a DOF u; is shown in
Eq. (19), in which y; is the ith nondimensionalized nodal displace-
ment. In this equation, the summation over p =fold refers to all
the fold creases that are related to this node; the summation over
g =bend refers to all bend lines at this node; the summation over
Jj=bar refers to all the bars that are connected to this node. The
forces F 1, and F », Tefer to the nondimensional nodal forces at this
node generated by the foldmg crease p and the bending line ¢,
respectively. The force Fy; is the nondimensional force from panel
stretching deformation of the bar j. The nondimensional nodal
forces generated from the damping are Fyy,, F g, , and F 4, for the
folding crease p, the bending line ¢, and the bar j, respectively.
Equations (20)—(25) show detailed expressions for terms in Eq. (19).

mgii; + Z (F_ﬁ] +Fdfp)

p=fold
+ > (Fy, +Fw,) (19)
g=bend
+ Y (Fy+Fa)=0
Jj=bar
- _ a0
Fy, = keLy(0p 9”0)071; (20)
00,
21
q@u,- ( )
_ Lj—Lj0dL;
e e ) 22
Y Lj Bu,- ( )
_ .00
Fa, = 280cLply 5 ° (23)
- _ .00
Fap, = 260Cqu0q67: (24)
Foy = 26000, 2L 25)
j aut

All the parameters and the variables are nondimensionalized
with the parameters found in Table 2. The mass-related variables
(mo, my, my) are nondimensionalized by my which is the mass of
the central node in the parallelogram panel. The crease length a
depicted in Fig. 1(a) is used to nondimensionalize the length-
related variables (lengths of folding creases, bending lines, and
bar elements). The variable 7 is the nondimensional time, and

EAp
a moy

is defined by wy = , in which Ap is the cross-sectional area

of the bar along the diagonal of the parallelogram as in Eq. (1).
We introduce a parameter 7, which is the stiffness ratio between
panel bending and crease folding. The damping coefficient of tor-
sional springs is nondimensionalized by the damping coefficient
¢ys of bar deformation. The damping ratio is defined by

é acy
(U 2my wg”

Table 2 Nondimensionalization parameters

Scales Non-dimensionalization parameters
Mass o= m;/my, (i=0,1,2)
Length Li=1l/a, (i=p,q,s)
Time T=awot
Stiffness ki = ki/EAp, (i=Ff,b)

Iy = k},/k
Damping ¢ =ci/dcy, (i=F,b)

Transactions of the ASME
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Fig. 3 (a) A Miura origami sheet at a mostly folded stage for illustration of boundary constraints. The nodes with
squares on the left end are fixed in all three directions. The node with a triangle on the right end is controlled dur-
ing deployment and fixed after deployment. The arrow shows the path of displacement control. (b) A snapshot dur-
ing the dynamic deployment with arrows showing deviation between the dynamic configuration (yellow), and the
rigid kinematic configuration (blue). (¢) Time history of the averaged nodal deviation.

2.5 Boundary Constraints and Displacement Control. In
this study, the deployment is powered by the strain energy stored
in the initially folded stage when the structure is constrained in a
small volume. Upon deployment, we fix a few structural nodes on
one end of the sheet, control the displacement and rate of a node
on the other end, and release all the other constraints. Here, we
apply a time-dependent displacement function on a node at the
released end of the structure, which mimics a common method
where cables or cords are used to control the deployment [47]. We
setup three sets of boundary constraints for the Miura origami
sheet, one for the initial stowed stage, the second for the deploy-
ment process, and the third for the postdeployment stage. These
constraints are applied at the relevant nodes, which are numbered
according to Fig. 1(b). At the initially stowed stage, to ensure
compact folding with internally stored energy, we fix all the verti-
ces so that they will remain at the prescribed positions. During the
deployment process, to achieve a smooth deployment and avoid
additional panel deformation due to boundary constraints, we only
fully constrain nodes 2 and 3 at the left end of the Miura origami
sheet, denoted by the two squares on the left end in Fig. 3(a).
Note that if we fixed all three nodes (node 1, 2, 3) on the left end,
these nodes would form a V shape (colored in yellow in Fig. 3(a))
that remains fixed and prevents full deployment to a flat state. For
the right end, we restrain node 32 in the y and z directions and
control its position in the x direction, prescribing its motion along a
straight path as shown by the green arrow in Fig. 3(a). The default
rate is 0.6 [—/sec] if not otherwise specified, e.g., in Secs. 3 and 4. In
Sec. 5, we discuss the system response under different rates of node
32. In short, we assign different boundary constraints at the three
deployment stages: at a folded state and after deployment, all the ver-
tices are fixed in all DOFs; during deployment, nodes 2 and 3 are
fixed in all DOFs, and node 32 is fixed in the y and z directions while
controlled in the x direction. Under these boundary constraints, the
structure will follow the rigid kinematic unfolding path if the panels
are assumed rigid. When the structure reaches its fully deployed
stage, in which the sheet is flat, the displacement rate control will
end and node 32 will be fixed at the final position. In our analysis,
the stress-free state is the flat configuration. Before deployment
starts, the Miura origami sheet is folded into a compressed state with
a fold angle of p = 80 deg.

3 Influence of Structural Material Stiffness on the
Dynamic Deployment Process

In this section, we investigate the role of the crease folding
stiffness and the ratio between the panel bending stiffness and

crease folding stiffness on the structural dynamic response. We
perform numerical simulations on the nondimensional model. The

Journal of Computational and Nonlinear Dynamics

structure starts to deploy when the Miura origami sheet is
released, and a displacement control with a constant velocity 0.6
[—/sec] is applied to the right end to guide the deployment process
(Fig. 3(a)). Unlike the single DOF rigid kinematic unfolding pro-
cess, the panels undergo bending and stretching deformations, and
the entire Miura origami sheet shows transient oscillation during
the deployment.

In Figs. 3 and 4, we use yellow color to represent the dynamic
deployment configuration of the sheet, while blue color refers to
the corresponding rigid unfolding configuration at the same stage
of deployment. The deployment stage is defined using the distance
between the fixed node 2 and the controlled node 32 in the x direc-
tion, denoted by L, in Fig. 3(b). We represent the deployment
stage using a percentage of the length of the current configuration,
Ly, with respect to that of the fully deployed flat configuration
(Fig. 3(b)). To quantitatively evaluate the dynamic behaviors of
the Miura origami sheet, we compare the dynamic configuration
with the corresponding kinematic configuration at the same
deployment stage, and compute the deviation for each of the
nodes (four sample node deviations are shown with pink arrows in
Fig. 3(b)). The average of the magnitude of the deviation among
all the nodes is used to evaluate the difference between the
dynamic deployment configuration and the rigid kinematic
unfolding configuration, which is presented as a function of time
in Fig. 3(c). To characterize the performance of the deployment
process, we employ the peak value of the averaged nodal devia-
tion J that occurs during the deployment time history (e.g., 3.8s
in Fig. 3(c)) as an index for comparison.

From the normalized stiffness terms in Eq. (20), we vary the
effective stiffness by changing the stiffness variables (7, k),
where the structure may exhibit qualitatively very different
deployment behaviors. The deployment processes of three struc-
tures with different stiffness ratios 7'y are shown with snapshots in
Fig. 4. In cases where the panel stiffness is similar in magnitude
to the fold stiffness, the structure undergoes a large global bending
and snaps into a “pop-up” configuration. This pop-up occurs at
different stages depending on the stiffness ratio. In Fig. 4, the
structure with 7y = 5 undergoes pop-up earlier during deployment
than structure with 7, = 7. However, as the stiffness ratio 7y
increases, the dynamic deployment starts to follow closer to the
rigid kinematic unfolding, and as with 7, = 10 and higher, the
pop-up does not occur throughout the deployment process. Exper-
imentally, we observe similar behaviors through studying a proof-
of-concept prototype as shown in Fig. 5. The facets are built by
two layers of paper, and are connected by a thin 0.5 (mm) plastic
sheet in the middle (Fig. 5(7)). The dimensions are the same as
listed in Table 1. The deployment is guided by stored strain
energy and a displacement control on the right end denoted by the
white arrow. The structure can stabilize at configurations similar

JULY 2022, Vol. 17 / 071005-5



Fig. 4 Snapshots of the deployment process of the three-unit Miura origami sheet structure with different stiffness ratios:
(a-d) Fx =5; (e-g) Fx =7; and (h-k) F, = 10. The fold stiffness is the same for all cases with k; =3.8x107"(ks/ks = 1): (a)
t=0.5sec, (b) t=1.5sec, (c) t=>5sec, (d) t=16sec, (e) t=1sec, (f) t=3.5sec, (g) t=5sec, (h) t=0.5sec, (i) t=1.5sec, (j)

t=4.5sec, and (k) t= 16 sec.

to those captured in the snapshots of the dynamic process from
the analysis, indicating that the different dynamic configurations
are the results of the different stable equilibria of the structure at
different deployment stages. In Fig. 5, the model exhibits the
squeezed configuration (Fig. 5(@)), a pop-up configuration

@ (h)

4hﬂh%§

S

(Figs. 5(b), 5(c), and 5(f)), a less distorted shape at a more
deployed stage (Figs. 5(d), 5(g), and 5(%)), and the stress-free flat
state (Fig. 5(e)).

The global pop-up motion in the snapshots (Fig. 4) results in
large nodal deviations and is dependent on stiffness. We perform

(©)

Fig. 5 Experimental investigation: snapshots of the configurations at different deployment stages of a three-
unit Miura origami sheet prototype. The upper crease on the left end is fixed, and the center vertex on the right
end is controlled, denoted by the white arrow. (a) Refers to a folded state, (b) refers to a pop-up state, with (c)
and (f) showing a front view and side view of the pop-up state, respectively. (d) Refers to a more deployed state
with (g) and (h) showing a front view and side view. () Refers to the flat configuration. (i) Shows a detailed view

of the crease.
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Fig. 6 A parametric study of the stiffness coefficients for a
three-unit Miura origami sheet. We vary the stiffness ratio
r« €[5,1000], where five refers to a system where panels and
folds have a similar stiffness (e.g., a paper prototype), and 1000
refers to a system where the panels are much stiffer (e.g., metal
panels connected with hinges). The x-axis is the stiffness ratio
r¢ in log scale, and the y-axis is the peak value of the averaged
nodal deviations 6 on a linear scale. The curves in different
shades indicate different fold stiffness k. We vary the k; with
respect to ks =3.8x1077, and present a normalized ratio. In
the regions r,<[10,70] and r,>200, the difference between
results is small, and the curves overlap each other.

a parametric study on the stiffness coefficients (7, kr) and com-
pute the corresponding ¢ for each of the deployment processes
(Fig. 6). We use a normalization value Ef-o =3.8 x 1077 to allow
for simpler representation of the folding stiffness. The structures
with higher k, meaning stiffer fold lines, result in slightly higher
o than those with lower fold stiffness but the same ratio 7.
Because the deployment is facilitated by strain energy stored in
the fold creases, systems with higher lgf have more energy stored
initially, which results in more reactions among units during the
dynamic motion and more panel deformation, and thus higher
overall deviation. The stiffness ratio 7y has more significant
effects on the structural dynamic behaviors. As the ratio 7
increases, meaning that the panels become stiffer relative to the
folds, there is less panel bending, and the deviation ¢ decreases to
zero where the structure follows the nominal rigid unfolding path.
Three sharp declines are observed in the averaged nodal deviation
peak, the first between 7, =7 and 7, = 8, the second between

(@) (b)

7r =9 and 7, = 10, and the last between 77, = 78 and r, = 100,
depending on the fold stiffness lgf. These three drops happen due
to distinct changes in the structural behaviors. Before the first
drop of ¢ in Fig. 6, the stiffness of the panels is similar to the stiff-
ness of the folds. The corresponding structure snaps into the “pop-
up” state as soon as it is released from the initial boundary
constraints (Figs. 4(a)-4(d)), which results in the highest nodal
deviations. As the panel to fold stiffness ratio increases to 77 = 7,
there is a drop in the deviation, because the structure only pops up
later during the deployment process (see difference between
Figs. 4(b) and 4(f)). This later occurrence of the pop-up deforma-
tion results in a relatively smaller ¢ than if the pop-up occurs at
the beginning of the deployment process. The second drop in
deviation in Fig. 6 occurs when the panels are further stiffened
with a ratio of 7, = 10. In this case, despite some modest devia-
tions, the system remains close to the rigid kinematic unfolding
configuration, and no pop-up occurs throughout the deployment
process. As the panel to fold stiffness ratio increases beyond
7 = 10, the origami sheet will not pop up, indicating the exis-
tence of a critical value for the stiffness coefficient 7, beyond
which large global deviations can be avoided. We define the mini-
mum stiffness ratio that keeps the structure from pop-up as 7. In
Sec. 4.2, we will discuss that this critical value 7, also depends
on the number of units in the Miura origami sheet. The nodal
deviations undergo the third drop around 7, =78 with
kr/kgo = 1, and at successively higher ratios for structures with
stiffer folds (up to 7 = 100 for structures with k¢ /kzo = 50). We
select the curve with kg /kgy = 1 for illustration and compare the
case 77 = 78 with 7, = 80, as shown in Fig. 7. When released, the
softer structure (7, = 78) snaps into a configuration with uneven
deviations among the different units, where the rightmost unit is
more compressed, while the left and middle units are more
deployed than the rigid unfolding configuration (Fig. 7(a)). Later
in the deployment process, the structure snaps back to a more uni-
form configuration that closely follows the rigid configuration, as
shown in Fig. 7(c). As for the stiffer case (7, = 80), the structure
always stays at near the rigid unfolding configuration throughout
deployment, and the deviations are thus much smaller.

This study shows that the structure can exhibit significantly dif-
ferent behaviors as a function of stiffness. The fold stiffness &y
directly affects the initially stored strain energy, and a higher fold
stiffness can slightly increase the deviation between systems with
the same ratio 7. The ratio 7; plays a more important role than
the absolute value of the fold stiffness. Low 7, values result in

(c)

Fig. 7 Snapshots of the deployment process of structures with (a-c) r, =78; and (d-f) r, =80. Both
structures have k/k = 1. These two deployment processes correspond to directly before (a-c) and after
(d—-1) the third drop in the k¢/k =1 curve in Fig. 6. The two systems have different extents of deviation
from the rigid path: (a) t=0.5sec, (b) t=1.2sec, and (c) t=1.4 sec.
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Fig. 8 (a) A unit of the Miura with the fold line (yellow) that is related to the movement of nodes 6-7-4-9, and the bend line
(pink) related to nodes 4-7-2-6. (b) Contour plot of the effective stiffness ratio r,, which is shown in the z-direction with shad-
ing. The parameter space is spanned by the crease length ratio b in the x-axis and the sector angle y in the y-axis. (c-f) show
the extreme cases of geometric parameters at the four corners of the contour plot.

large panel deformations and possibly a global pop-up type
motion. When the ratio 7 is increased beyond a critical value 7,
the pop-up behavior is inhibited, and the structure eventually fol-
lows the rigid kinematic unfolding configuration.

4 Influence of the Number of Units and Pattern
Geometry

According to Sec. 3, the structural dynamic deployment behav-
iors can be greatly influenced by changing the material stiffness
coefficients, especially the stiffness ratio 7. Large r; represents
stiffer panels compared to the fold lines, and thus less deformation
and deviation occurs during the deployment when compared to
the rigid unfolding case. In this section, we will show that, other
than the material stiffness coefficients, the number of units and
geometry of the origami can also change the effective stiffness of
the structure (Sec. 4.1), and thus will affect the dynamic deploy-
ment process (Secs. 4.2 and 4.3).

4.1 Influence of Number of Units and Geometry on Struc-
tural Stiffness Properties. The EOM in Eq. (20) reveals that the
nodal force can be affected by the crease length L and partial
derivative 00/0u, which implicitly contain other geometric
parameters and thereby affect the overall stiffness of the crease.
Here, we first examine one unit to show how the effective stiffness
ratio between a fold line and bend line (Fig. 8(a)), defined as
Fep =L, 8 2 /Lq 36 , is affected by the geometric parameters. The
contour plot in Fig. 8(b) shows the effective stiffness ratio with
respect to the crease length ratio and the sector angle. The crease
length ratio is the ratio between the length of the horizontal folds
and the length of the vertical folds: b = b/a (Fig. 8(a)). A unit
with a low sector angle of 30 deg and a high crease length ratio of
2 (Fig. 8(f)) has an effective stiffness ratio that is about five times
higher than that of the unit with a sector angle of 80deg and
crease length ratio of 0.5 (Fig. 8(c)). These large differences in the
effective stiffness ratio indicate that the geometric parameters can
have a significant effect on the global stiffness properties, and
thus may influence the deployment dynamics.

As the origami sheet deploys, its overall geometric shape
changes with the folding angle, which will affect the effective
stiffness of the system. This shape change occurs even though the
base geometric parameters y and b are kept constant. Because the
mass of the structure remains proportional to the size of the struc-
ture, the modal natural frequencies derived from an eigen-analysis
can provide a direct representation of the effective structural stiff-
ness. Here, we perform an eigen-analysis on the static equilibrium
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state of the system at different points along the deployment path.
We apply the same boundary constraints as in the dynamic analy-
sis except that we fix node 32 at each stage along the deployment
path. The static equilibrium state is obtained by allowing the
nodal position of the origami to converge to a new configuration
through an iterative process of the static governing equations
(delete the time varying variables and inertial and damping terms
from the dynamic EOM) which minimizes the sum of internal
forces within the system. An eigen-analysis using the mass and
stiffness matrices of the structure is then performed to find the nat-
ural frequencies and the corresponding fundamental modes.
Figure 9 shows results from this analysis for different points along
the deployment path of the origami. This three-unit sheet has a
crease length ratio at b = 1, sector angle at y = 60 deg, and stiff-
ness parameters (7, = 100, kf /k,o = 1). The natural frequencies
of the structure increase w1th deployment, and reach a peak value
followed by a sharp decline near the fully deployed stage
(Fig. 9(g)). At a low deployment extent of 5%, the first two
eigenmodes refer to deployment mainly in the longitudinal direc-
tion (Figs. 9(b) and 9(c)), while the third eigenmode refers to a
near pop-up transverse or bending configuration (Fig. 9(a)). As
the deployment increases to 20%, the second (Fig. 9(e))) and third
(Fig. 9(d)) eigenmodes switch in order. As the structure becomes
more deployed, the eigenmodes become significantly different
(Figs. 9(h)-9(j)). A sharp reduction in the natural frequencies is
observed around the deployment extent of 100%. By comparing
the shape of the eigenmodes at 99% and 100%, we see that the
behavior changes drastically, and the origami sheet at a flat state
has modes that resemble the transverse bending modes of an elas-
tic beam (Figs. 9(/)-9(m)). In these modes, the deformation con-
centrates at the creases, which results in less energy and a lower
natural frequency.

To obtain a more comprehensive understanding, these eigen-
value analyses are performed for the sheet with different geomet-
ric parameters and with different numbers of units. Figure 10
shows contour plots of the first mode natural frequency w, for
structures with different parameters (crease length ratio b, sector
angle 7, and number of units) presented in the horizontal axis and
the deployment stage in the vertical axis. Structures with higher »
appear softer (lower natural frequency) given the same stage of
deployment (Fig. 10(a)). From Fig. 10(b), we see that the maxi-
mum natural frequency (and stiffness) occurs for structures with a
sector angle y of around 60 deg. For low deployment stages, struc-
tures with y < 57deg, have a discontinuity in the natural fre-
quency values which is due to the stable quasi-static state entering
another equilibrium state as will be discussed in Sec. 4.3.3. In
Fig. 10(c), we perform the eigenvalue analysis on sheets with
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Fig. 9 The first three natural eigenmodes of the sheet. (g) The natural frequencies as a function of the deployment stage. In
the snapshots, the darkest configurations refer to the quasi-static equilibrium position, and the remaining shades (cyan,
magenta, and green in clolored version of this figure) refer to the shape of the first three eigenmodes. Each row corresponds
to a certain mode, while each column corresponds to a certain extent of deployment.
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Fig. 10 The first mode natural frequency w, of the Miura sheet structure with different geometric parameters. The geometric
parameter is varied with the x-axis and the deployment stage with the y-axis. (a) Different crease length ratios b, where the
sector angle is kept at y =60deg, and there are three units in the sheet. (b) Different sector angles, where the crease length
ratio is kept at b = 1, and there are three units in the sheet. (c) A different number of units in the sheet, while the crease length
ratio is kept at b = 1, and the sector angle is kept at y = 60 deg. (Note: a continuous contour is presented, but only discrete val-

ues of the number of units are used in ¢).

different numbers of units and show that the Miura origami sheets
consisting of more units tend to be softer (lower natural fre-
quency) because more creases and panels in the structure allow
for more global deformation. Note that with more units, the inter-
nal mass and stiffness of the structure both increase proportion-
ally, but the overall effective stiffness decreases. The apparent
discontinuities in Fig. 10(c) occur because the contour lines have
fixed values, and there is sparse data in the horizontal direction corre-
sponding to discrete values for the number of units. With all different
parameter variations, as the structures become more deployed (i.e.,
around 80-99%), they exhibit a higher natural frequency and effec-
tive stiffness similar to the results observed in Fig. 9(g).

4.2 Influence of Number of Units on the Dynamic Deploy-
ment Process. The eigen analysis in Sec. 4.1 showed that origami
sheets consisting of more units have a lower natural frequency
and lower effective stiffness (Fig. 10(c)). In this section, we inves-
tigate the dynamic deployment behavior of origami sheets with
different numbers of units. Figure 11 shows that the nodal devia-
tion ¢ increases with the number of units, indicating that the lon-
ger and more flexible structures experience more deformation as
can be expected.

The value of the critical stiffness ratio 7y, at which the structure
will no longer experience a pop-up deformation (Figs. 4(b), 4(c),
and 4(g)) also varies with the number of units in the structure. We
vary the number of units and perform dynamic analyses on struc-
ture with different stiffness parameters (7, lgf / /Efo), and show the
relationship between the nodal deviation ¢ and stiffness

Journal of Computational and Nonlinear Dynamics

parameters (7', lgf /lgfo) for systems with 5, 7, and 10 units
(Figs. 12(a)-12(c)). As discussed in Sec. 3, the ratio )y plays a
more significant role than the fold stiffness in affecting the quali-
tative deployment behavior. For stiffness ratios lower than 7,
the structure undergoes a pop-up and results in high nodal devia-
tion, while for higher stiffness ratios, the pop-up is avoided, and the

Peak of average nodal
deviation &

4 6 8
Number of Units

(=]
[\

Fig. 11 Nodal deviation ¢ increases with the number of units
in the origami sheet. The Miura sheet has the geometry
of (b=1, y=60deg), and stiffness parameters of (r, =100,
k¢lks =1). With these stiffness parameters, the structures do
not experience the pop-up deformation observed earlier in
Sec. 3.
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Fig. 12 Stiffness ratio with respect to the nodal deviation for (a) a five-unit, (b) a seven-unit, and (c) a 10-
unit Miura origami sheet. In (a-c), the r,n, is circled for the case where k/k =1. (d) The critical value
r«m for k¢ ks =1, which is the minimum stiffness ratio to avoid a “pop-up” deformation, is higher as

more units are used in the Miura origami sheet.

structure follows the rigid kinematic configuration more closely.
The analyses on structures with 5, 7, and 10 units show the same
qualitative behaviors (Figs. 12(a)-12(c)). Moreover, the critical
ratio 7'y, increases as we increase the number of units, and a higher
stiffness ratio 77 is needed to avoid pop-up in the longer and more
flexible structures (Fig. 12(d)). In other words, stiffer panels are
needed to avoid the pop-up deformation for longer sheets.

4.3 Influence of Geometry on the Dynamic Deployment
Process. In this section, we present numerical simulation results
to illustrate how the geometric parameters of the Miura origami
sheet affect the dynamic deployment process. We specifically
explore the influence of the sector angle y and the crease length
ratio h. The geometric parameters under investigation are varied
while the other parameters remain at their nominal values. In the
nominal pattern, the sector angle y = 60 deg, crease length ratio
b =1, and the number of units in the sheet is three. In this geo-
metric  parametric ~ study, the stiffness parameters are
(Fr = 100, ky / ko = 1) and the deployment control rate is set to
be 0.6 [—/sec].

With the given stiffness parameters, the study in Sec. 3 showed
that the structure would deploy with little deviation from the rigid
kinematic configuration (7" = 100, Ef-/Efo =1 in Fig. 6). By
changing the geometric parameters, the effective stiffness will
change, thus affecting the dynamic deployment behavior. In
Fig. 13 we show the deviation of dynamic deployment of a three-
unit Miura origami sheet with different sector angles and crease
length ratios. We find that the peak nodal deviation ¢ increases
with the increasing crease length ratio 5. This phenomenon can be
explained by the increase of structural flexibility as reflected by
the decreasing natural frequency shown in Fig. 10(a). By increas-
ing the sector angle 7y, the nodal deviations remain constant or
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increase slightly until they reach a boundary marked by a white
dashed—dotted line in Fig. 13. To the left and above the boundary
line, the nodal deviations are much higher than that to the lower
right side on the contour plot, indicating a qualitative change in
the deployment behavior. To gain more insight into this disconti-
nuity, we first perform two case studies: in Sec. 4.3.1, we fix the
crease length ratio at 1 and vary the sector angle (yellow line in
Fig. 13), and in Sec. 4.3.2 we fix the sector angle at 60 deg and
vary the crease length ratio (magenta line in Fig. 13). In
Sec. 4.3.3, we further explore the geometric influence, and show
that this discontinuity is due to a second stable equilibrium of the
structure.

4.3.1 Case study on the Sector Angle y When b = 1. In this
section, we discuss the influence of the sector angle y on the
deployment dynamics when the crease length ratio b is set to 1.
Figure 13(a) shows that the nodal deviation 0 slightly increases as
the sector angle increases in the range of y € [30deg, 59.4 deg]. A
sharp decrease in nodal deviation occurs between y = 59.4deg
and 59.6deg, which corresponds to the intersection of the con-
tours near the white curve in Fig. 13. This decrease occurs
because the deployment process is qualitatively different between
the structures with a sector angle of y < 59.4deg and those with
7 > 59.4deg (Fig. 14). During the deployment process, the struc-
ture with y = 59.4deg first snaps into a distorted configuration
with a high deviation (Fig. 14(c)). As the structure deploys, it first
becomes more distorted (Fig. 14(d)), and then, around the middle
of the deployment process, it returns to a configuration that is near
the rigid folded state. The structure then has little deviation until it
becomes fully deployed (Fig. 14(e)). The structure with y =
59.6 deg also deforms into a distorted configuration when it is first
released (Fig. 14(f)), but quickly returns near to the rigid unfold-
ing configuration (Fig. 14(g)) and maintains little deviation until
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Fig. 13 The nodal deviation of the dynamic deployment pro-
cess of the Miura sheet structure with different geometric
parameters. The sector angle y is varied with the x-axis and the
crease length ratio b with the y-axis. The vertical line (magenta
in colored version) shows the case when the crease length ratio
is varied with a fixed sector angle at 60 deg; the horizontal line
(yellow in colored version) represents the case when the sector
angle is varied with a crease length ratio fixed at 1.

fully deployed (Fig. 14(h)). This sharp drop in nodal deviation
and the corresponding change in deployment behavior indicate
that a slight change in sector angle can cause a qualitative change
to the dynamic deployment process.

432 Case Study on the Crease Length Ratio b When y =
60deg. In this section, we discuss the effect of the crease length
ratio b on the dynamic deployment behaviors of the Miura ori-
gami sheet, when the sector angle 7 is kept at 60 deg. Results in
Fig. 15(a) show that the nodal deviation ¢ increases and eventu-
ally approaches a constant value as the crease length ratio b
increases. However, the curve shows a discontinuity in its middle
part, which corresponds to the two intersections between the
magenta line and the white curve in Fig. 13. The overall increase
of ¢ with b is because the structure becomes wider and thus softer
with higher b, which is consistent with the results in Fig. 10(a).
We then investigate the discontinuity in the relationship between
6 and b, which are the sudden increase of 41.5% in § at b =
[1.051, 1.052] and the drop of 23.1% at b = [1.375, 1.380]. The

deployment process is illustrated by the time history of deviation
o in Fig. 15(b). For b € [1.052, 1.375], the structure will be in a
distorted configuration (distorted from the rigid kinematic config-
uration) at the beginning of the deployment process (shown in
Figs. 15(b), 15(H)—15(g), and 15(/) and 15(j)). This distortion will
result in higher deviation ¢ than the structure with crease length
ratio of b € [0.6, 1.051] N [1.380, 1.7], in which the structure is
mostly close to the rigid kinematic configuration during the
deployment process (Figs. 15(b), 15(c)-15(e) and 15(/)-15(n)).
The qualitative change in configuration indicates the existence of
multiple equilibria of the Miura Origami sheet. The structure can
approach different equilibrium configurations during deployment,
depending on the shape of the origami pattern resulting in differ-
ent levels of deviation from the rigid kinematic deployment path.
The nodal deviation for different geometric patterns can differ by
more than a factor of ten as shown in Fig. 15(a), which confirms
the importance of the origami geometric effect on deployment
dynamics.

4.3.3 Localized Multistability During the Dynamic Deploy-
ment. The dynamic analyses in Secs. 4.3.1 and 4.3.2 show signifi-
cantly different deployment behaviors for origami sheets with
different geometric designs. In this section, we will demonstrate
that these deviations occur because the structure can snap between
different stable states during the deployment process.

We start with a case study to investigate the structural multi-
stability by analyzing the structure with a crease length ratio b =
1.2 and a sector angle of y = 60 deg where we observe the distinct
increase in deviation as shown in Fig. 15(a). We use a quasi-static
simulation to find stable equilibrium states of the structure and to
verify that there do in fact exist multiple stable states. We use an
iterative process on the static governing equations (delete the time
varying terms and inertial/damping effects from the dynamic
EOM), similar to Sec. 4.1, where the nodal positions of the ori-
gami are updated until we converge to a configuration that mini-
mizes the sum of the internal forces in the structure. When we
start the iterative process from the rigid folding configuration, we
consistently converge to the first stable equilibrium state which
has little deviation from the rigid folding orientation (dark blue
images in Fig. 16). To search for a second stable equilibrium state,
we need to begin the iterative process from another initial state
where the structure is already deformed. We pick an initial
deformed state corresponding to the shape of the origami during a
transient dynamic deployment (magenta images in Fig. 16). With
these initial conditions, the structure can converge to another
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Fig. 14 (a) Nodal deviation ¢ during the deployment process with respect to the sector angle (each dot represents the result
of an individual deployment analysis). The two embedded images show the extreme values of sector angle y = 30deg and
y = 80deg. (b) Time history of the nodal deviation for the structures with different sector angles. The lighter shade (yellow in
colored version) refers to the dynamic deployment configuration, while the darker shade (blue in colored version) refers to
the corresponding rigid unfolding configuration at the same stage of deployment. (c—e) are snapshots of the configuration
during deployment for y =59.4 deg, in which (c) refers to 0.069s, (d) to 0.709s, and (e) to 1s, corresponding to the squares
(pink in colored version) on the curve (blue in colored version) in (b). (~h) are snapshots of the configuration during deploy-
ment for y = 59.6 deg, in which (f) refers to 0.044 s, (g) to 0.2 s, and (h) to 1, corresponding to the triangles (green in colored
version) on the curve (red in colored version) in (b). The structures here have a crease length ratio of b =1.
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Fig. 15 (a) Nodal deviation 4 with respect to the crease length ratio b (each dot represents the result of an individual deploy-
ment analysis). (b) Time history of the nodal deviation for structures with crease length ratios of
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colored version) refers to the dynamic deployment configuration, and the darker shade (blue in colored version) refers to the
corresponding rigid unfolding configuration at the same stage of deployment. (c)—(e) are for b =1.051 at (c) 0.082s, (d) 0.35s,
and (e) 1.5 s, corresponding to the pink squares in (b). (~h) are for b =1.052 at (f) 0.1s, (9) 0.71s, and (h) 1.5, pink triangles
in (b). (i~k) are for b =1.375 at (i) 0.116's, (j) 0.796 s, and (k) 1.5, green rhombi in (b). (/~n) are for b =1.380 at (/) 0.116s, (m)
0.65s, and (n) 1.5 s, green triangles in (b). The structures here have a sector angle of y = 60 deg.
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Fig. 16 Stability analysis of a three-unit origami sheet with crease length ratio b = 1.2 and sector angle y = 60deg. (d) Time
history of nodal deviation 4. (a-c, e-h) Configurations of the stable equilibria and snapshots of the transient dynamic deploy-

ment at selected deployment stages. The lightest (yellow in colored version) and darkest (blue in colored version) refer to the
two stable equilibria, and the medium shade (magenta in colored version) refers to the snapshot in dynamic deployment. The

stiffness parameters are (F, = 100, k¢/k s =10).

stable equilibrium (yellow images in Fig. 16), which is markedly
different from the first (blue images), and has a substantial devia-
tion. Figure 16 shows the two stable states of the origami sheet
and the transient shape of the sheet at different stages of the
deployment process. When the dynamic process begins. the struc-
ture snaps into the second stable equilibrium (0-0.06s Figs.
16(a)—16(c)) where it has a large deviation from the rigid folded
state (Fig. 16(d)). Furthermore, as the structure becomes more
deployed this second equilibrium state deviates more from the
rigid folded state (0.06-0.75 s Figs. 16(c) and 16(e)), which leads
to a further increase in the nodal deviation (Fig. 16(d)). As the ori-
gami reaches a more deployed state (0.8 s Fig. 16(f)), we can no
longer find the same second stable equilibrium, even when we
start the iterative process with a deformed initial configuration.
While other stable equilibria may exist, the nearest stable equilib-
rium is the same as the first, and thus the structure snaps back to
the first stable equilibrium during the dynamic deployment
(0.8-1.1s Figs. 16(/)-16(g)). The dynamic deployment process
experiences some transient oscillations after each time the struc-
tures snaps into a new configuration (~0.06s and ~0.9s in
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Fig. 16(d)). For higher states of deployment, the transient dynam-
ics closely follow the first stable equilibrium (Fig. 16(%)).

We next extend this same multistability analysis to other ori-
gami sheets with different sector angles and crease length ratios.
The yellow region in Fig. 17(a) shows the geometries where the
structure snaps into and stays near the second stable equilibrium
during the dynamic deployment process. The boundary of this
region is also similar to the white curve in Fig. 13, to the left of
which the structure undergoes higher nodal deviation. We find
that during the dynamic deployment structures with some geome-
tries (Figs. 17(b) and 17(d)) snap and oscillate near the second sta-
ble equilibrium, but structures with other geometries may not
(Figs. 17(c) and 17(e)). The structure is still multistable to the
right of the boundary (i.e., two stable equilibria can be found in
Figs. 17(c) and 17(e)) but a snap does not occur during deploy-
ment. This different behavior is because the snap-through depends
not only on the existence of multistability, but also other factors
such as the initial strain energy that drives the deployment and the
initial conditions of the system. Both quantities are well known to
influence the response in nonlinear structural dynamics.
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From this parametric study, it is shown that the geometry,
including pattern shape and number of units in the sheet, can
affect the structural effective stiffness and modal eigenvalues,
indicating that the structure properties can be varied by designing
the origami pattern. Numerical simulation further shows signifi-
cantly different dynamic response of the Miura origami sheet with
different geometries. Under the same displacement control, struc-
tures with certain geometric designs are shown to be able to fol-
low the rigid kinematic path better, which is explained by the
multistability analysis, indicating that the origami geometry can
be designed for more desirable deployment behavior. These
results will provide a foundation for the exploration and under-
standing of origami design for desired deployment performance.

5 Influence of Deployment Control Rate

Prior sections have illustrated how the stiffness and geometry
of the structure affect the dynamic deployment process when the
deployment rate is fixed to 0.6 [—/sec]. However, the deployment
behavior also depends on how fast the structure is controlled to
deploy. In our study, the structure is deployed while controlling the
horizontal displacement at the right end with a constant velocity.
Without loss of generality, we vary the deployment control rate from
0.05 [—/sec] to 1000 [—/sec]. To understand the influence of the
deployment control rate, we perform analysis where we change
the rate, and compute the average nodal deviations. In these studies,
the nodal deviations are computed both with respect to the nominal
rigid kinematic unfolding configuration, and with respect to a quasi-
static deployment configuration (prediction considering the panel flex-
ibility but not the inertial effect). The structure is a three-unit Miura
origami sheet with geometric parameters (y = 60deg, b = 1). We
perform this rate analysis on structures with different stiffness param-
eters (7, kr/kso) and present the results in Fig. 18.

5.1 Comparison Between Dynamic Deployment and Rigid
Kinematic Unfolding. In this section, we derive the peak-
averaged nodal deviation ¢ between the dynamic deployment pro-
cess and the nominal rigid kinematic unfolding to explore the rate
effect. In Fig. 18(a), under extremely low and high deployment
control rates, the structure deviates from the rigid unfolding con-
figuration the most. When deployed slowly, the units inside the
Miura origami sheet experience nonuniform deformation where
the left units are stretched, and the right unit is compressed. This
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deformation occurs especially at the beginning stage when the
structure is near folded, and the strain energy is high
(Figs. 19(a)-19(c)). As the deployment control rate is increased,
the sheet deploys more uniformly and the deviation decreases.
There exists a critical value v, for the control rate, where the struc-
ture experiences a minimum deviation. For the system with stiff-
ness parameters of (7x =10, kp/kpo = 1) the critical rate is
v, = 17[—/sec] with snapshots of the deployment process shown
in Figs. 19(e)-19(g). If the deployment control rate continues to
increase, then ¢ will increase again. At deployment rates that are
much higher than v,, the structure will be stretched during the
deployment (Figs. 19(j)-19(i)), and after it reaches a fully
deployed state. it will continue to undergo oscillations that deviate
from the rigid unfolding path (Fig. 19(k)). This type of analysis
can provide guidance for selecting a deployment control rate,
which minimizes the deformation and deviation from the rigid
kinematic deployment configuration.

The critical value of the deployment control rate v, under which
the structure achieves minimum deviation is affected by the stiff-
ness properties. Rate control analyses are performed for structures
with different stiffness parameters, and the results are presented in
Figs. 18(c) and 18(d). These results show a similar tendency as in
Fig. 18(a) where ¢ will first decrease to a minimum deviation at a
critical rate v,, and then increase with the increase in deployment
control rate. By comparing Fig. 18(«) with Fig. 18(b), and 18(c)
with 18(d) where the stiffness ratios are kept constant (7; = 10
and 7 = 100, respectively), but the fold stiffness kg/kp is
increased, it can be seen that the structures with stiffer creases (b,
and d) have a higher v, than those with softer creases (a and c).
The higher v, is because structures with stiffer creases possess
more strain energy and will undergo more nonuniform deforma-
tion induced by the higher strain energy. Thus, the structure needs
to be deployed faster to avoid the nonuniform deformations. Addi-
tionally, by comparing Fig. 18(a) with 18(b) and 18(b) with 18(d)
where the creases_stiffness is kept constant (k; = 3.8 X 1077
(kg/kpo =1) and ky =3.8 x 10°° (kg /kpo = 10), respectively),
but the stiffness ratio is increased, we can see that the structures
with a higher ratio 77, have lower v,. This lower deployment rate
for the structures with a higher stiffness ratio is because their rela-
tively stiffer panels can better restrain the squeezing deformations
among units and thus the structure can be deployed at a lower
rate. Additionally, the higher stiffness ratio 7 (closer to the rigid
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kinematics unfolding scenario) results in an overall lower ¢
because there is less panel deformation and less deviation (i.e.,
similar to results from Sec. 3).

Under very fast deployment, there exists an upper limit on J.
For the structure in Fig. 18(a) (7x = 10, ky/kso = 1) we approach
the upper limit with the deployment rate close to 1000 [—/sec].
For that case, the maximum deviation ¢ occurs at a time of 0.004 s
during the deployment and the corresponding snapshot is shown
in Fig. 19(j). The comparison between the snapshot of the
dynamic deployment and the corresponding rigid configuration
shows squeezing among the units, where the leftmost unit is com-
pressed while the rightmost unit is stretched by the displacement
control. The upper limit in deviation exists because of this large
distortion between units. As the deployment control rate keeps
increasing, the leftmost unit will become less compressed and the
total 0 will start decreasing slightly (Fig. 18(a)).

5.2 More insight on the Role of Inertia and Flexibility in
Dynamic Deployment. The deviation of the origami dynamic
deployment from the nominal rigid kinematic unfolding configu-
ration originates from both the panel flexibility and the inertial
effects. In this section, the dynamic deployment is compared with
the quasi-static deployment process (which includes the panel
flexibility but not the inertial effect) to understand more
about the role of inertia. The nodal deviation between the
dynamic and the quasi-static deployment configurations is
denoted by J,. At low deployment control rate, J, remains con-
stant, meaning that the inertial effect on the dynamic deployment
process does not change much with the rate. As the control rate
exceeds a turning point v,, shown as a blue square in Fig. 18, the
nodal deviation J, increases corresponding to an increase of the
inertial effects.

To gain more insight on the effects of the panel flexibility and
system inertia, we compare the two types of deviation, ¢ and J,,.
Both the effects of flexibility and inertia are reflected in 6 while
only the inertial effect is reflected in J,. At low control rate, the
cases with inertia have a larger deviation (6 > J,) because inertia
dependent oscillations occur after the initial release of strain
energy which drives the structure into a nonuniform squeezed
shape (Fig. 19(a)). At higher control rates, § < J,, due to the com-
bined inertia and flexibility effects.

Additionally, the turning point changes with the stiffness of the
structure. By comparing Fig. 18(a) with 18(b), as well as
Fig. 18(c) with 18(d), the structure with stiffer folding creases ((b)
and (d)) has a higher v,, meaning that the quasi-static panel defor-
mation dominates the overall nodal deviation for a wider range of
deployment rates. On the other hand, the stiffness ratio 74 has rela-
tively low influence on v,, as can be seen by comparing Fig. 18(a)
with 18(c), as well as Fig. 18(b) with 18(d).

Conclusion

In this research, we investigate the dynamics of deployment of
a Miura origami sheet. For the first time, through analyzing a
novel dynamic model that includes the combination of panel iner-
tia and flexibility, we uncover new phenomena and qualitative
features that have not been observed previously and cannot be
derived via traditional quasi-static and rigid kinematic unfolding
analyses. Some of the system behaviors observed in the analysis
are also shown experimentally on a test prototype. By analyzing
the deviation of the dynamic deployment configurations from
those of the traditional approaches, the tools we developed as well
as the outcomes can provide quantitative information (e.g., para-
metric space) of where the deployment dynamics would become
important for better system design and control.

We develop the dynamic model by considering panel inertia
and flexibility, where we discretize the structure by using equiva-
lent lump mass elements. We derive the nondimensionalized
equations of motion and perform analysis to gain general under-
standing of the system dynamic behaviors during deployment.
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The deployment of the origami sheet is facilitated by the stored
strain energy in the creases when the structure is folded and a dis-
placement control on one end point of the sheet.

With different stiffness, the structure may exhibit qualitatively
very different deployment behaviors. In cases where the fold stiff-
ness to panel stiffness ratio (i) is low, the structure may undergo
a large global bending “pop-up” state. This pop-up occurs at dif-
ferent stages depending on the stiffness ratio 7;. As 7’y becomes
sufficiently large, the dynamic deployment would be closer to the
rigid kinematic unfolding configuration without pop-ups. Specifi-
cally, there exists a critical value 7, below which the structure
would undergo large pop-up motion. Such 7, value can vary
with the number of units in the origami sheet, and in particular the
7 value needs to be higher for origami sheets with more units to
avoid pop-up.

It is shown that apart from the material stiffness parameters, the
pattern geometry including the crease length ratio and the sector
angle can influence the structural effective stiffness properties,
and thus affect the transient dynamics of the deployment process.
It is discovered that the origami sheet possesses multiple stable
equilibria under different geometric parameters and may reconfig-
ure between the stable equilibria during dynamic deployment.

We found that the dynamic deployment performance can also
be affected by changing the control deployment rate. Under slow
rates, the origami sheet undergoes squeezing among its units,
while it undergoes stretching under fast rates. The structure can
best follow the rigid kinematic configuration under a certain value
of the control rate, which also varies with the structure properties,
such as fold stiffness. These results indicate that the displacement
control can be utilized to obtain more desirable dynamic deploy-
ment performance.

Overall, this research provides a foundation for the exploration
and understanding of the dynamic characteristics of origami sheet
deployment. The tools and insights developed can be utilized to
design for desired (e.g., smooth and fast) deployment or inten-
tional reconfiguration of origami sheet structures. Moreover, they
are especially valuable in raising awareness of new phenomena
that have not been observed in the past, and providing original
guidelines to create origamis with design parameters (e.g., mate-
rial and geometric properties) and operating conditions (e.g.,
deployment rate) that are outside the traditional range of consider-
ation. In other words, this basic research is impactful in extending
our fundamental knowledge and expanding our comfort zone with
the deployment dynamics of origami.
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