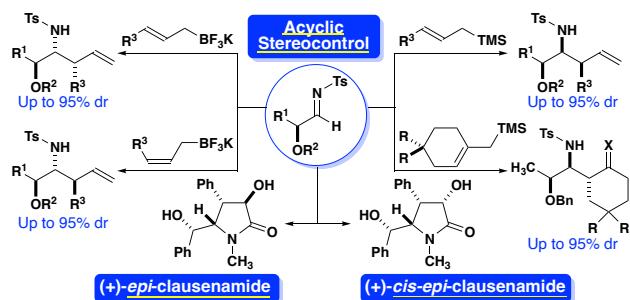


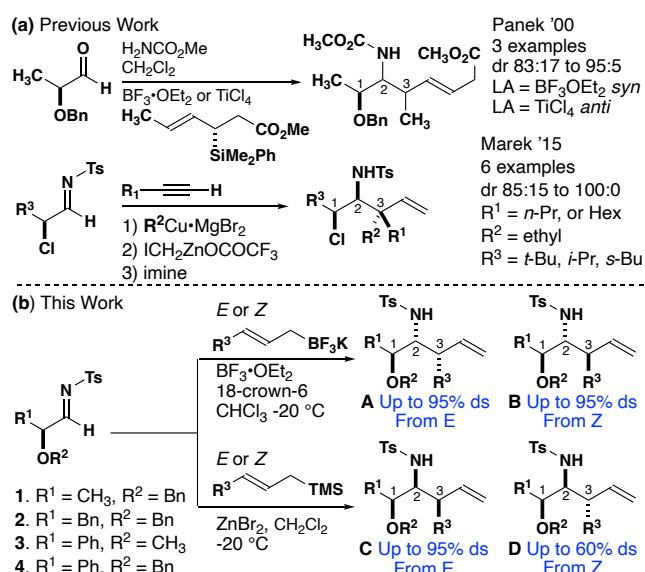
Diastereoselective Addition of Prochiral Nucleophilic Alkenes to α -Chiral N-Sulfonyl Imines


David A. Gutierrez¹, James Fettinger¹, K. N. Houk², Kaori Ando^{*3}, and Jared T. Shaw^{*1}

¹Department of Chemistry, University of California, Davis, One Shields Ave. Davis California 95616, United States

²Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

³Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan


Supporting Information Placeholder

ABSTRACT: The Lewis acid promoted addition of prochiral *E* and *Z* allyl nucleophiles to chiral α -alkoxy *N*-tosyl imines is described. Alkene geometry is selectively transferred to the newly formed carbon-carbon bond, resulting in stereochemical control of C1, C2, and C3 of the resulting 2-alkoxy-3-*N*-tosyl-4-alkyl-5-hexene products. A computational analysis to elucidate the high selectivity is also presented. This methodology was employed in the synthesis of two naturally occurring isomers of clausenamide.

Acyclic stereocontrol of carbon-carbon bond forming reactions is a longstanding challenge in organic synthesis. The addition of prochiral allylic nucleophiles to α -chiral sp^2 electrophiles creates a C-C bond under mild conditions while also producing two new stereogenic centers. While the croylation of α -heteroatom-substituted electrophiles, particularly α -alkoxy aldehydes, has been studied extensively,¹ studies of croylation and related nucleophilic additions to α -alkoxy imines yielding 1,2-amino alcohols are under explored.

Investigations of acyclic stereocontrolled croylation of α -chiral imines bearing polar heteroatoms were undertaken by Panek and Marek (Figure 1a).^{2,3} Imine formation of alkyl aldehydes is often challenging, since these imines must be used immediately to avoid decomposition or enamine tautomerization.⁴ To obviate this challenge Panek used a multicomponent reaction to generate α -alkoxy *N*-carbamoyl imines *in situ*. In this case, appreciable levels of selectivity were observed with a chiral allylsilane, providing the highest selectivity when matched with the appropriate chiral aldehyde. Marek demonstrated C1-C2 *syn* and C2-C3 *syn* stereocontrol by utilizing an amido sulfone imine precursor and a zinc nucleophile.³

Figure 1. (a) Previous work involving croylation of α -chiral heteroatom imines. (b) Studies described in this manuscript. ds = % major isomer of the four possible isomers.

Recently our group demonstrated a highly diastereoselective allylation of α -alkoxy *N*-tosyl imines producing either C1-C2 *anti* or *syn* homoallylic amino alcohols, depending on the reac-

tion conditions.⁵ Allyl BF_3K with $\text{BF}_3\text{-OEt}_2$ as a Lewis acid affords *anti* diastereoselectivity and ZnBr_2 , as Lewis acid, and allyl trimethylsilanes selectively afford *syn* products.

We now describe the diastereoselective crotylation of α -alkoxy *N*-tosyl imines, where acyclic stereocontrol of carbons 1, 2, and 3 is achieved in a single step (Figure 1b). Transition states have been located and analyzed with density functional theory (B3LYP-D3/6-31G(d)) to explain the observed diastereoselectivity. The stereocontrolled reaction was employed in a divergent synthesis of two epimers of clausenamide: (+)-epi-clausenamide and, (+)-*cis*-epi-clausenamide.⁶⁻⁸

Our previous report provided the basis for our study of the additions of prochiral alkene nucleophiles with *N*-tosyl imines. A series of *E* and *Z* substituted nucleophilic allyl BF_3K reagents were screened in order to develop an understanding of the stereochemical outcome at carbons 2 and 3. Nucleophile **E-5** was added to *N*-tosyl imine **1** to give product **10A** with >95:5 diastereoselectivity (entry 1, Table 1). Compound **10A** had the expected *anti*-stereochemistry at C1 and C2 and *syn*-stereochemistry at C2 and C3. Changing the alkene geometry of the nucleophile to the *Z* configuration produced the complementary major product **10B** in 62% yield with 90% diastereoselection (entry 2, Table 1). The same *anti* selectivity at C1 and C2 is observed, but now C2 and C3 have *anti* stereochemistry. Crotyl BF_3K nucleophiles **E-6** and **Z-6** were also added to imine **1** and gave similar levels of stereocontrol, 95% diastereoselection for **11A**, and 91% diastereoselection for **11B** (entries 3 and 4, Table 1). While the α -stereogenic center of the electrophile completely controls the facial approach of the nucleophile, the two new stereogenic centers at C2 and C3 are largely controlled by the geometry of the alkene nucleophile.

Table 1. Addition of BF_3K prochiral nucleophilic alkenes to α -alkoxy *N*-tosyl imines.

Entry	R^1	R^2	R^3	E/Z	Yield	A:B ^a	
						10A ^b	10B
1	CH ₃	Bn	<i>n</i> -Pr	E-5	10A ^b 56%	95:5	
2	CH ₃	Bn	<i>n</i> -Pr	Z-5	10B 62%	10:90	
3	CH ₃	Bn	CH ₃	E-6	11A 76%	95:5	
4	CH ₃	Bn	CH ₃	Z-6	11B 53%	9:91	
5 ^c	Bn	Bn	CH ₃	E-6	12A ^b 47%	95:5	
6	Bn	Bn	CH ₃	Z-6	12B 56%	5:95	
7	Ph	CH ₃	CH ₃	E-6	13A 72%	95:5	
8	Ph	CH ₃	CH ₃	Z-6	13B ^b 51%	5:95	

^adr was measured using ¹H NMR of the unpurified reaction mixture. *Syn* products **C** and **D** were not observed. ^bStructures were established by X-ray crystallography. ^cReaction yield on 1.2 mmol scale.

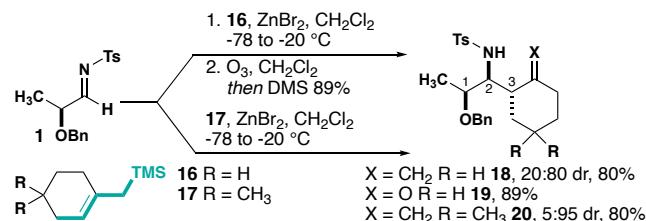
Imines **2** and **3** were screened to determine the effect of added substitution. The addition of *E*-6 crotyl BF_3K to imines **2** and **3** gave 95% diastereoselection for products **12A** and **13A** respectively (entries 5 and 7, Table 1). The crotylation of imines **2** and **3** with *Z*-6-crotyl BF_3K gave 95% diastereoselectivity for products **12B** and **13B** respectively (entries 6 and 8, Table 1). Over-

all, imine substituents with a range of steric influence all undergo highly stereoselective addition reactions with substituted allyl BF_3K reagents.

Substituted allylsilanes were examined next in order to achieve complementary selectivity with the goal of producing isomers **C** and **D** selectively. Nucleophile **E-7** was added to *N*-tosyl imine **1** using ZnBr_2 as Lewis acid mediator, giving **10C** in 95% diastereoselection (entry 1, Table 2). To imine **1** was added crotyl TMS **E-8** giving **11C** in 89% diastereoselectivity (entry 3, Table 2). Nucleophilic addition of **E-8** to imine **2**, provided **12C** with similar diastereoselectivity 88% (entry 5, Table 2). Imine **3**, reacted with **E-8** crotyl allyl TMS and ZnBr_2 to give **13C** in 95% diastereoselection (entry 7, Table 2). The addition of *E*-cinnamyl trimethylsilane **E-9** to imine **3** bearing an α -methoxy was highly diastereoselective, yielding a single detectable diastereomer (entry 9, Table 2). However, addition of **E-9** to imine **4** decreased the diastereoselectivity to 86% with ZnBr_2 as the promoter. Substituting ZnCl_2 as the Lewis acid promoter increased the diastereoselectivity to 95:5 (entry 10, Table 2). In all cases, excellent facial selectivity was observed in that only isomers **C** and **D** were formed. These results are complementary to the C1-C2 facial selectivity of allylic BF_3K reagents.

In contrast (*Z*)-Substituted allyl trimethylsilanes react with lower diastereoselectivity than the (*E*)-substituted counterpart. The addition of *Z*-7 using ZnBr_2 was unselective, giving 60% diastereoselectivity for **10D** and 40% of **10C** (entry 2, Table 2). The addition of crotyl silane **Z-8** to imine **1** gave a small preference for the *syn* diastereomer, 67% of **11C** and 33% of **11D** (entry 4, Table 2). The addition of **Z-8** to imines **2** and **3** gave 95% diastereoselectivity for **12C** and **13C**, respectively (entries 6 and 8, Table 2), the same sense of induction is seen with **E-8** and imine **1**. In summary, **10-15C** is favored in all cases except entry 2 in Table 2.

Table 2. Addition of TMS prochiral nucleophilic alkenes to α -alkoxy *N*-tosyl imines.

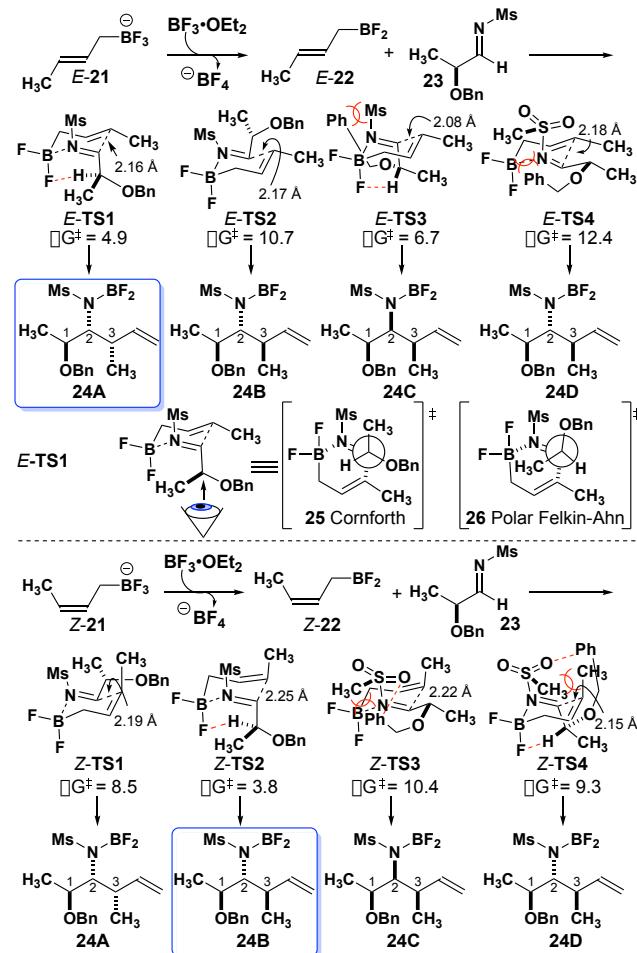

Entry	R^1	R^2	R^3	E/Z	Yield	C:D ^a	
						10C ^b	10D
1	CH ₃	Bn	<i>n</i> -Pr	E-7	10C ^b 77%	95:5	
2	CH ₃	Bn	<i>n</i> -Pr	Z-7	10D 11%	40:60	
3	CH ₃	Bn	CH ₃	E-8	11C 53%	89:11	
4	CH ₃	Bn	CH ₃	Z-8	11C nd ^e	67:33	
5	Bn	Bn	CH ₃	E-8	12C 61%	88:12	
6	Bn	Bn	CH ₃	Z-8	12C nd ^e	95:5	
7	Ph	CH ₃	CH ₃	E-8	13C 75%	95:5	
8	Ph	CH ₃	CH ₃	Z-8	13C nd ^e	95:5	
9	Ph	CH ₃	Ph	E-9	14C 75%	95:5	
10 ^{c,d}	Ph	Bn	Ph	E-9	15C 85%	95:5	

^adr was measured using ¹H NMR of the unpurified reaction mixture. *Anti* products **A** and **B** were not observed. ^bThe structures were established by X-ray crystallography. ^cReaction yield on 1.2 mmol scale. ^dReaction with ZnCl_2 . ^eYields not determined

Cyclic allyl silanes **16** and **17** were added to imine **1** and gave interesting levels of diastereoselectivity. Silanes **16** and **17** have a similar (*E*)-geometric alkene configuration to **E-8**. Based on

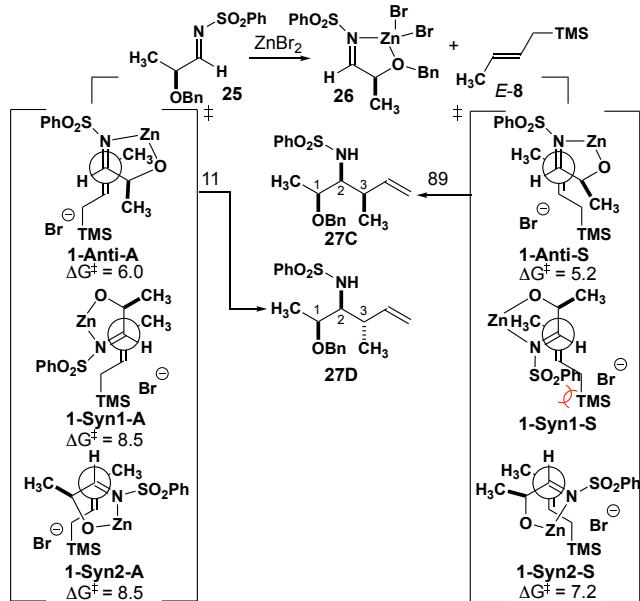
observations with *E*-8, it was hypothesized that the major diastereomer would be analogous. That is *syn* between both C1-C2 and C2-C3. However, addition of silane 16 to imine 1, yielded product 18 in 20:80 dr, favoring the *syn* C1-C2, *anti* C2-C3 diastereomer (Scheme 1). This is the opposite result to the addition of silane *E*-8 to imine 1 under the identical conditions. The exocyclic alkene was ozonized to yield the crystalline ketone 19. The addition of the more sterically hindered nucleophilic silane 17 gave the same stereochemical result with greater selectivity (5:95) for the formation of 20. These results may eventually enable the design of other allylsilane nucleophiles that form isomer **D** selectively.

Scheme 1. Addition of cyclohexyl allyl TMS to α -alkoxy *N*-tosyl imine 1.^{a,b}



^adr was measured using ^1H NMR of the unpurified reaction mixture. ^bThe relative stereochemistry **19** and **20** were established by X-ray crystallography.

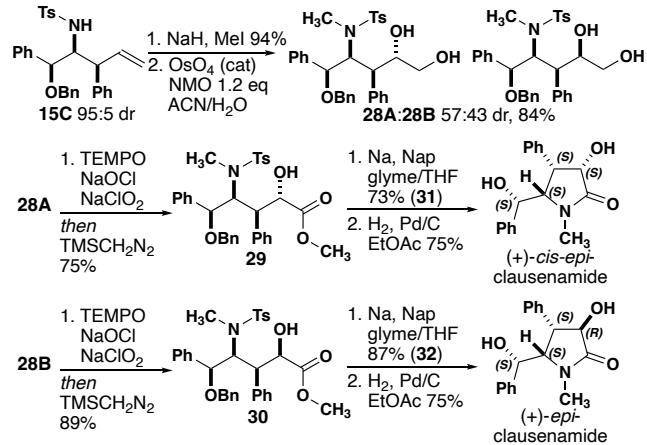
The reaction characteristics of crotyl- BF_3K ⁹⁻¹⁶ and crotyl trimethyl silane^{17,18} were used to develop stereochemical models for the observed selectivity in the nucleophilic additions to α -chiral alkoxy *N*-tosyl imines. In the case of highly diastereoselective additions of *E*-6 and *Z*-6 crotyl BF_3K salts; first, a fluoride is abstracted by $\text{BF}_3\bullet\text{OEt}_2$, generating the highly electrophilic crotyl BF_2 species *E*-22 and *Z*-22 (Scheme 2).¹¹ The lone pair of the (*E*)-imine coordinates to the electrophilic boron generating a chair transition state structure. The lowest energy pathway with *E*-22 is *E*-TS1, leading to the observed diastereomer **24A**. In *E*-TS1, the methyl of *E*-22 is pseudo equatorial and thus imposes no 1,3 diaxial interactions with the *N*-mesyl. The C2, C3 *syn* stereochemistry is dictated by the (*E*)-geometry of the imine.¹⁹⁻²¹ In each case where the imine has isomerized to the (*Z*)-geometry, *E*-TS2 and *E*-TS4, C2-C3 are *anti*.¹⁹


The *anti*-selectivity of C1 and C2 observed in **24A** and **24B** from *E*-TS1 and *Z*-TS2 is the result of a Cornforth orientation **25**, with the electronegative α -alkoxy group and the imine *anti*, following the dipole-dipole repulsion model proposed by Cornforth.²² The stereoelectronically favored,²³ polar Felkin-Ahn conformer **26** induces a non-bonded interaction between the α -alkyl group of the imine and the developing chair transition state.²⁴ Analysis of the stereochemical elements in the transition state explicitly details the high diastereoselectivity using crotyl BF_3K reagents.

Scheme 2. Computed relative ΔG transition state energies for *E* and *Z*-crotyl BF_3K and α -alkoxy *N*-mesyl imine in kcal/mol (B3LYP-D3/6-31G(d))^a

The transition states for the addition of crotyl silanes to **25** were computed as well. The zinc-chelated imine **26** positions the methyl group on the ring to create a more sterically hindered face resulting in high *syn* diastereoselectivity for C1 and C2 (Scheme 3). The C2-C3 *syn* addition is set via three alignments: one antiperiplanar and two synclinal orientations. Alternatively, opposite facial attack of the allyl silane results in the C2-C3 *anti* adduct via another set of antiperiplanar and synclinal conformations. The **1-Anti-S** (antiperiplanar-*syn* product) transition state is the lowest energy conformer (5.2 kcal/mol) of the possible six transition states and leads to the experimentally observed major diastereomer **27C**. This transition state arranges the crotyl trimethyl silane *E*-8 in an antiperiplanar approach to the zinc-chelated imine. The lowest energy transition state for the minor diastereomer, **27D**, is **1-Anti-A** (6.0 kcal/mol). The ΔG between the **1-Anti-A** and **1-Anti-S** is 0.8 kcal/mole in excellent agreement with the experimental results reported for **1** and *E*-8 (Table 2, Entry 3). The **1-Syn1-S** (synclinal-*syn* product) transition state reorients to **1-Anti-S**. Therefore the **1-Syn1-S** transition state structure is too unstable to be a viable pathway. In all cases, synclinal orientations are higher energy than the two antiperiplanar ones.

Scheme 3. Computed relative ΔG transition state energies for *E*-crotyl TMS and α -alkoxy *N*-phenylsulfonyl imine in kcal/mol (B3LYP-D3/6-31G(d))^a


^aBromide ligands and benzyloxy substituents are omitted for clarity.

The calculated transition states for the addition silanes **16** and **17** to chelate **26** show a change in the orientation of the prochiral nucleophile leading to opposite selectivity from the acyclic cases.²⁵

The diastereoselective addition of allylsilanes to imines provides an efficient route to access clausenamides, a family of isomeric alkaloid natural products. The parent compound, clausenamide, is isolated from the seeds of *Clausena lansium*, an evergreen tree native to southeast Asia. Leaf extracts of this plant have been investigated for a variety of medicinal uses, including the treatment of dementia.^{6,26–30}

We selected a route employing acyclic stereocontrol for a divergent synthesis of *epi*- and *cis-epi*-clausenamide, the latter of which has not previously been synthesized. Sulfonamide **15C** (Table 2, entry 10, *vide supra*) was methylated before dihydroxylating the terminal alkene providing diols **28A** and **28B** in 57:43 diastereomeric ratio. The epimeric alcohols were separated and oxidized to their corresponding methyl esters **29** and **30**. Cleavage of the toluenesulfonyl group and cyclization was achieved in a single step with sodium naphthalide. Finally, hydrogenation of the benzyl protecting group gives (+)-*cis-epi*-clausenamide and (+)-*epi*-clausenamide (Scheme 4).

Scheme 4. Total synthesis of *cis-epi*-clausenamide and *epi*-clausenamide.^{a,b}

^adr was measured using ¹H NMR of the unpurified reaction mixture. ^bThe structures of **29** and **32** were established by X-ray crystallography.

In summary, we have conducted the first exhaustive study of the diastereocchemical outcome of substituted nucleophilic alkenes to electron deficient imines derived from α -alkoxy aldehydes. In three out of four cases, one diastereomer out of four dominates and is formed in >90% selectivity. Although only 65% selectivity can be achieved for the last case, a constrained cyclic analog proceeds with higher selectivity (95%). In the case of the substituted borane nucleophiles, calculations indicate that the major diastereomer is formed through a Zimmerman Traxler like transition state. The major isomers resulting from substituted allylic silanes emerge from anti-periplanar approach of the acyclic allyl silane nucleophile to the zinc Lewis-acid-chelated imine. The observations of selectivity in the addition of substituted alkene nucleophiles to chiral α -alkoxy imines enabled a short, stereoselective synthesis of two diastereomers of clausenamide.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, characterization data for all new compounds, copies of ¹H and ¹³C NMR spectra, and .cif files for compounds **10A**, **10C**, **12A**, **13B**, **19**, **20**, **29** and **32**.

The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* jtshaw@ucdavis.edu, ando@gifu-u.ac.jp

ACKNOWLEDGMENT

We are grateful to the National Science Foundation (CHE 1764309-0 and CHE 1764328) for financial support of this research.

REFERENCES

(1) Eppe, G.; Didier, D.; Marek, I. Stereocontrolled Formation of Several Carbon–Carbon Bonds in Acyclic Systems. *Chem. Rev.*

(2) Schaus, J. V.; Jain, N.; Panek, J. S. Asymmetric Synthesis of Homoallylic Amines and Functionalized Pyrrolidines via Direct Amino-Crotylation of In Situ Generated Imines. *Tetrahedron* **2000**, *56* (52), 10263–10274.

(3) Vabre, R.; Island, B.; Diehl, C. J.; Schreiner, P. R.; Marek, I. Forming Stereogenic Centers in Acyclic Systems from Alkynes. *Angew. Chemie Int. Ed.* **2015**, *54* (34), 9996–9999.

(4) Petrini, M. α -Amido Sulfones as Stable Precursors of Reactive N-Acylimino Derivatives. *Chem. Rev.* **2005**, *105* (11), 3949–3977.

(5) Moore, L. C.; Lo, A.; Fell, J. S.; Duong, M. R.; Moreno, J. A.; Rich, B. E.; Bravo, M.; Fettinger, J. C.; Souza, L. W.; Olmstead, M. M.; Houk, K. N.; J. T. Shaw. Acyclic Stereocontrol in the Additions of Nucleophilic Alkenes to A-Chiral N-Sulfonyl Imines. *Chem. - A Eur. J.* **2019**, *25* (52), 12214–12220.

(6) Chu, S.; Zhang, J. Recent Advances in the Study of (–)-Clausenamide: Chemistry, Biological Activities and Mechanism of Action. *Acta Pharm. Sin. B* **2014**, *4* (6), 417–423.

(7) Chu, S.; Liu, S.; Duan, W.; Cheng, Y.; Jiang, X.; Zhu, C.; Tang, K.; Wang, R.; Xu, L.; Wang, X.; et al. The Anti-Dementia Drug Candidate, (–)-Clausenamide, Improves Memory Impairment through Its Multi-Target Effect. *Pharmacol. Ther.* **2016**, *162*, 179–187.

(8) Zhang, L.; Zhou, Y.; Yu, X. Suzuki-Miyaura Coupling Based Enantioselective Synthesis of (+)-Epi-Clausenamide and the Enantiomer of Its 3-Deoxy Analogue. *Synlett* **2012**, *23* (08), 1217–1220.

(9) Wallner, O. A.; Szabó, K. J.; Beveridge, R. E.; Batey, R. A. Potassium Trifluoro-2-Propenylborate. In *Encyclopedia of Reagents for Organic Synthesis*; American Cancer Society, 2015; pp 1–10.

(10) Thadani, A. N.; Batey, R. A. Diastereoselective Allylations and Crotylations under Phase-Transfer Conditions Using Trifluoroborate Salts: An Application to the Total Synthesis of (–)-Tetrahydrolipstatin. *Tetrahedron Lett.* **2003**, *44* (44), 8051–8055.

(11) Thadani, A. N.; Batey, R. A. A Mild Protocol for Allylation and Highly Diastereoselective Syn or Anti Crotylation of Aldehydes in Biphasic and Aqueous Media Utilizing Potassium Allyl- and Crotyltrifluoroborates. *Org. Lett.* **2002**, *4* (22), 3827–3830.

(12) Nowrouzi, F.; Batey, R. A. Regio- and Stereoselective Allylation and Crotylation of Indoles at C2 Through the Use of Potassium Organotrifluoroborate Salts. *Angew. Chemie.* **2013**, *125* (3), 926–929.

(13) Batey, R. A.; Thadani, A. N.; Smil, D. V. Potassium Allyl- and Crotyltrifluoroborates: Stable and Efficient Agents for Allylation and Crotylation. *Tetrahedron Lett.* **1999**, *40* (23), 4289–4292.

(14) Batey, R. A.; Thadani, A. N.; Smil, D. V.; Lough, A. J. Diastereoselective Allylation and Crotylation Reactions of Aldehydes with Potassium Allyl- and Crotyltrifluoroborates under Lewis Acid Catalysis. *Synthesis (Stuttg.)* **2000**, *2000* (07), 990–998.

(15) Li, S.-W.; Batey, R. A. Allylation and Highly Diastereoselective Syn or Anti Crotylation of N-Toluenesulfonylimines Using Potassium Allyl- and Crotyltrifluoroborates. *Chem. Commun.* **2004**, No. 12, 1382–1383.

(16) Lachance, H.; Hall, D. G. Allylboration of Carbonyl Compounds. In *Organic Reactions; Major Reference Works*; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp 1–574.

(17) Wolf, L. M.; Denmark, S. E. A Theoretical Investigation on the Mechanism and Stereochemical Course of the Addition of (E)-2-Butenyltrimethylsilane to Acetaldehyde by Electrophilic and Nucleophilic Activation. *J. Am. Chem. Soc.* **2013**, *135* (12), 4743–4756.

(18) Denmark, S. E.; Weber, E. J.; Almstead, N. G.; Wolf, L. M. On the Stereochemical Course of the Addition of Allylsilanes to Aldehydes. *Tetrahedron* **2012**, *68* (37), 7701–7718.

(19) Alam, R.; Das, A.; Huang, G.; Eriksson, L.; Himo, F.; Szabó, K. J. Stereoselective Allylboration of Imines and Indoles under Mild Conditions. An in Situ E/Z Isomerization of Imines by Allylboroxines. *Chem. Sci.* **2014**, *5* (7), 2732–2738.

(20) Yamamoto, Y.; Komatsu, T.; Maruyama, K. Diastereofacial Selectivity in the Reaction of Allylic Organometallic Compounds with Imines. Stereoelectronic Effect of Imine Group. *J. Org. Chem.* **1985**, *50* (17), 3115–3121.

(21) Yamamoto, Y.; Maruyama, K.; Komatsu, T.; Ito, W. Very High 1,2- and 1,3-Asymmetric Induction in the Reactions of Allylic Boron Compounds with Chiral Imines. *J. Am. Chem. Soc.* **1986**, *108* (24), 7778–7786.

(22) Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. 24. A General Stereoselective Synthesis of Olefins. *J. Chem. Soc.* **1959**, No. 0, 112–127.

(23) Houk, K. N. Perspective on “Theoretical Interpretation of 1-2 Asymmetric Induction. The Importance of Antiperiplanarity.” *Theor. Chem. Acc.* **2000**, *103* (3), 330–331.

(24) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. Stereochemistry of the Reactions of Substituted Allylboronates with Chiral Aldehydes. Factors Influencing Aldehyde Diastereofacial Selectivity. *J. Am. Chem. Soc.* **1986**, *108* (12), 3422–3434.

(25) See Supplemental Information.

(26) Yang, L.; Wang, D. X.; Zheng, Q. Y.; Pan, J.; Huang, Z. T.; Wang, M. X. Highly Efficient and Concise Synthesis of Both Antipodes of SB204900, Clausenamide, Neoclausenamide, Homoclausenamide and ζ -Clausenamide. Implication of Biosynthetic Pathways of Clausena Alkaloids. *Org. Biomol. Chem.* **2009**, *7* (12), 2628–2634.

(27) Zhong, C.; Gautam, L. N. S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. Concise Asymmetric Synthesis of Fully Substituted Isoxazoline-N-Oxide through Lewis Base Catalyzed Nitroalkene Activation. *Chem. - A Eur. J.* **2010**, *16* (29), 8605–8609.

(28) Kokuev, A. O.; Antonova, Y. A.; Dorokhov, V. S.; Golovanov, I. S.; Nelyubina, Y. V.; Tabolin, A. A.; Sukhorukov, A. Y.; Ioffe, S. L. Acylation of Nitronates: [3,3]-Sigmatropic Rearrangement of in Situ Generated N-Acyloxy, N-Oxygenamines. *J. Org. Chem.* **2018**, *83* (18), 11057–11066.

(29) Wu, L. S.; Ding, Y.; Han, Y. Q.; Shi, B. F. Asymmetric Synthesis of γ -Lactams Containing α , β -Contiguous Stereocenters via Pd(II)-Catalyzed Cascade Methylenec(sp₃)-H Alkenylation/Aza-Wacker Cyclization. *Org. Lett.* **2021**, *23* (6), 2048–2051.

(30) Torelli, A.; Whyte, A.; Polishchuk, I.; Bajohr, J.; Lautens, M. Stereoselective Construction of γ -Lactams via Copper-Catalyzed Borylation. *Org. Lett.* **2020**, *22* (20), 7915–7919.

(31) Shaw, J.; Gutierrez, D.; Fettinger, J.; Ando, K.; Houk, K. Diastereoselective Addition of Prochiral Nucleophilic Alkenes to α -Chiral N-Sulfonyl Imines. *ChemRxiv* **2021**. DOI: 10.33774/chemrxiv-2021-0np10