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Abstract 
Motivation: Quality assessment of predicted protein tertiary structure models plays an important role 
in ranking and using them. With the recent development of deep learning end-to-end protein structure 
prediction techniques of generating highly confident tertiary structures for most proteins, it is important 
to explore corresponding quality assessment strategies to evaluate and select the structural models 
predicted by them since these models have better quality and different properties than the models 
predicted by traditional tertiary structure prediction methods. 
Results: We develop EnQA, a novel graph-based 3D-equivariant neural network method that is 
equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural mod-
els by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction 
method - AlphaFold2. We train and test the method on both traditional model datasets (e.g., the da-
tasets of the Critical Assessment of Techniques for Protein Structure Prediction (CASP)) and a new 
dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experi-
mental structures were released recently. Our approach achieves state-of-the-art performance on pro-
tein structural models predicted by both traditional protein structure prediction methods and the latest 
end-to-end deep learning method - AlphaFold2. It performs even better than the model quality assess-
ment scores provided by AlphaFold2 itself. The results illustrate the 3D-equivariant graph neural net-
work is a promising approach to the evaluation of protein structural models. AlphaFold2 features are 
important for improving protein model quality assessment and are complimentary with the geometric 
property features extracted from structural models.  
Availability: The source code is available at https://github.com/BioinfoMachineLearning/EnQA. 
Contact: chengji@missouri.edu 
Supplementary information: Supplementary data are available. 

 
 

1 Introduction  
Predicting the structures of proteins from their sequences is crucial for 

understanding their roles in various biological processes. Various compu-
tational methods have been developed to predict protein structure from 
sequence information (Arnold, et al., 2006; Baek, et al., 2021; Hou, J, et 
al., 2019; Jumper, et al., 2021; Senior, et al., 2020; Xu, 2019; Yang, et al., 
2020). However, some predicted structures are still far from the true struc-
ture, especially for some proteins lacking critical information such as ho-
mologous structural templates or residue-residue co-evolution infor-
mation in their multiple sequence alignments. Besides, many computa-
tional methods produce multiple outputs for one input sequence. Thus, it 

is important to estimate the accuracy of the predicted tertiary structural 
models, i.e., their similarity or discrepancy with the native but unknown 
structure. Such estimation can help select the best models from the pre-
dicted candidates and identify erroneous regions in the models for further 
refinement. 

 
Many methods for model quality assessment (QA) have been devel-

oped. For example, PCONS (Wallner, et al., 2007) and ModFOLDclustQ 
(McGuffin, et al., 2010) use the comparison between 3D models to evalu-
ate their quality. VoroMQA (Olechnovic and Venclovas, 2017) computes 
confidence scores based on the statistical potential of the frequencies of 
observed atom contacts. SBROD (Karasikov, et al., 2018) uses a smooth 
orientation-dependent scoring function with a ridge regression model. 
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Deep learning-based QA methods have been reported. DeepQA (Cao, et 
al., 2016) uses a deep belief network and different agreement metrics. 
ProQ4 (Hurtado, et al., 2018) uses the partial entropy of the sequence char-
acteristics with a Siamese network configuration. GraphQA (Baldassarre, 
et al., 2021) tackles the QA protein with graph convolutional networks 
based on geometric invariance modeling. Ornate (Pagès, et al., 2019) and 
DeepAccNet (Hiranuma, et al., 2021) are based on voxelized spatial in-
formation of the predicted models and 2D/3D convolution networks. 
DeepAccNet is one of the best-performing methods in the QA category of 
the CASP14 competition (Kwon, et al., 2021).  

 
The pioneering development of the end-to-end deep learning method 

for protein structure prediction - AlphaFold2 (Jumper, et al., 2021) that 
generated highly confident 3D structures for most protein targets in 
CASP14 as well as the recent release of a similar approach - Ro-
seTTAFold (Baek, et al., 2021) presents notable improvements in struc-
ture prediction and brings new challenges for the model quality assess-
ment task because traditional QA methods developed for evaluating struc-
tural models predicted by traditional methods may not work well for the 
models predicted by the new methods such as AlphaFold2(Kwon, et al., 
2021). Since the software of the end-to-end approach, such as AlphaFold2 
has been publicly released and is becoming the primary tool for tertiary 
structure prediction, it is important to develop corresponding quality as-
sessment methods to evaluate their models. Furthermore, since Al-
phaFold2 generates structural models with a self-reported per-residue lo-
cal distance difference test (lDDT) (Mariani, et al., 2013) quality score, 
new QA methods should outperform (1) the consensus evaluation of a pre-
dicted model by comparing it with the reference models predicted by Al-
phaFold2 and (2) the self-reported per-residue lDDT score for models pro-
vided by AlphaFold2. And it would be interesting to investigate if and how 
various information extracted from AlphaFold2 predictions can be used to 
enhance the quality assessment of 3D tertiary structural models. Finally, 
it is important to leverage the latest deep learning techniques of analyzing 
3D objects.  

 
The concept of rotation and translation equivariance in neural networks 

is useful for the analysis of rotation/translation-invariant properties of 2D 
and 3D objects in multiple domains, including 2D images (Cohen and 
Welling, 2016; Worrall, et al., 2017), quantum interactions (Schütt, et al., 
2017), and 3D point clouds (Fuchs, et al., 2020; Satorras, et al., 2021; 
Thomas, et al., 2018). For equivariant networks, applying rotation and 
translation to the input results in a corresponding equivalent transfor-
mation to the output of the network. Invariance is a special case of equivar-
iance, in which the same output is generated from the networks when such 
transformations are applied. Because the quality of a protein structural 
model is invariant to rotation and translation, it is desirable to use equivar-
iant networks to predict model quality. As the locations of residues in a 
protein model can be represented as point clouds in 3D space, it is natural 
to represent a protein model as a graph, which can be equivariant to its 
rotation and translation. For example, the refinement step in Ro-
seTTAFold (Baek, et al., 2021) uses an equivariant SE(3)-Transformer ar-
chitecture to update the 3D coordinates. GNNRefine uses a graph convo-
lution network with invariant features for protein model refinement.  

 
In this work, we present EnQA, a 3D equivariant graph network archi-

tecture for protein model QA. We evaluate the performance of our method 
on three different test datasets: the CASP14 stage2 models, the models of 
the Continuous Automated Model EvaluatiOn (CAMEO), and a collection 
of AlphaFold2 predictions for recently released protein structures in the 
Protein Data Bank (PDB). EnQA achieves state-of-the-art performance on 

all three datasets. It can distinguish the high-quality structural models 
from other models and performs better than the self-reported lDDT score 
from AlphaFold2. To the best of our knowledge, our method is the first 
3D-equivariant network approach to the problem of model quality assess-
ment. It can effectively evaluate the quality of the models predicted by the 
current high-quality protein structure prediction methods such as Al-
phaFold2 that previous QA methods cannot. 

2 Methods 
In this section, we first describe the training and test datasets and data 

processing procedure. Then we define the input features to represent pro-
tein tertiary structures. Finally, we introduce the EnQA architecture and 
the implementation details. 

2.1 Datasets 

2.1.1 CASP model quality assessment dataset 

We use structural models from server predictions for CASP 8-14 pro-
tein targets (Stage two models if available) (Kwon, et al., 2021; Moult, et 
al., 1995) as one dataset, which can be downloaded from https://predic-
tioncenter.org/download_area/. Models are first filtered by removing 
those with missing or inconsistent residues with respect to the correspond-
ing experimental structure. The models from CASP 8-12 are used for 
training. The models from CASP13 are used to validate the neural network 
and select its hyperparameters. The models from CASP14 are used as the 
benchmark/test dataset. The details of the data preparation are available in 
Supplementary Notes 1.1. As a result, there are 109,318 models of 477 
CASP8-12 targets used for training, 12,118 models of 82 CASP13 targets 
used for validation, and 9,501 models of 64 CASP14 targets for the final 
benchmark/test, respectively. The models in the CASP dataset were gen-
erated by traditional protein structure prediction methods during the CASP 
experiments between 2008 and 2020. The average quality of the models 
is much lower than the models predicted by the state-of-the-art method – 
AlphaFold2. 

 

2.1.2 AlphaFold2 model quality assessment dataset  

To create a QA dataset containing protein structural models predicted 
by the latest end-to-end prediction method - AlphaFold2, we first collect 
protein structures in the AlphaFold Protein Structure Database (Tunya-
suvunakool, et al., 2021) with corresponding experimental structures in 
Protein Data Bank (https://www.rcsb.org/) (Berman, et al., 2000; Burley, 
et al., 2020) released after the cutoff date (04/30/2018) of the structures on 
which AlphaFold2 was trained. In total, there are 4676 protein targets col-
lected after filtering out identical ones. We divide these targets into train-
ing and test/benchmark sets with a 9:1 ratio. The AlphaFold2 models of 
the targets selected for training are combined with the training dataset 
from CASP 8-12 as the final training data. None of these targets has above 
30% sequence identity threshold with any target in CASP14 benchmark 
dataset. The targets for the final AlphaFold2 benchmark/test dataset are 
selected by two criteria: (1) released after the start date of CASP14 
(05/14/2020) and (2) having sequence identity <30% with any sequence 
in the training data, which is filtered by MMseqs2 (Steinegger and Söding, 
2017). In total, 178 test targets are selected for the AlphaFold2 bench-
mark/test data after filtering.  

 
For each of these targets above, we generate 5 AlphaFold2 models us-

ing the model preset of "casp14", restricting templates only to structures 
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available before CASP14 (i.e., max_template_date = "2020-05-14") to 
make sure the AlphaFold2 models of the targets are generated with only 
the information available before their experimental structures were re-
leased. The AlphaFold2 models generate for the training targets are added 
into the training data. The AlphaFold2 models for the 178 test target form 
the final AlphaFold2 test/benchmark dataset. The details of generating Al-
phaFold2 models are available in Supplementary Notes 1.2. 

 

2.1.3 CAMEO model quality assessment dataset 

To create an additional benchmark dataset, we use the recent models 
from Continuous Automated Model EvaluatiOn (CAMEO) (Robin, et al., 
2021). We downloaded the protein structural models registered between 
9/04/2021 to 11/27/2021, which include predictions from the latest pre-
dictors from different groups, such as RoseTTAFold (Baek, et al., 2021). 
Models are filtered by removing submissions contains only partial se-
quence of the corresponding target. In total, 38 targets with 945 structural 
models are selected for benchmarking. The preprocessing procedure for 
the CAMEO dataset is described in Supplementary Notes 1.3. 

2.2 Features 

We use a graph to represent a protein structural model, which contains 
node features and edge features. The 1D node feature has a shape (L, d), 
and the 2D edge feature has a shape (L, L, d) in which L is the number of 
residues in the model and d is the number of dimensions. The node feature 
describes the information of each residue, while the edge feature describes 
the information for each pair of residues. We briefly describe each type of 
features below. 

2.2.1 Node features 

We use the 20-number one-hot representation to encode 20 amino-acid 
types of each residue. Following the spherical convolutions on molecular 
graphs (Igashov, et al., 2021), we use three types of features to character-
ize the geometric property for each residue: the solvent-accessible surface 
area, the size of Voronoi cell (Olechnovič and Venclovas, 2014), and the 
shortest topological distance to nearby solvent-accessible residues (also 
known as "buriedness"). In addition, we leverage the information from 
AlphaFold2 predictions made for the protein sequence of each model to 
generate the quality features for the model. AlphaFold2 predictions used 
for feature generation are made with the template database curated before 
the release date of the experimental structure of any target in the CASP14, 
CAMEO and AlphaFold2 test datasets.   The lDDT score of each residue 
in a structural model to be evaluated with respect to an AlphaFold2 pre-
diction for the same target (called a reference model) is used as a feature 
for the residue. The AlphaFold2 self-reported lDDT score for each residue 
in the reference model is also used as a feature measuring the confidence 
of the reference model. Here five AlphaFold2 reference models are used 
for generating features for the structural models of each target, 10 lDDT 
features are generated for each residue in each structural model. The final 
shape of the node features for each residue is (L, 33). 

2.2.2 Edge distance features 

We first extract the logits from the distogram representation of the Al-
phafold2 predictions for a protein target, which represents the probability 
of the beta carbon (Cb) distance between two residues falling into pre-
defined 64 distance bins, which has a shape (L, L, 64). From the 64-bin 
distogram, we then compute the probability of the distance error between 

two residues in a structural model falling into the 9 distance bins defined 
by lDDT as follows.  

                        𝑑௘௥௥௢௥
௜ =

𝑑௨௣௣௘௥
௜ + 𝑑௟௢௪௘௥

௜

2
− 𝑑௠௢ௗ௘௟                  (1) 

                             𝑃௡ = ෍ 𝑃ௗ௜௦௧௢
௜

଺ସ

௜ୀଵ
𝐼ௗ೐ೝೝ೚ೝ

೔  ∈௕௜௡೙
                      (2) 

Where 𝑑௘௥௥௢௥
௜  is the distance error (difference) between the AlphaFold2 

predicted distance and an input model for the i-th distance bin of Al-
phaFold2 and 𝑑௨௣௣௘௥

௜  and 𝑑௟௢௪௘௥
௜  are the upper and lower bound of the i-th 

bin of the distogram, respectively. 𝑑௠௢ௗ௘௟ is the distance between any two 
residues in the input model. 𝑃௡  is the probability of the distance error be-
tween two residues falling into the n-th distance bin defined by lDDT 
(Mariani, et al., 2013). 𝑃ௗ௜௦௧௢

௜  is the softmax-normalized probability of the 
i-th distance bin from AlphaFold2 distogram. I is an indicator function 
which equals 1 if 𝑑௘௥௥௢௥

௜  falls into the range of the n-th bin defined by 
lDDT and 0 otherwise. The details of generating the pairwise distance er-
ror features of a model with respect to the distogram prediction of Al-
phaFold2 are available in Supplementary Notes 2.1. Since we use 5 Al-
phaFold2 distogram predictions for each target and 9 distance bins accord-
ing to the definition of lDDT, this results in the pairwise edge features 
with a shape (L, L, 45) for each pair of residues in a structural model. We 
also create additional binary contact maps by summing up all probabilities 
in AlphaFold2 distograms that fall into the bins with middle point ≤ 15Å. 
The final binary contact map is the average from all five AlphaFold2 pre-
dictions to produce an additional edge feature with a shape (L, L, 1). 

2.2.3 Spherical graph embedding edge features 

We generate rotation-invariant graph embeddings following the Spher-
ical Graph Convolutions Network (Igashov, et al., 2021) to use spatial in-
formation as spatial edge features. We first build the local coordinate 
frame for each residue in a structural model. We define the normalized 
Ca–N vector as the x-axis, the unit vector on the C–Ca–N plane and or-
thogonal to the Ca–N vector as the y-axis. The direction of the y-axis is 
determined by the one that has a positive dot product with the Ca–C vec-
tor. Naturally, the z-axis is the cross-product of x and y. We compute the 
spherical angles θ and φ of the vector between the Ca of each residue and 
that of any other residues with respect to this local spherical coordinate 
system. Figure 1 illustrates the local spherical coordinate system used in 
this work.  

 
 

Figure 1. The illustration of the local spherical coordinate system. Differ-
ent colors indicate atoms from different residues. Here θ, φ and r are spher-
ical angles and the radial distance for the vector between the alpha carbons 
(Ca) of two residues (blue and red). 
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Figure 2. The illustration of the overall architecture of EnQA. The 1D/2D features from the input model are first converted into hidden node and edge 
features for the 3D-equivarant graph module. The spatial coordinates of Ca atoms of the residues are also used as an extra feature. The node and edge 
network modules update the graph features iteratively. In the end, the final per-residue lDDT score and distance errors of residue pairs are predicted from 
the updated node/edge features and spatial coordinates by the 3D-equivariant network.

The spherical angles θ and φ are transformed into real spherical har-
monics with the following formula: 

 

           𝑌௟
௠(𝜃, 𝜑) =  ඨ

(2𝑙 + 1)

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
 𝑃௟

௠(cos𝜃)𝑒௜௠ఝ        (3) 

                     𝑌௟
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−2Imൣ𝑌௟
|௠|

൧  if 𝑚 < 0

𝑌௟
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2Reൣ𝑌௟
|௠|

൧      if 𝑚 > 0

                              (4) 

 
Here 𝑌௟

௠(𝜃, 𝜑) : 𝑆ଶ → ℂ is a function defined on the surface of the unit 
sphere with degree l and order m,  𝑌௟

௠:  ℝ → ℂ transform the complex 
spherical harmonics into their real forms. 𝑃௟

௠(cos𝜃) is the associated Le-
gendre polynomials (Hobson, 1931). For spherical harmonics with degree 
l there are 2l+1 orders in total. We choose spherical harmonics with de-
grees from 0 to 4 in the graph embeddings, resulting in 25 orders for each 
pair of spherical angles θ and φ. The final graph embeddings have shapes 
(L, L, 25) and are concatenated with the pairwise edge distance features 
as model input. The structural information of the protein models is incor-
porated while preserving the rotation/translation invariance property by 
using such embeddings from the local spherical coordinate frame. 

2.3 3D-equivariant model architecture 

The overall architecture of our method is depicted in Figure 2. The pro-
cessed 1D features (node features) are first processed with 1D convolu-
tions to generate hidden node features. Then 2D features (both distance 
and graph embedding edge features) and the 2D tiling of the 1D hidden 
features are processed with a residual architecture with 5 blocks and 32 
channels similar to the DeepAccNet (Hiranuma, et al., 2021). The goal is 
to predict an initial distance error as a classification task with 9 bins. The 
distance error is converted into an initial quality estimation using the bi-
nary contact map described in Section 2.2.2. The equation for the n-th res-
idue in input with length L is the following: 

 

𝑠𝑐𝑜𝑟𝑒௡ = ෍ 𝑝௡௜ ൬
𝑝௘௥௥௢௥ஸ଴.ହÅ + 𝑝௘௥௥௢௥ஸଵÅ + 𝑝௘௥௥௢௥ஸÅ + 𝑝௘௥௥௢௥ஸସÅ

4
൰ (5)

௅

௜ୀଵ

 

 

Here 𝑝௡௜ is the probability of the beta carbon distance between n-th and 
i-th residue in the binary contact map. 𝑝௘௥௥௢௥ is the sum of the probability 
of the multi-class error prediction from the residual layers below different 
distance cutoffs. This score is combined with the other 1D node features 
as the node features for the following 3D-equivariant graph network. The 
spatial coordinates of Ca atom of each residue from the input model are 
used as one additional feature, which is processed by the graph network in 
the 3D-equivariant manner and used to compute the final real value-based 
distance error. The input graph for the 3D-equivariant graph network is 
constructed by connecting any residue pairs with distance ≤ 15Å with an 
edge. The edge features for the graph network are the concatenation of the 
multi-class error prediction and a separate output of the residual layers for 
the pairs of the residues.  

 
We use a variant of the E(n) Equivariant Graph Neural Networks 

(EGNN) (Satorras, et al., 2021) to process the node and edge features from 
the input graph and predict the final model quality score. Given a graph 
𝐺 =  (𝑉, 𝐸) with nodes 𝑣௜  ∈  𝑉 and edges 𝑒 ௜௝ ∈  𝐸. Our 3D-equvariant 
network has a node-level module and an edge-level module. In the node-
level module, the hidden node features ℎ௜  ∈  ℝ and alpha carbon (Ca) co-
ordinates 𝑥௜  ∈  ℝ  associated with each of the residues are considered. The 
equation of the EGNN layers is the following: 

 

                   𝑚௜௝ = 𝜑௘ ቀℎ௜
௟ , ℎ௝

௟ , ฮ𝑥௜
௟ − 𝑥௜

௟ฮ
ଶ

, 𝑎௜௝ቁ                     (6) 
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௟ +
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௟൯
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                                    𝑚௜ = ෍ 𝑚௜௝                                      

௝∈௺(୧)

(8) 

                                ℎ௜
௟ାଵ = 𝜑௛(ℎ௜

௟ , 𝑚௜)                                    (9) 
 
Here ℎ௜

௟  and ℎ௝
௟ are the node features at layer l, 𝑎௜௝ is the edge feature, 

𝑥௜
௟ and 𝑥௝

௟ is the alpha carbon coordinates. 𝜑௘ , 𝜑௫ and 𝜑௛ are multi-layer 
perceptron operations.  𝑚௜௝ and 𝑚௜ are the intermediate messages for 
edges and nodes, respectively. The Ca coordinates are updated through 
each step so that its pairwise distance can reflect the distance map in the 
native PDB model, and can be used to compute the final real value-based 
distance error when subtracting the distance map from the initial coordi-
nates of the model. 
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For the edge-level EGNN module, inspired by the Geometric Trans-
former (Morehead, et al., 2021), we use edges in the original graph as 
nodes, and define the new node features as the original edge features. Un-
like the edges in the node-level module, we use the k-nearest neighbors 
approach to define the edges in the edge-level module with k set to 3 to 
accommodate the memory limit for edge-level graphs. The coordinates of 
the edges are the midpoint of two ends and are always determined by node 
coordinates rather than updates from the edge-level module. Finally, we 
use the distances between the midpoints as the new edge attributes. The 
whole architecture can be trained end-to-end from the input features to the 
final lDDT score prediction. In addition to the EGNN based graph layer, 
we also implemented a variant of the network by replacing the EGNN lay-
ers with a graph convolution network with kernels regularized by spherical 
harmonics functions as described in the SE(3)-Transformer (Fuchs, et al., 
2020) for comparison. 

 
We use 6 Nvidia Tesla V100 32G GPUs on the Summit supercomputer 

and Horovod/Pytorch to train the method. The batch size is set to 1 for 
each GPU, resulting in an effective batch size of 6. We use the stochastic 
gradient descent (SGD) optimizer with learning rate 1e-6, momentum 0.9 
and weight decay 5e-5. We use the categorical cross-entropy as the loss 
function for initial distance error and the MSE loss for predicted lDDT 
scores as well as the final distance errors. The weight of the loss for pre-
dicted lDDT set to 5, while the weight of the other two errors is set to 1. 
We set the number of training epochs to 60 with early stopping when there 
are no improvements in validation loss for five consecutive epochs. Under 
our testing environment the deep learning model can handle proteins with 
length up to 850 residues. Structural models with sequence length longer 
than 850 are cropped into segments of length up to 800 and the final results 
are rebuilt with the concatenation of all the segments. 

3 Results 

3.1 Model quality assessment on CASP14 and CAMEO da-
tasets 

To compare the performance of EnQA with other state-of-the-art QA 
methods, we first evaluate it on the CASP14 stage 2 models (Table 1). 
We compare it with DeepAccNet (Hiranuma, et al., 2021), VoroMQA 
(Olechnovic and Venclovas, 2017) and ProQ4 (Hurtado, et al., 2018), 
which are all publicly available. We also use five AlphaFold models pre-
dicted for each CASP14 target as reference to evaluate the CASP14 stage 
2 models. The average lDDT score between a CASP14 model and the five 
AlphaFold2 models is used as the predicted quality score of the model. 
This method is called AF2Consensus. The evaluation metrics used include 
residue and model-level mean squared error (MSE), mean absolute error 
(MAE) and Pearson Correlation Coefficient between the predicted lDDT 
scores and ground truth lDDT scores of the models. The per-residue met-
rics are first computed for each model and are then averaged across all 
models. Finally, the ranking losses in terms of lDDT and GDT-TS scores 
are used to evaluate the model ranking capability of the QA methods. The 
average of the predicted per-residue lDDT scores for each model is calcu-
lated as the predicted global quality score of the model. The predicted 
global quality scores for all the models for a target are used to rank them. 
The difference between the true GDT-TS (or true average lDDT score) of 
the best model and that of the top 1 ranked model of the target is the loss.  
 

 
 

Table 1. The QA results on the CASP14 model dataset. Bold denotes the 
best result. 

 
Our method trained on the combination of CASP 8-12 models and Al-

phaFold2 models (EnQA-Full) outperforms all the other methods on both 
residue and model-level metrics (Table 1), except its per-residue MAE 
and ranking loss of GDT-TS is slightly worse than the consensus of Al-
phaFold2 (AF2Consensus). Compared with AF2Consensus,  EnQA-Full 
achieves significant better per-residue MSE/Correlation, and per-model 
MSE/MAE, with p-value < 0.01 (paired sample t-test). EnQA-Full is per-
forming better than AF2Consensus in terms of most metrics, demonstrat-
ing our 3D-equivariant QA method can add value on top of AlpahFold2 
predictions in model quality assessment. EnQA-Full and AF2Consensus 
perform substantially better than the existing methods DeepAccNet, Vo-
roMQA and ProQ4, indicating the importance of incorporating Al-
phaFold2 features into QA and the value of the 3D-equivariant architec-
ture for QA. The variant of EnQA that uses the SE(3)-Transformer 
(EnQA-SE(3)) performs slightly worse than EnQA-Full, indicating the 
3D-equivariant network (a variant of EGNN) in ENQA-Full may be 
slightly more effective. The model trained solely on AlphaFold2 models 
(EnQA-Reduced) yields the worse performance on the CASP14 test da-
taset than EnQA trained on both CASP8-12 and AphaFold2 models, 
which is expected since its training dataset contains only the models from 
AlphaFold2, which is not a good representative of the CASP14 server 
models generated by the traditional protein structure prediction methods. 
The quality of the former is generally much better than the latter.  

 
We also evaluate all methods on the CAMEO dataset (Table 2). Similar 

to the results from the CASP14 benchmark dataset, EnQA-Full shows the 
best performances in all metrics, except the ranking loss, which falls be-
hind AF2Consensus by a small margin. Compared with AF2Consensus, 
EnQA-Full achieves significantly better per-residue 
MSE/MAE/Correlation and per-model MSE/MAE, with p-value < 0.01 
(paired sample t-test).   
 
Table 2. The QA results on the CAMEO model dataset. 

Method Per-residue Per-model Ranking loss 

MSE         MAE          Cor MSE         MAE          Cor lDDT     GDT-TS 

AF2Consensus 0.0057 0.0439 0.8596 0.0018 0.0244 0.9612 0.0092 0.0328 

DeepAccNet 0.0254 0.1249 0.5725 0.0137 0.0945 0.7459 0.0444 0.0933 

VoroMQA 0.0686 0.2115 0.3929 0.0466 0.1840 0.4620 0.0614 0.1175 

ProQ4 0.0296 0.1331 0.4493 0.0113 0.0806 0.7292 0.0570 0.1021 

EnQA-Full 0.0049 0.0451 0.8676 0.0015 0.0227 0.9648 0.0088 0.0331 

EnQA-Reduced 0.0477 0.1859 0.6470 0.0376 0.1790 0.8296 0.0408 0.0820 

EnQA-SE(3) 0.0070 0.0607 0.7903 0.0015 0.0228 0.9611 0.0116 0.0323 

Method Per-residue Per-model Ranking loss 

MSE         MAE          Cor MSE         MAE          Cor lDDT     GDT-TS 

AF2Consensus 0.0084 0.0535 0.8529 0.0036 0.0353 0.9191 0.0054 0.0105 

DeepAccNet 0.0245 0.1215 0.6636 0.0146 0.1006 0.7250 0.0144 0.0193 

VoroMQA 0.1297 0.3175 0.4561 0.1094 0.3125 0.5512 0.0470 0.0537 

ProQ4 0.0684 0.2163 0.4498 0.0508 0.1961 0.5374 0.0656 0.0673 

EnQA-Full 0.0061 0.0508 0.8602 0.0017 0.0272 0.9517 0.0068 0.0132 

EnQA-Reduced 0.0265 0.1267 0.7250 0.0182 0.1159 0.8322 0.0177 0.0342 

EnQA-SE(3) 0.0085 0.0681 0.7764 0.0021 0.0340 0.9335 0.0115 0.0190 
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3.2 Model quality assessment on AlphaFold2 dataset 

To further assess the performance of our method on generally high-
quality models, we perform the evaluation on our AlphaFold2 test dataset 
(Table 3). We also include the self-reported lDDT scores of the models 
from AlphaFold2 as the baseline method for comparison (AF2-plddt). In 
this test, EnQA-Reduced, which trained solely on AlphaFold2 models, 
outperforms all other methods on all residue- and model-level metrics, in-
dicating the importance of ensuring the consistency between the training 
models and test models. Its better performance than AF2-plddt shows that 
our method performs better in evaluating AlphaFold2 models than Al-
phaFold2’s own quality scores. Compared with AF2plddt,  both EnQA-
Reduced and EnQA-Full achieve significantly better per-residue 
MSE/MAE/Correlation and per-model MSE/MAE, with p-value < 0.01 
(paired sample t-test).  Furthermore, EnQA-full also outperforms all other 
methods except EnQA-Reduced in all metrics, including AF2-plddt, indi-
cating combining AlphaFold2 models with traditional protein structural 
models for training the deep learning method can work well on both new 
AlphaFold2 test models and non-AlphaFold test models. All our three 
methods perform substantially better than the previous QA methods 
(DeepAccNet, VoroMQA, and ProQ4) on this dataset, clearly demonstrat-
ing the need of developing new QA methods for evaluating AlphaFold2 
models.  

 
Table 3. The QA results on the AlphaFold2 model dataset. 

 

3.3 Analysis of the performance on AlphaFold2 predicted 
models 

We first examine the distribution of model quality of the models in the 
AlphaFold2 test dataset (Figure 3). The average true lDDT score for all 
models is 0.8034, with 79.82% above 0.7. The distribution of model qual-
ity of the CASP and CAMEO datasets are provided in Figure S1 and S2. 
The results indicate that the structure models in the AlphaFold2 test da-
taset have much higher average quality than the CASP and CAMEO test 
datasets.  
 

We further investigate the characteristics of the predictions of EnQA-
Full and the self-reported lDDT score from AlphaFold2 predictions on the 
AlphaFold2 test models (Figure 4). The predicted scores of EnQA-Full 
have higher correlation with the true lDDT scores than AlphaFold2 self-
reported quality scores. At both the residue and global-level, the Al-
phaFold2 reported score tends to overestimate the quality of the models 
more than EnQA-Full, which explains one improvement made by EnQA-
Full.       
 

 
 

 
Figure 3. The distribution of lDDT scores of AlphaFold test models. X 
axis denotes the targets ordered by the mean lDDT of their models in in-
creasing order. The red dots indicate the position of the median. 

 
In addition, we plot the true lDDT scores and the absolute error of the 

predicted scores on the AlphaFold2 test models (Figure S3). For both Al-
phaFold2 self-reported lDDT scores and EnQA predicted lDDT scores, 
the errors mainly come from overestimating the quality of the low-quality 
residues in the models.  

 

 
 

Figure 4. The comparison between the predicted and true lDDT scores for 
AlphaFold models. The residue-level correlation is computed for all resi-
due at once, which is different from the average of the residue-level cor-
relation in each model (used by Sections 3.1 and 3.2). r: Pearson Correla-
tion Coefficient. ρ: Spearman Correlation Coefficient 

3.4 Analysis of the impact of features  

We examine the impact of different input features on the prediction per-
formance of EnQA. We calculate the residue-level Pearson’s Correlation 
Coefficient between predicted lDDT score and true lDDT score when each 
type of feature is replaced with random number on CASP14 and Al-
phaFold2 test datasets (Figure 5). We use EnQA-Full as the baseline 
model and report the prediction performance when each feature is ran-
domly permuted in its value range during prediction. A larger change of 

Method Per-residue Per-model Ranking loss 

MSE         MAE          Cor MSE         MAE          Cor lDDT     GDT-TS 

AF2-plddt 0.0232 0.1119 0.6651 0.0148 0.1011 0.7113 0.0052 0.0139 

AF2Consensus 0.0417 0.1579 0.5549 0.0314 0.1562 0.6125 0.0098 0.0235 

DeepAccNet 0.0394 0.1518 0.4907 0.0269 0.1426 0.5255 0.0086 0.0226 

VoroMQA 0.1887 0.3899 0.3892 0.1644 0.3856 0.2386 0.0090 0.0233 

ProQ4 0.0983 0.2690 0.4111 0.0791 0.2565 0.2857 0.0103 0.0246 

EnQA-Full 0.0132 0.0803 0.6994 0.0058 0.0533 0.7439 0.0049 0.0123 

EnQA-Reduced 0.0118 0.0768 0.7090 0.0043 0.0455 0.7814 0.0046 0.0109 

EnQA-SE(3) 0.0127 0.0840 0.6556 0.0045 0.0511 0.7540 0.0073 0.0178 
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Pearson Correlation Coefficient indicates a higher impact. The lDDT 
score feature of a model with respect to AlphaFold reference models is the 
most important feature on both CASP14 and AlphaFold2 test datasets as 
its permutation causes the largest drop of the Pearson’s Correlation Coef-
ficient. The geometric property features for each node, distograms, and the 
confidence score of AlphaFold also have a noticeable impact on the pre-
dictive capability. The similar trend can also be observed on the CAMEO 
dataset (Figure S4). 
 
    Furthermore, we show that the geometric property feature is critical for 
those models on which EnQA-full makes large improvements over 
AF2Consesus. We pick the top 10% models for which it has the largest 
improvements in residue-level correlation over AF2Consensus and bot-
tom 10% models for which it has the least improvement. In Figure 6, the 
importance of the geometric property feature (i.e., the change of the cor-
relation) in top 10% models is significantly higher than the bottom 10% 
models (p value < 0.01 according to Mann-Whitney test), suggesting the 
orthogonal, synergistic effect of the geometric property feature and the 
features extracted from AlphaFold2 predictions. 
 

 
 
Figure 5. The comparison of residue-level Pearson’s Correlation Coeffi-
cient when different features are randomly permuted for model quality as-
sessment. The red dots indicate the position of the median. Top - on the 
CASP14 test dataset; bottom - on AlphaFold2 test dataset. 
 
 
 
 
 

 
Figure 6. The comparison of the importance of the geometric property 
feature measured as the decrease in residue-level correlation for models 
that have most (models-top) and least (models-bottom) improvements in 
EnQA-Full over AF2Consensus. The change in the correlation in the for-
mer is higher than in the latter (p < 0.01, Mann-Whitney test).  

4 Conclusion 

In this paper, we introduce EnQA, a novel 3D-equivariant network method 

for protein quality assessment. Our approach utilizes both the geometric 

structural features of an input model and the features extracted from Al-

phaFold2 predictions. The network is developed as an equivariant frame-

work with the node and edge features passing through the node and edge-

level graph networks. Performed computational experiments on diverse 

structural model datasets prove EnQA achieves the state-of-the-art perfor-

mance of protein quality assessment. More precisely, on both CASP14 

and recent CAMEO protein structures, EnQA outperforms all other meth-

ods on most evaluation metrics, including using AlphaFold2 predictions 

as reference to evaluate models. Furthermore, our method performs better 

than the self-reported lDDT score of AlphaFold2 in evaluating high-qual-

ity AlphaFold2 models. On all the test datasets, EnQA performs substan-

tially better than the previous QA methods, demonstrating the value of 

using 3D-equivarnant architecture and AlphaFold2-based features. Also, 

we show that the input features extracted from structural models have a 

complementary effect with the information extracted from AlphaFold2 

predictions, especially for those models on which EnQA performs better. 

 

       To the best of our knowledge, the method is the first 3D-equivariant 

network approach to leveraging information from AlphaFold2 predictions 

to improve model quality assessment. It may be further expanded for pro-

tein model refinement by adding additional graph layers to update the co-

ordinates of the nodes (residues) and other protein structure analysis tasks.  

Acknowledgements 
This research used resources of the Oak Ridge Leadership Computing Facility, which 

is a DOE Office of Science User Facility supported under Contract DE-AC05-

00OR22725. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488060doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488060
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chen et al. 

Funding 
Research reported in this publication was supported in part by Department of Energy 

grants (DE-AR0001213, DE-SC0020400, and DE-SC0021303), two NSF grants 

(DBI1759934 and IIS1763246), and an NIH grant (R01GM093123). 

 

Conflict of Interest: none declared. 

References 
Arnold, K., et al. The SWISS-MODEL workspace: a web-based environment for 

protein structure homology modelling. Bioinformatics 2006;22(2):195-201. 
Baek, M., et al. Accurate prediction of protein structures and interactions using a 

three-track neural network. Science 2021;373(6557):871-876. 
Baek, M., et al. Accurate prediction of protein structures and interactions using a 

three-track neural network. Science 2021;373(6557):871-876. 
Baldassarre, F., et al. GraphQA: protein model quality assessment using graph con-

volutional networks. Bioinformatics 2021;37(3):360-366. 
Berman, H.M., et al. The Protein Data Bank. Nucleic Acids Res 2000;28(1):235-242. 
Burley, S.K., et al. RCSB Protein Data Bank: powerful new tools for exploring 3D 

structures of biological macromolecules for basic and applied research and edu-
cation in fundamental biology, biomedicine, biotechnology, bioengineering and 
energy sciences. Nucleic Acids Research 2020;49(D1):D437-D451. 

Cao, R., et al. DeepQA: improving the estimation of single protein model quality 
with deep belief networks. BMC bioinformatics 2016;17(1):1-9. 

Cohen, T. and Welling, M. Group equivariant convolutional networks. In, Interna-
tional conference on machine learning. PMLR; 2016. p. 2990-2999. 

Fuchs, F.B., et al. Se (3)-transformers: 3d roto-translation equivariant attention net-
works. arXiv preprint arXiv:.10503 2020. 

Hiranuma, N., et al. Improved protein structure refinement guided by deep learning 
based accuracy estimation. Nature Communications 2021;12(1):1340. 

Hobson, E.W. The theory of spherical and ellipsoidal harmonics. CUP Archive; 
1931. 

Hou, J., Wu, T., Cao, R., & Cheng, J. Protein tertiary structure modeling driven by 
deep learning and contact distance prediction in CASP13. Proteins: Structure, 
Function, and Bioinformatics, 2019;87(12), 1165-1178 

Hurtado, D.M., Uziela, K. and Elofsson, A. Deep transfer learning in the assessment 
of the quality of protein models. arXiv preprint arXiv:.06281 2018. 

Igashov, I., Pavlichenko, N. and Grudinin, S. Spherical convolutions on molecular 
graphs for protein model quality assessment. Machine Learning: Science and 
Technology 2021;2(4):045005. 

Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature 
2021;596(7873):583-589. 

Karasikov, M., Pagès, G. and Grudinin, S. Smooth orientation-dependent scoring 
function for coarse-grained protein quality assessment. Bioinformatics 
2018;35(16):2801-2808. 

Kwon, S., et al. Assessment of protein model structure accuracy estimation in 
CASP14: Old and new challenges. Proteins 2021;89(12):1940-1948. 

Mariani, V., et al. lDDT: a local superposition-free score for comparing protein struc-
tures and models using distance difference tests. Bioinformatics 
2013;29(21):2722-2728. 

McGuffin, L. J., & Roche, D. B. Rapid model quality assessment for protein structure 
predictions using the comparison of multiple models without structural align-
ments. Bioinformatics, 2010;26(2), 182-188 

Morehead, A., Chen, C. and Cheng, J. Geometric Transformers for Protein Interface 
Contact Prediction. arXiv preprint arXiv:.02423 2021. 

Moult, J., et al. A large-scale experiment to assess protein structure prediction meth-
ods. Proteins 1995;23(3):ii-v. 

Olechnovic, K. and Venclovas, C. VoroMQA: Assessment of protein structure qual-
ity using interatomic contact areas. Proteins 2017;85(6):1131-1145. 

Olechnovič, K. and Venclovas, C. Voronota: A fast and reliable tool for computing 
the vertices of the Voronoi diagram of atomic balls. J Comput Chem 
2014;35(8):672-681. 

Pagès, G., Charmettant, B. and Grudinin, S. Protein model quality assessment using 
3D oriented convolutional neural networks. Bioinformatics 2019;35(18):3313-
3319. 

Robin, X., et al. Continuous Automated Model EvaluatiOn (CAMEO)-Perspectives 
on the future of fully automated evaluation of structure prediction methods. Pro-
teins 2021;89(12):1977-1986. 

Satorras, V.G., Hoogeboom, E. and Welling, M. E (n) equivariant graph neural net-
works. arXiv preprint arXiv:.09844 2021. 

Schütt, K.T., et al. SchNet: a continuous-filter convolutional neural network for mod-
eling quantum interactions. In, Proceedings of the 31st International Conference 
on Neural Information Processing Systems. Long Beach, California, USA: Cur-
ran Associates Inc.; 2017. p. 992–1002. 

Senior, A.W., et al. Improved protein structure prediction using potentials from deep 
learning. Nature 2020;577(7792):706-710. 

Steinegger, M. and Söding, J. MMseqs2 enables sensitive protein sequence searching 
for the analysis of massive data sets. Nature Biotechnology 2017;35(11):1026-
1028. 

Thomas, N., et al. Tensor field networks: Rotation-and translation-equivariant neural 
networks for 3d point clouds. arXiv preprint arXiv:.08219 2018. 

Tunyasuvunakool, K., et al. Highly accurate protein structure prediction for the hu-
man proteome. Nature 2021;596(7873):590-596. 

Wallner, B., Larsson, P., & Elofsson, A. Pcons. net: protein structure prediction meta 
server. Nucleic acids research, 2007;35(suppl_2), W369-W374 

Worrall, D.E., et al. Harmonic networks: Deep translation and rotation equivariance. 
In, Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2017. p. 5028-5037. 

Xu, J. Distance-based protein folding powered by deep learning. Proceedings of the 
National Academy of Sciences 2019;116(34):16856-16865. 

Yang, J., et al. Improved protein structure prediction using predicted interresidue 
orientations. Proceedings of the National Academy of Sciences 2020;117(3):1496-
1503. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488060doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488060
http://creativecommons.org/licenses/by-nc-nd/4.0/

