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ABSTRACT. We study the relationship between the concept of a continuous ellipsoid © cover
of R™, which was introduced by Dahmen, Dekel, and Petrushev [7, 8, 11], and the space of
homogeneous type induced by ©. We characterize the class of quasi-distances on R™ (up to
equivalence) which correspond to continuous ellipsoid covers. This places firmly continuous
ellipsoid covers as a subclass of spaces of homogeneous type on R™ satisfying quasi-convexity
and 1-Ahlfors-regularity.

1. INTRODUCTION

Discrete and continuous ellipsoid covers of R™ were introduced by Dahmen, Dekel, and
Petrushev in the construction and analysis of multilevel preconditioners for partition of unity
methods applied to elliptic boundary value problems [7] and in the study of Besov spaces
with pointwise variable anisotropy (8, 9], see also the survey [11]. A continuous ellipsoid cover
consists of ellipsoids 6,, with centers € R" and scales ¢t € R satisfying a natural shape
condition. Dekel, Han, and Petrushev [10] have shown that an ellipsoid cover © defines a
space of homogeneous type in the sense of Coifman and Weiss [5, 6] with a quasi-distance

pe given by
(1.1) pe(z,y) =

More precisely, R equipped with the Lebesgue measure and quasi-distance pg is 1-Ahlfors
regular, i.e., Lebesgue measure of balls satisfy |B,,(z,7)| ~ r for all z € R* and r >
0. Subsequently, Dekel, Petrushev, and Weissblat [12] have developed the Hardy spaces
HP(O) associated with a continuous ellipsoid cover © for the entire range of 0 < p <
1. Among the results shown in this setting are grand maximal function characterization,
atomic decomposition, and classification of Hardy spaces [12], the duality of Hardy spaces
[13], molecular decomposition [1], and boundedness of Calderén-Zygmund singular integral
operators [4]. In contrast with the general theory of Hardy spaces on spaces of homogenous
type [2, 6, 14], these results work in the full range 0 < p < 1. This is actually the largest
class of spaces of homogeneous type on R™ equipped with Lebesgue measure, where such
complete H? theory has been developed so far.

A natural question arises about the relationship between ellipsoid covers and spaces of
homogeneous type on R". What quasi-distances on R™ are induced by continuous ellipsoid
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covers? In this paper we answer this question by characterizing all quasi-distances (up
to equivalence) which correspond to continuous ellipsoid covers via the formula (1.1). In
addition that p is 1-Ahlfors regular, we impose that p is quasi-convex. That is, there exists
a constant () > 1 such that for every € R™ and r > 0 there exists an ellipsoid { = £ with
center x such that

where Q) - £ = Q(§ — x) + x is a dilate of an ellipsoid £ by a factor (). The famous maximal
volume ellipsoid theorem of John [3, 16, 19] attests that every convex body in R™ is Q-quasi-
convex with ) = n. Hence, the above definition is a natural generalization of convexity
reminiscent of the concept of a quasi-conformal mapping [15].

The main result of the paper shows that there is one-to-one correspondence between
quasi-convex, 1-Ahlfors-regular quasi-distances and continuous ellipsoid covers in R". In
this correspondence we identify equivalent quasi-distances and likewise equivalent ellipsoid
covers. In other words, a quasi-convex, 1-Ahlfors-regular quasi-distance p gives rise to a
continuous ellipsoid cover Z = {&, : « € R",r > 0}, where & satisfies (1.2). In turn, a quasi-
distance p=, which is induced by = and given by (1.1), is quasi-convex and 1-Ahlfors-regular,
and pgz is equivalent to p.

While the methods of the proof are quite elementary and require mostly basic properties
of ellipsoids, some of them could not be found in the existing literature such as Theorem 2.1.
The most demanding arguments revolve around the inner property which guarantees appro-
priate growth of balls B,(z,r) as r — oo. It turns out that this property is automatically
implied by the quasi-convexity and 1-Ahlfors-regularity of p. In turn, the inner property
plays a key role in showing that = = {¢! : © € R",r > 0} satisfies the shape condition, which
is the key requirement for = to be a continuous ellipsoid cover.

This article is organized as follows. Section 2 is devoted to proving basic properties of
ellipsoids such as Theorem 2.1. In Section 3 we introduce the notion of a continuous ellipsoid
cover, recall some of its known properties and prove new ones. In Section 4 we study quasi-
convexity and the inner property and show the main characterization result of the paper,
Theorem 4.9. Finally, in Section 5 we give applications and examples of quasi-distances
illustrating our main result.

2. ELLipsoIDS IN R™

In this section we recall some basic properties of ellipsoids in R™. An ellipsoid & in R™ is
an image of the closed Fuclidean unit ball B” in R™ under an affine map, i.e.,

§ = Me(B") + c,

where M is an n X n nonsingular matrix and ¢, € R™ is the center of ellipsoid £. For any
ellipsoid ¢ and A > 0, define a dilated ellipsoid by

A f = AM&(B”) + Cg.

The following elementary theorem shows that if one ellipsoid is contained in the other,
then we have a reverse inclusion relation for a dilated ellipsoid.
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Theorem 2.1. If two ellipsoids n and & in R™ satisfy n C &, then
£C 2Ll -
ul

Moreover, if n and & have the same center, then the above holds without the factor 2.

Since we could not find Theorem 2.1 in the literature, we will give its proof using three
more elementary lemmas.

Lemma 2.2. Let D := diag(\i, Ao, ..., ) be a diagonal matriz. If B® C D(B™) 4 ¢ with
c € R", then B™ C D(B").

Proof. Assume that B" C D(B") + ¢, ¢ € R". We only need to verify |\;| > 1 for any
i1=1,...,n. Let eq,...,e, be a standard basis of R”. Note that

DB") C{z=(x1,...,2,) € R" : |x;| < |N| foralli=1,... n}.

Since B™ — ¢ C D(B"), then the absolute value of i’th coordinate of e; — ¢ or —e; — ¢ is > 1.
Hence, by the above inclusion we have |\;| > 1 for every i = 1,... n. O

Lemma 2.3. Let A be a nonsigular matriz. Let {\;}7, be the eigenvalues of AAT and
D = diag(v/ A1, V2, -,V A). If B® C A(B") + ¢ with ¢ € R", then there exists an
orthogonal matriz U such that B C UA(B") = D(B™). In particular, \; > 1 for all
1=1,...,n.

Proof. Since AAT is a positive symmetric matrix, then there exists an orthogonal matrix U
such that UAATUT = UA(UA)T = D?. Therefore,

DB")={DrcR": 2"z <1} ={x cR": 27(D?*) 'z < 1}
={z eR": 2" (UAUA)T) 2 <1} = UAB").
Suppose that B" C A(B") + ¢ with ¢ € R". We have
B" = U(B") C UA(B") + Uc = D(B") + Uec.
Hence, by Lemma 2.2, we have B C UA(B™) = D(B"). O

Lemma 2.4. If two ellipsoids satisfy n C &, then n—c, C { —c¢, where ¢; and c¢ are centers
of n and &, respectively.

Proof. Without loss of generality, we can assume that ¢, = 0 by using translations. Let
ni=My(B"), &= M(B")+ ce,
for some nonsingular matrices M, and M,. Since
B" = (M,)™'n C (M,)7'€ = (M)~ McB" + (M) e,
by Lemma 2.3 we have B" C (M, )~ ' MB", which yields the required conclusion. O

Proof of Theorem 2.1. Take any two ellipsoids n := M, (B")+c, C & := M¢(B")+ce. Without
loss of generality, we may assume that ¢, = 0 by using translations. Let A = (M)~ M. By
Lemma 2.4, we have
23) B" — (My)~ (1) C (My)™)(€ — ce) — AB".
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Let D := diag(v/ A1, V2, ..., VAn), where {\;}7 | are the eigenvalues of AA”. By Lemma
2.3, there exits an orthogonal matrix U such that UA(B") = D(B") and hence

2.4) U-ID(B") = (M) (€ — co).
Since |detU| =1 and A\; > 1 for all i = 1,...,n, we have

e 10) €= el U s
(2.5) ElalRTya=TET Bn HV— > 1ax VA

Therefore, by (2.4) and (2.5) we obtain

(26) (M) '€ - c) = U'D(B") C U™ max y/AB" = max v/AB" € Ll (ag)1(y).

1<i<n 1<i<n ~ |nl
Moreover, using the assumption 1 C &, we get
B" = (My)~'(n) C (My)~'(€) = (M)~  (Me(B") + c¢).
By this and UA(B") = D(B"), we have
B" = U(B") C U(M,)""(M(B") + c¢) = D(B") + U(M,) " ce.
This implies that B" — U(M,) '¢e € D(B") and hence
U(Mp)~'ec € ~D(B") C — max VAB" = max VB
Combining this with (2.5) yields

(M) ce € e V/AB" € L0, )
Hence, by (2.6) we have
() 7€) € 15100) 70 + (1) e € 2151 0) )

Applying M,, to both sides we finally obtain £ C 2||5|| 7.
Finally, if n C £ have the same center, then we may assume that ¢, = ¢ = 0. Hence, (2.6)
alone implies that & C ‘5||7] O

3. ELLIPSOID COVERS AND QUASI-DISTANCES ON R"

In this section we recall the properties of a continuous ellipsoid cover O, which was orig-
inally introduced by Dahmen, Dekel, and Petrushev [8]. This includes properties of quasi-
distance pg which is induced by the cover ©. Moreover, we translate the shape condition of
O into a geometric form involving only containment of dilates of ellipsoids in ©.

Definition 3.1. We say that
©:={0,::z€R",t € R}

is a continuous ellipsoid cover of R™, or shortly a cover, if there exist positive constants
p(©) :={ay,...,as} such that:
4



(i) For every x € R™ and t € R, there exists an ellipsoid 6, ; := M, (B") +x, where M, ,
is a real n X n nonsingular matrix, satisfying

(3.7) 127 < |0,| < ax27"

(ii) Intersecting ellipsoids in © satisfy the shape condition requiring that for any =,y € R”,
teRand s >0,if 0., N0, s # 0, then

(3.8) a2 " < 1/[[(Myes) ™ Mol < |(Mag) ™ Mygisl| < 527"

Here, || - || is the matrix norm given by ||A| := max)y-; |Az| for any nonsingular
matrix A.

It is worth emphasizing that we do not assume any measurability or continuity condition
on a continuous ellipsoid cover ©. Indeed, by [4, Theorem 2.2] there exists an equivalent
ellipsoid cover such that its corresponding matrix valued function x — M, , is continuous
for any t € R.

Remark 3.2. The shape condition (ii) in Definition 3.1 has the following equivalent for-
mulation by reversing scales. For any z,y € R", ¢t € Rand s > 0, if 6,, N 0,5 # 0,
then

1 -~ - L s
(3.9) —200% <1/ ||(My )™ Mgl < [[(Mg) ™ My ]| < —2%°

as as
Indeed, (3.9) follows from (3.8) applied to 6, ;s and 6, ; in place of 6, , and 8, ¢+, 5, respectively.
Reversing this argument, shows the converse implication.

The shape condition (3.8) can be also equivalently restated in terms of dilates of the
ellipsoids in © without referring to scale parameter t.

Lemma 3.3. Let © = {0, : v € R",t € R} be a collection of ellipsoids satisfying (3.7).
Then, the shape condition (3.8) holds if and only if there exists constants ay and af such
that for any two ellipsoids &, n € O, if |n| < [€] and ENn # D, then

(3.10) (1) - co-cr o (1) (6o

where cg and c, are the centers of & and n, respectively.

Proof. By (3.7) for any ¢, s € R we have

(311) ﬂ2—s S |9y,t+s| S %2—5

) |0x,t| ay
Hence, if |0y 45| < |0,:], then s > —sg, where sq := log,(az/a;) > 0. As a partial converse,
if s > s, then |0, 1vs| < |6s4]-

Suppose that the shape condition (3.8) holds for t € R, s > 0, and 6,; N0, s # 0. First,
we shall show that the same condition also holds for s > —sg, albeit for some new constants
as and af. Indeed, if s > 0, then there is nothing new to show. Suppose next —so < s < 0.
Then, by the reverse form of (3.8), see Remark 3.2, we have

1 —aes — — 1 —aq4S
—279° < 1/[|(Myrs) ™ My || < [[(May) ™ My gqs|| < —2794°.
Qs a3
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Take a3 = min(as, 1/a5) and a5 = max(as, (1/a3)2@~%)%), Since ag < ay, for —syp < 5 <0
we have

Yo I 1._ =l
az2” 4% < —27%°% and —27"°% < ag27%°,

as as
Therefore, if t € R, s > —s¢, and 0, N O, 145 # 0, then
(3.12) 3527 < U (Myas) ™ Magll < (Mo) ™ Mygol] < 32720

Now suppose we have two ellipsoids £, € © such that |n| < |¢] and £ Ny # . We write
n = 0yrs and { = 6, for some z,y € R" and t,s € R. Since |n| < |£], we necessarily
have s > —sy. By the right-hand side inequality of (3.12) we have (M, ;) "M, s(B") C
a2~ *B". Hence, (3.11) implies that

0,10\
(3.13) My7t+5(B”)§ag(| y’”‘) M, ,(B"),

|9x,t|

where af = as(az/a1)*. Applying the same argument for the left-hand side inequality of
(3.12) yields

(3.14) d <%> M, 4(B") € My45(B),
where af = as(a1/az)*. This shows (3.10).

Conversely, suppose that (3.10) holds for £,n7 € O, |n| < [¢], and £ N7 # 0. We claim
that the same condition holds when |n| < (az/a1)|¢| and £ Ny # ), albeit for some new
constants az and as. Indeed, if || < |£]|, then there is nothing new to show. Suppose that
€] < |n| < (az/ay1)|€]. Then, by (3.10) and by reversing order of inclusions we have

L (nl\* L ([nl\"
() €oen-acg(ig) €

Hence, (3.10) holds with constants a3 = min(a}, 1/a%) and a5 = max(ak, (1/a3)(az/a;)* %)
in place of a and af, respectively. Now, take any z,y € R", t € R, and s > 0 such that
Ot NOyris # 0. Letting n = 0,445 and £ = 0,4, (3.10) yields (3.13) and (3.14). Converting
these inclusions into norm inequalities using (3.11) yields (3.8) for appropriate constants as
and as . 0]

Remark 3.4. As a consequence of Lemma 3.3 we propose the alternative geometric definition
of an ellipsoid cover ©, which will be used in our consideration in Section 4. A collection
© = {¢ :z € R",r > 0} is a continuous ellipsoid cover if there exist positive constants
p(©) :={a,...,as} such that:

(i) for every x € R™ and r > 0, £ is an ellipsoid with center x and volume satisfying
arr < [&;| < ayr,

(ii) for any ellipsoids &, n € ©, such that |n| < |£| and £ N7 # O, we have (3.10).

To translate between two formulations involving scale t € R and “radius” r > 0, it suffices
to take 6, , = £, where r = 27, and then apply Lemma 3.3.

The following lemma from [12, Lemma 2.2] is a direct consequence of the shape condition
(3.8).
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Lemma 3.5. Let © be a continuous ellipsoid cover. Then there exists ¢ > 0 depending only
on p(©) such that for any x € R*, t € R and A > 1, we have X -0, + C 0, ¢—c».

The following lemma is a continuous analogue of [8, Lemma 2.8|, which was originally
shown for discrete ellipsoid covers. Hence, for the sake of completeness we include its proof.

Lemma 3.6. Let © be a continuous ellipsoid cover. Then there exists a constant s* > 0
depending only on p(©) such that for any ellipsoids O, and 0y 15 with O, N Oy 15 # 0,
where z, y € R", t € R and s > 0, we have 0, U0, 115 C 0, ¢ for any £ > s*,.

Proof. We write 0, ; := M, (B")+x, 0, 1+s := My 11s(B")+y, and let w := (M, ;)" (0145 —
x). Then by the shape condition (3.8) and s > 0, we have
diam(w) := sup |z — 2| = sup [(My ) 'M, 11s(z — 2')]

z, 72/ €w z, 2/ €B"
< 2||(My 1) "My 4] < 2a527%° < 2as.
This, together with 6, ; N0, s # 0, implies that
(3.15) (Mg, )) (02,0 U0, 4s) — 2] =B Uw C (1 + 2a5)B".
Therefore, we have
0+ U0y 145 C (1+ 2as) - Ozt

On the other hand, by Lemma 3.5 we have for any A > 1 + 2as,

(14+2a5) 0, CAX-0pt COptone.
Hence, Lemma 3.6 holds for s* = (1 4 2as)c. O

Next we move to exploring the relationship between continuous ellipsoid covers and quasi-
distances on R".

Definition 3.7. A mapping p : R" x R™ — [0, 00) is called a quasi-distance if there exists a
positive constant x > 1 such that for all z,y, z € R",

(i) plz,y) =0z =y;
(i) p(z,y) = ply, x);

(iii) p(z, 2) < K(p(z,y) + ply, 2))-

Dahmen, Dekel, and Petrushev have shown that an ellipsoid cover © induces a quasi-
distance pg on R", see [8, Proposition 2.7]. Moreover, R"™ equipped with the quasi-distance
pe and the Lebesgue measure is a space of homogeneous type which is Ahlfors 1-regular [8,
Proposition 2.10]. These results can be summarized as follows.

Proposition 3.8. Let © be a continuous ellipsoid cover. The function pg : R xR™ — [0, 00)

defined by

(3.16) polw,y) = inf {|0] -2,y € 0}

s a quasi-distance on R™. Moreover, the Lebesgue measure of balls
(3.17) B,o(z, 1) ={y € R" : po(z,y) <r}
with respect to the quasi-distance pg satisfies

(3.18) |Byo(x, )| ~1r  forallz e R", r>0,

with equivalence constants depending only on p(©).
7



The condition (3.18) states the Lebesgue measure is 1-Ahlfors regular with respect the
quasi-distance pg. This immediately implies the doubling property | B, (z,27)| S |B,o (z,7)],
which is a defining feature of spaces of homogeneous type introduced by Coifman and Weiss
5, 6].

The following result is stated without the proof in [12, Theorem 2.7]. Its proof can be
found in [4, Proposition 2.10].

Proposition 3.9. Let © be a continuous ellipsoid cover and let pe be a quasi-distance as in
(3.16). For any ball B, (z,r) with x € R" and r > 0, there exist t1,t2 € R such that

Oz,t, C Bpo(x,7) C 044, and 00,0, ~ [0z 15| ~ 1,
where equivalence constants depend only on p(©).

Using Proposition 3.9 we can introduce a more convenient variant of a quasi-distance
induced by a continuous ellipsoid cover.

Proposition 3.10. Let © be an ellipsoid cover. For any x, y € R", define

= inf |6, d ,y):= inf |0, 4.
iz, y) = inf (0n.]  and - pa(x,y) = inf 16,

Then the map pe(x, y) := min{p;(z, y), p2(x, y)} is a quasi-distance which is equivalent to
pe(z, y) as in (3.16).

Proof. 1t suffices to show that
(3.19) pe(T, y) ~ pi(x, y) forany =z, yeR"
Indeed, if (3.19) holds, then by symmetry we have pg(x, y) ~ pa(z, y), and therefore

pe(r, y) ~ min{pi(z, y), p2(x, y)} = pe(z, y).

Since pe(x, y) = po(y, =), the fact that pe is a quasi-distance (see Proposition 3.8), implies
that pg is also a quasi-distance which is equivalent to pg.

Let z,y € R™ Obviously, pe(z, y) < pi(z, y), so it remains to prove that there exists
a constant C' > 0 such that p(z, y) < Cpe(z, y). Let r := po(z, y). By Proposition 3.9,
there exist two ellipsoids 0 ¢,, 0, ¢, With |6, ¢, | ~ |02 t,| ~ 7 such that

02,0, C B (2, 2r) C by 4,.
Since y € B, (z, 2r), by the definition of p;(x, y), it follows that

p1(x, y) < |Ou1s| ~ 17 = polz, y),
which completes the proof of Proposition 3.10. O

4. QUASI-CONVEX QUASI-DISTANCES ON R"

In this section we show that the quasi-distance pg, induced by a continuous ellipsoid
cover O, is not only 1-Ahlfors-regular, but it also satisfies two other crucial properties:
quasi-convexity and the inner property. We also show the converse statement that any
quasi-convex, 1-Ahlfors-regular quasi-distance p automatically satisfies the inner property
and generates a continuous ellipsoid cover =. In addition, the quasi-distance p=, induced by
=, is equivalent to p. This constitutes the main result of the paper.

We start by recalling properties of convex bodies in R™. A convexr body in R™ is a com-

pact convex set with nonempty interior. Fritz John [16, p.202, Theorem III] proved that
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every convex body in R” contains a unique ellipsoid of maximal volume. The dilate by the
dimension n of such ellipsoid contains the original convex body, see [3] and [19, Theorem
3.13].

Theorem 4.1. Let K C R" be a convex body. Then there exists a unique ellipsoid & C R™
of mazimal volume such that £ C K. Moreover, K Cn-£.

Motivated by Theorem 4.1 and the concept of quasiconformal mapping [15] we can gen-
eralize the notion of convexity.

Definition 4.2. Let ) > 1. We say that a subset K’ C R" is Q-quasi-convex with respect
to x € K, if there exists an ellipsoid £ C R™ with center ¢ = x such that

(4.20) ECK CQ-¢

By Theorem 4.1, any convex body in R" is ()-quasi-convex with respect the center of the
unique maximal volume ellipsoid contained in the convex body, where () = n. Notice that
we do not impose uniqueness in the above definition. Namely, for a given set K’ there could
be two different ellipsoids (even of maximal volume) satisfying (4.20).

Definition 4.3. Given a quasi-distance p : R" x R" — [0, 00), we say that p is quasi-convex
if there exists ) > 1 such that for any x € R™ and r > 0, the ball

By(z,r) :={y e R" : p(x,y) < r}
is ()-quasi-convex with respect to x. That is, there exists an ellipsoid £ with center x such
that

(4.21) & € By(z,r) € Q- &
In this case we define the corresponding family of ellipsoids
(4.22) =, ={& :x e R",r >0}

Lemma 4.4. For any continuous ellipsoid cover O, the induced quasi-distance peo given by
(3.16) is quasi-conver.

Proof. For any ball B, (x, 1), by Proposition 3.9, there exist two ellipsoids 6, 4,, 0.+, € © and
two constants dy > d; > 0, which depend only on p(®©), such that 8,,, C B, (x,r) C 0,4,
and

dir < ‘0507t1| < |BP(—)(ZE7T)| < |9I7t2| < dor-

Since 6,4, € 0,4,, by Theorem 2.1 we conclude that 0, ,, C %GMI - %Qx,tl- Therefore,

we have

da
— 04,
dl 7t1

This proves that the induced quasi-distance pg is quasi-convex with @ = dy/d;. 0

Op1, C By (x,1) C

We introduce yet another property of a quasi-distance which will play an important role
in our considerations.

Definition 4.5. We say that a quasi-distance p on R" satisfies the inner property if there
exist constants a = a(p),b = b(p) > 0 such that for any x € R", r > 0 and A > 1,

(4.23) aX(B,(x, r) — x) C B,(z, A\r) — x.
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The inner property is stronger than the reverse doubling property [20] since it immediately
implies that
a" N B,(x, )| < |B,(z, Ar)] for all A > 1.
While the inner property (4.23) of p is formulated in terms of balls, it can also be equivalently
phrased in terms of ellipsoids in =,,.

Lemma 4.6. Let p be a quasi-distance on R", which is quasi-convex. Let & be the corre-
sponding ellipsoids as in Definition 4.3. Then p satisfies the inner property if and only if
there exist positive constants ai,by > 0 such that for any x € R™", r > 0 and A > 1,

(4.24) a A" - €0 C e

Proof. Since p is quasi convex, for every z € R™ and r > 0, there exists an ellipsoid £ such
that (4.21) holds. By (4.23), it follows that, for any 2 € R", r > 0 and A > 1,

aX (€7 —x) C aX(B,(z, r) — 1) C B,(z, \r) — 2 C Q(&)" — ).
Hence, (4.24) holds true with a; = a/Q and b; = b. Similarly we can show that (4.24)
implies (4.23) with a = a;/Q and b = b;. O

The following lemma implies that intersecting ellipsoids in =, of comparable volume have
similar shapes.

Lemma 4.7. Let p be a quasi-distance which is quasi-convex and 1-Ahlfors-reqular. That
18, there exists a constant ¢y > 1 such that

1
(4.25) —r < |By(z,r)| < ar for all z € R",r > 0.

(&1
Let 2, be a family of ellipsoids corresponding to p as in Definition 4.3 and let co > 1. Suppose
that £ =&, n=¢§, €=y, ,y € R, 1,5 >0, are such that
(4.26) B,(z,r)Nn#0 and Inl < ealé].
Then there exists a constant ¢ > 1, which depends only on cy, cs, the triangle inequality
constant k, and the quasi-convexity parameter (), such thatn C c-&.

Proof. By the quasi-convexity of p, there exists () > 1 such that

(4.27) £C By(r,r)CQ-&§  nCBy(y,5) CQ-n.
Hence, by (4.25) we have

1 1
(4.28) Q”clr <[] < ar and Q”Cls < |n|] < ¢s.
Combining (4.26), (4.27), and (4.28) we have
s < csr, where c3 1= Q" (c1)?cy.

Since B,(z,r) N B,(y, s) # 0, the triangle inequality of p, and the quasi-convex property of
p, implies that

77 g Bp<y7 S) g Bp(x, H(T + 2563T)) g Bp(x’ 3%2037") g Q . 6;&2637‘.
By (4.28) we have

Q- &3 QMg
€] €]
10

< c:= Q™ (c1)*3K%cs.



Since £ and @ - {2“263’" have the same center, Theorem 2.1 yields

. ¢3k2c3r

which completes the proof of Lemma 4.7. 0

n g Q . 5552037" g

Next we show that the inner property holds automatically for quasi-convex and 1-Ahlfors-
regular quasi-distances.

Theorem 4.8. Let p be a quasi-distance on R™ which is quasi-convex and 1-Ahlfors-reqular.
Then p satisfies the inner property.

Proof. First, we will show that there exists d = d(p) > 1 such that for every x € R" and
r >0,
(4.29) d(By(z, r) —x) C B,(x, 26r) — .

Indeed, let x € R™ and » > 0. Since p is ()-quasi-convex, there exists an ellipsoid &, € =,
such that

& —x C By(w,r) —x C Q& — ),
and for any y € B,(x,r) there exists an ellipsoid £ € =, such that
&=y C Boly,r) —y SR, —v)-
By (4.28) we have

Since B,(z, 1) ng, # (), by Lemma 4.7, there exists a positive constant ¢ such that & S &
By Lemma 2.4 we have £ —y C ¢(¢} — x). Hence, by Theorem 2.1 we have

& ; T n T
(4.30) 6z —a) € Kl — ) = P -
Yy
Let d > 1 be such that (d — 1)c"(c1)?Q* = 1. Take any z € d(B,(z,r) — z) + z. Let

y € B,(z,r) be such that

z=dly—x)+x=y+(d—-1)(y —x).
By (4.30) and our choice of d we have

(d=1)Q(E —2) C (d— DR Q€ —y) C Byly,r) — .
Since y —x € Q(&, — x), we further deduce that
z=y+(d=1)(y—xz)ey+(By(y,r) —y) = Boly,7).

By the triangle inequality

p(z, x) < wlp(e, y) + ply, 2)) < 261,

This implies that z € B,(z, 2kr) and hence (4.29) holds.
Now we can verify the inner property of p. Take ¢ > 0 such that d = (2k)c. Let A\ > 1.
There exists ¢ € Ny and
(26)" < X\ < (2r)T
11



Hence, by (4.29) it follows that
B,(z, Ar) —x 2 B,(z, (2x)'r) — 2 2 d“(B,(z, r) — x) 2 d *\(B,(, r) — 7).
Therefore, the inner property (4.23) holds with a = d~! and b = e. 0

The main result of the paper shows a 1-to-1 correspondence between equivalence classes
of continuous ellipsoid covers and quasi-convex, 1-Ahlfors-regular quasi-distances on R™.

Theorem 4.9. (i) For any continuous ellipsoid cover O, the induced quasi-distance pg given
by (3.16) is quasi-convex and 1-Ahlfors-reqular.
(ii) Conversely, for any quasi-conver and 1-Ahlfors-reqular quasi-distance p on R", the

corresponding family = = =,, given by Definition 4.3, is a continuous ellipsoid cover. More-
over, its induced quasi-distance

(4.31) p=r, y) = inf{¢] - v,y €€} wy €RY,
15 equivalent to the original quasi-distance p.

Proof. Part (i) follows by Proposition 3.8 and Lemma 4.4. Moreover, by Theorem 4.8 we
can deduce that pg has the inner property.

To prove (ii), we first verify that a family =, induced by quasi-distance p is a continuous
ellipsoid cover. By (4.28), there exists a constant ¢; > 0 such that for any x € R™ and r > 0,

(4.32) r<|&| < er.

1
Qmcy
Therefore, by letting 0, ; := &, with ¢t = —log, r, we obtain (3.7) for a; := ﬁ and ay 1= ¢;.

To show that =, satisfies the shape condition (3.8), by Lemma 3.3 it suffices to verify
(3.10). Consider two ellipsoids & = &, n = §, in =,, where z, y € R", r;s > 0, such that
ENn # 0 and |n| < [¢]. By Lemma 4.7, there exists a constant ¢ > 1 such that n C ¢ - .
Hence, by Lemma 2.4, we have

(4.33) n—yCc-&—x=c(§— ).
Applying Theorem 2.1 yields

€] n €]

c(§ —x) C T’(n—y)zc W(n—y)
Thus,
01_"%(5—@ Cn—uy.

This shows the left-hand side inclusion of (3.10) with a} := ¢! and d} := 1.

Next we show the right-hand side inclusion of (3.10). By Theorem 4.8 quasi-distance p
satisfies the inner property. Hence, by Lemma 4.6 there exists positive constants a; and b,
such that (4.24) holds. Note that we necessarily have a; < 1 by letting A = 1. Assume first
that

(4.34) D>,
S

Then the inner property (4.24) for A = r/s, implies

(4.35) & Ca\ - 6y C & =&



Hence, £, N &) # (). Moreover, by (4.32)

()] < e < ()’ QM€

Hence, by Lemma 4.7 applied for c; = (¢)*Q", there exists a constant ¢ such that that
£, € ¢ - &, Combining this with (4.35) and Lemma 2.4 we have

by
(4.36) o(%) ©-nedg-o.
On other hand, by (4.32) we have
’£;| 2 n’
4.37 -.
( ) |£§| < (Cl) Q s

Therefore, remembering that { = &} and n = &7, (4.36) and (4.37) imply that

1w ere S (1) e -o)

This shows the left-hand side inclusion of (3.10) with af := ((cl)QQ”)bli and ag := by under
the assumption (4.34).
Next assume that r/s < a; =/, Then, by (4.37)

()" > aurary .

Combining this with (4.33) implies
by
—y C c2”b1£(m) — ).
n y—(( I)Q) ay |£| (5 )
Again we have deduced the left-hand side inclusion of (3.10) albeit with al := ((¢;)?Q™)™ e

By Lemma 3.3 we conclude that =, is a continuous ellipsoid cover.

Finally we prove the equivalence of p and p=. For every x € R™ and t € R we set ém,t =&,
where 7 = 27, We have just shown that

=, ={0.,: v €R"t R}

is a continuous ellipsoid cover.
Take any = # y € R™. Let r = 2p(x, y) and t = —log, 7. By the quasi-convex property of
p, there exists a constant ) > 1 such that

éx,t — f; C Bp(ﬂi, 7“) C Q ’ f; = Q : é;t,t-
By Lemma 3.5, there exists a constant ¢ > 0 such that
z,y € By(x, 1) CQ- éﬂc,t - éx,tch-
By (3.7), (4.31), and 27% = r = 2p(z, y), it follows that
(4.38) p=(,Y) < |0p1—cq| < a22°9r = 0529 p(x, ).

On the other hand, by the definition of p=, there exists an ellipsoid ¢7 € =, 2€R", 7 >0,
such that z, y € £ and [€]]| < 2p=(z, y). Moreover, by the quasi-convexity of p,

& CBy)(2,7)CQ-E.
13



Since x, y € B,(z, 7) and 7 < ¢1|B,(z, 7)| (p is 1-Ahlfors-regular) we have

(4.39)  p(x,y) < Klp(x, 2) + p(2,9)] < 2016] B, (2, F)| < 21k|Q - €] < derwQ" ps(, y).

Combining (4.38) with (4.39) yields equivalence of quasi-distances p and p=. O

5. APPLICATIONS AND EXAMPLES

In this section we give applications and examples of quasi-distances illustrating our main
result, Theorem 4.9. As a consequence of results about Hardy H?(©) spaces with variable
anisotropy associated with continuous ellipsoid cover ©, which were introduced by Dekel,
Petrushev, and Weissblat in [12], we deduce the following result.

Theorem 5.1. Suppose that p is a quasi-convex and 1-Ahlfors-reqular quasi-distance on R™.
Then, R™ equipped with p and the Lebesque measure is a space of homogeneous type for which
Hardy space HP(R™, p) spaces exists for the entire range 0 < p < 1. These spaces admit
grand maximal function characterization, atomic decomposition, molecular decomposition,
and their duals are Campanato spaces. Moreover, there exists a class of Calderon-Zygmund
singular integral operators which are bounded on HP(R™, p) spaces for 0 < p < 1.

To wit Theorem 5.1 we define HP(R™, p) as the anisotropic Hardy space H?(Z,), where =,
is a continuous ellipsoid cover corresponding to quasi-distance p as in Theorem 4.9. Conse-
quently, HP(R", p) = H?(Z,) enjoys all properties of Hardy spaces with variable anisotropy
shown in [1, 4, 12, 13].

Our first example involves a family of ellipses O := {0, : = € R? ¢t € R} with

_ 2 _ 2
H:r,t — {Z — (Zla 22) c R2 . (2'1 21’1) + (22 2!52) < 1}

07 )

where semi-axes o; and o9 are given by the following table:

t To (o] ()
t<0 R 2-3 23
t>0| |z >273 273 2%

£>0[272 < |ay| <275 | 276 L | 276 |ay]

t>0 |2g] < 272 2-% %

We will show that ©g is a continuous ellipsoid cover and give the formula of quasi-norm
pe, induced by ©(. For this we need an elementary lemma.

Lemma 5.2. Let a;, 3; > 0, 1 = 1,2, ...,d, where d > 2. Then the root x > 0 of the
equation Zle a;x% =1, satisfies ¥ ~ b := min;<;<q a VB

7

. More precisely,

min d"V%b < x < b.
1<i<d
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Proof. For y > 0 define f(y) = > ;<4 a;y%. It is easy to see that f is strictly increasing
and f(z) =1 < f(b), which implies that # < b. Since

1 1
in dY8ip) < = Cmin — —
f(lrgjlgdd b) < - E a; min — < 1= f(z),
we deduce that min;<;<qd=/%b < . O

Proposition 5.3. © with is a continuous ellipsoid cover in the sense of Definition 3.1.

Proof. 1t is obvious that ©q satisfies Definition 3.1(i). We only need to show that any two
intersecting ellipsoids 6, ;, 0 1+s € O satisfy Definition 3.1(ii), where t € R and s > 0.
We shall verify two typical cases while other cases are similar or trivial. Denote by oy the
vertical semi-axis of 0, ; and by o) the vertical semi-axis of 6, ;.

Case 1. Suppose that 2742 < |zy] < 273 and |y| < 27+9)/2 where t > 0 and s > 0.
Then, we have

M, = diag(27°5 /|2g|, 278|2y), M, oy = diag(27 /3 272(+9)/3),

By 0,0 N0y 115 # 0, |ya] < 2702 gy = 270 3y|, gl = 272493 5| <2713 ¢ > 0 and
s > 0, we know that

2] < [yo] + 02 + 0 < 27UFI2 4 972 4 972N < 3. 9702,
From this and |z, > 2742, it follows that
(M) ™t My, esl| = |diag (27272 |aa, 271272 fan|)| < [|diag(3-27%/%, 272/%)|| < 3-27°/%
and
1My, 45) ™ Mol = [[diag(2772F5/2 /|as], 2112725 ] )|| < ||ding(2°/%, 3 2%/ < 3. 2%7°,

Case 2. Suppose that |1y < 2792 and 270+9)/2 < |yy| < 27¢+9)/3 where t > 0 and s > 0.
Then, we have

M, . = diag(27"/3, 272/3)) M, ;s = diag(27°#F9)/6 /|y, |, 27CF9/6|y)).

By 0, : 00, 1408 # 0, |2o] <2712 09 = 2723 ol = 276y | |yp| < 27+9/3 ¢ > 0 and
s > 0, we know that

lya| < || + 09 + 0y < 27H2 4 27HE o= ()/2 < g 07t/
From this and |y,| > 27+9)/2 it follows that
(Mo, e) ™ My o] = [|diag(277275/0 /yal, 2772750 ys|)|| < [|diag(27*/%, 3-27%/%)| < 3. 27/°
and
1My, 46) ™ My ol| = || diag (27250 lys|, 274255/ /|| )|| < ||diag(3 - 2%/, 22/%)[| < 8- 2/,

U
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Proposition 5.4. The quasi-distance pe, induced by the ellipsoid cover O satisfies

( |z —y[? lz—y|>1or |z —y|3 < |z,
3
poy (1, y) ~ [(yl —21)? +/(y1 — 21)* + 4(y2 — xQ)Q] * lx—y| <1 & |xo| < (z, y),
max{ (71 — yl)g’$2|g, (22 — y2)®la2] %} lz—y| <1
( Loz, y) < |ra| <l —yf*?,

3
1

where ¢(z, y) == 271 [(?Jl — 1)+ /(r — 21)* + 4(y2 — $2)2}
Proof. By Proposition 3.10, it suffice to find the formula for

= inf |6,
pr(z, y) = Inf_ 16|
It is not hard to verify that ellipses in ©q are nested, i.e., 0, S 60,4, for any z € R? and
t1, to € R with t; > t,. Using this and the fact that ellipses in ©¢ are closed, we know
that pi(z, y) equals to the area of an ellipse 6, ; for some ¢t € R such that y belongs to the
boundary of 0, 4, i.e., y € 00, ;. Equivalently,

(yl - 901)2 + (y2 - 332)2
07 )

(5.40) =1.

We shall consider three cases.
Case 1. Suppose that ¢t € R and 60, is a ball. Since y € 00, , we have

(1 —21)* | (o — 22)?
2-t + 2-t
By the definition of O, we know this happens if x, y satisfy (5.41) for some t < 0 or for
some t > 0 and || > 273, Equivalently, we have either |z —y| > 1 or |z —y| < 1 and

75| > |z — y|5. In either of two subcases,

(5.41) =l |z—y|=2"71.

p1(T, y) = [0n¢| = 7|z — y|2.
Case 2. Suppose that ¢ > 0, oy = 273 and o, = 272/3. Since y € 94, ; we have

(3/1 - $1)2 (92 - $2)2
—2t + — 4

273 273

(5.42) =1.

This is equivalent to |z — y| < 1 and |z,| < 272, where

lwo

270 =27 [y — o)+ (y —2) 4 — 22| = (e, y).
Therefore, in this case,
pi(x, y) = |0s,e| = 727" = 7l (=, y)I”.
Case 3. Suppose that t > 0, g1 = 27/ /|x5|, and oy = 27/8|25|. Since y € 90, ; we have

(y1 — 931)2 + (y2 — 932)2 o

278 fza| 12 [276 a2
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Let a = (y, — x1)%|22|%, b = (yo — 12)?/|22|?, and z = 2'/3. Since Case 3 is complementary to
Cases 1 and 2, we necessarily have |z —y| < 1, o(z, y) < |z2] < |x —y|??, and az® + bz = 1.
Since a,b > 0 and z > 1, by Lemma 5.2, we have

t . _2, 2 _
2 =28 ~ min{(z1 — y1) 75 |za| 75, (22 — yo) o’}
Thus, we have

_ 6, 6 _
p1(x, y) = 0p,e] = 727" ~ max{(z; — y1)|xa>, (22 — y2)®laa| =%}
Combining Cases 1-3 with (3.19) shows Proposition 5.4. O

By Theorems 4.8 and 4.9 we deduce that pg, is quasi-convex and 1-Ahlfors-regular quasi-
distance which satisfies the inner property. However, these properties are far from obvious
from the formula for pg, in Proposition 5.4

Next we will give an example of a quasi-convex quasi-distance p, which is not 1-Ahlfors-
regular, but which nevertheless generates a continuous ellipsoid cover. It will be convenient
to relax the assumption of symmetry of quasi-distance in Definition 3.7 by the condition
plx, y) < Cp(y, x) for any z, y € R™, see [18, Section 1.2.4]. This formally weaker condition
implies that p(x, y) ~ p(y, x). Hence, its symmetrization [p(z, y) + p(y, x)]/2 is a quasi-
distance in the sense of Definition 3.7, albeit for (possibly) increased triangle constant x.

The following example can be found in the monograph of Stein [18, Section 1.2.6]. It is
merely the simplest example of general class of balls and metrics studied by Nagel, Stein,
and Wainger [17]. Let k be a non-negative integer and, for any z € R? and § > 0, let

(5.43) Bi(z, 6) = {y € R*: |21 —y1| <0, |w3 — yo| < max{0**, |z,[*}}.

Then balls {By(z, 0) : = € R* § € (0, c0)} are a natural family of balls associated with
the vector fields X; := 9/0z; and X, := 2§0/0xy. That is, y € By(z,d) if one can join
x to y along a path whose velocity vector at any point is of the form a;X; + as X5, with
la1| <1 and |as| < 1, in elapsed time < §. The balls Bi(z, ¢) can be equivalently defined as
B, (z, 8) :={y € R*: pi(y, x) < §}, where

(5 44) P (Z/ x) InaX{|y1 — x1|, IIliIl{|yz - $2|1/(k 1); |y2 - $2|/|$1|k}} if 21 #0,
° k 9 —_—
max{|y; — x1, |y2 — 2| VDY if ;7 =0.

Proposition 5.5. Let k be a non-negative integer and let py be as in (5.44). Then py is a
quasi-distance which is quasi-convex and satisfies the inner property, but p;. is not 1-Ahlfors-
reqular.

Proof. 1t is not difficult to check that pj is equivalent to the metric associated with vector
fields X; and Xy, see [17, Definition 1.1]. That is, the distance between x and y is the
infimum of travel times between z and y along paths whose velocity vector at any point is
of the form a; X7 + a2 Xs, with |a;| < 1 and |as| < 1. By (5.43) any ball B, (z, 0) is actually
a rectangle. Hence, p;, is quasi-convex with @ = v/2. Moreover, for any A > 1, § > 0 and
x € R?, we have

(5.45) A (B (z,6) — ) = {(y1, y2) : || <A, [yo] < Amax{6"*", §|z|*}}
C{(y1, o) = || < NS, [yo] < max{(A6)F, AS|21[F}}
= B, (z, \d) — .
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Hence, py satisfies the inner property as in Definition 4.5 with a = 1 and b = 1. By (5.43)
we have

(5.46) |B,, (z, 0)| = 46* max{o", |z, |*}.
Hence, the Lebesgue measure is not 1-Ahlfors-regular with respect to py. ([l

In spite of Proposition 5.5, one can associate with p, a continuous ellipsoid cover. By the
quasi-convexity of p, we can consider family of ellipsoids =,, = {{] : € R",r > 0} as in
Definition 4.3

& € By (2,1) S Q- &
For any x € R™ and t € R define

(5.47) O, = &0, where r(t) = sup{r > 0: €| < 27'}.

It follows from (5.43) and (5.47) that © = {6, ; : © € R",t € R} satisfies property (i) in
Definition 3.1. It takes considerably more effort to show that © satisfies the shape condition
(ii) using Lemma 3.3. Consequently, the Hardy space HP(R", px), which corresponds to
ellipsoid cover =, , satisfies the conclusions of Theorem 5.1. We leave details to an interested
reader.
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