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A B S T R A C T

Video has become an increasingly important part of our daily digital communication. With the development
of higher resolution contents and displays, its significant volume poses significant challenges to the goals of
acquiring, transmitting, compressing and displaying high quality video content. In this paper, we propose
a new deep learning video compression architecture that does not require motion estimation, which is the
most expensive element of modern hybrid video compression codecs like H.264 and HEVC. Our framework
exploits the regularities inherent to video motion, which we capture by using displaced frame differences as
video representations to train the neural network. In addition, we propose a new space–time reconstruction
network based on both an LSTM model and a UNet model, which we call LSTM-UNet. The combined network
is able to efficiently capture both temporal and spatial video information, making it highly amenable for
our purposes. The new video compression framework has three components: a Displacement Calculation Unit
(DCU), a Displacement Compression Network (DCN), and a Frame Reconstruction Network (FRN), all of
which are jointly optimized against a single perceptual loss function. The DCU removes the need for motion
estimation found in hybrid codecs, and is less expensive. In the DCN, an RNN-based network is utilized to
compress displaced frame differences as well as retain temporal information between frames. The LSTM-
UNet is used in the FRN to learn space time differential representations of videos. Our experimental results
show that our compression model, which we call the MOtionless VIdeo Codec (MOVI-Codec), learns how to
efficiently compress videos without computing motion. Our experiments show that MOVI-Codec outperforms
the Low-Delay P (LDP) veryfast setting of the video coding standard H.264 and exceeds the performance
of the modern global standard HEVC codec, using the same setting, as measured by MS-SSIM, especially
on higher resolution videos. In addition, our network outperforms the latest H.266 (VVC) codec at higher
bitrates, when assessed using MS-SSIM, on high resolution videos. The MOVI-Codec project page can be found
at https://github.com/Meixu-Chen/MOVI-Codec.
. Introduction

Video traffic is predicted to reach 82 percent of all consumer
nternet traffic by 2021 [1], and to continue this rapid growth even
urther. The increasing share of video in Internet traffic is being driven
y several factors, including the great diversity and extraordinary
opularity of streaming and social media services, the rise of video
eleconferencing and online video education (accelerated by the Coron-
virus Crisis), and significant increases in video resolution. Indeed, it is
stimated that by 2023, two-thirds of installed flat-panel television sets
ill be UHD, up from 33 percent in 2018 [2]. Given significant strains
n available bandwidth, it is crucial to continue and greatly accelerate
he evolution of video compression systems.

Traditional video compression codecs, like H.264, HEVC and the
atest VVC/H.266 process videos through a sequence of hand-designed
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algorithms and modules, including block motion estimation, and lo-
cal decorrelating decompositions like the Discrete Cosine Transform
(DCT). Although the component modules of modern hybrid codecs have
been carefully designed over several generations, the overall codecs
have not been globally optimized other than by visual examination
or post-facto objective measurement of results, typically by the highly
fallible PSNR [3]. Naturally, one could expect the performances of
video codecs to be improved by collective, end-to-end optimization.
Because of their tremendous ability to learn efficient visual represen-
tations, deep learning models are viewed as highly promising vehicles
of developing alternative, globally optimal video codecs, and a variety
of deep learning based image compression architectures have been
proposed [4–19]. These new models have deployed Convolutional Neu-
ral Networks (CNN), Recurrent Neural Networks (RNN), autoencoders,
and Generative Adversarial Networks (GAN) yielding rate–distortion
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efficiencies that are reportedly comparable to those of traditional image
compression codecs like JPEG, JPEG 2000, and BPG. Encouraged by
these advances, several authors have devised deep video compression
models that suggest the considerable promise of this general approach.
Wu et al. [20] proposed the first end-to-end trained deep video codec,
using a hierarchical frame interpolation scheme. A block-based deep
video compression codec was proposed by Chen et al. [19]. Lu et al.
proposed an end-to-end video compression model (DVC) [21] which
replaces each component of the traditional hybrid video codec with
a deep learning model, which are jointly trained as a global hybrid
architecture against a single loss function. Another hierarchical video
compression architecture called HLVC (Hierarchical Learned Video
Compression) was proposed by Yang et al. [22].

In both traditional video codecs and recent deep learning-based
ones, motion estimation and compensation has occupied a significant
portion of the system resources. Motion estimation requires an expen-
sive search process that we avoid, by instead training the network to
efficiently represent the residuals between each current frame and a
set of spatially-displaced neighboring frames. Computing a set of frame
differences, even over many displacement directions is much cheaper
than effective search processes. Moreover, while the statistics of motion
are generally not regular, the intrinsic statistics of frame differences
exhibit strong regularities [23], including those of differences between
spatially displaced frames [24]. The strong internal structure of these
frame differences makes them easier to efficiently represent in a deep
architecture.

Our idea is inspired by the way the human vision system pro-
cesses natural time-varying images. Many studies have produced strong
evidence suggesting that the early stages of the vision system are pri-
marily implicated in reducing redundancies in the sensed input visual
signals [25,26]. Indeed, much of early visual processing along the
retino-cortical pathway appears to be devoted to process of spatial and
temporal decorrelation [27–32]. We have found that sets of spatially
displaced frame differences, which are space–time processes, supply
a rich and general way to exploit space–time redundancies [23,24].
Importantly, our idea is also related to recent theories of the role
of microsaccades in human visual information processing [28–31].
Microsaccades create small spatial displacements of visual field from
moment to moment. While microsaccades have been theorized to play
roles in avoiding retinal saturation, maintaining accurate fixation in
the presence of drifts, and preserving the perception of fine spatial
details [31], they are more recently thought to play an important role in
efficiently representing locally changing and shifting space–time visual
information [28–31]. We believe that micro-saccadic eye movements
deployed by the human eye have adapted to the local regularities
induced by small spatial displacements over time, in order to achieve
more efficient visual (neural) representations. This has inspired us to, in
like manner, trained a deep coder–decoder network to compress videos
using regular displaced residual representations as inputs.

By capturing displaced frame differences from a large database
of videos, and feeding them into a deep space–time coding–decoding
network, we have formulated a new breed of deep video compression
algorithms that are motion computation free, statistically motivated,
and have perceptual relevance. The contributions of this work can be
summarized as follows:

• We innovate the use of displaced frame differences to capture
efficient representations of structures induced by motion.

• Our method avoids the computational overhead of motion esti-
mation and motion compensation.

• A combined LTSM-UNet efficiently captures both spatial and
temporal information which it uses to recreate video frames from
the abstracted video code.

• The entire video compression system is collectively jointly opti-
mized using a single loss function.
2

Our results show that video compression can be efficiently accom-
plished without explicitly computing motion predictions. We trained
the new MOVI-Codec architecture end-to-end on the Kinetics-600
dataset and the Vimeo-90K dataset, using a single perceptual loss
function (MS-SSIM), and tested it on the UVG dataset, the VTL dataset,
and the HEVC Standard Test Sequences (Class B, Class C, Class D,
and Class E). Our experimented results show that our new model
outperforms the widely used video codec H.264 in LDP veryfast setting,
and exceeds the performance of the latest standard video codec H.265
using the same setting. In addition, our network outperforms the latest
H.266 (VVC) codec at higher bitrates, as assessed by the perceptually
relevant MS-SSIM algorithm, on high resolution videos.

The rest of the paper is organized as follows. Section 2 briefly
introduces current progress on learning-based methods for image/video
compression and motion estimation. Section 3 describes details of the
architecture and training protocol of the new MOVI-Codec model.
Section 4 discusses the experiments we conducted and their outcomes,
along with a data analysis along several dimensions. Section 5 con-
cludes the paper with a discussion of future research directions.

2. Related works

2.1. Deep image compression

A variety of standardized image compression engines have been
proposed over the years to meet the needs of increasingly picture-
centric technologies. JPEG algorithm [33], and later challengers JPEG
2000 [34], BPG [35], and VP9 [36]. These methods have proven to
be quite practical, and in the case of JPEG, ubiquitous. Yet they are
all handcrafted, highly modularized without the benefit of collective
optimization of all their elements. Each of these standards maps pixels
to a less correlated representation, regardless of the attributes of the in-
put image. These transformed values are then non-uniformly quantized,
typically with reference to a human visual sensitivity model.

A variety of authors have recognized the potential of deep learning
to advance progress on the image compression problem (a still timely
goal given the senectitude of the prevailing JPEG standard), and many
learning-based architectures have been devised [4–18]. Given that
Convolutional Neural Networks (CNN) [37] were the first deep learning
models to obtain standout performance on image analysis problems,
it was natural that it be the first deep architecture to be applied to
learning-based image compression. Ballé et al. [8] proposed a CNN-
based image compression framework that was optimized end-to-end,
which was shown to outperform JPEG2000 with respect to both MS-
SSIM and PSNR image quality measures. Their framework was later
extended by incorporating a hyperprior to capture spatial dependen-
cies in the latent representation for entropy estimation [6]. In [14],
Minnen et al. further enhanced the entropy model, by combining au-
toregressive and hierarchical priors to exploit the probabilistic structure
in the latents. The resulting model was reported to outperform BPG
with respect to both PSNR and MS-SSIM. Another architecture favored
for learning-based image compression are Recurrent Neural Networks
(RNN), because of their ability to exploit representative memories. Long
Short-Term Memory (LSTM) models were proposed [38] to address
the vanishing gradient problem of RNNs. Toderici et al. [4,5] was the
first to deploy a deep RNN-based architecture for image compression
by utilizing a scale-additive framework. This architecture allows for
variable bit rates and only needs to be trained once. The authors
also presented results using different types of RNNs, including LSTM,
associative LSTM and a hybrid of a Gated Recurrent Unit (GRU) [39]
and a ResNet, reporting that the performance of the model was better
than JPEG. Generative Adversarial Networks (GAN) have been applied
in several learning-based image compression models. Early on, Rippel
et al. [11] proposed a GAN-based image compression framework that
they claim outperformed all existing codecs with respect to MS-SSIM,
while being lightweight and deployable. In [12], a GAN framework is
presented to build an extreme image compression system which the
authors report as achieving state-of-the-art performance, especially at
very low bit rates, based on a user study.
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2.2. Deep video compression

It is natural to also consider learning-based methods for video com-
pression [19–22,40–43]. Wu et al. [20] proposed a video compression
architecture based on the idea that video compression is repeated
image compression. They define two types of frames: key frames and
other frames. Key frames are compressed using an RNN-based image
compression network [5], while the other frames are interpolated in
a hierarchical manner. Another hierarchical video compression archi-
tecture, called Hierarchical Learned Video Compression (HLVC), was
proposed by Yang et al. [22]. In this method, there are three quality
layers: an image compression layer, a Bi-Directional Deep Compression
(BDDC) layer, and a Single Motion Deep Compression (SMDC) layer.
In an attempt to match the pipeline structure of hybrid codecs, Lu
et al. proposed an end-to-end video compression model (DVC) [21]
that replaces each traditional hybrid component, with deep learning
models, then jointly optimized all the components against a single loss
function. This work was further extended to two models, a lightweight
version called DVC_Lite, and an advanced version called DVC_Pro,
by adjusting various components of the architecture. Later, Habibian
et al. [40] proposed a deep generative model for video compression
using an autoregressive prior to conduct entropy coding. Generally,
all learning-based video compression models implement traditional
block-based motion estimation or optical flow, both of which have a
high computational overhead. The most related work to ours is [43],
whereby an interpolation loop is used as an alternative to motion
estimation/compensation. However, the frame interpolation network
still requires training, which adds to the complexity of the overall
method.

2.3. Motion estimation and motion compensation

Motion estimation (ME) and motion compensation (MC) are crucial
components in modern hybrid video codecs. These are used to exploit
the temporal redundancy of video frames via inter-frame prediction.
In traditional hybrid video codecs like H.264 and H.265, video frames
are first partitioned into blocks, then motion vectors (MV) associated
with each block are estimated with respect to predictions of neigh-
boring reference frames via expensive block search methods, which is
the most intensive aspect of video compression. A few deep learning
methods have been proposed to solve the ME problem. For example,
Choi et al.[44] trained a CNN to measure the similarity of pairs of
image patches and used this to estimate MVs. However, this method
still requires a search process to find the best match. In [45], the
authors developed a CNN that was trained to conduct both uni- and
bi-directional ME, using separate networks so that motion information
need not be transferred from the encoder to the decoder. The CNN
does require two frames from the decoded picture buffer and their
temporal indices as inputs, which it uses to produce filter coefficients
that synthesize patches of a new frame, which is then used to predict
the current frame. A drawback of this approach is that it requires the
CNN to be resident at both the encoder and the decoder, which reduces
decoding efficiency.

Another popular alternative to block matching algorithms are opti-
cal flow routines, which seek to obtain a dense vector field mapping
the movements of pixel. A variety of deep learning based optical flow
estimation methods have been proposed to reduce the computational
overhead of dense optical flow vectors [46]. FlowNet [47] showed
that it was possible to train a network from two input images to
predict optical flow while matching or exceeding the accuracies of
traditional methods. Later improvements introduced a stacked archi-
tecture that included warping of the second image via intermediate
optical flow estimates, and a sub-network specialized to predict small
motions [48]. Other approaches have tried to combine networks with
traditional methods. Ranjan et al. [46] proposed such a network called
SPyNet, which adopted a traditional coarse-to-fine computational hi-
erarchy using a spatial pyramid. Later, another network competitive
3

with FlowNet2 was proposed, called LiteFlowNet [49], but with a
significantly decreased model size. Our approach avoids even these
methods of deep flow computation, by instead feeding the network a
set of directional inter-frame residuals containing adequate information
for the network to seek the most efficient perceptual representation.

3. Proposed method

3.1. Framework

Fig. 1 exemplifies the flow of our deep video compression network.
A current frame is input to the network, along with multiple displaced
frame differences from adjoining, previously coded and then decoded
frames (lower part of figure). This is similar to the classic hybrid coding
loop, which also includes the decoder as part of the encoder loop, to
reduce reconstruction errors. The key components in our network is:
Displacement Calculation Unit (DCU), Displacement Compression Net-
work (DCN), and Frame Reconstruction Network (FRN). The details of
each key component in our network will be discussed in the following
sections.

The flow of our network is: Given an input video with frames
𝑥1, 𝑥2,… , 𝑥𝑇 , for every frame 𝑥𝑡, displaced frame differences between
the current frame 𝑥𝑡 and previous reconstructed frame 𝑥̂𝑡−1 are cal-
culated via the DCU, after which the displaced frame differences 𝑑𝑡
re input into the DCN. The DCN compresses the incoming displaced
rame differences which are used to capture statistical redundancies.
n illustration of displaced frame differences, i.e. differences between
patially displaced frames, is shown in Fig. 2. Given a compressed
utput 𝑑𝑡 from the DCN, FRN uses the reconstructed displaced frame
ifferences 𝑑𝑡 and the reconstructed previous frame 𝑥̂𝑡−1 to reconstruct a
urrent frame 𝑥𝑡. Every frame is processed following this except for the
irst frame. The first frame 𝑥1 is processed differently as it does not have
revious reconstructed frame. As a result, an all-zero image is chosen as
ts previous reconstructed frame and it is otherwise processed the same
s other frames. Pseudo code of the flow is shown in Algorithm 1. By
sing this architecture, we are able to reconstruct the videos without
he use of motion.

Algorithm 1 Flow of MOVI-Codec for an Input Video
𝒙𝟏 to 𝒙𝑻 : video frames.
̂𝟎: previous reconstructed frame for 𝑥1.
𝒕, 𝒅𝒕: displaced frame differences and corresponding reconstructed
nes, respectively.
𝟏, 𝒅𝟏: displaced frame differences between 𝑥1 and 𝑥̂0, and correspond-
ng reconstructed ones, respectively.
1: procedure MOVI-Codec
2: for 𝑡 in 1 to 𝑇 do
3: if 𝑡 is 1 then
4: 𝑥̂0 = all zero frame
5: 𝑑1 ← DCU(𝑥1, 𝑥̂0)
6: 𝑑1 ← DCN(𝑑1)
7: 𝑥̂1 ← FRN(𝑑1, 𝑥̂0)
8: else
9: 𝑑𝑡 ← DCU(𝑥𝑡, 𝑥̂𝑡−1)

10: 𝑑𝑡 ← DCN(𝑑𝑡)
11: 𝑥̂𝑡 ← FRN(𝑑𝑡, 𝑥̂𝑡−1)
12: end if
13: end for
14: end procedure

3.2. Displacement Calculation Unit (DCU)

The DCU removes the need for any kind of motion vector search.
Instead, it allows the DCU network to learn to optimally represent
time-varying images as sets of spatially displaced frame differences.
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Fig. 1. The overall network architecture of MOVI-Codec, which consists of three components: a Displacement Calculation Unit, a Displacement Compression Network and a Frame
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Fig. 2. Concept of displaced frame differences, showing a frame 𝑡 and previous frame
𝑡 − 1, and multiple spatially displaced versions of frame 𝑡 − 1.

Given a video with 𝑇 frames 𝑥1, 𝑥2,… , 𝑥𝑇 of width 𝑊 and height 𝐻 ,
wo directional (spatially displaced) temporal differences are computed
etween each pair of adjacent frames, as shown in Fig. 2. In the DCU,
he inputs are a current frame 𝑥𝑡 and the reconstructed previous frame
̂ 𝑡−1. Then, at each spatial coordinate (𝑖, 𝑗), a set of spatially displaced
ifferences is calculated as:

𝐻 (𝑖, 𝑗)𝑡 = 𝑥𝑡(𝑖, 𝑗) − 𝑥̂𝑡−1(𝑖, 𝑗 − 𝑠), (1)

𝑑𝑉 (𝑖, 𝑗)𝑡 = 𝑥𝑡(𝑖, 𝑗) − 𝑥̂𝑡−1(𝑖 − 𝑠, 𝑗), (2)

where 𝑠 = 0,±3,±5,±7 in our experiment. The set of 13 displaced frame
differences (residuals) is then fed into the Displacement Compression
Network, which delivers as output the reconstructed set of displaced
residuals 𝑑𝑡. As mentioned in Section 2, the statistics of non-displaced
frame differences have been observed to be nicely regular. As shown
in [24], the statistics of displaced frame differences are also highly
regular, and more so in the direction of local motion. This makes them
good video representations to learn to exploit space–time redundancies,
while avoiding the computational burden of motion estimation and
compensation. Although the range of motion between frames can be
larger than our largest choice of displacement, larger motions can be
captured by various combinations of our set of displacements.

3.3. Displacement Compression Network (DCN)

3.3.1. Framework
After a set of 13 displaced frames are generated from the Dis-

placement Calculation Unit, they are fed into the Displacement Com-

pression Network, where each displacement occupies three channels w

4

(RGB), hence the overall input to the DCN comprises 39 channels. The
compression network comprises four parts, displacement encoder, dis-
placement decoder, hyper encoder, and hyper decoder. Displacement
encoder takes the displaced frame differences calculated from DCU and
generates the latent representation 𝑦𝑡 using several convolutional layers
and convolutional LSTM layers similar to other deep learning-based
compression architectures [5,20]. LSTM [50] as a special RNN structure
has proven stable and powerful for modeling long-range dependencies
in sequence modeling. The major innovation of LSTM is its mem-
ory cell which keeps accumulating the state information. As a result,
it helps hold the spatio-temporal information provided by displaced
frame differences generated by DCU. The hyper autoencoder uses 𝑦𝑡
as input to generate side information, which is then used to better
compress quantized latent representation 𝑦̂𝑡. Finally, the reconstructed
𝑑𝑡 is generated using 𝑦̂𝑡. The detailed processing flow of the hyper
autoencoder is explained in later sections.

3.3.2. Quantizer
Traditional quantization inevitably produces zero gradients dur-

ing backpropagation (BP) which halts network training. Our network
deploys BP via stochastic gradient descent, which requires differen-
tiability of all network elements. Hence, we implemented a modified
quantizer as in [6], as follows, where 𝑦̂ is the binarization of the latent
representation of displaced frame differences, which lie between −1
and 1, and 𝜖 represents quantization noise:

𝑦̂ = 𝑦 + 𝜖 ∈ −1, 1 (3)

𝜖 ∼

{

1 − 𝑦 with probability 1+𝑦
2

−𝑦 − 1 with probability 1−𝑦
2 .

(4)

Following quantization, the size of 𝑦̂ is 𝐻
16 × 𝑊

16 × 𝐶, where 𝐻 and
𝑊 are the height and width of the frame, and 𝐶 is the number of
channels of the last convolution layer in the displacement encoder. In
our architecture, 𝐶 = 128, as shown in Fig. 3.

3.3.3. Entropy coding
To estimate the entropy of the compressed codes 𝐻(𝑦̂), where 𝑦̂ is

he quantized latent representation of 𝑦, we adopted the hyper-prior
cheme proposed by Ballé et al. [6], where they use an additional set
f random variables 𝑧̂ to capture the spatial dependencies and model
he latent representations 𝑦̂ as Gaussian distribution as follows:

𝑦̂|𝑧̂(𝑦̂|𝑧̂) ∼  (𝜇, 𝜎), (5)

here 𝑝 (𝑧̂) is modeled using the factorized entropy model [8].
𝑧̂
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Fig. 3. Flow diagram of the Displacement Compression Network. The left side shows the displacement autoencoder architecture, and the right side corresponds to the hyperprior
autoencoder architecture. Q represents quantization, and AE, AD represent arithmetic encoder and arithmetic decoder, respectively. Conv(3,64,2) represents the convolution operation
with kernel size of 3 × 3, 64 output channels and a stride of 2.
𝐿
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4

The hyperprior autoencoder architecture is indicated by Hyper En-
coder and Hyper Decoder in Fig. 3, which is responsible for estimating
the parameters of the Gaussian model used for entropy coding. After
the displacement encoder encoded the input set of displaced frame dif-
ferences 𝑑𝑡, the resulting latent representation 𝑦𝑡 with spatially varying
standard deviations is fed into the hyper encoder, which summarizes
the distribution of standard deviations in the latent representation 𝑧𝑡.

fter quantization and arithmetic coding, the quantized 𝑧̂𝑡 is transmit-
ed as side information. The hyper decoder uses the quantized 𝑧̂𝑡 as
nput to obtain Gaussian model parameter 𝜎̂ (𝜇=0 in our implementa-
ion). During modeling training, the Gaussian model parameters can be
sed to calculate 𝑝𝑦̂𝑡 and then estimate 𝐻(𝑦̂𝑡) to guide model optimiza-
ion. While during model validation and/or testing, the Gaussian model
an be used to calculate the cumulative distribution function (CDF) of
𝑦̂𝑡 and then guide the arithmetic encoding and decoding of 𝑦̂𝑡, which
ould further losslessly compress 𝑦̂𝑡 to bitstream.

.4. Frame Reconstruction Network (FRN)

Fig. 4 shows the structure of the Frame Reconstruction Network
FRN). The FRN uses the reconstructed displaced frame differences
𝑡̂ and the reconstructed previous frame 𝑥̂𝑡−1 as the model input to
econstruct the current frame. The architecture of FRN incorporates
onvolutional LSTM (C-LSTM) blocks into a UNet architecture. The
Net architecture, which is an encoder–decoder style network with

kip connections, makes it possible to extract and represent meaningful
escriptors over multiple image scales. However, without modification,
he UNet architecture cannot account for temporal relationships be-
ween frames of video data, which are deeply relevant to the efficiency
f video compression. The C-LSTM is a convolutional version of the
riginal LSTM, which replaces the matrix multiplication operation of
he traditional LSTM with convolutions. It is quite useful for analyzing
emporal image sequences, where the C-LSTM layers act as a temporal
uffer and capture the long-short dependency of previously processed
isplaced frame differences. By introducing C-LSTM blocks into the
Net architecture, the FRN is able to process evolving frame properties
ver multiple scales, by relating compact representations of them in the
-LSTM memory units, leading to better reconstructed frame quality
nd higher compression rates.

.5. Training strategy

We modeled the loss function considering the rate–distortion trade-
ff as follows:
= 𝐷 + 𝜆𝑅

(6)

= [𝐷1(𝑥𝑡, 𝑥̂𝑡) + 𝛽𝐷2(𝑑𝑡, 𝑑𝑡)] + 𝜆[𝐻(𝑦̂𝑡) +𝐻(𝑧̂𝑡)], 6

5

Fig. 4. LSTM-UNet architecture used in Frame Reconstruction Network.

where 𝐷 and 𝑅 represent the distortion and rate, respectively. 𝜆 con-
trols the trade-off between the number of bits and distortion. 𝐷1
denotes the distortion between the input frame 𝑥𝑡 and reconstructed
frame 𝑥̂𝑡 measured by MS-SSIM or MSE, and 𝐷2 denotes the distortion
between displaced frame differences 𝑑𝑡 and the reconstructed displaced
frame differences 𝑑𝑡 measured by MSE. 𝛽 controls the trade-off between
the perceptual distortion 𝐷1 and the pixel-to-pixel distortion 𝐷2. 𝐻(⋅)
represents the bitrates for encoding the latent representations 𝑦̂ and 𝑧̂
estimated by the hyperprior autoencoder.

To leverage multi-frame information using our RNN-based codec
structure, we update the network parameters every set of 𝑁 frames
during model training, using the loss function in Eq. (6) but modified as
a sum of losses over the 𝑘th set of the 𝑁 frames indexed 𝑥𝑡𝑘+1,… , 𝑥𝑡𝑘+𝑁 :

𝑘 = 1
𝑁

𝑁
∑

𝑛=1
[𝐷1(𝑥𝑡𝑘+𝑛, 𝑥̂𝑡𝑘+𝑛) + 𝛽𝐷2(𝑑𝑡𝑘+𝑛, 𝑑𝑡𝑘+𝑛)]

+ 𝜆[𝐻(𝑦̂𝑡𝑘+𝑛) +𝐻(𝑧̂𝑡𝑘+𝑛)]. (7)

. Experiments

.1. Settings

The MOVI-Codec networks were trained end-to-end on the Kinetics-
00 dataset [51,52] and the Vimeo-90K dataset [53]. The Kinetics-600
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Fig. 5. Visual examples of our method as compared with H.264 and HEVC.
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ideos are downloaded from YouTube, each video having duration of
bout 10 s and various resolutions and frame rates. We used part of the
esting set from Kinetics-600, which consists of around 10,000 videos,
o conduct our experiments. From each video, a random 192 × 192
atch with 49 frames was randomly selected for training, and the values
f each input video were normalized to [−1,1]. We also randomly
ownsampled the original frame to reduce any previously introduced
ompression artifacts. The Vimeo-90K dataset consists of 4278 videos
f fixed resolution 448 × 256. Since the Vimeo-90K dataset has 7
rames per video, we randomly selected a patch of the same size
s mentioned before with 7 frames for training. In the Vimeo-90K
ataset, the consecutive frames are selected so that the average motion
agnitude is between 1–8 pixels, whereas there is no limitation to

he motion magnitude between frames in the Kinetics-600 dataset. The
ini-batch size is set as 8 for training, and the step length 𝑁 in our

ecurrent network is set as 7. By training on both the Vimeo-90K and
he Kinetics-600 dataset, we are able to generalize our model to a
ide range of natural motions. We tested the MOVI-Codec on the VTL
 l

6

ataset [54], the JCT-VC [55] (Class B, C, D and E) datasets, and the
VG datasets [56]. These datasets cover a variety of resolutions as

hown in Table 1. For fair comparison with [21,22,57], we tested our
ramework on the JCT-VC datasets using the first 100 frames, and tested
n VTL and UVG using all frames.

To evaluate the quality of the reconstructed videos, we used two
uality models: the perception-based MS-SSIM [58] and the non-
erceptual PSNR. Multiscale SSIM (MS-SSIM) is a widely used image
uality assessment model which captures local luminance, contrast, and
tructural information. For each quality metric, we trained 5 models
ith different values of the weighting parameter 𝜆 to cover different
itrate ranges. For the MS-SSIM model, 𝜆 was set to 0.01, 0.05, 0.1,
.5 and 1.0, respectively. For PSNR based models, 𝜆 was set to 0.0005,
.0025, 0.005, 0.025 and 0.05. We fixed 𝛽 = 1, since we did not observe
ny significant differences in model performance as it was varied over
he range 0.1 to 10.0.

We compared our method with both traditional and recent deep
earning models. H.264 [59], H.265 [60] and the most recent H.266
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Table 1
Resolutions of different datasets used for evaluation.

Dataset VTL UVG JCT-VC Class B JCT-VC Class C JCT-VC Class D JCT-VC Class E

Resolution 352 × 288 1920 × 1080 1920 × 1080 832 × 480 416 × 240 1280 × 720
e
a
d
i
g
l
p
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w
a
n
a
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w
A
f
t
t

[61] were included as representatives of traditional hybrid compression
codecs. We follow [21,22], and used the x264 and x265 ‘‘LDP very
fast’’ mode. For H.266, we followed [62] to implement the ‘‘faster’’
mode. So that we could compare against another motion-free method,
we also included the H.265 zero motion setting, using x265 with
merange set to zero, which allows exploiting temporal redundancy using
an IB prediction structure but without performing motion estimation.
In this regard, this setting is most similar to our architecture [63].
Among recent deep learning models, DVC [21] and Wu et al. [20] are
optimized for PSNR, Habibian et al. [40] and Cheng et al. are optimized
for MS-SSIM, and HLVC [22] has both MS-SSIM optimized and PSNR
optimized results.

4.2. Results

In this section, we compare our video compression engine against
the standards H.264, HEVC, and H.266/VVC, and with other deep
learning-based video compression architectures (Wu [20], DVC [21,
57], and Cheng [43]) on the UVG dataset, the VTL dataset, and the
HEVC Standard Test Sequences (Class B, Class C, Class D, and Class
E). When compressing videos using the H.264 and HEVC codecs, we
followed the settings in [21] and used FFmpeg with the very fast mode.3
When implementing H.266, we followed [62] using the faster mode. We
also provide visual examples of our approach against other approaches
in Fig. 5. More exemplar reconstructed videos are included on our
project page with link given in the Abstract.

Figs. 6, 7, 8, and 9 show the experimental results on the VTL
dataset, the UVG dataset, and the HEVC Standard Test Sequences
(Class B, Class C, Class D, and Class E). These results show that our
network outperformed both H.264 and the HEVC standard against MS-
SSIM. On datasets with higher resolution videos (UVG dataset, HEVC
Class B dataset, and HEVC Class E dataset), our network was able
to outperform the latest H.266 codec at higher bitrates as assessed
using the perceptually relevant MS-SSIM algorithm. We also compared
our model against several deep learning-based compression models,
including a frame interpolation-based model by Wu et al. [20], DVC
[57], HLVC [22] and the video compression framework proposed by
Cheng et al., which uses an added spatial energy compaction penalty
in the loss function [43]. Among these, DVC and HLVC were trained
on both PSNR and MS-SSIM, to obtain better results against each
metric. In our comparison, we include the best performance for these
two methods for each metric. It is worth noting that our model only
uses one previous frame as input, whereas in Wu’s framework, both
neighboring frames are utilized when reconstructing the middle frame.
Additionally, our framework replaces the classical motion estimation
and compensation module by instead training the network to optimally
interpolate displaced frame differences. For completeness, we also eval-
uated all models against the PSNR, where MOVI-Codec did not always
perform as well. However, this is a problem with the PSNR, which
is not perceptually relevant, and which produces significantly inferior
quality predictions than perception-based quality predictors like MS-
SSIM [3]. Indeed, the high quality of the reconstructions that we make

3 H.264: ffmpeg -pix_fmt yuv420p -s WxH -r FR -i Video.yuv -vframes 𝑁 -
:v libx264 -preset veryfast -tune zerolatency -crf Q -g GOP -bf 2 -b_strategy 0
sc_threshold 0 output.mkv

H.265: ffmpeg -pix_fmt yuv420p -s WxH -r FR -i Video.yuv -vframes 𝑁 -
:v libx265 -preset veryfast -tune zerolatency -x265-params ‘‘crf=Q:keyint=GOP’’
utput.mkv
FR, N, Q, GOP represents the frame rate, the number of encoded frames,

uality, GOP size, respectively. N is set to 100 for HEVC datasets.
 U
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Fig. 6. MS-SSIM on the VTL dataset (352 × 288) for different compression codecs.
Our method is competitive with the state of the art over varying bit rates on these
low-resolution videos.

available on the model page (see link in Abstract) further attests to this.
As has been observed by others [8,11,12,41], perceptual measures are
better arbiters of deep compressed video quality than absolute fidelity
models like the PSNR. It is worth noting that when comparing our
model against the H.265 zero motion setting, while both methods do
not utilize motion estimation, MOVI-Codec was able to perform better
with respect to MS-SSIM than the H.265 zero motion setting, while
delivering similar performance against PSNR.

4.3. Ablation studies

We conducted ablation studies to assess the choices we made in our
approach, specifically with respect to the choice of displaced frame
differences, and the effectiveness of the proposed LSTM-UNet. The
results are shown in Figs. 10 and 11.

4.3.1. Displaced frame difference combination
Fig. 10 shows the experimental results on different combinations

of displaced frame differences, where 𝑠 = 0 refers to frame differ-
nces with no displacements, which gives the worst performance of
ll combinations evaluated. This shows the value of ‘‘displaced’’ frame
ifferences as a way of training the network on more diverse motion
nduced displacements. Including displacements as large as 𝑠 = 7
reatly increases the overall performance, by allowing interpolation of
arger motions in videos. We also tried adding 𝑠 = 9 to our choice of dis-
lacement combinations, but this new combination did not improve the
verall performance, meaning that our combination of displacements
as adequate to capture motions of various sizes. It is worth noting that
s compared with the H.265 zero motion configuration, which also does
ot utilize motion estimation, our network was able to perform better as
ssessed by the perceptually relevant MS-SSIM, including when 𝑠 = 0.

.3.2. Effectiveness of the LSTM-UNet
Fig. 11 shows the experimental results on the HEVC Class B dataset

hen using UNet and LSTM-UNet to reconstruct frames, respectively.
s shown in the example, LSTM-UNet extends the advantage of UNet

or extracting and representing spatial descriptors to include spatio-
emporal descriptors using C-LSTM blocks, yielding better reconstruc-
ion performance. In addition, LSTM-UNet converges faster than the
Net counterparts, shortening the training time of the network.
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Fig. 7. PSNR and MS-SSIM on the UVG dataset (1920 × 1080) for different compression codecs. Our method outperformed the latest H.266 against the perceptually relevant
MS-SSIM on high bitrates and all others on all bitrates tested, while remaining highly competitive against the non-perceptual PSNR.
Fig. 8. PSNR of HEVC test sequences for different compression codecs. The resolution of Class B is 1920 × 1080, of Class C is 832 × 480, of Class D is 416 × 240 and of Class
is 1280 × 720. Overall, our method is competitive with H.265, and is particularity good at lower bit rates on lower resolution datasets.
c
m
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e

.4. Motion vector analysis

To verify that MOVI-Codec can capture large motions with the
hosen set of displacement combination, we calculated the optical flow
f adjacent frames in the testing datasets using a pre-trained network
 F

8

alled SPyNet [46]. To emphasize large motions, we calculated all
otion vectors against adjacent frames, and only picked the minimum

nd maximum motion vectors in the 𝑥 and 𝑦 directions. As a result, we
nded up with four values of motion vectors for each adjacent frames.
ig. 12 shows the distribution of the picked motion vectors on all videos
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o

Fig. 9. MS-SSIM of HEVC test sequences for different compression codecs, where the resolution of Class B is 1920 × 1080, of Class C is 832 × 480, of Class D is 416 × 240 and
f Class E is 1280 × 720. Our method outperformed H.265 and is competitive with other state of the art deep learning models.
Fig. 10. Ablation study of displaced frame difference combinations.

in the HEVC Class B dataset, which is the dataset having the highest
resolution videos among our testing datasets. From the figure, we can
conclude that our model produced a similar distribution as the original
frame pairs, hence our model was able to capture large motions using
a set of small displacements.
9

Fig. 11. Ablation study of the effectiveness of the proposed LSTM-UNet.

Figs. 13 and 14 illustrate the accuracy of our motion reconstruction.
The test video in Fig. 13 shows the 𝑥 axis optical flow between two
adjacent frames from the Kimono video, which is a video with a moving
background and slow motion, whereas Fig. 14 shows the optical flow
images of two adjacent frames in Basketball Drive video, which has a
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Fig. 12. Distributions of the maximum and minimum motion vector components along the horizontal (left) and vertical (right) axes of the HEVC Class B dataset.
Fig. 13. Optical flow along the horizontal direction between two adjacent frames in the Kimono video.
Fig. 14. Optical flow along the horizontal direction between two adjacent frames in the Basketball Drive video.
static background and large motions. In both videos, our model was
able to reconstruct motion accurately.

4.5. Model analysis

To compare the computational complexity of the different codecs,
we tested two deep learning models: the one proposed by Wu et al. [20],
the light version of DVC called DVC Lite [57], and the commercial
software x265 for H.265 compression, using a server with an Intel
Core i9-9940X CPU and GTX 1080Ti on video sequences of resolution
1920 × 1080. The experimental results are provided in Fig. 15.

The overall encoding speed of our framework is mostly invariant
of bitrate, whereas since Wu’s framework adopts a progressive cod-
ing scheme, its encoding speed varies with the target bitrate. In our
framework, although we adopted an RNN-based compression method
on displaced frame differences, we utilized the RNN unit to store
temporal dependencies and did not use a progressive coding scheme for
compression. DVC Lite is a lightweight version of DVC with a more effi-
cient motion estimation module and a lightweight motion compression
10
network, which can be twice as fast as the original DVC model in terms
of encoding speed [57]. Our framework is faster than the lightweight
model, further justifying the use of learned interpolation of displaced
frame differences. Since the arithmetic coding at lower bitrates is faster
than at larger ones, there is a slight slope to our encoding speed curve.
But overall, the complexity of our model is invariant to bitrate, which
means that our model maintains a stable encoding speed regardless of
video content or bitrate for a given resolution.

As shown in Fig. 15, compared with the traditional hybrid codec,
our model is faster than the latest codec HEVC with slower setting.
However, using the very fast setting on x264 and x265, the encoding
speed can run at 110 fps and 30 fps, respectively. Of course, by ap-
plying model acceleration techniques such as model distillation, model
quantization, or by decreasing the model size, it should be possible to
similarly accelerate the encoding speed of our framework.

4.6. Discussion

From Figs. 6, 7, 8, 9, and 15, we can conclude that our model
delivers better compression performance than LDP veryfast setting of
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s

Fig. 15. Encoding speed of different compression codecs. H.265 refers to the encoding
peed of the x265 codec slower setting.

traditional hybrid codecs like H.264 and HEVC in terms of MS-SSIM,
at a low computational complexity. This justifies our use of displaced
frame differences as motion information for video compression. Al-
though our model was able to achieve competitive performances as
lower settings of traditional codec having low computational complex-
ity, and without the complicated motion estimation and compensation
modules other deep learning-based models use, our model did not out-
perform all of the state-of-the-art models. Nonetheless, the performance
achieved by our model provides a new way of motion computation
that may prove quite useful for video compression. In our model,
we designed the set of spatial displacements used by our network
to cover a reasonable range of natural motions. A promising future
direction is to automatically assign displacement combinations as a
function of resolution. The encoding speed of our model is state-of-
the-art among deep learning models, but has not yet been optimized to
match compute-optimized traditional codecs like HEVC or VVC, e.g. by
model acceleration methods.

5. Conclusion and future work

In this paper, we proposed an end-to-end deep learning video com-
pression framework that renovated motion prediction. To be specific,
we proposed the use of displaced frame differences as indicators of
motion information, and fed them into a deep space–time compression
network, which learns optimal between-frame interpolated representa-
tions to achieve efficiency. Additionally, we proposed a new version
of UNet, called LSTM-UNet, that utilizes both spatial and temporal
information to conduct frame reconstruction. Our experimental results
show that our approach outperforms the LDP veryfast setting of the
standard codecs H.264 and H.265 in terms of MS-SSIM. In addition,
our network was able to outperform the latest H.266 codec at higher
bitrates as assessed by the perceptual MS-SSIM algorithm, on high
resolution videos. The reduced complexity of the framework and the
avoidance of motion search could make it easier to implement on
resource-limited devices, such as smartphones, VR headsets, and AR
glasses.

CRediT authorship contribution statement

Meixu Chen: Writing – original draft, Software, Investigation,
Formal analysis. Todd Goodall: Conceptualization. Anjul Patney:
Methodology, Writing – review & editing. Alan C. Bovik: Supervision,
Conceptualization, Methodology, Review and editing.
11
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by a grant by Facebook, USA and by grant
number 2019844 for the National Science Foundation AI Institute for
Foundations of Machine Learning (IFML), USA. The authors would like
to thank Fabian Mentzer and Ren Yang for insightful discussions about
this work.

References

[1] C.V.N. Index, Cisco visual networking index: Forecast and methodology,
2016–2021, Complet. Vis. Netw. Index (VNI) Forecast 12 (1) (2017) 749–759.

[2] Cisco, Cisco annual internet report (2018–2023) white paper, 2020, https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html.

[3] Z. Wang, A.C. Bovik, Mean squared error: Love it or leave it? A new look at
signal fidelity measures, IEEE Signal Process. Mag. 26 (1) (2009) 98–117.

[4] G. Toderici, S.M. O’Malley, S.J. Hwang, D. Vincent, D. Minnen, S. Baluja, M.
Covell, R. Sukthankar, Variable rate image compression with recurrent neural
networks, 2015, arXiv preprint arXiv:1511.06085.

[5] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor,
M. Covell, Full resolution image compression with recurrent neural networks,
in: IEEE Conference On Computer Vision And Pattern Recognition, 2017, pp.
5306–5314.

[6] J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston, Variational image
compression with a scale hyperprior, in: International Conference On Learning
Representations, 2018.

[7] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini,
L.V. Gool, Soft-to-hard vector quantization for end-to-end learning compressible
representations, in: Advances In Neural Information Processing Systems, 2017,
pp. 1141–1151.

[8] J. Ballé, V. Laparra, E. Simoncelli, End-to-end optimized image compression, in:
International Conference On Learning Representations, 2019.

[9] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen, S. Jin Hwang,
J. Shor, G. Toderici, Improved lossy image compression with priming and
spatially adaptive bit rates for recurrent networks, in: IEEE Conference On
Computer Vision And Pattern Recognition, 2018, pp. 4385–4393.

[10] L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with
compressive autoencoders, Int. Conf. Learn. Representations (2017).

[11] O. Rippel, L. Bourdev, Real-time adaptive image compression, in: International
Conference On Machine Learning, 2017, pp. 2922–2930.

[12] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, L. Van Gool, Generative
adversarial networks for extreme learned image compression, in: IEEE/CVF
International Conference On Computer Vision, ICCV, IEEE, pp. 221–231.

[13] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L. Van Gool, Condi-
tional probability models for deep image compression, in: IEEE Conference On
Computer Vision And Pattern Recognition, 2018, pp. 4394–4402.

[14] D. Minnen, J. Ballé, G.D. Toderici, Joint autoregressive and hierarchical priors
for learned image compression, in: Advances In Neural Information Processing
Systems, 2018, pp. 10771–10780.

[15] Y. Patel, S. Appalaraju, R. Manmatha, Deep perceptual compression, 2019, arXiv
preprint arXiv:1907.08310.

[16] J. Lee, S. Cho, S.-K. Beack, Context-adaptive entropy model for end-to-end
optimized image compression, 2018, arXiv preprint arXiv:1809.10452.

[17] Y. Blau, T. Michaeli, Rethinking lossy compression: The rate-distortion-perception
tradeoff, in: International Conference On Machine Learning, 2019, pp. 675–685.

[18] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L. Van Gool, Practical full
resolution learned lossless image compression, in: 2019 IEEE/CVF Conference
On Computer Vision And Pattern Recognition, CVPR, 2019, pp. 10621–10630.

[19] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, Z. Ma, Deepcoder: A deep neural
network based video compression, in: 2017 IEEE Visual Communications And
Image Processing, VCIP, IEEE, 2017, pp. 1–4.

[20] C.-Y. Wu, N. Singhal, P. Krahenbuhl, Video compression through image interpo-
lation, in: Proceedings Of The European Conference On Computer Vision, ECCV,
2018, pp. 416–431.

[21] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, Z. Gao, Dvc: An end-to-end deep video
compression framework, in: Proceedings Of The IEEE Conference On Computer
Vision And Pattern Recognition, 2019, pp. 11006–11015.

[22] R. Yang, F. Mentzer, L. Van Gool, R. Timofte, Learning for video compression
with hierarchical quality and recurrent enhancement, 2020, arXiv preprint arXiv:
2003.01966.

http://refhub.elsevier.com/S0923-5965(22)00002-9/sb1
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb1
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb1
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb3
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb3
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb3
http://arxiv.org/abs/1511.06085
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb5
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb6
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb6
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb6
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb6
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb6
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb7
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb8
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb8
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb8
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb9
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb10
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb10
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb10
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb11
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb11
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb11
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb12
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb12
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb12
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb12
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb12
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb13
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb13
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb13
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb13
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb13
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb14
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb14
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb14
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb14
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb14
http://arxiv.org/abs/1907.08310
http://arxiv.org/abs/1809.10452
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb17
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb17
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb17
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb18
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb18
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb18
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb18
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb18
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb19
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb19
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb19
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb19
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb19
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb20
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb20
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb20
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb20
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb20
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb21
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb21
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb21
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb21
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb21
http://arxiv.org/abs/2003.01966
http://arxiv.org/abs/2003.01966
http://arxiv.org/abs/2003.01966


M. Chen, T. Goodall, A. Patney et al. Signal Processing: Image Communication 103 (2022) 116633
[23] R. Soundararajan, A.C. Bovik, Video quality assessment by reduced reference
spatio-temporal entropic differencing, IEEE Trans. Circuits Syst. Video Technol.
23 (4) (2012) 684–694.

[24] D.Y. Lee, H. Ko, J. Kim, A.C. Bovik, On the space-time statistics of motion
pictures, J. Opt. Soc. Amer. A 38 (7) (2021) 908–923.

[25] J.J. Atick, A.N. Redlich, Towards a theory of early visual processing, Neural
Comput. 2 (3) (1990) 308–320.

[26] F. Attneave, Some informational aspects of visual perception, Psychol. Rev. 61
(3) (1954) 183.

[27] D.W. Dong, J.J. Atick, Temporal decorrelation: a theory of lagged and nonlagged
responses in the lateral geniculate nucleus, Netw.: Comput. Neural Syst. 6 (2)
(1995) 159–178.

[28] M. Rucci, J.D. Victor, The unsteady eye: an information-processing stage, not a
bug, Trends Neurosci. 38 (4) (2015) 195–206.

[29] E. Chichilnisky, R.S. Kalmar, Functional asymmetries in ON and OFF ganglion
cells of primate retina, J. Neurosci. 22 (7) (2002) 2737–2747.

[30] R. Engbert, Microsaccades: A microcosm for research on oculomotor control,
attention, and visual perception, Progress Brain Res. 154 (2006) 177–192.

[31] M. Poletti, M. Rucci, A compact field guide to the study of microsaccades:
Challenges and functions, Vis. Res. 118 (2016) 83–97.

[32] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by
learning a sparse code for natural images, Nature 381 (6583) (1996) 607–609.

[33] G.K. Wallace, The JPEG still picture compression standard, IEEE Trans. Consumer
Electron. 38 (1) (1992) xviii–xxxiv.

[34] A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG 2000 still image
compression standard, IEEE Signal Process. Mag. 18 (5) (2001) 36–58.

[35] F. Bellard, BPG image format, 2015, https://bellard.org/bpg.
[36] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu,

R. Bultje, The latest open-source video codec VP9-an overview and preliminary
results, in: Picture Coding Symposium, PCS, 2013, pp. 390–393.

[37] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time
series, in: The Handbook Of Brain Theory And Neural Networks, Vol. 3361, no.
10, 1995, p. 1995.

[38] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[39] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the properties of neural
machine translation: Encoder–decoder approaches, Syntax, Semant. Struct. Stat.
Transl. (2014) 103.

[40] A. Habibian, T.v. Rozendaal, J.M. Tomczak, T.S. Cohen, Video compression with
rate-distortion autoencoders, IEEE Int. Conf. Comput. Vis. (2019) 7033–7042.

[41] O. Rippel, S. Nair, C. Lew, S. Branson, A.G. Anderson, L. Bourdev, Learned video
compression, in: IEEE International Conference On Computer Vision, 2019, pp.
3454–3463.

[42] Z. Chen, T. He, X. Jin, F. Wu, Learning for video compression, IEEE Trans. Circ.
Syst. Video Technol. 30 (2) (2019) 566–576.

[43] Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learning image and video compression
through spatial-temporal energy compaction, in: IEEE Conference On Computer
Vision And Pattern Recognition, 2019, pp. 10071–10080.

[44] G. Choi, P. Heo, S.R. Oh, H. Park, A new motion estimation method for motion-
compensated frame interpolation using a convolutional neural network, in: IEEE
International Conference On Image Processing, ICIP, 2017, pp. 800–804.
12
[45] H. Choi, I.V. Bajić, Deep frame prediction for video coding, IEEE Trans. Circ.
Syst. Video Technol. (2019).

[46] A. Ranjan, M.J. Black, Optical flow estimation using a spatial pyramid network,
in: Proceedings Of The IEEE Conference On Computer Vision And Pattern
Recognition, 2017, pp. 4161–4170.

[47] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P.
Van Der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with
convolutional networks, in: IEEE International Conference On Computer Vision,
2015, pp. 2758–2766.

[48] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0:
Evolution of optical flow estimation with deep networks, in: IEEE Conference
On Computer Vision And Pattern Recognition, 2017, pp. 2462–2470.

[49] T.-W. Hui, X. Tang, C. Change Loy, Liteflownet: A lightweight convolutional
neural network for optical flow estimation, in: IEEE Conference On Computer
Vision And Pattern Recognition, 2018, pp. 8981–8989.

[50] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Con-
volutional LSTM network: A machine learning approach for precipitation
nowcasting, in: Advances In Neural Information Processing Systems, 2015,
pp. 802–810.

[51] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, et al., The kinetics human action video
dataset, 2017, arXiv preprint arXiv:1705.06950.

[52] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, A. Zisserman, A short note
about kinetics-600, 2018, arXiv preprint arXiv:1808.01340.

[53] T. Xue, B. Chen, J. Wu, D. Wei, W.T. Freeman, Video enhancement with
task-oriented flow, Int. J. Comput. Vis. 127 (8) (2019) 1106–1125.

[54] V.T. Library, VTL test sequences, 2020, http://trace.eas.asu.edu/index.html.
[55] F. Bossen, et al., Common test conditions and software reference configurations,

JCTVC-L1100 12 (2013), 7.
[56] Ultra Video Group, UVG test sequences, 2020, http://ultravideo.cs.tut.fi/

#testsequences.
[57] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, D. Xu, An end-to-end learning

framework for video compression, IEEE Trans. Pattern Anal. Mach. Intell.
(2020).

[58] Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image
quality assessment, in: Asilomar Conf. Signals Syst. Comput. Vol. 2, Nov. 2003,
pp. 1398–1402.

[59] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.
264/AVC video coding standard, IEEE Trans. Circ. Syst. Video Technol. 13 (7)
(2003) 560–576.

[60] G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency
video coding (HEVC) standard, IEEE Trans. Circ. Syst. Video Technol. 22 (12)
(2012) 1649–1668.

[61] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G.J. Sullivan, J.-R. Ohm, Overview
of the versatile video coding (VVC) standard and its applications, IEEE Trans.
Circ. Syst. Video Technol. 31 (10) (2021) 3736–3764.

[62] Fraunhofer Heinrich Hertz Institute, Fraunhofer versatile video encoder (vvenc),
2021, https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-
solutions/h266-vvc.html.

[63] C. Brites, F. Pereira, Distributed video coding: Assessing the HEVC upgrade,
Signal Process., Image Commun. 32 (2015) 81–105.

http://refhub.elsevier.com/S0923-5965(22)00002-9/sb23
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb23
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb23
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb23
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb23
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb24
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb24
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb24
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb25
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb25
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb25
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb26
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb26
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb26
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb27
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb27
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb27
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb27
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb27
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb28
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb28
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb28
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb29
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb29
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb29
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb30
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb30
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb30
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb31
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb31
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb31
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb32
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb32
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb32
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb33
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb33
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb33
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb34
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb34
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb34
https://bellard.org/bpg
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb36
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb36
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb36
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb36
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb36
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb37
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb37
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb37
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb37
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb37
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb38
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb38
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb38
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb39
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb39
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb39
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb39
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb39
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb40
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb40
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb40
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb41
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb41
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb41
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb41
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb41
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb42
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb42
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb42
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb43
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb43
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb43
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb43
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb43
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb44
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb44
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb44
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb44
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb44
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb45
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb45
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb45
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb46
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb46
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb46
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb46
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb46
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb47
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb48
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb48
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb48
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb48
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb48
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb49
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb49
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb49
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb49
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb49
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb50
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1808.01340
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb53
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb53
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb53
http://trace.eas.asu.edu/index.html
http://ultravideo.cs.tut.fi/#testsequences
http://ultravideo.cs.tut.fi/#testsequences
http://ultravideo.cs.tut.fi/#testsequences
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb57
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb57
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb57
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb57
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb57
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb58
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb58
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb58
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb58
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb58
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb59
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb59
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb59
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb59
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb59
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb60
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb60
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb60
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb60
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb60
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb61
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb61
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb61
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb61
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb61
https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc.html
https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc.html
https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-solutions/h266-vvc.html
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb63
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb63
http://refhub.elsevier.com/S0923-5965(22)00002-9/sb63

	Learning to compress videos without computing motion
	Introduction
	Related works
	Deep image compression
	Deep video compression
	Motion estimation and motion compensation

	Proposed method
	Framework
	Displacement Calculation Unit (DCU)
	Displacement Compression Network (DCN)
	Framework
	Quantizer
	Entropy coding

	Frame Reconstruction Network (FRN)
	Training strategy

	Experiments
	Settings
	Results
	Ablation studies
	Displaced frame difference combination
	Effectiveness of the LSTM-UNet

	Motion vector analysis
	Model analysis
	Discussion

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


