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ABSTRACT. We construct Parseval wavelet frames in L?(M) for a general Riemannian man-
ifold M and we show the existence of wavelet unconditional frames in LP (M) for 1 < p < co.
This is made possible thanks to smooth orthogonal projection decomposition of the identity
operator on L?(M), which was recently proven by the authors in [3]. We also show a charac-
terization of Triebel-Lizorkin F, (M) and Besov B, (M) spaces on compact manifolds in
terms of magnitudes of coefficients of Parseval wavelet frames. We achieve this by showing
that Hestenes operators are bounded on F;, (M) and B, (M) spaces on manifolds M with
bounded geometry.

1. INTRODUCTION

The goal of this paper is to construct Parseval wavelet frames on Riemannian manifolds.
This area dates back to the pioneering work of Ciesielski and Figiel [8, 9, 10] who have con-
structed spline bases for Sobolev and Besov spaces on compact C'* manifolds, see also [16].
Ciesielski-Figiel decomposition of manifolds into cubes was subsequently used in the con-
struction of wavelets on compact manifolds by Dahmen and Schneider [13] and by Kunoth
and Sahner [26]. Geller and Mayeli [18] have constructed nearly tight frames on smooth
compact oriented Riemannian manifold M (without boundary) using Laplace-Beltrami op-
erator on L?(M). In a subsequent paper [19] they have obtained a characterization of Besov
spaces on a smooth compact oriented Riemannian manifold, for the full range of indices using
smooth, nearly tight frames constructed in [18]. Geller and Pesenson [20] have constructed
band-limited localized Parseval frames for Besov spaces on compact homogeneous mani-
folds. Pesenson has constructed nearly Parseval frames on noncompact symmetric spaces
[31] and Parseval frames on sub-Riemannian compact homogeneous manifolds [32]. Coul-
hon, Kerkyacharian, Petrushev [12] have developed band limited well-localized frames in the
general setting of Dirichlet spaces which includes complete Riemannian manifolds with Ricci
curvature bounded from below and satisfying the volume doubling property. For a survey
on frames on Riemannian manifolds with bounded curvature and their applications to the
analysis of function spaces see [15].

In this paper we improve upon these results by showing the existence of smooth Parse-
val wavelet frames on arbitrary Riemannian manifold M. Hence, we eliminate compactness
assumption on M needed in the work of Geller et al. [18, 19, 20] or Ricci curvature as-
sumptions and volume doubling property needed in [12], and at the same time improve the
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construction of nearly tight frames to that of Parseval (tight) wavelet frames on M. This
construction is made possible thanks to smooth orthogonal projection decomposition of the
identity operator on M, which is an operator analogue of omnipresent smooth partition of
unity subordinate to an open cover U of M, recently shown by the authors in [3]. Our
smooth orthogonal decomposition leads naturally to a decomposition of L?(M) as orthogo-
nal subspaces consisting of functions localized on elements of an open and precompact cover
U. This enables the transfer of local Parseval wavelet frames from the Euclidean space to
the manifold M using geodesic maps. The resulting wavelet system, which consists of C*
functions localized on geodesic balls, is a Parseval frame in L?(M). This construction ex-
tends to L? spaces and yields unconditional dual wavelet frames in LP(M) for the entire
range 1 < p < oo. This is made possible by the extension of the above mentioned result in
[3] which yields a decomposition of the identity operator I on LP(M) as a sum of smooth
projections Py, which are mutually disjoint

E:PU:I7 where Pyo Py =0for U#U €lU.

In the case the manifold M is compact we show a characterization of Triebel-Lizorkin and
Besov spaces in terms of magnitudes of coefficients of Parseval wavelet frames. Our main
theorem is inspired by a result of Triebel [41], who has shown a characterization of Triebel-
Lizorkin and Besov spaces by wavelets on compact manifolds. We improve upon his result
in two directions. In contrast to [41], our characterization allows the smoothness parameter
m to take the value co. Moreover, we employ a single wavelet system, which is used both in
analysis and synthesis transforms. Since our wavelet system constitutes a Parseval frame in
L*(M), it automatically yields a reproducing formula.

We achieve this result by proving the boundedness of Hestenes operators on Triebel-
Lizorkin spaces on manifolds with bounded geometry. The study of function spaces on
manifolds with bounded geometry was initiated by Triebel [37, 38]. More precisely, it is as-
sumed that M is a connected complete Riemannian manifold with positive injectivity radius
and bounded geometry. The theory of Triebel-Lizorkin and Besov spaces on such manifolds
was further developed by Triebel [39], Skrzypczak [35], and Grofie and Schneider [21]. Our
boundedness result is an extension of analogous result for Sobolev spaces shown in [3]. A
prototype of this result is due to Triebel [39] who showed the boundedness of composition
with a global diffeomorphism on Triebel-Lizorkin spaces on RY. We extend his result from
the setting of R? to the class of Hestenes operators on manifolds with bounded geometry.
The proof uses a theorem due to Palais on an extension of local diffeomorphisms and results
of Triebel [39] on boundedness of multipliers and compositions with diffeomorphisms on F; ,
spaces.

The paper is organized as follows. In Section 2 we review necessary facts on manifolds M
with bounded geometry, results about Hestenes operators, and the definition of Triebel-
Lizorkin spaces on M. In Section 3 we show that Hestenes operators are bounded on
Triebel-Lizorkin F; (M) and Besov B? (M) spaces. In Section 4 we construct smooth
local Parseval frames on R? using Daubechies and Meyer wavelets. In Section 5 we construct
Parseval wavelet frames in L*(M) for a general Riemannian manifold M and we show the
existence of wavelet unconditional frames in LP(M) for 1 < p < co. In Section 6 we show a
characterization of Triebel-Lizorkin and Besov spaces on compact manifolds in terms of mag-

nitudes of coefficients of Parseval wavelet frames constructed in the previous section. Finally,
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technical results characterizing wavelet coefficients of local distributions in Triebel-Lizorkin
space F (R?) are shown in Section 7.

2. PRELIMINARIES

In this section we recall the necessary background on manifolds M with bounded geometry
such as a covering lemma by geodesic balls, the definition of Triebel-Lizorkin spaces on M,
and facts about Hestenes operators and compositions of distributions with diffeomorphisms
on manifolds. This is motivated by the fact that the definition of Triebel-Lizorkin spaces
F> , = F; (M) requires the bounded geometry assumption on a Riemannian manifold M,
see [39, Section 7.2].

2.1. Bounded geometry. Let (M, g) be a d-dimensional connected complete Riemannian
manifold with Riemannian metric tensor g. For any x € M, the exponential geodesic map
exp, : T.M — M is a diffeomorphism of a ball B(0,r) C T,M of radius r > 0 with
center 0 and some neighborhood €,(r) of z in M. In fact, Q,(r) = exp,(B(0,7)) is an
open ball centered at x and radius r with respect to a geodesic distance on M. Denoting
by 7, the supremum of possible radii of such balls we define the injectivity radius of M as
Tinj = infyepr 7. We shall assume that a connected complete Riemannian manifold M has
bounded geometry [33, Definition 1.1 in Appendix 1] meaning that:

(1) Tinj > 0 and
(2) every covariant derivative of the Riemann curvature tensor R is bounded, that is, for
any k € Ny, there exists a constant Cj, such that |[V*R| < C,.

The condition (2) can be equivalently formulated, see [39, Section 7.2.1], that there exist a
positive constant ¢, and for every multi-index «, positive constants c,, such that

detg > ¢ and |D%gi;] < ca,

in coordinates of every normal geodesic chart (§,(r),i, o exp,') for some fixed 0 < r <
Tinj, Where i, : T,M — R is an isometric isomorphism (preserving inner products). The
determinant det g is often abbreviated by |g|, see [3, 23].

We have the following useful lemma about existence of covers by geodesic balls. A pro-
totype of this lemma can be found in a monograph by Shubin [33, Lemma 1.2 and 1.3 in
Appendix 1], see also [39, Proposition 7.2.1]. The fact the multiplicity of the cover does not
depend on the radius r was observed by Skrzypczak [34, Lemma 4. A similar result can be
found in [15, Lemma 4.1], where a redundant assumption on local doubling property on M
was made.

Lemma 2.1. Suppose a Riemannian manifold M has bounded geometry. Then, for any
0 <7 < 7Tin;i/2, there exists a set of points {x;} in M (at most countable) such that:

(i) the balls Q,,(r/4) are disjoint,
(i) the balls Q. (r/2) form a cover of M, and
(i) for any | > 1 such that vl < ry,;/2, the multiplicity of the cover by the balls 0, (rl) is
at most N(I), where the constant N(l) depends only on 1 and a manifold M.
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Consequently, there exists a smooth partition of unity {c;} corresponding to the open cover

{€2,(r)},
(2.1) a;€C(M), 0<a; <1, Y aj=1,  suppa; C L (r),
J

such that for any mult-index o, there exists a constant b, satisfying

(2.2) |D%(aj 0 exp, o(iz) )| < bo  forall j and x € B(0,r) C T, M.
In addition, for a fived point x € M, there exist {x;} and {a;} satisfying:
(2.3) x=uxj for some j and ay =1 on €y, (r/2).

Proof. Properties (i)—(iii) are a consequence of the proof of [33, Lemma 1.2] and [34, Lemma
4]. We include details for the sake of completeness. Take €y = r;,;/4, and hence 3ey < 74,
Then, for any 7 < 2¢p, we choose a maximal set of disjoint balls €2, (r/4), for some set of
points {z;} in M. By [33, Lemma 1.2] the balls Q. (r/2) form a cover of M. Similarly as
in the proof of [34, Lemma 4], if 7l < r;,;/2, then the multiplicity of the cover by the balls
Q,(rl) is at most N(I,r),

(2.4) N(l,r) = (sup vol Q,(r(l + 1/4))(932}\5\701 Q.(r/4)7 1.

yeM
We claim that there exists a constant C' > 0 such that
(2.5) C7 st < vol Q,(s) < Cs? for all x € M, s < 3e.
Indeed, since M has bounded geometry, there exists a constant ¢ > 0 such that
¢t <detg(y) <c forallye€ M,

where det g(y) denotes the determinant of the matrix whose elements are the components of
g in normal geodesic coordinates of a local chart (€2,(s), i, o exp, ') such that y € Q,(s) and
s < 3¢y = 3rin;/4. Observe that

vol Q,(s) = / V/det g o exp, oi; td),
B(0,s)

where A denotes the Lebesgue measure on a ball B(0, s) C R¢. Hence, the claim (2.5) follows.
By (2.4) and (2.5) we have N(I,r) < (4] + 1)¢C?. Hence, N(I,r) is independent of 7.

Finally, the existence of a partition of unity satisfying (2.2) is a standard fact, see [33,
Lemma 1.3] and [39, Proposition 7.2.1]. To show the additional part of Lemma 2.1 we take a
smooth function € C*°(M) such that 0 <n < 1,7 =1o0nQ,,(r/2), and suppn C 2, (r).
We define another smooth partition of unity {&;} by

G = 043(1_77) j#jla
J Qi + 77(1 — O./j/) j = j/.

It is immediate that {&;} satisfies (2.1). Next we observe that &; = «a; for all, but finitely
many j. To show the analogue of (2.2) for functions &; we apply the product formula and

we use the fact the support of 7 is compact. O
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2.2. Distributions on M. Before defining Triebel-Lizorkin spaces we recall basic definitions
of distributions on a smooth Riemannian manifold M. We do not need to assume that M
has bounded geometry as we only need to know that M is complete to have well-defined
exponential geodesic maps (completeness assumption can be avoided if we use more general
local charts).

Let D(M) be the space of test functions consisting of all compactly supported complex-
valued C* functions on M. Define the space of distribution D'(M) as the space of linear
functionals on D(M). By [25, Section 6.3] a distribution in D'(M) can be identified with the
collection of distribution densities indexed by an atlas in M and satisfying certain consistency
identity [25, formula (6.3.4)]. We will illustrate how this identification works for distributions
which are given as an integration against a locally integrable function.

Let v be a Riemannian measure. A locally integrable function f € L (M) defines a
distribution in D’'(M), which is customarily also denoted by f,

- | i) for € D),

For x € M we consider a local geodesic chart (Q,(r), k), where r = r,, k = K, = i, 0 exp, ..
Then the corresponding family of distribution densities indexed by x is given by

fuld) = F(dor) = / fu du(u)
= /B(O )f(/-g (u)\/det g,.(k=1(u))du for ¢ € D(B(0,7)),

where det g, denotes the determinant of the matrix whose elements are components of g in
coordinates of a chart k. Then we can make an identification of f, with a function

(2.6) folu) = f(57(w))V/det go (k1 (w))  u e B(O,r).

Take two geodesic charts (2,(r),x) and (Qu(r'), ") such that Q.(r) N Qu(r") # 0. Let
Y =ro (k)" By (2.6) we have

fw () fe(@(u)) , :
e = for u € k' (Q,(r) Ny (7).
2D Vet g (1) (w))  y/det g, (=) (u) <L) )

By the chain rule, see [7, p. 120], we have

det g/ (p) = | det V(£'(p))[v/det g, (p for p € Q. (r) N Qu (r').

Hence, by (2.7) we obtain the consistency identity [25, formula (6.3.4)]

(2.8) for(u) = | det V(u)] fro (¥ (1)) for u € k' (Q(r) N Qu (r")).

Conversely, given a family of integrable functions {f.} satisfying (2.8) we deduce (2.7).
Applying (2.7) for u = £/(p) leads to a locally integrable function f € L}, (M) given by

Is(6) _ fo (< (@) ) A Qa1
Jdetonp)  Jaetgmm) L € (r) N Qur ().

Next we define a composition of distribution with a diffeomorphism [25, Theorem 6.1.2
and Theorem 6.3.4].

f(p) =
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Definition 2.2. Let V. C M and V' C M’ be open subsets of Riemannian manifolds M and
M, respectively. Suppose that ® : V' — V' is a C*° diffeomorphism and f € D'(V’). Define
f o ® as a distribution in D'(V) by

(fo@)(¢) = f((po @ N)|det VOI|)  for ¢ € D(V),

where | det V®!| denotes the Jacobian determinant of the differential V@~ acting between
tangent spaces of M’ and M.

The following lemma shows that the above definition coincides with the usual composition
when a distribution is a function.

Lemma 2.3. Let ® : V. — V' be a C* diffeomorphism between open subsets V. and V' of
Riemannian manifolds M and M’ with Riemannian measures v and V', respectively. Suppose
that f € L} (V'). Then treating f as a distribution in D'(V'), which is given as an integration
of f against V', the composition f o ® is a distribution in D'(V), which is given as an

integration of the usual composition f o ® against v.

Proof. Take any ¢ € D(V). Then by Definition 2.2 and the change of variables formula on
Riemannian manifold [6, Theorem I.3.4] we have

(fo)(¢) = f((po@7")[det VO'|) = L J@)ge ©~1)(2)] det VO~ (z)|dv/ (x)
- [ r@@)owine),
Hence, the distribution fo® coincides with a locally integrable function fo® € L}, (V). O

2.3. Triebel-Lizorkin spaces. We adapt the following definition of Triebel-Lizorkin spaces
on Riemannian manifolds [39, Definition 7.2.2]. Note that additionally we need to assume
that r < 7,;/8, see [39, Remark 7.2.1/2].

Definition 2.4. Let M be a connected complete Riemannian manifold M with bounded
geometry. Let {a;} be a smooth partition of unity corresponding to the open cover {€2,,(r)}
as in Lemma 2.1. Let s € R and let 0 < p < 0o and 0 < ¢ < co. Then,

0o 1/p
(29) F;;,q<M>={feD'<M>:(ZHajfoexpxjoz';;upz,q(m) < oo},
j=1

Note that we interpret o f o (expmj oi;jl) as a composition of a distribution «;f on M
with a diffeomorphism exp, oiy' : B(0,r) = €, (r), see Definition 2.2. Hence, it is a

compactly supported distribution in D’ (B(0,7)), which can be extended by setting zero
outside of B(0,r) C R". Consequently, we obtain a tempered distribution in &’'(R™) and the
spaces Fy (M) are defined locally using F;q(Rd) norm. For the proof that this definition
coincides in the case M = RY, see [39, Proposition 7.2.2]. Moreover, the above definition
is independent of the choice of the cover {€,,(r)} and the corresponding partition of unity

{a;} in Lemma 2.1, see [39, Theorem 7.2.3].
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2.4. Hestenes operators. Next we recall the definition of Hestenes operators [3, Definition
1.1] and their localization [3, Definition 2.1].

Definition 2.5. Let M be a smooth connected Riemannian manifold (without boundary).
Let @ : V — V'’ be a C diffeomorphism between two open subsets V.V’ C M. Let
¢ : M — R be a compactly supported C'** function such that

suppp = {zx € M : p(x) #0} C V.
We define a simple H-operator H, ¢y acting on a function f : M — C by

px)f(@(z)) zeV
0 reM\V.

(2.10) Hyoyf(z) = {

Let Co(M) be the space of continuous complex-valued functions on M that are vanishing at
infinity, which is equipped with the supremum norm. Clearly, a simple H-operator induces
a continuous linear map of the space Cy(M) into itself. We define an H-operator to be a
finite combination of such simple H-operators. The space of all H-operators is denoted by

H(M).

Definition 2.6. We say that an operator T € H (M) is localized on an open set U C M, if
it is a finite combination of simple H-operators H,, ¢, satisfying V' C U and ®(V) C U.

Remark 2.7. Note that every H € H(M) has a representation which is localized on an open
and precompact set since we assume that ¢ in Definition 2.5 is compactly supported.

In [3, Theorem 2.6] we have shown that H-operators are bounded on C" (M) spaces and
Sobolev spaces without any assumption on the geometry of M.

Theorem 2.8. Suppose that H € H(M) is localized on open and precompact set U C M.

Then, for any r = 0,1, ..., the operator H induces a bounded linear operator
(2.11) H:C'(M)—C'(M), where r =0,1,...,
(2.12) H:W; (M) — W, (M), where 1 <p < oo, r=0,1,....

Our goal is to extend Theorem 2.8 to Triebel-Lizorkin F; (M) spaces. To achieve this
we need to define the action of Hestenes operators on distributions D'(M). We shall use [3,
Lemma 2.12 and Corollary 2.13] about adjoints of H-operators.

Lemma 2.9. Let U C M be an open and precompact subset of M. The following statements
hold.

(i) Let ® : V. — V' be a C* diffeomorphism between two open subsets V,V' C U and let
w: M — R be aC*® be function such that

suppp ={z € M : p(x) #0} C V.
The adjoint of the operator H = H, ¢y is H* = H,, o1y, where

ory) = {w(q)l(y))%(y) yev

0 ygVv'.
and Yy is any C*°(M) function such that

i(y) = [det VO (y)]  fory € (supp ),
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where V® denotes the Jacobian linear map corresponding to ® of tangent spaces of M.
That is, H* is a simple H-operator localized on U satisfying

(2.13) /M H(f)(2)g(z)dv(z) = /M F@E (@) ()dv(y)  for all f.g € Co(M),

where v is the Riemannian measure on M.

(ii) Let H € H(M) be localized on open and precompact set U. That is, H = >"" | H;,
where each H; = H,, o, v, is a simple H-operator satisfying V;, ®;(V;) C U. Then, the
adjoint H* = Y"1 (H;)* € H(M) is localized on U and (2.13) holds. In particular, the
action of H* on Cy(M) does not depend on a representation of H as a combination of
simple H-operators.

Note that the formula (2.13) was initially shown in [3] for f,g € C.(M), but it also holds
for f,g € Co(M). Indeed, if H = H, 4, is a simple H-operator localized on U, then by
choosing o € C.(M) such that a(z) = 1 for all x € U, we have H(f) = H(af) for all
f e Co(M) and H*(g9) = H*(ag) for all g € Cy(M). Hence, (2.13) follows for simple
H-operators and then for arbitrary H-operators.

Definition 2.10. For f € D'(M) define the action of an H-operator H on D(M) by
Hf() = f(H")  forv € D(M).
Lemma 2.9 implies that Hestenes operator H* € H(M) is well defined and continuous as
a mapping H* : D(M) — D(M). Hence, H is a well-defined mapping H : D'(M) — D'(M).
In case M = R? we have also that H* : S(R?) — S(R?) is well defined and continuous.
Hence, the formula from Definition 2.10 extends to f € S'(R%) and H : §'(RY) — S'(R?) is
well-defined.

It is convenient to express Definition 2.10 in terms of a composition of a distribution in
D'(M) with a diffeomorphism.

Lemma 2.11. Let H = H, 4,y be a simple H-operator on M. Let f € D'(M). Then,

(2.14) HfW) = le(fo®)|(¥)  forallp € D(M).

Proof. Since ® : V. — V' is a diffeomorphism and f € D'(M), f o ® is a distribution in
D'(V') by Definition 2.2 as a composition of a distribution with a diffeomorphism. In the
case f € D'(M) is a function, then f o ® is the usual composition by Lemma 2.3. Take any
¥ € D(M), suppty C V. Applying respectively Definition 2.10, Lemma 2.9, and Definition
2.2 yields

Hf() = f(H$) = f((p o @ )| det VOI|(p 0 d71))
= f(((p0) 0 @7 1) det VOI|) = (f 0 @)((¢¥))Iv)-

Since supp ¢ C V, we can extend a distribution ¢(f o ®) to D'(M) by setting zero outside
of V.C M. Hence, (2.14) follows. O

3. HESTENES OPERATORS IN TRIEBEL-LIZORKIN SPACES

In this section we show that Hestenes operators are bounded on Triebel-Lizorkin spaces
F; ,(M). A prototype of this result is due to Triebel [39, Theorem 4.2.2] who showed the
boundedness of a composition with global diffeomorphism on Triebel-Lizorkin spaces on

R?. We extend this result to the class of Hestenes operators from the setting of R? to
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manifolds with bounded geometry. The proof uses a theorem of Palais on an extension of
local diffeomorphisms and results of Triebel on boundedness of multipliers and compositions
with diffeomorphisms on F,  spaces.
Recall that for F;q(Rd) space we have a topological embedding

SR Cc F; (RY) c S'(RY),
see [39, Remark 2.3.2/2]. Hence, H is well-defined on F; (R?), H : F; (R?Y) — S'(R?). We
also have the following topological embedding, see [39, Theorem 7.4.2(i)]

D(M) C F, (M) C D'(M).
Hence, H is well-defined on F; (M), H : F; (M) — D'(M). Our goal is to show that H is
bounded on F; (M) spaces.

Theorem 3.1. Let M be a connected complete Riemannian manifold with bounded geometry.
Let 0 < p < o0, 0<q< o0, and s € R. Suppose that H € H(M). Then the operator H
mduces a bounded linear operator

H:F, (M)—F, (M).
To prove this theorem we need [39, Theorem 4.2.2] about pointwise multipliers

Theorem 3.2. Let 0 <p < o0, 0<qg< o0, and s € R. If m € N is sufficiently large, then
there exists a constant Cy, such that for all p € C™(R?) and f € F3 (R?)

o flley, @) < Com Y 1Dl ooyl f]

laf<m

Fg’q(Rd) .

It is known, see remarks in the proof of [39, Theorem 4.2.2], that m > s works in the case
s > d/p. In the case —o0o < s < d/p, Theorem 3.2 holds for m > 2d/p — s.

For a smooth mapping G : R? — R? we denote Jacobian matrix by VG(x). We also need
[39, Theorem 4.3.2]. For simplicity we state this theorem for C*°-diffeomorphism.

Theorem 3.3. Let 0 <p < oo, 0<qg< o0, and s € R. Let
G:(Gl,...,Gd)IRd%Rd

be a C*°-diffeomorphism with all bounded derivatives, i.e. for all multi-indices «, there is
C(a) such that for allx € R and j =1,...,d,

D°G, ()| < C(o).
Assume that there is a constant ¢ > 0 such that for all x € R?
|det VG(x)| > c.
Then f — f oG is an isomorphic mapping of F;Vq(]Rd) onto itself.
We also need a theorem on an extension of local diffeomorphisms due to Palais [29, The-

orem 5.5], [30].

Lemma 3.4. Let V, V' C R? be open sets and let ® : V — V' be a diffeomorphism. Then
for every x € V, there is 0 > 0 such that:

(1) ® has an extension from a ball B(x,d) C V to a global diffeomorphism
G = (Gl,...,Gd) :Rd%Rd,
9



(i4) for all multi-indices «, there exist constants C(a) such that for all y € RY and all
j=1,....,d,
|DG;(y)| < Cla),
(iii) there exists a constant ¢ > 0 such that for all y € R?

|det VG(y)| > c.

Proof. 1t is convenient to follow the proof of Palais’ theorem given by Lew [27] in the setting
of Banach spaces. Without loss of generality, by affine change of variables, we can assume
that = 0, ®(0) = 0, and V®(0) = I. Let n € C*°([0,00)) be such that n(u) = 1 for
u € [0,1], n(u) = 0 for uw > 2, and |n'(u)| < 3/2 for all u. Following [27], the extension of a
local diffeomorphism ® : V' — V' in a neighborhood of 0 is given for appropriate choice of
0 > 0 by the formula

(3.1) G(z) = Mz)®(z) + (1 — A(z))x, z € RY,

where A(x) = n(||z||/J). Part (i) is shown in [27] as a consequence of the fact that for every
€ > 0, there exists § > 0, such that

(3.2) IVG(z) - I <e r € R
Part (ii) follows from (3.1) since G(x) = x for || > 2. Finally, (iii) follows immediately
from (3.2). O

Combining the above results yields the following theorem.

Theorem 3.5. Let 0 < p < 00, 0 < ¢ < 0o, and s € R. Suppose that H € H(R?). Then the
operator H induces a bounded linear operator
. s d s d
H:F; (RY) = F, (R?).

Proof. Since an H-operator is a finite combination of simple H-operators, it is sufficient to
prove the theorem for a simple H-operator H, s y. Without loss of generality, by Remark
2.7 we can assume that H is localized on an open and precompact set U C RY satisfying

suppp C V. CU, &(V)cCU,

where ® : V' — V' is a C'* diffeomorphism between two open subsets V, V' C U. By Lemma
3.4 a local diffeomorphism ® can be extended into a global diffeomorphism. That is, for
every x € V there is a neighborhood (a ball) V,, C V' and there is a constant ¢, > 0 and a
C*°-diffeomorphism with all bounded derivatives

G, :RI - R?
such that

and
|det VG, (y)| > ¢, y € R

Since supp ¢ is a compact set, there is a finite set {z;}_; C V such that

N

supp ¢ C U Ve,
j=1
10



Thus for an open cover of R? consisting of sets Ve g =1,..., N, and the set R%\ supp ¢, there
is a smooth partition of unity a; : R - R, j =1,... N + 1, such that forall 1 <j < N +1

supp a; C Vo,

and
N

> aj(y) =1, yesuppe.
j=1

Note that for f € S(RY), and hence for f € S’'(R?), we have

N
Hcp,@,Vf = Z Hcpaj,q),Vf'
j=1

On the other hand, for all 1 < j7 < N,
Hgoozj,q),Vf = Hgoaj,sz,Rdf = @aj(f o GxJ)

This finishes the proof since Hipajjgzwv is a composition of operators satisfying assumptions
of Theorem 3.2 and Theorem 3.3. 0

We are ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, we assume that we have a simple H-
operator H, oy localized on a precompact set U. Let

(3.3) 2r < min {ry,;/8, dist(supp ¢, dV), dist(®(supp ), OV') }.

Let {«;}; be a partition of unity subordinate to uniformly locally finite cover of M by a
sequence of open balls €2; =, (r) as in Lemma 2.1.

Let f € F,, (M). We claim that it is sufficient to prove that for all j such that €;Nsupp ¢ #
(), there is constant C; > 0 such that

(3.4) [(ejp(f o @)) 0 exp, |

Fy ) < Cj Y [l(anf) o exp,, |

k’E[j

F; ,(R4)s

where
I ={k:suppa; N® '(suppay) #0 & suppp N ® ' (suppay) # 0}.

For simplicity in (3.4) we identify R¢ with T, M and hence we omit the isometric isomorphism
ig, - Ty, M — R? as in Definition 2.4. Indeed, by Lemma 2.11 and (3.4) we have

(3:5) (e H f) 0 expy, [lr; @) < C; D l(anf) o expy, |

k‘EIj

Fg’q(Rd) .

Since supp  is compact we have only finite number of j such that

(3.6) supp p N, # 0

and I; is finite. Otherwise, o Hf = 0. This is a consequence of the fact that {2; form a
uniformly locally finite cover of M. Raising (3.5) to the power p and summing over j € N

satisfying (3.6) shows that H is bounded on F; (M).
11



To prove (3.4) note that for fixed j we have
(ajp(f 0 @) oexp, = Y (ayp(arf) o ®))oexp,,

kGIj

(3.7)
— Z((ajgo) o expm]_)((ozkf) o exp,, © exp;k1 od o expxj).
k‘eI]’

By definition B(0,r) = exp, () is a ball of radius r in R?. Note that by (3.3) and (3.6)
we have 0; C V and Q; C V' for each k € I;. Hence, ¢ = exp;k1 odo exp,, is a well-defined
C*>-diffeomorphism
DV = exp;jl(Qj NOe ) = V. = eXp;kl(CI)(Qj) N Q).
Now we take a function n, € C°°(M) such that
ne(z) =1, € suppa; N O (supp ay)
and
supp e C Q5 N ®H(,).
Since k € I; then by (3.7)
(ajp(f o ®)) o exp,, = Y ((majp) © exp,, ) ((arf) o exp,, oPy)
kGI]'
Defining new functions
Pr = (k) o €XPyg,

we have
(3.8) (a;0(f o ®)) o exp,, = Z Pr((an f) o exp,, oPy).

kJEIj

The function ¢, and the distribution ay f o exp,, are defined locally on B(0,r), but we can
take their extension to R? putting zero outside of B(0,7). The presence of 7, guarantees
that supp ¢, C Vj and it makes sense to consider a simple H-operator Hg, &, v,, which is
localized on B(0,7) C R™. Now we apply Theorem 3.5 using Lemma 2.11

H@k@k,Vk (Oékf © eszk) = Sﬁk((@kf) O eXPy, O(I)k).

Hence, for some constant Cj, which is independent of f, we have

|6k ((cwf) o exp,, oPk)|lrs ey < Chllawf o exp,, |

Summing over k£ € I; and using (3.8) yields (3.4), which completes the proof of Theorem
3.1. U

Fp  RY):

As a corollary of Theorem 3.1 we can deduce the boundedness of Hestenes operators on
Besov spaces. Recall that Besov spaces B; (M) on manifolds M with bounded geometry
are introduced indirectly using real interpolation method of quasi-Banach spaces, see [39,
Section 7.3],

(3.9) By (M) = (F;°,(M),F;' (M))q, s=(1—0)sg+0s1, —00 <59 <5< <00.

By the functorial property of real interpolation we deduce that Hestenes operator are bounded

on Besov B; (M) spaces.
12



Corollary 3.6. Let M be a connected complete Riemannian manifold with bounded geometry.
Let 0 < p <00, 0< q<o0, and s € R. Then any operator H € H(M) induces a bounded
linear operator H : B, (M) — B; (M).

4. LocAL PARSEVAL FRAMES

In this section we introduce the concept of smooth local Parseval frames on R? and show
their existence using Daubechies and Meyer wavelets. The main result of the section is
Theorem 4.1, which is a local counterpart of the construction of wavelets on Euclidean
space R%. It enables us to extend the construction of wavelets from the setting of R? to
manifolds and generalize a characterization of Triebel-Lizorkin and Besov spaces by wavelet
coefficients. As in the classical case, we use compactly supported Daubechies wavelets when
the smoothness parameter m is finite and Meyer wavelets when m = oco. The key part of the
proof of Theorem 4.1 is technical Lemma 4.6, the proof of which is postponed to Section 7.

We need to introduce the following notation. Let Q = (—1,1)¢ and ¢ > 0. Let Q. =
(=1 —¢,1+¢)% Let E' = {0,1}% be the vertices of the unit cube and let E = E’\ {0} be
the set of nonzero vertices. For a fixed j, € Ny we define

B for i — i
E, - or j j.o,
E  for j > j.
Let x4 be the characteristic function of a set A.

Theorem 4.1. Let m € NU {oco} and € > 0 be fized. Then there exist jo € No and a set of
functions

(4.1) {fGr 17 =Jo kel ee E;},

sets of indexes T'; C 2%, j > jo, and a natural number X\ > 2. If m is finite, then
T; CA; =200 [=2071, 277104

If m = oo, then T'; = Z. Define the family of functions {p;r. : j > jo,k € ';} as

242y (21 \x — k) if m is finite, where I = [0,1]%,
292122z — k') if m = oo, where k' € A; and k — k' € 2\Z7.

(42)  piu(z) = {

The family of functions (4.1) satisfies the following conditions:
(i) fGn € C™(R4) and supp fGir C Qe
(ii) If f € L*(R?) and supp f C Q, then

LA =D ) W Sl

j>jo e€E; keT;

(117) Let s e R, 0 < p < o0, and 0 < g < 0o. Suppose that

(4.3) m > max(s,o,, — 5), 0pq = dmax(l/p—1,1/g—1,0).
If f e F;q(Rd) and supp f C Q, then

(4.4) F=Y D e fen

§>jo e€E; kel
13



with unconditional convergence in ¥, if ¢ < oo and in ¥, spaces for any ¢ > 0 if
q = .

(iv) F, , norm is characterized by the magnitude of coefficients of functions (4.1). That is,
for any f € F‘;’q(Rd) and supp f C Q) we have

1/q
= (25 X @I Sl

§>jo e€E; kel

(4.5) 1/]

p

Definition 4.2. A set of functions (4.1) which satisfies the conclusions of Theorem 4.1 is
said to be a local Parseval frame of smoothness m and is denoted by W(m, jo, ).

We will give two proofs of Theorem 4.1. The first proof works only for finite smoothness
m using Daubechies wavelets. The second more general proof works for m = oo and uses
Meyer wavelets.

4.1. Daubechies multivariate wavelets. We consider Daubechies multivariate wavelets
following [2].

Definition 4.3. For a fixed N > 2, let y¢ be a univariate, compactly supported scaling
function with support supp y¢ = [0,2]\7 — 1] associated with the compactly supported,
orthogonal univariate Daubechies wavelet y1), see [14, Section 6.4]. In addition, we assume
that supp yv = [0,2N — 1]. Let ¢° = y¢ and ¥' = ytb. For each e = (ey,...,eq) € F',
define

(4.6) Ve(x) = Y (xy) - -V (xg), == (z1,...,24) €RL
For any e € £/, j € Z, and k € Z™, we define Daubechies multivariate wavelet functions by
(4.7) e (x) = 2P (P — k),  xEeRY

It is well-known that for any jo > 0, a set {1, : j > jo,e € Ej, k € 74} is an orthonormal
basis of L*(R%). Moreover, it is also an unconditional basis of the Triebel-Lizorkin space
F;q(Rd), seR, 0<p<oo 0<qg < oo for sutficiently large choice of N depending on
s, p, and ¢, see [41, Theorem 1.20(ii)] and [40, Theorem 3.5] shown under more restrictive
assumptions. More precisely, N = N(s,p,q) has to be such that ¢¥° = yo, 0! = y¢p €
C™(R?), where

m > max(s, 0,4 — 5), 0pq = dmax(l/p—1,1/g—1,0).

Recall that the smoothness m of Daubechies scaling function and wavelet y¢, yt¢ depends
(roughly linearly) on N.

We shall illustrate the proof of Theorem 4.1 when the parameter j, € Ny depends on the
smoothness m and € > 0.

Definition 4.4. Let j, € Ny be the smallest integer such that
(4.8) (2N —1)277° < ¢/2.

For 7 > jo define

I, ={kez: supp ¥5;, C Qc}-
14



Proof of Theorem 4.1 for finite m. Consider a Daubechies wavelet system of smoothness m
relative to the cube ) and € > 0 defined by

Observe that functions ¥° given by (4.6) satisfy supp¢© = [0,2N — 1]¢. Hence,
supp 5y, = 277 (k +[0,2N —1]%).

If this set intersects the cube Q = (—1,1)% for some j > jo, then by (4.8) we have supp Y5k C
Q- and k € T';.

By Definition 4.4 the property (i) holds automatically. Let f € L*(R?) and supp f C Q.
If for some j > jo, k € Z", and e € FE, we have (f,¢5,) # 0, then k € T';. Since
{4y 17 > Jo,e € Ej, k € Z} is an orthonormal basis of L*(R?), we deduce (ii).

Let s € R, 0 < p < 00, and 0 < ¢ < co. Suppose that the smoothness m satisfies (4.3).
As before, if f € F;Q(Rd) and supp f C @, then (f,9%;) # 0 implies that k € I';. By [41,

Theorem 1.20(ii)]
IEDIDID AN

j>jo e€E; keT;
with unconditional convergence in F,  norm if ¢ < oo; the pairing (f, wjk) makes sense by
[41, Remark 1.14]. Since (f,¢5,) = 0 for j > jo and k € I'; we deduce (iii). If ¢ = oo the
above series converges locally in spaces F, ¢ for any € > 0. However, supports of f and f& k)
are all contained in Q.. Hence, the convergence in (4.4) is in (global) F; ¢ spaces for any
e > 0. By [41, Theorem 1.20(ii)], the analysis transform

Fy (R > f = ((F 0560520 hezt 0cr, € £ g(RY)

is an isomorphism, where 5 = f;’q(Rd) is a discrete Triebel-Lizorkin space introduced by
Frazier and Jawerth in [17]. The f; norm of a sequence s = (s5,) is given by

(1.10) lalle, = (£ X 5 @ s "

Jj>jo e€E; kezd

)
p

where y;x(2) = 2742y (272 — k). Note that in (4.10) we can replace functions y; by their
scaled variants z +— 2792y (27 \x — k). Take any f € F? (R?) such that supp f C Q. Since
(fs95,) = 0 for j > jo and k & I';, the norm equivalence (4.5) follows. O

4.2. Meyer multivariate wavelets.

Definition 4.5. Let ¢/ € S(R) be the real-valued scaling function and let ¢! € S(R) be the
associated real-valued Meyer wavelet, see [24, 28, 42]. We define Meyer multivariate wavelets
Y5 in the same way as in (4.7).

It is well-known that for any jo > 0, a set {1, : j > jo,e € Ej, k € Z%} is an orthonormal
basis of L?(R?). Moreover, it is also an unconditional basis of the Triebel-Lizorkin space
F;q(Rd) for all values of parameters s € R, 0 < p,q < oo, see [40, Theorem 3.12]. We
shall now give the proof of Theorem 4.1 for m = oo using Meyer wavelets. For the sake of
simplicity we shall assume that the scale parameter jo = 0; the general case follows by easy

modifications.
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Proof of Theorem 4.1 for m = co. Let H be a Hestenes operator acting on functions on R?
such that:

(a) H is localized in Q.; in particular, H f(x) = 0 for all f € Cy(R?) and all z ¢ Q.,
(b) Hf = f for all f € Cy(R?) such that supp f C Q,
(c) H = H* is an orthogonal projection on L?(R%).
The existence of such operator in one dimension follows from the construction of Coifman
and Meyer [11], see [1, 24]. The higher dimensional analogue is obtained by tensoring of
one dimensional Hestenes operators, see [2, Lemma 3.1]. That is, H acts separately in
each variable as one dimensional Hestenes operator. Since linear combinations of separable
functions are dense in L? norm, we deduce that tensor product of H-operators, which are
orthogonal projections, is again an orthogonal projection. This shows the existence of an
operator H satisfying (a)—(c).

For j > 0 define T'; = Z?. Consider a Meyer wavelet system relative to the cube @ and
€ > 0 defined by

fom=HWS), j>0eecE kel
Properties of (i) and (ii) are an immediate consequence of (a)-(c) and the fact that the
multivariate Meyer wavelet system {wfk :j>0,e€ By ke 7%} is an orthonormal basis of
L2(RY).
To show property (iii), take any f € F;q(Rd) such that supp f C @. By [40, Theorem
3.12] we have

(411) f:ZZ Z<f7w§k> 7,k
j>0 ecE; kel

with unconditional convergence in F, if ¢ < oo and locally in any F; ¢ spaces for € > 0 if

q = co. By property (b) we deduce that for f € D'(R?), such that supp f C @, we have
Hf = f. Applying the operator H to both sides of (4.11) and using Theorem 3.5 yields
the conclusion (iii). Since supp f{j ;) C @, the series (4.4) converges (globally) in any F} ¢
spaces for e > 0 if ¢ = 0o

The proof of (iv) is a consequence of Lemma 4.6, whose proof is postponed till Section 7.

Lemma 4.6. Let {¢5, :j >0,k € Z% e € E;} be a multivariate Meyer wavelet orthonormal

basis of L*(RY). Let 0 < p < 00, 0 < ¢ < o0 and s € R. There exists a natural number
A > 10 such that for any f € ¥ (R?) with supp f C [—1,1]* we have

p/q
ey (ZZ 22 (Pl fwjk%n)) dr,

§>0 e€E; kel ic7d
where Aj = {k € Z¢ : k/27 € [-)\/2,)/2)%}.
Take any f € F3 (RY) with supp f C Q. For fixed j > 0 and e € E; we have

YD @@ ) = D (2 X @I 0500)

keA; iczd kezd

= > (@ prala/ VL 5",

kezd

(4.12) /]
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where n(k) € A; is such that n(k) — k € 270\Z?% Since f = Hf and H = H*, we have
(f, f&k)) = (f,¢§;). Hence, Lemma 4.6 yields (4.5) by the change of variables. O
Remark 4.7. Suppose that

W<m7j07€) = {f(e],k) ] 2 jO?k € Fjae € Ej}
is a local Parseval frame of smoothness m. Theorem 4.1(iv) shows the boundedness of the
analysis transform defined on Triebel-Lizorkin space F, (Rd) for distributions f satisfying
supp f C Q. To define synthesis operator we need to deﬁne a local version of Triebel-Lizorkin

sequence space f#(R?) with an extra decay parameter u > 0. Define £#(R?) as the space
of all sequences s = (s{; ;) with the quasi-norm

‘ 1/q
ol = | (3 3 (7 stoleae)’)

Jj>jo ecE; kel

p

(4.13)

+ sup 211277 koo 4 1)"[5; 1|
j>jo, eGEj, ]CGFJ‘\A]‘

If the smoothness m is finite, then the second term is not present since I'; C A;. Hence, the
second term appears only when m = oo in which case I'; = Z% and A; = ZIN[—2771\, 277 1\)4,
Then, for any p > 0 the analysis operator (with respect to W(m, jo,€)) maps boundedly
distributions f € F;Vq(]Rd) with supp f C @ into £#" in light of Proposition 7.2. Then for
sufficiently large p > 0, the synthesis operator

(4.14) 8= (i) = 22D D stnfow

]2]0 eeEj kEFJ‘
maps boundedly £ into F;q(Rd). To deduce this boundedness one needs to split the sum
in (4.14) over k € A; and k € Z4\ A;. The former sum converges by the boundedness of

synthesis operator from 5 (R?) to F5 (R?), see [40, Theorem 3.12]. The latter sum converges
by the same argument as in the proof of Proposition 7.4 for u > max(d/p, s + d/2).

We have the following extension of Theorem 4.1 to Besov spaces.

Theorem 4.8. Under the hypothesis of Theorem 4.1, in addition to (i)—(iv) the following
conclusions hold:
(v) Let s € R, 0 < p < o0, and 0 < g < co. Suppose that
(4.15) m > max(s, o, — ), o, = dmax(1/p—1,0).
If fe B‘;’q(Rd) and supp f C @, then
(4.16) F=) 03 AF fGa fom
j>jo e€E; keT;
with unconditional convergence in B
(vi) qB;q norm is characterized by the magnitude of coefficients of functions (4.1). That
is, for any f € Bzyq(Rd) and supp f C Q) we have

a/p\ 1/q
(4.17) HfHst)’q(Rd = (ZQJ s+d/2—d/p)q Z (Z| f, f]k) ) ) .

Jj=Jjo e€E; “Nkely
17
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Proof. If the smoothness parameter m is finite, then let {5, } be a multivariate Daubechies
wavelet. By [41, Theorem 1.20(i)] the analysis transform

B;,q(Rd) > f= ((f, ¢;k>)jzjo,kezd,eeEj € bf;,q(Rd)

is an isomorphism, where by = b;q(Rd) is a discrete Besov space. The bj , norm of a
— e ] 3
sequence 8 = (%) is given by

a/p\ 1/¢
= (T2 S (T )

Jj=Jjo eck; “kezd

(4.18) Is]

Take any [ € B;q(Rd) such that supp f C Q. Since (f,9§,) = 0 for j > jo and k & T,
the formula (4.16) and the norm equivalence (4.17) follow by the same argument as for
Triebel-Lizorkin spaces.

If the smoothness parameter m = oo, then we use multivariate Meyer wavelet instead. By
[40, Theorem 3.12(i)], the analysis transform

B;,q(Rd> > fe= ({f, ¢;k>)j20,k€2d,eeEj € b;,q(Rd)

is an isomorphism and an analogue of formula (4.11) for Besov spaces holds. Then (4.16)
follows by the same argument as for Triebel-Lizorkin spaces. Finally, we deduce (4.17) using
the isomorphism of analysis transform and the fact that (f, f('jk)> = ([, ¥5)- O

5. UNCONDITIONAL FRAMES IN LP(M)

In this section we combine Theorem 4.1 on local Parseval frame and our earlier results [3]
on smooth decomposition of identity in LP(M) to construct unconditional frames in LP(M).
It is worth emphasizing that our construction does not use any assumption on Riemannian
manifold (such as completeness or bounded geometry). In particular, we show the existence
of smooth Parseval wavelet frames in L*(M) on arbitrary Riemannian manifold M. This
construction is made possible thanks to the following fundamental result [3, Theorem 6.2].

Theorem 5.1. Let M be a smooth connected Riemannian manifold (without boundary) and
let 1 < p < oo. Suppose U is an open and precompact cover of M. Then, there exists
{Pv}tveu a smooth decomposition of identity in LP(M), subordinate to U. That is, the
following conditions hold:

(1) family {Py}uey is locally finite, i.e., for any compact K C M, all but finitely many
operators Py such that U N K # (), are zero,

(ii) each Py € H(M) is localized on an open set U € U,

(i1i) each Py : LP(M) — LP(M) is a projection,

(iv) Pyo Py =0 forany U #U' €U,

(v) > yey Pv = 1, where 1 is the identity in LP(M) and the convergence is unconditional
i strong operator topology,

(vi) there exists a constant C > 0 such that

1/p
(51) Mol < (S eeflp) - <cilfl,  for at £ € o)

Ueu
In the case p = 2, the decomposition constant C' =1 and each Py, U € U, is an orthogonal
projection on L*(M).
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Recall that M is d-dimensional Riemannian manifold. For every x € M there exists
r = r(x) > 0 such that the exponential geodesic map exp, is well defined diffeomorphism
of a ball B(0,r) C T, M of radius r > 0 with center 0 and some precompact neighborhood
Qx(r) of x in M. For m € M we consider a local geodesic chart (2,(r), k), where r = r(x),
K = K, = iz oexp,', and i, : T,M — R? is an isometric isomorphism. Define TP -
LP(B(0,3V/d)) — LP(,(r)) given by

(5.2) TP f(u) = <3\/_)d/i” FCY(u))

r | det g, (u)|1/2P)

where det g, denotes the determinant of the matrix whose elements are components of g in
coordinates of a chart k.

Lemma 5.2. Let 1 < p < co. For each x € M, the operator TP : LP(B(0,3Vd)) —
LP(Q,(r)) is an isometric isomorphism. Moreover, we have the identity (TP)™' = (T?')*,
where 1/p+1/p = 1.

Proof. Take any f € LP(B(0,3v/d)). Then, by the definition of Riemannian measure v and
the change of variables we have
/(5]

21l - (3—ﬂ)d . mﬁ%dv(u) - (3%[1 Lol

[ lrpdu=ifl
B(0,3vd)
A similar calculation shows that for any f € LP(B(0,3v/d)) and h € L” (B(0,3v/d)) we have

(21, T h) = / T FTY hely = / fhde = (f, h).
Qa(r) B(0,3v/4d)

Take any k € LP(Q.(r)) = (L” (Q.(r))*. Then by the definition of adjoint for any h €
L”(B(0,3v/d)) we have

for u € Q.(r),

du

(T2 Yk by = (6, T2 By = ((T2)" e, .
Since h is arbitrary we have (T?)~! = (T?')*. O
We choose 0 < & < 1/2 such that
B(0,1) c Q = (-1,1)* € Q. c B(0,3V4d).
We take a local Parseval frame of smoothness m € NU {oo}
W(m, jo, ) = {fGr : J = Jo, k €Tj,e € Ej}
as in Theorem 4.1.

Next we transport a local Parseval frame YW(m, jo, €) to the manifold M using operators
TP and TP, where 1/p+1/p' = 1.

Lemma 5.3. For any f € LP(M), 1 < p < oo, such that supp f C Q.(r/(3Vd)), r = r(x),
we have a reconstruction formula

(5.3) f= ZZZﬁ f]k) T3 fGikys

j>jo eeE; kel
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with unconditional convergence in LP(M). Moreover,

e
5 lleon = | (X X 5 (07 a0i7200))

j>jo e€E; kel

Y

Lp(M)

where p; i, are given by (4.2).
Proof. Since 1 < p < oo, we can identify the Triebel-Lizorkin space F) ,(R?) = LP(R?). We

have
supp(T?)~'f € B(0,1) C Q.
Hence, by Theorem 4.1 and Lemma 5.2 we have

(@7 =20 D D AT fou o = 22 D D UF T2 S Gy

j>jo e€Ej kel j>jo e€Ej; kel

with unconditional convergence in LP(R?). Applying TP to both sides yields the reconstruc-
tion formula (5.3).
By Theorem 4.1 and Lemma 5.2, we have

nmvaZZZ Wmmmwm

Jj>jo e€E; kel

:H(Z > 2 W, Tfl(f&k))ﬂpj,kf)l/g

§>jo e€E; kel;

P

p
We claim that
(5.5) supp pjr C [-1,1]*  for j > jo, k € T
Indeed, by (4.2) there exists k' € A; such that
supp pjx = supp pie = (222) ([0, 1] + &) € [0,277N + [-1/2,1/2]Y C [-1,1)7.

Hence, we can apply the operator 77 to functions p;;. Using (5.2) and Lemma 5.2 yields
(5.4). O

Theorem 5.4. Let M be a connected Riemannian manifold (without boundary) and 1 <
p < oo. Let W(m, jo,e) be a local Parseval frame of smoothness m € N U {oo}, jo € Ny,
and 0 < € < 1/2. Then, there exists at most countable subset X C M and a collection of
projections Po_, © € X, on LP(M) such that:

(1) for f € LP(M),

F=Y 33 (P ) T fE ) P T2 S i

z€X j>jo e€E; kel

with unconditional convergence in LP(M),

(ii) for f € LV (M), 1/p+1/p' = 1,

f:ZZZZ<f>PQ f(]k>< )Tff( k)»

z€X j>jo e€E; kel

with unconditional convergence in LY (M),
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(iii) for any f € LP(M) we have

1/2
(5.6) 11y < D (Z DN (S (P, T &,k>)>IT£’(pj,k))2)

rzeX Jj>jo e€k; kel

p

LP(M)‘

Proof. Let U be an open precompact cover consisting of geodesic balls
U=1{Q, =r)/(3Vd):z e M}

We apply Theorem 5.1 to the open cover U to obtain a smooth decomposition of identity
{Pq, }zenm in LP(M), subordinate to Y. By Theorem 5.1(i) at most countably many pro-
jections P, are non-zero. Hence, there exists at most countable subset X C M such that
{Pq, }zex is a smooth decomposition of identity in LP(M). By Theorem 5.1(v) for any

f € LP(M) we have
f=> Pof

rzeX
with unconditional convergence in LP(M). Applying (5.3) for each function Py, f, using the
fact that Py, is a projection, and summing over x € X yields (i). By [3, Theorem 2.15]
the family {(Pq,)*}sex is a smooth decomposition of identity in L (M). Hence, the same
argument yields (ii). Finally, by Theorem 5.1(vi) we have for any f € LP(M),

1FIE = ||Po, fIE.

zeX
Applying (5.4) to each function Pq, f yields (5.6). OJ

Let WP(M) denote the wavelet system given by Theorem 5.4:
(5.7) WP(M) = {Po, T} [y x € X, > jo, k €T, e € Ej},
and its dual wavelet system
(5.8) WV (M) = {(Po,)"TY fGry v € X,j 2 Jo.k €T, e € Ej}.

Note that by [3, Theorem 2.15] the definition of the dual system (5.8) is consistent with the
definition of the wavelet system (5.7).

As an immediate corollary of Theorem 5.4 we deduce the fact that W?(M) is a Parseval
frame of L*(M).

Corollary 5.5. For any m € N U {oo}, the family W?*(M) is Parseval frame in L*(M)
consisting of C™ functions localized on geodesic balls C2,., x € X. That 1s,

HAB =D "33 S (F P T2fE )P for all f € L*(M).

z€X j>jo ecE; kel

Proof. When p = 2 we have (Pg,)* = P, is an orthogonal projection on L?*(M). By
Theorem 5.4(i) we have

F=Y 30 (P TR ) P, TG sy for | € LP(M),
zeX j>jo eeE; kel';

with unconditional convergence in L?*(M). Since P, is an H-operator localized on ), and

operators TP preserve smoothness, we deduce the corollary. 0
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For general 1 < p < oo, Theorem 5.4 implies that the pair (WP(M), W¥ (M)) is an
unconditional frame of LP(M). The concept of a Banach frame was originally introduced
by Grochenig [22], see also [5, Definition 2.2]. We shall use the following definition of a
(Schauder) frame [4, Definition 2.2].

Definition 5.6. Let B be an infinite dimensional separable Banach space. Let B’ be the
dual space of B. A sequence (f;,g;j)jen with (fj)jen C B and (g;)jen C B, is called a
(Schauder) frame of B if for every f € B we have

jEN
with convergence in norm, i.e., f = lim, , Z?:1<gj, f)f;. An unconditional frame of B is
a frame (f}, gj);jen of B for which the above series converges unconditionally.

A frame in a Banach space can be equivalently characterized in terms of a space of scalar
valued sequences, see [5, Theorem 2.6]. In particular, we have the following proposition [4,
Proposition 2.4].

Proposition 5.7. A sequence (f}, g;)jen s an unconditional frame of B if and only if the
following conditions hold:

(i) there exists a Banach space Z of scalar valued sequences such that coordinate vec-
tors (e)jen form an unconditional basis of Z with corresponding coordinate functionals
(ej)jEI\U

(i1) there exist an isomorphic embedding T : B — Z, and a surjection S : Z — B, so that
SoT =1g, S(ej) = f; for j €N, and T*(e}) = g; for j € N with f; # 0.

The operator T is often called an analysis transform, S is a synthesis transform, and Z
is the sequence space of frame coefficients. We can reformulate Theorem 5.4 in terms of
Banach frames as follows.

Corollary 5.8. Let M be a connected Riemannian manifold (without boundary) and 1 <
p < oco. Then the pair of dual wavelet systems (WP(M), WP (M)), given by Theorem 5.4, is
an unconditional frame of LP(M).

The sequence space of frame coefficients is described via the formula (5.6) when the
smoothness parameter m is finite. If m = oo, it is necessary to add an additional decay
term as in Remark 4.7, see also Remark 6.4. In the case when M has bounded geometry, we
can improve this construction.

Theorem 5.9. Let M be a connected d-dimensional Riemannian manifold with bounded
geometry and 1 < p < co. Then the dual wavelet system WWP(M), WP (M)) from Theorem
5.4 can be chosen in such a way that there exist sets §2; . C M satisfying

1/2
59 Wl = |( S5 5 20 (R T () P )

x€X j>jo ecEj kel

LP(M)'

Proof. Since M has positive injectivity radius, there exists 79 < r;,; such that the exponential
geodesic map exp, is well defined diffeomorphism of a ball B(0,r) C T, M and ,(r) with

the same radius r = rg for all z € M. By Lemma 2.1 applied to r’ = 7“0/(3\/;[) < Tinj/2 and
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I = 3v/d/2, there exists a set of points X’ C M (at most countable) such that the family
of balls U = {Q,(r'/2)}rexs is a cover of M, and the multiplicity of the cover {Q,(r'l) =
Q.(ro/2) bzex is finite. Repeating the proof of Theorem 5.4 for U yields the same conclusion
with additional property that X C X’. In addition, we also have formula (5.6). For j > jo,
kel and x € X we define

Qe = (Ka) " (ro/ (3Vd) supp pj).
By (5.5) we have
(5.10) Qi C (ka) " (ro/(3Vd)[~1,1]%) C Qu(ro/2).
By (5.2) we have

o (VAN Xa,,., (1)
P ) _ jd/2 J.k,x
T3 (pjpe) (w)| = 2 ( o ) | det g, (u)|"/(2P) for w € M.
By the assumption of bounded geometry we have
(5.11) TP (pjr)(u)| < Zjd/QXQj’W (u) for u € M.

Hence, by (5.6) we have

= [ 3

rzeX

p/2
<Z Z Z 294)(f, (PQx>*T£/(f(ej,k)>>|2XQj7k’I(U)> dv(u)

iy , ) p/2
3 R0 30 30 S RTNEv ) e}
M\ zeX j>jo ecEj ke

The last step follows from (5.10), the fact that the multiplicity of the cover {,(ro/2) }zex
is finite, and the equivalence of finite dimensional /! and ¢2/? (quasi)-norms. O

Motivated by Theorem 5.9 we give a definition of discrete Triebel-Lizorkin spaces on
manifolds M with bounded geometry.

Definition 5.10. Suppose that the manifold M has bounded geometry. Let W?(M) be
a Parseval frame in L?(M) consisting of C™ functions localized on geodesic balls 2, =

Q.(r0/3Vd), z € X, as in Corollary 5.5. Let s € R, 0 < p < 00, and 0 < ¢ < co. We define
a discrete Triebel-Lizorkin space f; = f; (M) as a set of sequences

s = {5y fpew2(a); Y = szTff(ej’k) forz e X,5 > jo,kel,ec Ej,

such that

< 00.
Le(M)

Is

1/q
b= H (Z DD L I w|qmm)

z€X j>jo e€Ej kel

Note that when M is a compact manifold, the set X is necessarily finite and the above

definition is similar to that given by Triebel [41, Definition 5.7].
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6. PARSEVAL FRAMES ON COMPACT MANIFOLDS

In this section we show a characterization of Triebel-Lizorkin spaces on compact manifolds
in terms of magnitudes of coefficients of Parseval wavelet frames constructed in the previous
section. Our main theorem is inspired by a result due to Triebel [41, Theorem 5.9], which
we improve upon in two directions. In contrast to [41], Theorem 6.3 allows the smoothness
parameter m to take the value co. Moreover, it employs a single wavelet system W?(M)
for analysis and synthesis transforms, which constitutes a Parseval frame in L?(M) and it
automatically yields a reproducing formula.

We start with the fundamental result about the decomposition of function spaces on
compact manifolds, which is an extension of [3, Theorem 7.1] to the setting of Triebel-
Lizorkin spaces.

Theorem 6.1. Let M be a smooth compact Riemannian manifold (without boundary). Let
F(M) =F; (M) be the Triebel-Lizorkin space, where s € R, 0 < p < 00, and 0 < q < oo.
Let { Py }ueu be a smooth orthogonal decomposition of identity in L*(M), which is subordinate
to a finite open cover U of M. Then, we have a direct sum decomposition

F(M) = P Pu(F(M)),
veu
with the equivalence of norms
1fllzan = D N1Pofllrany  for all f € F(M).
Ueu

Proof. The proof of Theorem 6.1 employs Theorem 3.1 and is shown in a similar way as in
[2, Theorem 6.1]. This is possible due to the fact that the number of projections {Py}yey
is finite and hence they are uniformly bounded on F(M). That is, there exists a constant
C > 0 such that

|\ Pufllzan < C|lfllzon foral U eU, f e F(M)=F, (M).

Since each Py is a projection, Py (F(M)) = ker(Py —I) is a closed subspace of F(M). It
remains to show that the operator T' defined by T'f = (Py f)vey is an isomorphism between
F(M) and @, Pu(F(M)). Since { Py }uey is a smooth decomposition of identity in L?(M)
we have
f=> Puf forall feD(M).
veu
Hence, by Definition 2.10 and the fact that (Py)* = Py we have

f=>_Pyf forall feD(M).
veu
Hence, the operator T is 1-to-1. The operator T is onto due to the fact that Py o Py = 0
for U#V ell. O
Next we show an analogue of Lemma 5.3 for F; (M) spaces.

Lemma 6.2. Let M be a d-dimensional manifold with bounded geometry. Let s € R, 0 <
p<oo,0<qg<oo. Let m e NU{oo} be such that

(6.1) m > max(s, 0,4 — 5), 0pq = dmax(l/p—1,1/g—1,0).
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Let f € F3 (M) be such that supp f C Q.(r/(3V/d)), where x € M and 0 < r < r4,;/8.

Then, we have a reconstruction formula

(6.2) F=Y0 N AT Tt ny:

j=>jo e€E; kel

S—€

oq Spaces for any € > 0 if ¢ = oo

with unconditional convergence in ¥ if ¢ < oo and in F

Furthermore, we have

' 1/q
63) [ flles, ) = H $30 3) SELEEIR RV ITON

§>jo e€E; kel

pq

LP(M).

Proof. In Definition 2.4 of Triebel-Lizorkin spaces we have a freedom of choosing a partition
of unity {a;} described in Lemma 2.1 with r < r;,;/8. We require that {o;} satisfies (2.3)
in addition to (2.1) and (2.2). Consequently, the sum (2.9) collapses to one term

(6.4) [1£]

Let K = i, o exp,'. For a > 0 define a dilation operator d,g(x) = a¥?g(ax), where g is a
function defined on subset of R?. We can similarly define a dilation operator on distributions
by

Fs 00 = [l f oexp, oty ks ey = || f © exp, 0ig ||ws  a)-

d/2

(0ag,0) = (g9,0,1¢)  for ¢ € D(R?).

Since supp f C Q. (r/(3v/d)), by choosing a = r/(3v/d), we have supp d,(f o x~') € B(0, 1).
Moreover, dq(f o k™') € F, (]Rd). By Theorem 4.1(iii) we have

(6.5) Sa(for™) =Y (alfor™) fEr)fEn)

Jj>jo eeE; kel

with unconditional convergence in F5 (R?) if ¢ < co and in F5_<(R?) spaces for any e > 0 if
q = oo.

Define the operator T2 : L2(B(0,3Vd)) — L*(Q.(r)) as in (5.2). We can extend the
domain of this operator to distributions in D'(R?) with compact support contained in

B(0,3v/d). Indeed, take any g € D'(R?) with suppg C B(0,3v/d). Then, §,-1g € D'(R%)
satisfies supp d,-1g C B(0,7). Composing the distribution d,-1¢ with the chart x yields a
distribution in D’'(M) with support in Q,(r). Multiplying it by |det g,.|~'/* yields a distri-
bution T2g € D'(M), satisfying suppT?g C Q.(r). By (5.2) it follows that this definition
agrees on functions. In other words, if g is a function, then

(6.6) T2g(u) = |det gV (w)(8arg 0 k) (u)  for u € Qu(r).

Hence, for any g € D'(R%) with supp g € B(0,3v/d) and ¢ € D(R?) with supp ¢ C B(0, 3v/d)
we have
(6.7) (T2g,T2¢) = (8a-1g 0 K, | det gu| /26510 0 ) = (8a-19, 6a10) = (9, D).

We also claim for g € F;q(Rd) with supp g € B(0,3V/d), we have

(68) ||T3g| Fj  (RY) = ||(| det Ok o) fifl)(sa_lg‘

In the first step we used (6.4), whereas the last step uses Theorem 3.2 and the fact that the

multiplier | det g.|~'/* o k™! is bounded and bounded away from zero on B(0,r).
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Applying operator T to both sides of (6.5) and using (6.7) yields
(6.9) TEGu(Fon) =3 > D (TX0u(F 0w TG T ffiy
Jj>jo e€E; kel

with the same convergence as in (6.5) in light of (6.8). If f is a function, then (6.6) implies
that

(6.10) T2(5,(f 0 h~1)) (1) = % for u € O, (r).

Hence, to obtain (6.2) for a distribution f we need to apply (6.9) for | det g,|'/*f.
To show (6.3) we apply Theorem 4.1(iv) for d,(f o k™') € F5 (R?)

1/q
Fz,q@%d)xH(ZZZ 10 o) Semlone))

j2>jo e€E; kel

(6.11)  [[8.(for™h)

LP(Rd)‘
By (6.8) and (6.10) we have
18a(f 0 &™)

F5  (RY) = ||| det g,.| 7/ f] F; o(M)
By (6.7) we have
< (fOK ) f]k)> <|detgl€| 1/4f f]k)>

Hence, by Lemma 5.2, (5.11), and by the definition of operator TP, we deduce (6.3). O
We are now ready to show the main result of the section.

Theorem 6.3. Let M be a compact d-dimensional manifold. Let ¥, (M) be a Triebel-
Lizorkin space and let £5, be its discrete counterpart as in Deﬁmtwn 5 10, where s € R,

0 <p<oo,and 0 < q<oo. Let W*(M) be the Parseval wavelet system with smoothness
parameter m € NU {oo} as in Definition 5.10. Assume (6.1). Then the following holds:

(i) If f € F3 (M), then
s={sy} €f; (M) where sy, = (f, ), € W (M).

Furthermore,
(6.12) 11w, = [181lgs o)

(ii) For any f € F, (M) we have a reconstruction formula

f=>Y (Lo,

PEW?2(M)

with unconditional convergence in ¥,  if ¢ < oo and in ¥ # for any e >0 if ¢ = 00

p.q

Proof. Fix ro > 0 such that 7o/(3v/d) < 7in;/8. Let U be a finite open cover of M consisting
of geodesic balls

U= {0, :=Qu(ro/(3Vd)) : z € X},
where X C M is finite. Let W?(M) be a Parseval frame in L?(M) consisting of C™ functions
localized on geodesic balls Q, = Q.(ro/3v/d), z € X, as in Theorem 5.9. Let {Pq, }.ex be

a smooth orthogonal decomposition of identity in L*(M), which is subordinate to U, as

Theorem 6.1.
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Let f € F; (M). By Theorem 6.1

1/p
(6.13) 1 f1lws,, () < <Z | Pa, f| %;,,q(M)) :
zeX
By Lemma 6.2 and the fact that P, is an orthogonal projection, we have
(6.14) FPo,f = Z Z Z(Pﬂxf, Po, T2 6 ) Po. T2 £ 1y

J>jo e€E; kel';

with unconditional convergence in F;  if ¢ < co and in F ¢ spaces for any € > 0 if ¢ = oo.
Summing the above formula over x € X yields (ii). Furthermore, by Lemma 6.2 we have

1/q
1 Po. Flles. o) = H (Z S Y i, PQZTQE(fa,k))quQj,k,z)

J>jo e€E; kel LP(M)
Summing the above formula over z € X using (6.13) yields (i)
1/q
11he pcan = || D (Z PID B[ PQxT,?(fa,k))quQj,k,z)
z€X N j>jo e€E; kel Lp (M)

= ||{<f7 w>}¢€W2(M)||f5,q'
]

Remark 6.4. 1t is tempting to surmise that the sequence space flf,q(M ) characterizes coeffi-
cients of distributions in F¥ (M) with respect to the wavelet system W?(M). While this is
true when the smoothness parameter m is finite, it is actually false when m = oo. This is
due to the fact that wavelet system W?(M), which is defined by localizing Meyer wavelets,
is highly redundant. To describe the correct sequence space we need to add an additional
decay term in the definition of £5 (M) as it was done in the setting of R in Remark 4.7.
We adjust Definition 5.10 by introducing the space f;;j;(M ) with decay parameter p > 0 as
a collection of all sequences

S = {Sw}wey\ﬂ(M), w = PQxT:[?f&,k) for x € X,j Z jo, ke Fj,G S Ej,
with the quasi-norm

1/q
lslles = H ( Y Y szq<s+d/2>|sqpm,k,z)

z€X j>jo ecEj kel

Lr(M)
+ sup 281277 koo + 1)H|sy| < o0.
z€X, j>jo, e€L;, k€T ;\A;

Then for sufficiently large p > 0, the synthesis operator
(6.15) s=(sy) > Y syt

PeEW?(M)
is bounded from £5/'(M) into ¥ (M). This is a consequence of Remark 4.7 and the fact that
the set X, which consists of centers of geodesic balls €2, covering a compact manifold M, is
finite. We leave the details to the reader. As a consequence, the space f;;g(M ) characterizes
magnitudes of coefficients of distributions in F; (M) with respect to the wavelet system

W2(M), provided that g > max(d/p, s + d/2).
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We finish by stating a counterpart of Theorem 6.3 for Besov spaces. In analogy to Defini-
tion 5.10 we define a discrete Besov space by (M) as as a set of sequences

S = {Sw}w€W2(M)a P = PQzTach(P},k) forx e X,j5 > j0,k € Fj,e S Ej,

such that

/pN\ 1/
by, (M) = (ZZQJ s+d/2—d/p)q Z (Z lsjk’p)lp) ! < .

zeX j>jo ecE; kel

Theorem 6.5. Let M be a compact d-dimensional manifold. Let B, (M) be a Besov space,
where s ER, 0 < p < 00,and 0 < ¢ < co. Assume

m > max(s, o, — §), o, =dmax(1l/p—1,0).

Then the following holds:
(i) If f € B, (M), then

s={sy} €b, (M) where sy, = (f, ), € W?(M).
Furthermore,

(6.16) 11

(ii) For any f € B; (M) we have a reconstruction formula

f=> (fow,

PEW?2(M)

Bs (M) = |[8]|bs ,(a1)-

with unconditional convergence in B;  if ¢ < oo and in By © for any e >0 if ¢ =

p.q

Proof. We follow along the lines of the proof of Theorem 6.3. By Corollary 3.6 we deduce a
counterpart of Theorem 6.1 for Besov spaces. That is,

1/p
Bs (M) = <Z | Pa, f1IE gﬂ(M)) :

zeX

i

Since manifold M is compact, the interpolation definition (3.9) of Besov spaces coincides
with a definition using smooth partition of unity on M, see [39, (7.3.2)(8)] and [34, Theorem
3]. Hence, we can show an analogue of Lemma 6.2 for Besov spaces using Theorem 4.8 in
place of Theorem 4.1. In particular, (6.14) holds for f € By , with appropriate unconditional
convergence. Moreover,

a/p
‘ZB; v2213+d/2 d/p)q Z (Z] f, Pa, x(f(]k)>|> i

JjZJjo ecE; “Nkely

1 Pa, f]

The rest of the argument is an easy adaptation of the proof of Theorem 6.3. O
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7. PROOF OF LEMMA 4.6

In this section we give the proof of Lemma 4.6, which enables us to compute norms of
localized distributions in Triebel-Lizorkin spaces using highly redundant (globally defined)
Meyer wavelets on R?. Since all wavelet coefficients are needed for the reconstruction formula
(4.4), it is necessary to absorb excess of frame coefficients by periodizing the formula (4.10)
describing the discrete Triebel-Lizorkin space f; ,. Consequently, we show a modified formula
(4.12) for discrete Triebel-Lizorkin spaces, which holds for localized distributions in F3
spaces.

For a fixed j € Z we define a partition of Z¢ by

(7.1) Njy={keZ: k2 e20+[-1,1)%, 1€z

Let |l|oo = max{|l1]...,|la|}. If ¢ is a function on RY, define ;. (x) = 274/%)(27x — k) for
jEZ, keZ

Lemma 7.1. Let ¢ € S(RY). For all u > 0, there is C = C,, 4 > 0 such that for all j > 0,
1€Z% |l|lo > 2 and k € Aj;, we have

C
< - - 0
k)l < 291 (|l| oo + 1)#

(7.2) (27 for x € [-2,2]%.

A straightforward proof of Lemma 7.1 is omitted. Using Lemma 7.1 we deduce the fol-
lowing estimate for F5 (R?) spaces.

Proposition 7.2. Let 1) € S(R?). Let 0 < p <00, 0 < q< o0 and s € R. For all p > 0
there exists a constant C' > 0 such that for all f € F5 (R?) with supp f C [-1,1]* and j > 0,

1€Z% |l > 2, k € Aj; we have

Cll flles,, me)
7.3 . —fl
( ) ’<f7w],k>| = 23“<|l| )
Proof. Take any p; > 1, p; > p. Define

d d

S1=8§——+ —.

p DN
By [36, Theorem 2.7.1] we have a continuous embedding
(7.4) Fo (RY) < Fl ,(RY).

Fix a function n € C*(R%) such that n(x) = 1 for x € [—1,1]¢ and suppn C [-2,2]¢. Let
m € Ny be such that m > —s;. By the duality theorem for Triebel-Lizorkin spaces [36,
Theorem 2.11.2] we have

(F o(RY) = F 73 (R,
where 1/p; + 1/p) = 1. Combining this with (7.4) yields
(s i)l = I i) | < CIIF

< | f]
29

F;i,z(Rd) ||T’¢J7k‘| |F;,812(Rd)
(7.5) 1’

Ff,yq(Rd) ”77770],19 | |FZ§ 72(Rd) .



Since the Triebel-Lizorkin space F}} , (R?) is identified with the Sobolev space W (R?), see

(36, Theorem 2.5.6] we need to control partial derivatives of ni; ;. Take any multi-index
a € (Np)? such that |a| < m. Since the function 7 is fixed by the product rule we have

1, | N
/ ) <c Y 2 / 1(0%0) 17
R4 [~2,2)d

[81<]a]
. ) ) 1/p
< OO N ( / !85¢(2jx—k)|p1dx) .
pl<m 7722

Applying Lemma 7.1 to functions 9°v, || < m, yields

C
||n¢J7k||Fp,ly2(Rd) ||n¢]7k||Wp,1(Rd) = 2‘7#(|l|oo + 1)#

Combining this with (7.5) yields (7.3). O

Definition 7.3. Let 0 < p < 00, 0 < ¢ < oo and s € R. Let ¢%,, j >0, k € Z% e € E; be
the multivariate Meyer wavelets as in Definition 4.5. For a natural number A > 0 we define
an operator Zy : ¥, — F; by

(7.6) 2N =)0 > DS suse  for fEF; (RY.
720 €€E [l|oo>A kEA,
We define a g-function of f as
A g\ 14
(7.7) a(f) = (D> @l esa)’)
j>0 ecBj kezd

where x; (7)) = 292y (272 — k), I = [0,1]%. In the case ¢ = oo the above definition involves
(> norm.

The operator Z, is well defined and bounded by [40, Theorem 3.12]. In addition, the quasi
norm (or norm) in Triebel-Lizorkin spaces is equivalent with L” norm of g-function, i.e.

F; (k) = /R A(f)= /R (XXX @i, ¢;k>|)‘J)p/ "da.

j>0 eckj kezd

(7.8) /]

Proposition 7.4. Let 0 < p <00, 0 < ¢ < o0, and s € R. Let f € F;q(]Rd) be such that
supp f C [—1,1]%. Let A > 2. Then for any u > 0 there is C,, such that

(7.9) 1Zxf s ey < Cud™| f]
Consequently, for sufficiently large X > 2 we have

1/p
Fs (R = (/Rd q"(f — ZAf))

: (/Rd(ZZ 2. 2 <2“><j,k<x>r<f,w;m)")p/qu)l/p

jZO eEEj |l|oo§)\ kGA]‘J
30

Fp RY):

11

(7.10)



Proof. For simplicity we assume that ¢ < oo; the case ¢ = oo follows by easy modifications.
Since the set {¢¢, : j > 0,e € Ej;, k € Z%} is an orthonormal basis of L*(R?) we have

QU =D > ) @l e’

J>0 e€klj |l|oo>A kEA

By scaling we can assume that || f[|gs (e = 1. By (7.3) we have

23 (s—p) q
SCUEID DD M (e
520 [loo>A kEA,
Take any = € 28 + [—1,1)%, g € Z%. If k € A;,, then
r—27ke2(B—1)+2[-1,1)"%

Hence, if x;x(z) # 0 for some j > 0, then z — 277k € 277[0, 1]¢, and consequently [ = 3. In
particular, if |5]|s < A, then
q(Zxf)(x) =0

On the other hand, if |5], > A, then

(2 f)x) <C Y (2“8‘“’?’“%) |

Jj=>0
Choose sufficiently large p such that 6 = s — p+ d/2 < 0. Then,
1 , . 1/q 1
A Zf)z) < O 9i(s—=p)9jd/2\1 <C'—
@) < (2 ") < A
Then,
1
A(Zxf)(z))Pdx < 24(C")P _
/Rd( ( )\f)( )) ( ) Z (1_}_|5’00>pu

[Bloo>X
If we assume additionally that pu > d, then

(7.11) / ((Zof)(x)Pdz < C" APt
]Rd
Hence, by (7.8) we have

(7.12) 12]]

o = [ (a(Zaf)" <C"A7
5a®) = o

Since p is arbitrarily large, we deduce (7.9). By the triangle inequality (with a constant)
for F, , space we deduce that the norm of f is comparable with the norm of f — Z,f for

sufficiently large A, which shows (7.10). O
We are now ready to complete the proof of Lemma 4.6.

Proof of Lemma 4.6. First we will show that Lemma 4.6 under the assumption that A is
sufficiently large. More precisely, let A > 2 be as in Proposition 7.4. Take £ = 4\ + 2. We
shall show that (4.12) holds with A replaced by &.

By (7.1) we have

U Mi={kez k/2 e[-2X— 1,22+ 1)} = A;.
oo <A
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By (7.10), we have
p/q
(7.13) 1ty w0 = [ (X5 X @ us@lirisl)) ar
Jj>0 ecE; keA;
Hence, we automatically have

F3. Rd) > / (Z Z Z Z 2]SX]1€ f ¢§k+2115>|)q>p/qu.

j>0 ecE; keA; (€74

(7.14) /1%

The reverse inequality is a consequence of Proposition 7.2. Indeed, the integration on the
right hand side of (7.14) to can be restricted to [-2A—1,2X+1)¢ since supp x;x = 277 (I +k).
Hence, taking into consideration (7.13) and (7.14) it is sufficient to prove that there is C' > 0
such that for z € [-2\ — 1,2A 4+ 1)@

(7.15) (Z Z Z Z (2 Xk (@)[(f, w;k+2ug>|)q) 1/‘1 < Cllflle,, za).

7>0 eeEj k‘EAj 1#£0

Take any k € A;. Then, k € A,; for some /oo < A. Hence,
279 (k+21€) € 21+ 16/2) + [-1, 1) = A 11y
If | € Z% and | # 0, then |l + 1£/2]o > 2, by (7.3) we have

Cllflles,, ey
200 (|1 +16/2] 00 + 1)1
Hence, taking p > max(d, s + d/2) yields a constant C’ such that

Z| f w;k+2]l§>‘q < 0/2 JqquHFs (Rd

[{Fs Uinrane)| <

10

Therefore,
S DS @@ Uk ) < C2U SN, gy D 22,
§>0 e€Ej ke, 1£0 ’ §>0

This proves (7.15).

Next we shall prove that Lemma 4.6 holds for arbitrary A such that A =2 mod 4.

Fix an odd integer v € N and set n = 2. We will show that (4.12) holds with A replaced
by n, and with

(7.16) Aj = [=2071p, 27 ) N 72 = [-275,27y) N Z°.
Thus, we have obtained

p/q
PR R0 3530 3 HCENEITRNI) D

j>0 e€E; keM; |e7d

q\P/4
:/[2)\ 1,2241)d <Z Z Z Z 27X f>wgk+2ug>‘) ) dzx.

Jj>0 e€E; keMj ezd
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Recall that A — and consequently, & — depend on p,q,s. The last step of the proof is to
replace § and M; in (7.17) by n and A;. For this, recall that 2A+1 = - (2v + 1). Therefore

[—2A— 122+ 1) = [—y@v+ 1)@+ D)) = | @w+[-7.7)7).

|y|oo§V
Consequently, for any function g, there is
[ G oy
[—2A—1,22+1)4 ~¥,7)4 |y‘
(7.18) o/a
X/ ( Z Ig(fc+27y)|> dz,
A T

with the implied constants depending on v and p/q, but not on g. We apply this formula to
9= 209, where

9i(@) = Y cirlxin(@)’ and cp= D> (201(f, 05, ane)]) "

keM; eck; €74
For this, note that
M= @9z +4y).
|z|oo <v
Moreover, for z € (—7,7)%, k' € Aj and t € Z%, xy(2z — K + 2*1qt) £ 0 iff t = 0.
Consequently, we have for x € (—~, )¢

Yoogirt2w) = Y Y D urarn: (P @r — K+ 27y (y — 2)))*

|y|ooSV |y|ooSV k/GA |Z‘00§V

(7.19) - Z (Xj,k’(x))q Z Cj k! +2i+1z

k'eA; |2]oo <v

- Z penacs ZZ (2" IS, ¢Jk'+2”7l>‘) ’

k'eA; eck;|c7d

where in the last step we use n = 2y and £ = 2y(v + 1) = n(2v + 1).
Combining (7.17), (7.18) and (7.19) we get (4.12), with fixed n = 2y and A; given by
(7.16).
U
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