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Abstract— We propose a new model for no-reference video
quality assessment (VQA). Our approach uses a new idea of
highly-localized space-time (ST) slices called Space-Time Chips
(ST Chips). ST Chips are localized cuts of video data along
directions that implicitly capture motion. We use perceptually-
motivated bandpass and normalization models to first process
the video data, and then select oriented ST Chips based on
how closely they fit parametric models of natural video statistics.
We show that the parameters that describe these statistics can be
used to reliably predict the quality of videos, without the need
for a reference video. The proposed method implicitly models
ST video naturalness, and deviations from naturalness. We train
and test our model on several large VQA databases, and show
that our model achieves state-of-the-art performance at reduced
cost, without requiring motion computation.

Index Terms— Video quality assessment, natural video statis-
tics, human visual system.

I. INTRODUCTION

V IDEO content continues to proliferate, already account-
ing for more than 70% of internet traffic, and projected

to exceed 82% of internet traffic by 2021. Live internet video
will account for 13 percent of Internet video traffic by 2021,
and is predicted to grow 15-fold from 2016 to 2021 [1].
Distortions can affect videos as they are captured, transmitted,
and received. The task of assessing the quality of a video in the
presence of distortions is thus an increasingly important open
problem. In most instances in this process there is no reference
against which to measure their eventual perceived quality. Nev-
ertheless, it is of vital importance to providers of video content
to be able to monitor and predict the perceptual quality of their
videos, since this directly impacts customer satisfaction. Video
quality tools can also help make well-informed design choices
while creating systems for capturing, processing, transmitting,
and displaying videos. Video quality assessment algorithms
also have applications in video denoising, designing loss
functions for deep learning, video compression, and many
other high-impact areas.
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Fig. 1. Space-Time Chips capture elements in motion. On the left are frames
1 and 15 of a video of a basketball game. The ST-chip is marked in blue. The
player near the edges of the chip on the xy plane is moving to his right as
time progresses. The chip is a localized cut of all the frames between 1 and
15, perpendicular to the direction of his motion, which captures the player,
as shown on the right.

Collecting a large number of human opinion scores on the
quality of a video is the most reliable way to measure its qual-
ity. However, collecting subjective opinions of video quality is
a cumbersome and expensive task. It is also time-consuming
and cannot be deployed prior to or during transmission of
a video, when they are being live-streamed or have other
latency constraints. Subjective opinions are nevertheless useful
as a gold standard when designing objective video quality
assessment (VQA) algorithms. Objective VQA algorithms
are designed to correlate well with these subjective human
judgments, and deployed effectively and cheaply in video
processing systems. VQA algorithms are typically evaluated
on the basis of data gathered from studies on human judgments
of video quality. Subjective judgments of video quality are
first collected from a statistically significant number of human
observers and normalized with respect to each observer’s
scores to form an opinion score for each observer and for
each video. These opinion scores are then averaged across the
observers yielding single mean opinion score (MOS) for each
video. These mean opinion scores are the ground truth against
which objective VQA algorithms are trained and tested.

Objective VQA algorithms fall into three categories: full-
reference (FR), reduced-reference (RR), and no-reference
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(NR). FR VQA algorithms require a reference video against
which the distorted video is compared. RR VQA algorithms
require only some information from the reference video, but
not all, to predict the quality of a distorted video. NR VQA
algorithms do not make use of a reference video, and the mod-
els we present here fall in this category. NR VQA algorithms
rely on distortion-specific features or models of natural video
statistics to predict video quality, and are of great interest
because of their potentially broader applications.

In this work, we propose a NR VQA algorithm based on
the natural video statistics of space-time (ST) chips. ST Chips
are a new feature space that are defined as localized and
oriented cuts of a video volume, and an illustration of the
concept is shown in Fig. 1. We show that when a pristine
video is processed using models derived from the human
visual system, ST Chips extracted from the processed video
that are along the direction of motion follow certain regular
statistics, which is a breakthrough in our understanding of
natural video statistics. We first proposed the idea of using
ST Chips in [2], where we extracted ST Chips using optical
flow in a prototype algorithm. In this work, we develop that
idea further, introducing temporal processing of the video
data based on models of the human visual system, and
doing away with optical flow by using a simpler and more
elegant approach based on regularities revealed by analysis
of video statistics. Directions of motions are found in an
implicit manner by using well-known models of natural image
statistics and the smoothness of motion fields. The statistics
of ST Chips extracted along these directions of motion can be
modelled with parametrized distributions, and we show that
these parameters can be used to reliably predict the quality
of videos. We call our model ChipQA, which we designed
to be able to handle different kinds of videos. We show that
ChipQA achieves state-of-the-art (SOTA) performance on a
large new high-motion VQA database. We also test ChipQA
on several other VQA databases of professional and user
generated content and show that it achieves high-correlations
with human judgments of video quality, while also being very
computationally efficient.

The paper is organized as follows. In the following section,
we briefly review previous work in the area of NR VQA.
In section III, we describe our algorithm and its perceptual
underpinnings. In section IV we report and analyze results on
several large VQA database, and we conclude in section V.

II. PREVIOUS WORK

V-BLIINDS [3] is a no-reference video quality algorithm
that models the natural video statistics of the discrete cosine
transform (DCT) of frame differences. V-BLIINDS also makes
use of features that capture global and local motion coherency.
VIIDEO [4] is a “completely blind” NR VQA algorithm,
in that it is not trained on a database at all and can be
deployed as-is. VIIDEO makes use of the high inter-subband
correlations of statistical features that have been observed in
pristine videos but not in distorted videos. VIIDEO predicts
the quality of videos based on this observation and without
any training. Manasa and Channappayya [5] proposed an NR

VQA algorithm based on the statistics of optical flow. The
coefficient of variation of the standard deviation of optical flow
at different spatial locations is used to quantify irregularities
in motion. Dendi and Channappayya [6] proposed a statis-
tical model for the distribution of spatio-temporal bandpass
coefficients. The statistics of these coefficients are modelled
as following an asymmetric generalized Gaussian distribution.
The parameters from the statistical fits are used to predict
quality. ChipQA-0 [2] introduced the idea of localized cuts in
space-time, ST Chips, which may be viewed as highly local-
ized variations of space-time slices, which are defined over the
global range of spatial and temporal video coordinates, instead
of locally. The ST Chips in ChipQA-0 were extracted using
optical flow, making the algorithm expensive and impractical
for use when low-latency is a requirement. The statistics of
ST Chips are modelled based on the general observation that
natural videos follow regular statistics, and that the regularity
of these statistics is disturbed in the presence of distortions.
Quantifying these deviations from natural statistics can thus
be used to quantify the degree of distortion and the perceptual
quality of the video, by learning mappings between these
statistics and perception. Finding and describing these statistics
is a challenge but many clues about these patterns can be
gleaned from the human visual system. The human visual
system has adapted to the regular statistics of videos, using
them to reduce redundancies in visual signals. Mimicking the
front-end visual processes involved in encoding the visual
signal, it is possible to reveal departures from these regularities
and use them to quantify video quality.

TLVQM [7] is a recent NR VQA algorithm that defines
a number of distortion-specific and motion-related features
that are relevant to video quality. It does this in two stages.
In the first stage, a number of low-complexity features are
computed on every frame. These features capture the intensity
and spread of motion vectors and also include specific features
responsive to blockiness, blur, and interlacing. In the second
stage, high-complexity features are computed on one frame
each second. These include features that are tailored to cap-
ture underexposure, overexposure, noise, blur, blockiness, low
contrast, interlacing, low sharpness, low brightness, and low
colorfulness. TLVQM has many distortion-specific features
and can hence be used as a general purpose NR VQA
algorithm in many settings, but it also has many parameters
that must be tuned. It represents a different paradigm from
natural video statistics-based models, since it does not attempt
to model naturalness but instead explicitly models specific
distortions. CNN-TLVQM [8] is a variant of this method where
deep features are added to TLVQM features to obtain better
performance.

MMSP-VQA [9] is a deep learning based approach for
NR VQA. It was trained on a very large-scale dataset called
FlickrVid-150k. Features are extracted on each frame from
multiple layers of an Inception-Resnet-v2 [10] network pre-
trained on ImageNet [11]. The features were then averaged
and trained with a deep neural network. FlickrVid-150k and
the source code for MMSP-VQA have not yet been released.

NR Image Quality Assessment (IQA) algorithms have been
found to be quite competitive with NR VQA algorithms
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Fig. 2. Continuous and discrete versions of the temporal filter. We use 5 discrete coefficients for the filter in our implementation.

on user-generated content (UGC). This is because UGC is
dominated by spatial distortions and does not usually present
much temporal variation on quality. NR IQA algorithms such
as FRIQUEE [12] and HIGRADE [13] have been found
to outperform NR VQA algorithms on datasets such as
LIVE VQC [14], Konvid-1k [15], and YouTube-UGC [15].
FRIQUEE uses a bag of perceptually motivated statistical
features from different spaces, including luminance, color, and
gradients. HIGRADE models the statistics of the log-derivative
of gradients, and was designed for HDR content, but has been
found to work well on UGC content as well. BRISQUE [16] is
an earlier NR IQA algorithm that utilizes a spatial model of the
statistics of distorted pictures. BRISQUE models the statistics
of bandpass, divisively normalized coefficients of images,
based on the observation that bandpass, divisively normalized
pristine images follow a first order Gaussian distribution.
Distorted images change these statistics, and the parameters
of fits to the statistics of an image can be used to reliably
predict the quality of an image. The statistical models of dis-
torted pictures discovered in BRISQUE underpin subsequent
advances in NSS-based IQA research. NIQE [17] also models
spatially bandpassed coefficients, but does not require training.
NIQE quantifies the deviation of the statistics of an image
via a statistical fit to a small corpus of high-quality natural
images. CORNIA [18] is an NR IQA algorithm that does not
attempt to model the statistics of natural images, but instead
uses a dictionary to effectively represent images for quality
assessment. Li et al. [19] proposed a CNN based method for
UGC quality assessment and trained it on a combination of
three major UGC databases.

Space-time slices are cuts of a video through space and
time along fixed, pre-determined directions and spanning an
entire video. Space-time slices have been effectively used for
FR VQA, but are only applicable to stored videos that are
available to an algorithm in their entirety [20]–[23] Space-time
chips significantly modify this concept, since they are highly
localized in space and time, are sensitive to local motion, and
can be used in real-time applications. Space-time chips were
first introduced in ChipQA-0 [2], but were found using optical
flow in that method. Optical flow is generally expensive to
compute, and their requirement can make algorithms compu-
tationally impractical, although motion is relevant to any study
of video quality. Motion has also been used in several FR VQA

models [24]–[26] and NR VQA models [2], [3], [5], [7]. In our
work, we use implicit motion to define the ST Chips used in
quality prediction, based on a simple regularity maximizing
concept and without using optical flow. Our new model is able
to obtain better performance with much lower computational
complexity than the original prototype ChipQA-0. ChipQA-0
also performed poorly on UGC databases, while the full
model, ChipQA, incorporates temporal filtering, and utilizes
chroma and gradient features, yielding a holistic algorithm
that performs well on both professional and user generated
content.

III. VIDEO QUALITY ASSESSMENT USING SPACE-TIME

CHIPS

A. Space-Time Perception

When a video signal is incident on the retina, it is subjected
to bandpass spatial filtering expressed at the outputs of the
retinal ganglion cells. In a simple model of this process,
local spatial averages of the signal are subtracted from the
signal, and a form of adaptive gain control is applied on the
difference [27]. The resultant signal has a greatly reduced
entropy and is carried by the optical nerve at a reduced
bandwidth to further stages along the visual pathway. This
“contrast signal” is subsequently subjected to temporal entropy
reduction filtering ( [28]–[31]) which can also be modelled in
a simple way as a temporal bandpass filter operation, with
filter kernel given by

k(t) = t (1 − at) exp(−2at)u(t), (1)

where t denotes time, a is a constant parameter, and u(t) is the
unit step function. The function is plotted against t in Fig. 2a.
These processes serve to spatially and temporally decorrelate
the visual signal. These initial stages of the human visual
system motivate the use of spatial and temporal decorrelating
functions on videos before analyzing their statistics.

When the visual signal arrives at area V1 (the primary
visual cortex) it is decomposed into orientation and scale-tuned
spatial and temporal channels. Neurons in area V1 are
also sensitive to specific local orientations of motion. From
here, the visual signal is passed to area middle tempo-
ral (MT) in extrastriate cortex, where further motion process-
ing occurs [24], [28]. MT contains neurons sensitive to motion
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over larger spatial fields, and the neural representation of the
space-time visual signal at this point makes efficient use of
space-time regularity. Similarly, ST Chips are sensitive to local
orientations of motions aggregated over large spatial fields,
which we use to build spatiotemporal representations of video
data.

B. Defining Space-Time Chips

The first step in our algorithm is to compute spatial
mean-subtracted and contrast-normalized (MSCN) coefficients
of each frame in a given video. Given a luminance image
I [i, j, n] at frame index (time) n, the MSCN coefficients
Î [i, j, n] are:

Î [i, j, n] = I [i, j, n] − μ[i, j, n]
σ [i, j, n] + C

(2)

where i ∈ 1, 2..M , j = 1, 2..N are the spatial indices, M
and N are the height and width of the image respectively, C
is a constant for numerical stability, and

μ[i, j, n] =
k=K∑

k=−K

k=K∑
k=−K

w[k, l]I [i + k, j + l, n] (3)

σ [i, j, n]

=
√√√√ k=K∑

k=−K

k=K∑
k=−K

w[k, l](I [i + k, j + l, n] − μ[i, j, n])2

(4)

are the local spatial mean and standard deviation of luminance,
respectively. w = {w[k, l], k ∈ −K , .., K , l ∈ −K , .., K } is a
2D circularly-symmetric Gaussian weighting function sampled
out to 3 standard deviations and rescaled to unit volume.
We use K = 3 in our implementation. Research on natural
image statistics [12], [13], [16] has shown that, in the absence
of distortion, the coefficients Î [i, j, n] can be expected to
reliably follow a first-order generalized Gaussian distribution
(GGD). This is the basis of state-of-the-art NR IQA algorithms
such as FRIQUEE, HIGRADE, and BRISQUE, and is used
in VQA algorithms as well to model spatial statistics, e.g.,
in V-BLIINDS. Moreover, the MSCN operation supplies a
reasonable approximation to bandpass processing and adaptive
gain control (relevant to contrast masking) that occurs in the
retina.

Following spatial MSCN processing, we apply the causal
temporal filter (Eq.1) to groups of T ′ consecutive frames, with
no overlap between adjacent groups of frames. This is cheaper
than using overlapping blocks and we found that this does not
affect performance. The discrete coefficients of the filter, k[n],
are shown in Fig. 2b for a = 0.5 and the length of the filter
P = 5. We experimented with different values of a and discuss
how they affect performance in the results section. We denote
the result of this temporal operation as D.

D[i, j, n] = Î [i, j, n] ∗ k[n] (5)

We use reflective padding in the temporal dimension at
the boundaries of each block of T ′ frames such that the
output also has T ′ frames. We fix P = T ′ to mini-
mize the effect of boundary artifacts, as increasing P to

Fig. 3. Extracting ST Chips from a video volume of spatially and temporally
decorrelated frames from DT −R+1 to DT . One portion of the video is shown
for illustration. ST Chips are extracted by cutting through the volume over
R × R windows (that are spaced apart by 4R pixels) R frames back in time.
ST Chips are the angled squares in blue, and the windows are shown in red.

be greater than T would result in a greater use of padded
points. For ease of representation, denote the processed frame
D[i, j, n] for i ∈ 1, 2..M , j = 1, 2..N at time instance
n as Dn .

We are interested in finding important directions at different
spatial locations along which ST Chips can be extracted. In our
experimental model, we fixed T ′ = R for simplicity, so that
each ST chip is extracted from an R × R × R volume. At a
particular time instance T , consider the output of the previous
operation Dn over indices n = T − R + 1 to n = T , which is
a single block of R frames. Divide DT into spatial windows
of size R × R. For each R × R window, we define chips
that pass through the block of frames from DT backwards in
time to DT −R+1, and that are constrained to pass through the
center of the R × R window such that the normal vector to
any chip lies on the xy plane. Some examples of chips are
shown in Fig. 5 (in blue, with the R × R windows in red)
and chips for a single R × R × R volume are shown in Fig. 4.
These chips can be oriented at diverse angles. Among these
angles, one is assumed to best capture the local motion, and
a chip that is oriented perpendicular to the motion vector at
this location will capture objects in motion along the motion
vector. This is illustrated in Fig. 1. Under these constraints on
the chip, we are assuming that the motion is along a vector
on the xy plane, which relies implicitly on the assumption
that motion is linear and translational in small spatiotemporal
volumes. This is a reasonable assumption that forms the basis
of most modern motion estimation algorithms [32], [33].

In our earlier work [2], we found the directions of motion
explicitly using optical flow. This is expensive and depends
on the accuracy of the optical flow algorithm. Assuming that
motion is smooth for a pristine video, we expect the chips that
are perpendicular to the directions of motion to follow similar
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statistics as natural images, since they contain projections of
natural scenes as they move. The MSCNs of natural images
are known to reliably obey a Gaussian law [3], [16], [17], [27],
[34]. Assuming the veracity of these natural image statistics
models, and smoothness and linearity of motion in local
regions of pristine videos, we find the directions of motions
implicitly by selecting a chip having a sample set that is closest
to being Gaussian amongst all of the potential chips. This is
done in a simple and direct way by computing the sample
kurtosis [35] of each chip along Q different equally spaced
angles, from 0 to π , and selecting the chip that has the kurtosis
closest to 3, which is the kurtosis of a Gaussian random
variable, as is illustrated in Fig. 4. There are many possible
tests of the Gaussianity of a set of chip samples. These include
the Shapiro-Wilk test [36], the Anderson-Darling test [37],
the Martinez-Iglewicz test [38], and the D’agostino kurtosis
test [39], which is similar to the kurtosis method that we apply.
There are a number of reasons we use the simple sample
kurtosis. First, we are not actually testing for Gaussianity,
which these frequentist tests are designed for. Rather, we are
instead ranking the chips by kurtosis and selecting which
among them is most Gaussian in that sense. It is possible
that all, none, or a subset of the chips may pass a given
Gaussianity test, e.g., if there is little or no motion present, all
may present as Gaussian. Ranking procedures on test statistics
like those in [36]–[39] have not been shown to measure relative
Gaussianity. Further, by using the sample kurtosis we are
aligning with the powerful a priori and well-founded assump-
tion that the bandpass chips will reliably obey a zero-mean
generalized Gaussian law. The members of this distribution
class may be viewed as differing only in kurtosis, hence we
may view our use of kurtosis as a conditional measure. Given
the small sample size of 25, this is a powerful constraint.
Lastly, the computational efficiency of the kurtosis lends it to
fast implementations. We chose Q = 6 in our implementation,
and found that increasing Q improves performance, although
computational cost increases as well. Variation in performance
as Q is varied is discussed in section IV-E.

Having selected the chip that is most Gaussian at a window,
we then aggregate them across windows. We do not collect
chips from all R × R windows, but skip D = 4 windows in
each of the x and y directions. We study how performance
varies with D in Section IV-D. The centers of the windows
from which ST Chips are extracted are thus separated from
each other by a distance of 4R pixels in each dimension. This
is shown in Fig. 3. We discuss how this spatial downsampling
affects performance in Section IV-E. The aggregated chips
form a single “frame” S for every group of T ′ frames.
We discretize coordinates while searching for the best chip
such that each chip is of dimension R × R. The dimension
of the aggregated frame S of ST Chips is M ′ × N ′, where
M ′ = R

4 � M
R � and N ′ = R

4 � N
R �. We chose R = T ′ = 5 in

our implementation. Variation in performance as R is varied
is discussed in section IV.

We repeated the process described above for the spatial
gradient magnitude field of the video as well. Gradients con-
tain important information descriptive of edges and contrast
variations and have been found to be useful for image and
video quality assessment. Gradient-based features find a place

Fig. 4. Finding the best ST-Chip over a particular R × R spatial window.
Chips are extracted from a R × R × R video volume along 6 angles that are
equally spaced from 0 to π . The angles are shown next to their corresponding
chips. The chip which has the minimum excess kurtosis is selected as the chip
that best captures motion. This criterion is based on the Gaussianity of natural
images and the smoothness of motion.

in most SOTA algorithms [7], [12], [13], [40]. ChipQA com-
putes the gradient components in the vertical and horizontal
directions using a Sobel kernel of size 3 × 3. The Sobel
filter eliminates low frequency information and has high-pass
characteristics that detects edges. The statistics of these edges
are useful for quality assessment since they are often heavily
affected by distortions. We then find the MSCNs of the
gradient magnitude, apply the temporal filter k[n], and extract
ST Chips along the directions with kurtosis closest to 3 at
windows that are separated by a distance of 4R in each
dimension. We refer to these as “ST Gradient Chips”.

C. Statistics of ST Chips

MSCNs of spatial frames and of gradient fields are known
to follow regular statistics, and this is true of ST Chips of
spatial frames and of gradient fields as well because of the
smoothness of motion. ST Chips and ST Gradient Chips are
found to follow a generalized Gaussian distribution (GGD) of
the form:

f (x; α; β) = α

2β�( 1
α )

exp(−(
|x |
β

)α) (6)

where �(.) is the gamma function:
�(α) =

∫ ∞

0
tα−1 exp(−t)dt . (7)

The shape parameter α of the GGD and the variance of the
distribution are estimated using the moment-matching method
described in [41]. Examples of the first-order distribution of
ST Chips and ST Gradient Chips are shown in Fig. 5 and Fig. 6
respectively. Though the ST chip is chosen to be as Gaussian
as possible, previous research has shown that Gaussianity
breaks in the presence of distortions [13], [16], and for ST
chips the statistics could also deviate from Gaussianity for
large motion fields. These deviations from Gaussianity are
useful for quantifying losses in quality, and we find that the
GGD is able to model these deviations in the statistics well.
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Fig. 5. Empirical distributions of ST Chips. Pristine (original) distributions are in black and distorted distributions are in red.

Fig. 6. Empirical distributions of ST Gradient Chips. Pristine (original) distributions are in black and distorted distributions are in red.

Fig. 7. Empirical distributions of paired products of ST-Chip. Pristine (original) distributions are in black and distorted distributions are in red.

Fig. 8. Empirical distributions of paired products of ST Gradient Chips. Pristine (original) distributions are in black and distorted distributions are in red.

We also model the second-order statistics of ST Chips.
Define the collection of ST Chips aggregated at each time
instance T as S, and define the pairwise products

H [i, j, T ] = S[i, j, T ]S[i, j + 1, T ]
V [i, j, T ] = S[i, j, T ]S[i + 1, j, T ]

D1[i, j, T ] = S[i, j, T ]S[i + 1, j + 1, T ]
D2[i, j, T ] = S[i, j, T ]S[i + 1, j − 1, T ] (8)

H , V , D1, and D2 are found to follow a asymmetric general-
ized Gaussian distribution (AGGD), which is given by:

f (x; ν, σ 2
l , σ 2

r ) =

⎧⎪⎪⎨
⎪⎪⎩

ν

(βl + βr )�( 1
ν )

exp(−(− x

βl
)ν) x < 0

ν

(βl + βr )�( 1
ν )

exp(−(
x

βr
)ν) x > 0

(9)

where

βl = σl

√√√√�( 1
ν )

�( 3
ν )

and βr = σr

√√√√�( 1
ν )

�( 3
ν )

(10)

where ν controls the shape of the distribution and σl and σr

control the spread on each side of the mode. The parameters
(η, ν, σ 2

l , σ 2
r ) are extracted from the best AGGD fit to each

pairwise product, where

η = (βr − βl)
�( 2

ν )

�( 1
ν )

. (11)

Empirical histograms of the paired products of ST Chips
and ST Gradient Chips are shown in Fig. 7 and Fig. 8,
respectively. Images and videos are inherently multiscale, and
distortions can manifest themselves differently at different
scales. We compute ST Chips at two scales, and compute the
above features at each scale. We first apply low-pass filtering
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to the video and then downsample it to half the original size.
ST Chips are computed as described previously, and statistical
features are extracted from the lower scale.

D. Spatial Features

Spatial features are important for video quality assess-
ment. Since user-generated content is often dominated by
spatial distortions, NR IQA algorithms such as FRIQUEE
and HIGRADE achieve very good performance on UGC
datasets. Compression, aliasing, and interlacing are common
spatial distortions that affect professional-grade content as
well. In VIDEVAL [40], top-performing features were selected
from a number of state-of-the-art algorithms. It was found that
luma, color, and gradient information were vital to building
a competitive VQA algorithm. Likewise, we incorporate fea-
tures that describe the statistics of luma, color, and gradient
magnitude in our algorithm.

1) Luma:

• NIQE naturalness: We compute luminance features and
a naturalness score based on them every T ′ frames
using the image naturalness index NIQE. They consist of
parameters of GGD and AGGD fits to spatial MSCNs of
selected patches of luma in each frame, and a naturalness
score that measures the distance of the parameters from
a statistical fit to a corpus of natural images. These
features are averaged over the entire video over all
non-overlapping groups of T ′ frames.

• σ map: We also model the statistics of the bandpass
standard deviation σ in (4). The σ map is calculated
using equation 4. The MSCNs of the σ map also follows
a GGD, as shown in [34], we extract the shape, vari-
ance, skewness, and kurtosis of the distribution. These
features are averaged over the entire video clip. Previous
research [7], [40], [42] has also shown that standard
deviation pooling of features over time is useful for video
quality assessment. We therefore compute the standard
deviation of these features over every non-overlapping
five-frame interval, and average the standard deviation
values over the entire video. Again, T ′ = 5 frames
are used for ST chip computation, hence the pooling is
copacetic with the computation of ST Chips.

2) Color: We also model the statistics of the chrominance
of videos. We use the CIELAB [43] color space, which is
designed to model human perception of color. CIELAB has
a luminance channel (L∗) and two chrominance channels (a∗
and b∗), where a∗ denotes the position of the color along the
red-green axis, and b∗ denotes the position of the color on
the yellow-blue axis. Chroma (C) captures the intensity of a
color, and is defined as

C =
√

a∗2 + b∗2 (12)

We compute the chroma map for each frame in the video,
and find the MSCNs of the chroma map. The MSCNs are
known to follow a first order GGD [12], and the shape, vari-
ance, skewness, and kurtosis are extracted from the empirical
distribution of each frame.

We also compute the σ map of the chroma, using (4).
We extract the shape, variance, skewness, and kurtosis of the
distribution. These features are averaged over the entire video
clip. We also find the average standard deviation of features
over T ′ = 5 frame intervals, as described for the σ calculations
in luma space.

E. Gradients

Gradients are known to capture important information about
edges, and since some distortions modify (reduce or increase)
gradients, they have been effectively used to predict video
quality in [7], [12], [13], [40], [44]. We find the gradients of
the luminance in the vertical and horizontal directions using a
Sobel kernel of size 3. We then find the gradient magnitude at
each pixel and compute the MSCNs of the gradient magnitude
field. The second order statistics of the MSCNs of the gradient
magnitude are particularly useful for predicting video quality,
when combined with the features defined previously. The
paired products of the MSCNs of the gradient magnitude are
computed using (8), and modelled using AGGDs (9). Four
parameters are extracted on each paired product of the gradient
magnitude at two scales. Just as for chroma, we average
these features across time and also find the average standard
deviation over groups of 5 frames.

F. Quality Assessment

Table I gives a summary of all the features used in ChipQA.
A total of 221 features are extracted on each video, starting
from the T ′ = 5th frame. These are trained with a support
vector regressor, as described in the following section.

IV. EXPERIMENTS AND RESULTS

A. Validating ST Chips

We conducted a series of experiments to examine the
effectiveness of our method of generating ST chips. First,
we studied how well our method is able to predict motion
directions. The goal of our design is not to conduct very
accurate motion estimation, since it is not necessary for the
end goal of perceptual video quality measurement; the per-
ception of absolute motion by the human visual system is not
particularly accurate. Instead, we are interested in obtaining
motion data that is consistent with statistical information
available to human perception, rather than from complex
search or optimization processes. Nevertheless, it is of interest
to evaluate the efficacy of our simple kurtosis-based motion
orientation selector. However, several challenges arise when
attempting to quantitatively evaluate ChipQA’s implicit motion
orientation estimation process:

• Many popular optical flow databases [45]–[47] only have
optical flow on pairs of images, while ChipQA requires
at least 5 frames to select motion directions.

• ChipQA only finds the directions of motions, not the
magnitudes. Therefore some standard metrics such as
endpoint error (EPE) cannot be used to evaluate ChipQA.

• ChipQA computes the motion directions of patches, while
most optical flow algorithms and ground truth data com-
pute motion at the pixel level.
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TABLE I

DESCRIPTIONS OF FEATURES IN ChipQA

Fig. 9. Fits to empirical distributions. Fits are in red and histograms are in blue.

• ChipQA computes motion directions in quantized steps of
π/6 from 0 to π , while the ground truth data in optical
flow databases are generally more fine-grained.

• ChipQA does not differentiate between the angles θ and
π + θ of any motion direction θ , since the chips along
both directions are the same.

The Sintel optical flow database [48] is a viable way to
examine the implicit motion estimation of ChipQA, since it
has optical flow ground truth on entire videos. Sintel is not a
database of natural videos but of 3D animated films, so the
videos from this database do not necessarily obey natural video
statistics models. However, since animations are often made
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to be reasonably naturalistic, we have found that natural video
statistics models appear to hold well on this database.

As discussed earlier, absolute motion metrics are not appro-
priate for evaluating ChipQA. We therefore used the mean
absolute angular deviation (MAAD) between the ground truth
angular directions of motion θ (in radians) and the angles of
motion θ ′ predicted by ChipQA:

MAAD(θ, θ ′) = |θ − θ ′|. (13)

We compared ChipQA’s performance against the classical
New Three Step Search algorithm (NTSS) [49], which is a
block motion algorithm, and the Farnebäck dense optical flow
predictor [50]. NTSS is used in VBLIINDS and some imple-
mentations of the MPEG and H.26x codec families. Farnebäck
is used in ChipQA-0 and is the optical flow algorithm in the
popular OpenCV library. Since ChipQA computes motion over
patches, in order to compare the ground truth motion angles
with those of ChipQA, the ground truth motion vectors were
first averaged across 5 × 5 patches and across 5 frames in
time. We then found those angles along which these vectors
are oriented and mapped them to [0, π) by replacing all
angles θ > π with θ − π . We did the same for the motion
vectors predicted by NTSS and Farnebäck, so that they could
be compared to ground truth in the same way as ChipQA.
The results are shown in Table II, which shows that ChipQA
was competitive with respect to MAAD, outperforming NTSS
but was not as accurate than Farnebäck. The effectiveness
of ChipQA is quite remarkable, given its extremely simple
design. Indeed, we view these experiments as suggestive of
the type of information that might be used by the visual brain
to compute motion.

We also conducted a separate experiment whereby we stud-
ied the variation of kurtosis of ST chips on the Sintel database,
as the angular difference between the chip’s orientation and
the ground truth was varied. We computed the kurtosis of
all the chips on the Sintel database (on all videos), for fixed
differences between the true motion direction and each chip’s
orientation, and plotted the results as the differences were
increased by steps of π/6, in Fig. 10. When the angular
difference was 0, i.e., when all the chips across all videos
were exactly aligned with the ground truth motion vectors,
the average kurtosis was closest to 3, the kurtosis of a
Gaussian. As the angular difference was increased by steps
of π/6, the average kurtosis diverged from 3 up to angular
difference π/2, after which it again converged towards 3 as
the angular cycle completed. This provides further validation
of the simple angular motion estimator used in ChipQA, while
providing insights into the relationship between natural video
statistics and motion.

B. Databases

We evaluated our algorithm on four large databases, which
are described below:

1) LIVE Livestream VQA database [51] - This is a new
database containing 315 professional-grade videos with
synthetic distortions. 45 videos are of pristine quality,
and 7 different distortions were synthetically applied to

Fig. 10. Mean kurtosis across all chips in Sintel vs. the angular deviation
from the true motion direction.

TABLE II

MEAN ABSOLUTE ANGULAR DIFFERENCE (MAAD) BETWEEN

PREDICTED AND ACTUAL DIRECTION OF MOTION θ FOR
SINTEL DATABASE

each pristine video to create 315 synthetically distorted
videos. The distortions that were applied are compres-
sion, aliasing, interlacing, judder, flicker, and frame-
drop. All videos are of resolution 3840 × 2160, and the
study was conducted on a 4K TV. 40 people participated
in the study.

2) LIVE ETRI database [52] - The LIVE ETRI database
contains 437 videos generated by applying various levels
of combined space-time subsampling and video com-
pression on 15 diverse video contents. The bitrates in
this database vary from around 500 kbps to around
50 Mbps, and the database has 30 fps, 60 fps, and
120 fps videos. A total of 34 subjects took part in the
study.

3) YouTube UGC [53] - The YouTube UGC database
consists of 1500 20 second clips sampled from millions
of user-generated YouTube videos. Spatial and temporal
features were used to ensure the sampled videos were
diverse and representative of videos on YouTube. Each
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video was rated by more than 100 subjects. These videos
are of different resolutions and include content from
categories such as animation and VR.

4) Konvid-1k [15] - This database consists of 1200 videos
of authentically distorted user-generated content. All
videos are of resolution 960 × 540. Videos in this data-
base are known to not have significant temporal variation
in quality [40], [54]. Each video has 114 subject ratings
on average.

5) LIVE Video Quality Challenge (VQC) [14] - LIVE
VQC contains 585 videos of authentically distorted
unique user-generated content. Each video was labeled
by 40 human subjects on average. All videos are of user-
generated content.

C. Evaluation Details

We used a support vector regressor (SVR) with a radial
basis function as the learning engine for all our experiments.
20% of the data was randomly selected for testing and 80%
was used for training and validation. 5-fold cross-validation
was performed on the training set to find the best set of
hyperparameters for the SVR. Content separation is performed
for all experiments on the LIVE Livestream database and
the LIVE ETRI database, hence videos containing the same
content are always in the same fold of either training, valida-
tion, or testing. This prevents scores from being artificially
boosted. We repeated 1000 random splits on LIVE Livestream
and LIVE ETRI, which are databases containing synthetic
distortions and reference videos. We conducted 100 splits
for the Konvid-1K, VQC, and YT-UGC databases, which are
UGC databases. Databases containing synthetic distortions
generally result in larger standard deviations of the results,
which is why we performed more train-validation-test splits
on them. Grid search was performed over values of the kernel
coefficient γ , and the regularization parameter C that controls
the squared L2 penalty. γ was geometrically increased by
10 from 10−8 to 10. C was doubled from 2 to 1024. We report
Spearman’s Rank Order Correlation Coefficient (SROCC),
Pearson’s Linear Correlation Coefficient (LCC), and the root
mean square error (RMSE) between the predicted scores
and the mean opinion scores for each algorithm. SROCC
measures the monotonicity of the relationship between the
two quantities, while the LCC measures the linear correlation.
Since the relationship between the predicted scores and the
MOS may not necessarily be linear, the predicted scores s
were first passed through a logistic non-linearity [55]

f (s) = β1(
1

2
− 1

(1 + ex p(β2(s − β3))
) + β4x + β5, (14)

before computing the LCC. The parameters are found by
fitting f (s) to the MOS.

D. Implementation Details

We used the luma definition from ITU Recommendation
BT.709 [56]. We use a frame-buffer of length T ′ = 5 frames
to compute ST Chips, keeping in mind potential applications
of our algorithm in scenarios requiring low-latency, where

TABLE III

MEDIAN SROCC FOR 1000 SPLITS ON THE LIVE LIVESTREAM VQA
DATABASE FOR DIFFERENT VALUES OF K , WHERE WINDOW SIZE IS

2K + 1 × 2K + 1

TABLE IV

MEDIAN SROCC FOR 1000 SPLITS ON THE LIVE LIVESTREAM VQA
DATABASE FOR DIFFERENT VALUES OF a AND R = T ′

using a larger buffer size might cause delays in the overall
system. With a = 0.5, the discrete 5-tap causal filter k[n]
is representative of the continuous filter k(t). After t = 8,
there was a slight increase in the response which we rectified
to 0 by choosing P (length of filter) = T ′ (length of frame
buffer) = 5, since in any case the filter converges to 0 as
t tends to infinity. Using a temporal filter of length greater
than the frame buffer could cause serious boundary artifacts,
hence we fixed the length of the filter (P) to be the length
of the frame buffer (T ′), which was fixed at 5. We also fixed
R = T ′, so that each ST chip is square and is chosen from a
5 × 5 × 5 volume. The SROCC values obtained on the LIVE
Livestream VQA database for different values of T ′ and a are
shown in Table IV. The Table shows that taking a = 0.5 and
R = 5 not only provides a discrete filter that is representative
of k(t), but also provides the best predictions.

We used a window size of 2K +1 × 2K +1, where K = 3,
for MSCN computation. We also studied how performance
varied as this parameter was changed. Consistent with previous
studies [16] of spatial MSCNs, we found that the size of the
window did not significantly affect performance. We report
the median SROCC over 1000 splits of the LIVE Livestream
VQA database for different values of K , in Table III. Since
increasing K increases the computational cost, we used K = 3
in our final implementation.

A look-up table is used to implement the search for the
best ST-chip direction. Coordinates along different directions
from θ = 0 to θ = π/Q are pre-computed and rounded to the
nearest integer, since pixel coordinates are integer values. The
look-up table coordinates are computed using the polar form,
and are indexed by the value of θ and r , where r varies from
−(R + 1)/2 − 1 to (R + 1)/2, where R × R is the dimension
of each ST chip. Values are read from the look-up table during
the search for the best direction. We fixed Q = 6 in our imple-
mentation, and thus search 6 directions at each R × R window
to find the direction that best captures motion at that location.
Results for different values of Q are shown in Table VI for
ChipQA for R = 5. Increasing Q improves performance, but
beyond Q = 6 performance seems to drop off.

We also studied the effects of the chip downsampling factor
D. The performance of the algorithm on the LIVE Livestream
database for D = 1, D = 4 and D = 8 are presented
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Fig. 11. Box-plot of distribution of SROCCs for different algorithms for 1000 splits of the LIVE Livestream database.

TABLE V

MEDIAN SROCC FOR 1000 SPLITS ON THE LIVE LIVESTREAM

VQA DATABASE FOR DIFFERENT VALUES OF CHIP

DOWNSAMPLING FACTOR D

in Table V. Increasing D greatly reduces the cost of ChipQA
(see Table XIX), and using all of the chips is not necessary to
conduct effective video quality assessment. We used D = 4
in our final implementation.

E. Video Quality Assessment Results

Results on the LIVE Livestream VQA database, the LIVE
ETRI database, Konvid-1k, LIVE VQC database and the
YouTube UGC are shown in Tables VII,VIII, X, IX, and XI
respectively. The scores of each top-performing algorithm
are boldfaced in each table. We also give box-plots of the
SROCCs over the 1000 splits on the LIVE Livestream database
in Figure 11. ChipQA was able to achieve state-of-the-art
performance on all databases. In particular, ChipQA signif-
icantly outperformed other compared algorithms on the LIVE
Livestream database (Table VII) and the LIVE ETRI data-
base (Table VIII), both of which contain videos captured by
professional videographers subjected to distortions commonly
encountered at different stages of professional video capturing
pipelines. These distortions include judder, frame-drop, space-
time subsampling, etc. ChipQA produced the least variation in
SROCC across the splits of the LIVE Livestream database as
can be seen from the box plot and the standard deviations of
the SROCCs reported in Table VII. ChipQA also performed
very competitively on the UGC databases, which are known
to be dominated by spatial distortions [40], [54], hence image
quality algorithms were among the top performing algorithms
for UGC databases.

We also evaluated two deep networks (VGG-19 [57] and
ResNet-50 [10]) on the LIVE Livestream database. Both
networks were pre-trained on ImageNet and used to extract
features from 25 random 227 × 227 crops from one frame
per second on the LIVE Livestream database. The 4096 out-
puts of the fully connected layer of VGG-19, and the 2048 out-
puts of the average-pooled layer of ResNet-50 for each patch

TABLE VI

MEDIAN SROCC FOR 1000 SPLITS ON THE LIVE LIVESTREAM

VQA DATABASE FOR DIFFERENT VALUES OF Q

were averaged across all patches, forming single 4096 and
2048 dimensional vectors, respectively, for each video. These
video-level vectors were then used as features to train an
SVR to predict video quality, using the same cross validation
method as described earlier. These feature-extractors have been
shown to perform quite well on full-reference tasks [58] as
well as on UGC databases [40]. However, they did not perform
as well as the other methods on the LIVE Livestream database,
which presents a significant variety and amount of temporal
distortions.

We ensured that videos of the same content did not appear
in the same fold of training, validation, or testing. Reference
videos and all of their distorted versions always appeared in
the same fold. This ensured that the algorithm would not
rely on learning content quality, and to prevent overfitting.
We also made use of the regularization parameter C , chosen
by cross-validation to prevent overfitting by the SVR. We also
measured the difference between the training and test SROCC
to verify that ChipQA was not overfitting to the database, and
found that the median difference between the SROCC on the
training set and the SROCC on the test set was 0.1598 (16%).

F. Performance by Distortion

We also evaluated each algorithm on each single distortion
in the LIVE Livestream database. The reference video and
the synthetically distorted video for each content were used
to evaluate the performance of each algorithm on each dis-
tortion separately. The results of this experiment are shown
in Table XII and Table XIII. ChipQA performed very compet-
itively on each distortion as well. The LIVE Livestream data-
base has a number of scenes with high motion and ChipQA
appears to be able to predict video quality well even for
complex, high-motion scenes. TLVQM uses “jerkiness” and
“jerkiness consistency” features which measure the similarity
of motion vectors in the forward and backward directions,
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TABLE VII

MEDIAN SROCC, LCC, AND RMSE FOR LIVE LIVESTREAM DATABASE. STANDARD DEVIATIONS ARE IN PARENTHESES. BEST PERFORMING
ALGORITHM IS BOLD-FACED

TABLE VIII

MEDIAN SROCC, LCC, AND RMSE FOR LIVE ETRI. STANDARD DEVIATIONS ARE IN PARENTHESES. BEST PERFORMING ALGORITHM IS BOLD-FACED

TABLE IX

MEDIAN SROCC, LCC, AND RMSE FOR KONVID 1K DATABASE. STANDARD DEVIATIONS ARE IN PARENTHESES. BEST PERFORMING ALGORITHM IS
BOLD-FACED

TABLE X

MEDIAN SROCC, LCC, AND RMSE FOR LIVE VQC. STANDARD DEVIATIONS ARE IN PARENTHESES. BEST PERFORMING
ALGORITHM IS BOLD-FACED

TABLE XI

MEDIAN SROCC, LCC, AND RMSE FOR YOUTUBE UGC. STANDARD DEVIATIONS ARE IN PARENTHESES. BEST PERFORMING
ALGORITHM IS BOLD-FACED

and which are hand-crafted to capture frame drops, which is
probably why it does so well on the frame drop category

of distortions. CORNIA constructs codewords from image
patches, which can capture simple patterns such as salt and
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TABLE XII

SROCC OF THE COMPARED NR VQA MODELS ON DIFFERENT SUBSETS OF THE LIVE LIVESTREAM DATABASE. THE SCORES OF THE TOP PERFORMING
ALGORITHM IN EACH CATEGORY ARE BOLDFACED

TABLE XIII

PLCC OF THE COMPARED NR VQA MODELS ON THE LIVE LIVESTREAM DATABASE. THE SCORES OF THE THREE TOP PERFORMING ALGORITHMS ARE

BOLDFACED

TABLE XIV

ABLATION STUDY WITH MEDIAN SROCC FOR 1000 SPLITS ON THE LIVE
LIVESTREAM VQA DATABASE AS DIFFERENT FEATURE SPACES ARE

REMOVED

TABLE XV

ABLATION STUDY WITH MEDIAN SROCC FOR 100 SPLITS ON

THE KONVID-1K DATABASE AS DIFFERENT FEATURE SPACES ARE
REMOVED

pepper noise, blockiness, and interlacing. Interlacing has a
very specific pattern of even and odd fields which lends itself
to codeword construction, which is probably why CORNIA
does so well on that category of distortions.

G. Ablation Studies and Feature Ranking

We performed ablation studies of the studied feature
spaces on the LIVE Livestream VQA database and the
Konvid-1k database. The Konvid-1k database was chosen to

be representative of UGC datasets. The results are shown
in Table XIV and Table XV. Each feature space contains
important quality-aware information about the video, but
removing some of the spatial features (chroma and gra-
dient features) appears to improve performance on LIVE
Livestream. On the other hand, removing chroma and gradient
features severely affects performance on Konvid-1k, showing
that spatial features are vital for UGC but can only bring about
the curse of dimensionality for datasets that have a significant
amount of temporal distortion. We also find that removing
ST chip features and ST gradient chip features from the
algorithm severely affects performance on LIVE Livestream,
but does not significantly affect performance on Konvid-1k.
This suggests that temporal information is not as important in
current UGC databases, validating earlier work that came to
the same conclusion [40], [54].

We also studied performance when just the ST Chips,
ST Gradient Chips, and the NIQE features were used. This
set of features corresponds to what was used in ChipQA-0,
but with our different and novel method of finding the chips,
and removing all the other feature spaces that are in ChipQA
but not in ChipQA-0. The median SROCC for just this
set of features is 0.7901, greater than the 0.7513 SROCC
for ChipQA-0, showing that ChipQA is conclusively better
than ChipQA-0, and that our novel method of finding chips
contributes significantly to the boost in performance.

We also ranked the importance of individual features in the
database using sequential forward selection. We started with
an empty set and then added a single feature to the feature
set that maximized the median SROCC over 100 content-
separated splits of the LIVE Livestream database. Repeating
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TABLE XVI

FEATURE RANKING FOR THE LIVE LIVESTREAM VQA DATABASE BASED ON SEQUENTIAL FORWARD SELECTION

TABLE XVII

CROSS DATABASE SROCC FOR METHODS TRAINED ON ROW ENTRY
AND EVALUATED ON COLUMN ENTRY FOR DATABASES WITH

PROFESSIONALLY-CAPTURED CONTENT

TABLE XVIII

CROSS DATABASE SROCC FOR METHODS TRAINED ON ROW ENTRY AND

EVALUATED ON COLUMN ENTRY FOR UGC DATABASES

this process, we obtained an ordering of the features. The top
10 features and their descriptions are presented in Table XVI.
We also report the median SROCC obtained when each feature
is added to the set of features ranked higher than it. The NIQE
score is, not expectedly, one of the top 10 features. The GGD
shape of the ST chips at both scales are also among the top
10 features. Gradients and chroma information also supply
features that lie among the top 10.

H. Cross Database Performance

We also evaluated the generalizability of ChipQA, TLVQM,
and VBLIINDS across the studied databases. LIVE Livestream
and LIVE ETRI are databases of professionally captured
content and are thus treated separately from Konvid, VQC,
and YT-UGC, which are UGC databases. Results of the
cross-database performance comparisons on LIVE Livestream
and LIVE ETRI are shown in Table XVII, while results on
the UGC databases are shown in Table XVIII. An SVR was
trained on the features from the database in the row entry
and the SROCC when the trained SVR was used to predict

scores using features from the database on the column entry
are reported. All of the compared methods yielded poor cross-
database performance, primarily because these databases have
very different characteristics in terms of both distortion type
and content type. On UGC videos, cross database performance
between Konvid and UGC was much better than on other
databases among all the compared methods, probably because
their contents are similar. YT-UGC spans a very wide range
of content, including animations, gaming, and VR, hence
these videos do not share many properties with the videos
of natural scenes found in VQC and Konvid, which is prob-
ably why the cross-database performances were so poor on
YT-UGC. The distortions in the LIVE Livestream and LIVE
ETRI databases are very different, involving high motions and
temporal subsampling, respectively, though they both contain
professionally-captured content. LIVE Livestream presents
distortions such as interlacing, judder, flicker etc, while LIVE
ETRI contains compression and temporal subsampling arti-
facts, which may explain the poor generalizability of all three
VQA methods on these two databases.In summary, NR VQA
algorithms trained on one type of database sometimes perform
quite poorly on others. While this might suggest weaknesses of
the predictive models, more likely it is because the databases
contain very different contents.

I. Computational Complexity

We found the computational cost of each algorithm by
computing the time each required to generate features on a
single 4K video containing 210 frames. We also provide a
crude estimate of the O(n) computational complexity and the
number of giga floating point operations (GFLOPS) for each
algorithm. The results are shown in Table XIX. ChipQA was
the most efficient NR VQA algorithm, much more efficient
than applying SOTA NR IQA algorithms on each frame. The
algorithms are not implemented in the same language and may
not be optimized, hence the computational times and FLOPS
cannot be compared directly, but since most practitioners use
these algorithms off-the-shelf, this provides a rough estimate
of relative complexity. All the algorithms run in linear time
but differ in the coefficient of linearity. The compute times
for the IQA algorithms were obtained assuming they would
be applied on all frames of the video. The times taken for
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TABLE XIX

COMPUTATIONAL ANALYSIS OF ALGORITHMS ON A SINGLE 3840 × 2160 VIDEO WITH 210 FRAMES FROM THE LIVE LIVESTREAM VQA DATABASE

FRIQUEE and HIGRADE are rough estimates obtained by
finding the times taken on a single frame and multiplying by
the number of frames. All the algorithms were run on an Intel
Xeon E5-2620 CPU with a maximum frequency of 3 GHz.
ChipQA is much faster than ChipQA-0, because it does not
involve the use of optical flow, and also because it performs
spatial and temporal downsampling.

V. CONCLUSION

We presented a new algorithm for no-reference video quality
assessment that is highly competitive with the state-of-the-
art and is computationally very efficient. ST Chips are a
novel feature space and the fact that they follow regular
statistics represents a significant advance in our understanding
of natural videos. We showed how these statistics can be
parametrized, and how the parameters of the statistical fits
can be used to predict video quality without the use of any
distortion-specific features. ChipQA achieves high correlations
with human judgments of video quality, especially of high
motion videos, and is also computationally very efficient.
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