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Abstract— Because of the increasing ease of video capture,
many millions of consumers create and upload large volumes
of User-Generated-Content (UGC) videos to social and streaming
media sites over the Internet. UGC videos are commonly captured
by naive users having limited skills and imperfect techniques,
and tend to be afflicted by mixtures of highly diverse in-
capture distortions. These UGC videos are then often uploaded
for sharing onto cloud servers, where they are further com-
pressed for storage and transmission. Our paper tackles the
highly practical problem of predicting the quality of compressed
videos (perhaps during the process of compression, to help
guide it), with only (possibly severely) distorted UGC videos
as references. To address this problem, we have developed a
novel Video Quality Assessment (VQA) framework that we
call 1stepVQA (to distinguish it from two-step methods that
we discuss). 1stepVQA overcomes limitations of Full-Reference,
Reduced-Reference and No-Reference VQA models by exploiting
the statistical regularities of both natural videos and distorted
videos. We also describe a new dedicated video database, which
was created by applying a realistic VMAF-Guided perceptual
rate distortion optimization (RDO) criterion to create realistically
compressed versions of UGC source videos, which typically have
pre-existing distortions. We show that 1stepVQA is able to
more accurately predict the quality of compressed videos, given
imperfect reference videos, and outperforms other VQA models
in this scenario.

Index Terms— Video quality assessment, natural scene statis-
tics, video compression, user-generated-content.

I. INTRODUCTION

IN RECENT years, digital images and videos have become
remarkably ubiquitous and now constitute the majority of

Internet traffic. According to [1], video streaming continues
to occupy a growing share of Internet bandwidth, and by
2022, it is expected that 82% of global “moving bits” will
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be picture and video content. A substantial portion of this
data is generated by streaming providers like Netflix, Hulu,
and Amazon Prime Video. The content they provide, with
some exceptions, has been created by expert photographers
using professional capture devices. These pristine videos are
generally (but not always) of high quality, and can usually be
used as references in subsequent Video Quality Assessment
(VQA)/compression processes. Because of the availability
of high quality reference videos, perceptual rate distortion
optimization (RDO) is often used to optimize the compres-
sion process, which is widely adopted by industry, such as
Netflix [2]. However, another category of videos are also
uploaded and downloaded in gigantic volumes by casual users,
called User-Generated-Content (UGC) videos. These imper-
fect videos are very often uploaded onto social platforms like
YouTube, Snapchat, Facebook, Instagram, and TikTok. UGC
is commonly captured by a wide variety of consumers, ranging
from skilled professionals to inexpert users having uncertain
techniques and often unsteady hands, resulting in numerous,
often commingled impairments of perceived quality. These
UGC videos have often undergone a series of processing
steps, such as editing, aesthetic modification, and compression,
before the user uploads them to an online server, where they
inevitably undergo another round of compression. The highly
diverse mixtures and severities of distortion that these UGC
videos contain are very difficult to model. Because of the
absence of high quality reference videos, traditional RDO
protocols that use reference VQA models as perceptual metrics
are less reliable. Since high quality pristine reference videos
cannot be counted on to guide compression, it is highly
desirable to find ways of assisting compression decisions
by accounting for the qualities of the source videos. This
challenging problem presents unique difficulties in perceptual
distortion modeling.

We remind the reader that VQA models can be conveniently
placed into two categories. Those that require a reference
signal, which includes Full-Reference (FR) and Reduced-
Reference (RR) models, and those that do not: No-Reference
(NR) models. Current mainstream reference VQA models
include the FR VMAF [3], VQM [4], SSIM [5] and VIF [6],
and the RR model ST-RRED [7]. The second main category
is that of NR models, which aim to accurately predict picture
quality without the aid of any reference videos. In applications
involving UGC videos, reference models (FR or RR) are
problematic, since comparing a possibly distorted test video

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 16:05:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2710-2969
https://orcid.org/0000-0003-0570-048X


7512 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

against a reference that is also distorted must lead to errors,
and possibly severe losses of quality prediction accuracy.
While NR models are intended to be able to predict the quality
of distorted-then-compressed videos, NR VQA remains a chal-
lenging research topic and the most competitive models still
have difficulty in predicting the quality of complex distorted
UGC videos [8].

Here we seek to advance progress on solving the problem
of predicting the quality of distorted-then-compressed videos.
For example, in a cloud server, many distorted and already-
compressed videos will be uploaded by users, only to be
further compressed without the benefit of a guiding pristine
reference. Instead, the source video may already contain
any of many kinds of possibly mixed distortions, including
almost-inevitable prior compression. Thus, standard reference
VQA models cannot be expected to produce optimal quality
predictions. To address this issue, we propose a method called
1stepVQA, which learns to predict compressed UGC video
quality, including relationships between native distorted UGC
video quality and that of further video compression. 1stepVQA
accomplishes this by monitoring losses of expected statistical
regularity in videos being analyzed. Since distortions can
cause the statistical properties of videos to deviate from well-
modeled natural regularities, it is possible to learn how distor-
tions affect “natural video statistics” and to use what is learned
to predict perceptual quality. By a ‘natural video,’ we mean
any high-quality video captured by an optical camera. ‘Natural
video statistics’ refers to a class of statistical models that have
been shown to accurately describe natural pictures and videos
that have been subjected to perceptually relevant bandpass and
nonlinear normalization processes [7], [9]. We use them to
measure deviations between statistical models of UGC videos
that have been subjected to compression, and to predict their
perceptual quality. In the approach taken here, we seek to
avoid the drawbacks of reference VQA models by also making
measurements of quality-aware features on the typically flawed
reference videos.

The essential tools needed to solve VQA problems are
databases of appropriate diverse video contents and distortions,
labeled with adequate amounts of subjective data. There are a
number of legacy VQA databases, including LIVE VQA [10],
LIVE Mobile [11], CDVL [12] and MCL-V [13], MCL-
JCV [14] and VideoSet [15], each containing about 10-20 pris-
tine video contents, and many distorted versions of them.
The distortions in all of these databases were synthetically
generated in isolation. While these databases have successfully
driven the development of early reference VQA models, they
are of limited value with respect to the UGC video quality
assessment problem. More recently, a few novel databases
have been developed, including LIVE VQC [8], KoNViD-
1k [16] and YouTube UGC [17], which contain many UGC
videos of very diverse contents and distortions. These data-
bases were originally designed for the development of NR
VQA models, but we will also find them useful here. The
source videos were collected from diverse users and online
repositories. These databases are not of direct value, and so it
was necessary for us to generate a new and dedicated subject
VQA database, containing UGC videos of highly diverse

real-world content and distortions as source “reference,” as
well as additionally compressed versions of them, to help us
develop and evaluate our model.

The rest of the paper is organized as follows: we introduce
related work in Section II. We present our newly built database
in Section IV. We describe our proposed model in Section V.
We examine our model performance in Section VI. Finally we
summarize the paper in Section VII.

II. RELATED WORK

Early work on VQA models largely focused on
reference-based models, beginning with the simple PSNR
and advancing to more sophisticated FR frame-based models
that better account for visual perception, including SSIM,
MS-SSIM [18], VSNR [19], FSIM [20], and DOG-SSIM [21],
and spatio-temporal models like VMAF and ST-MAD [22].
There are also successful RR models, such as ST-RRED and
SpEED-QA [23].

The development of NR models which do not require any
reference videos has been a hot topic in recent years, driven
by the need to evaluate UGC videos and older, lower-quality
content. Early models were often distortion-specific, targeting
only one or more specific distortions. Later, more general
approaches have involved training quality prediction models
to learn mappings from features to subjective judgments, e.g.,
BRISQUE [24] and V-BLIINDS [25], which make use of
natural scene statistics (NSS) models; TLVQM [26], which
deploys a simplified motion estimator, and more recent deep
learning models. VSFA [27] and its enhanced version [28] are
state-of-art deep learning VQA models which claim superior
performance on publicly available databases. PVQ [29] is a
recent published local-to-global region-based NR VQA archi-
tecture. There are other deep learning approaches including
NIMA [30], PaQ-2-PiQ [31], PQR [32], DLIQA [33], [34].
There are also completely blind (unsupervised) models, like
NIQE [35] and IL-NIQE [36].

The approach that we take to the problem of assessing the
quality of distorted videos undergoing compression relies on
spatial-temporal NSS models. NSS models are the foundation
of many FR, RR and NR models. In particular, “distorted
NSS” models seek to quantify losses of statistical regularity
in visual signals.

In these approaches, bandpass picture or video coefficients
are modeled by Gaussian Scale Mixture (GSM) distributions.
These models typically operate in a bandpass (wavelet, DCT
scale-space, etc.) domain. In the absence of distortion, percep-
tually relevant conditioning or divisive normalization nonlin-
earities tend to Gaussianize and further reduce the redundancy
of these coefficients. Departures from uncorrelated Gaussianity
of the coefficients arising from distortion are measured or
learned by Image Quality Assessment (IQA)/VQA models,
and mapped to perception.

One of the most commonly used spatial-NSS models, which
is closely related to methods used here, is BRISQUE. When
applied on videos, BRISQUE operates by computing Mean
Subtracted Contrast Normalized (MSCN) coefficients on a
frame basis. The statistics of MSCN of high quality video
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frames tend to follow a Gaussian distribution, but this char-
acteristic is generally disturbed by the presence of distortions.
The MSCN of distorted video frames are commonly modeled
as following a parametric Generalized Gaussian Distribution
(GGD), the parameters of which tend to vary with distor-
tion type and severity. During training, MSCN features are
computed on a set of distorted videos, from which model
parameters are extracted and then fed into a machine learning
tool along with human quality labels, to learn mappings from
model space to perceived quality. The trained model can then
be used to blindly predict the quality of videos.

In [37], the authors devised a spatial-temporal VQA model,
which utilizes the statistics of directional frame differences.
These are defined as differences between adjacent frames
that have been spatially displaced (by ±1 pixel) relative to
one another, thereby capturing directional space-time bandpass
behavior that exhibits high statistical regularity. We build
on this model in defining the quality-aware feature set
in 1stepVQA.

The new model we introduce here, called 1stepVQA,
utilizes similar underlying models as BRISQUE, but also
employs temporal features. Moreover, we created a new,
special-purpose subjective database to enable a unique train-
ing process, whereby two types of human subjective labels
are trained on: (i) pre-compressed quality, and (ii) post-
compressed quality. In this way, the 1stepVQA model is able
to learn to predict post-compression video quality, while also
accounting for pre-compressed quality.

Previously, we proposed an IQA model [38] to solve the
same problem (predicting the quality of still pictures with pre-
existing distortions that are then JPEG compressed). Unlike
1stepVQA, this prior approach, called 2stepQA, operates in
two distinct, sequential, quality assessment stages [39]. The
first stage conducts traditional NR IQA (e.g., using NIQE [35])
on the source picture, to form a prediction of the pre-existing
picture quality. In the second stage of 2stepQA, a standard
reference IQA model (e.g., SSIM [5]) is used to predict the
post-compressed quality relative to the source picture. These
quality predictions are then combined, using, for example,
a simple weighted product of FR/RR and NR stages. Instead,
1stepVQA attempts to predict the quality of compressed
videos by processing both the NR features from the reference
video and FR features on both reference and compressed
videos.

The contributions that we make are summarized as follows:
• We created a first-of-a-kind subjective VQA database,

by first collecting 55 UGC videos that were selected
from the existing LIVE VQC database, along with human
quality opinions of them from that database. To avoid the
usual process of hand-selecting compression levels as has
historically been done in the creating of VQA databases,
which introduces human bias, we instead implemented
a highly realistic perceptual RDO protocol using VMAF
based Pareto optimization, to create multiple compressed
versions of each video, on which we also collected a large
number of human subjective opinions.

• We used this psychometric resource to learn a new space-
time NSS feature-based VQA model, called 1stepVQA,

which utilizes both traditional spatial NSS features,
as well as new displaced space-time difference NSS fea-
tures. This new model does not require motion estimation,
or transformation to another domain. We show that using
displaced frame differences, rather than non-displaced
differences, boosts prediction accuracy. 1stepVQA is rel-
atively fast, uses fewer features than most other VQA
models, yet it generates highly competitive results against
other top performing models on this important practical
problem. We show that a combination of 1stepVQA with
a reference module leads to a further enhanced version
of 1stepVQA, dubbed 1stepVQA-R, which provides more
accurate prediction performance.

• We show that although reference VQA models are
able to guide traditional encoding optimization schemes
when there are available high quality pristine reference
videos, they fail to perceptually optimize the compression
of UGC videos with pre-existing distortions. However,
the new 1stepVQA model is able to handle these situ-
ations and can be used to improve the performance of
UGC encoding optimization processes.

We are making the source code of the 1stepVQA
model publicly available at https://github.com/xiangxuyu/
1stepVQA, and we are also providing the dedicated new
database free of charge at https://live.ece.utexas.edu/research/
onestep/index.html.

III. PREDICTING THE QUALITY OF

DISTORTED-THEN-COMPRESSED VIDEOS

Traditional FR or RR models require access to a pristine
reference video which has no visible distortions and is of very
high quality. They predict the quality of a distorted video by
comparing computed perceptual differences between it and its
pristine reference. Thus, traditional FR or RR models provide a
relative quality score which indicates the degree of perceptual
deviation of the distorted video from its pristine reference.
If the reference video is of very high quality, then the resulting
quality score may be regarded as a reliable absolute quality
score. However, if the reference video is distorted, then any
reference measurement loses meaning.

We exemplify the unreliability of FR/RR VQA models in
this context in Fig. 1. Given a pristine video Ih of high quality,
an FR or RR model (e.g., SSIM or VMAF) can be used to
predict the quality of its compressed version I ′

h by measuring
perceptual deviations between them. However, if the quality
of the reference video is degraded, such as the video Il , then
FR/RR VQA models become unreliable. As shown in Fig. 1,
the ranking of the four videos in quality (Mean Opinion Score,
or MOS) from high to low is Ih , I ′

h , Il , and I ′
l . The MOS

values indicate that the perceptual quality of the video I ′
h ,

which is the compressed version of the high quality reference
Ih , is significantly better than that of the low quality reference
Il and its compressed version I ′

l . However, both the Difference
Mean Opinion Scores (DMOS) and the VMAF scores reverse
the (predicted) quality order! The DMOS of I ′

l is less than
that of I ′

h , indicating that the former video is of better quality
than the latter. The VMAF score of I ′

l is greater than that of
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Fig. 1. An example of two reference videos, one of high quality (Ih ) and
the other of low quality (Il ), along with compressed versions of them (I ′

h and
I ′
l , respectively) from the new LIVE Wild Compressed Video Database. The

quality axis spans low to high quality from left to right.

I ′
h , resulting in the same conclusion with respect to DMOS.

In this case, both DMOS and VMAF fail to indicate the level
of subjective quality of two compressed videos, since they are
only able to make relative quality predictions, and they do not
at all account for the quality of the reference videos [38].

Motivated by these observations, one might instead attempt
to apply NR VQA models to simply predict the absolute
quality of the distorted-then-compressed videos using an NR
model. Unfortunately, the performances of current existing NR
VQA models are quite limited. Towards making progress on
this problem, we propose a new 1stepVQA model, which,
unlike traditional FR/RR VQA models, also makes use of
information descriptive of the intrinsic quality of the reference
videos, thereby improving prediction accuracy. Section VI-B
further explains and illustrates why FR/RR VQA models fail
in this scenario, and why traditional VQA performance metrics
may not reflect this.

IV. NEW DATABASE

In recent years, the number of UGC videos that are uploaded
daily has increased to an incredible degree. Most of these
contributors are amateur videographers having limited skills
and uncertain hands, hence, the qualities of these video
uploads varies significantly over a very wide range. These
UGC videos are then uploaded onto Internet servers, and pass
through multiple processing stages, before being streamed to
potentially millions of clients. These uploaded UGC videos
will often be corrupted by any of many possible distortions
(exposure, shake, multiple types of noise or blur and many
more). The stages of processing may introduce further defects,
including any additional video coding. For example, when a
video is recorded, it may be compressed within a device before
being uploaded. After being uploaded to a server, the video
may be further compressed for storage and transmission.

Under this scenario, the uploaded video may already suf-
fer from mixed in-capture distortions, against which there
are no reference videos of ‘pristine’ quality, hence FR/RR
VQA models may fail if used to predict the quality of the
pre-distorted/multiply-compressed video. While it would be
desirable to directly apply an NR VQA model, to the ultimate
compressed output, current NR algorithms are insufficiently
general to effectively conduct this very complex task. There

Fig. 2. Example reference videos from the new LIVE Wild Compressed
Video Database.

is also a lack of dedicated databases designed to model this
scenario. There appears to be a database that may relate to this
problem [40], but it is not publicly available. Towards filling
this gap, we created a new database, called the LIVE Wild
Compressed Video Quality Database, which contains hundreds
of compressed UGC videos, including the source (reference)
videos.

A. Database Content

We randomly selected 55 different reference videos (con-
tents) from among the 110 1080p videos contained in the
LIVE VQC Database, each of duration 10 seconds. These are
all UGC videos captured with highly diverse mobile cameras,
covering a wide range of contents and qualities. Most of these
videos are corrupted by diverse authentic, mixed in-capture
distortions.

Since the LIVE VQC database provides subjective scores,
specifically MOS, we randomly sampled the 55 reference
videos to match the MOS distribution of the 110 source videos.
In this way, we ensured that the set of reference videos spanned
a wide quality range. Fig. 2 shows a few example reference
videos from the new database.

B. Compressed Video Generation

We adopted the ‘Per-Title Encode Optimization’ [2] method
introduced by Netflix, which is based on VMAF and deployed
globally, to create and select compressed videos. Each refer-
ence video was subjected to two processing steps to simulate
stages that may occur when, for example, a video is uploaded
to a social media site. First, each video was spatially down-
scaled using bicubic interpolation (if needed) to four resolu-
tions: 1080p, 720p, 540p, and 360p. Second, we generated
these compressed videos at each down-scaled resolution using
H.264 at 17 compression levels using CRF: 1, 4, 7, . . . , 49.
Thus, for each video content, there is one 1080p reference
video and 68 altered versions of it (four resolutions) x
(17 compression levels). This yielded a total of 3740 videos
with downsample/compression distortions, which is far too
many to all be viewed by the limited number of subjects
that typically subscribe to a psychometric quality study in a
laboratory. Therefore, we adopted a strategy similar to that
used by video service providers to determine bitrate allocation
vs. predicted quality. To do this, we calculated the VMAF
scores of all the videos along with their bitrates, and used these
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Fig. 3. Convex hull curve used to select compressed videos of an examplar
video content.

to plot the convex hull curve of each video content. Based on
this curve, we selected four videos on the curve and included
them in the database. An example of the convex hull curve of
one video content is shown in Fig. 3. We chose VMAF scores
to draw the convex hull curve because it is a state-of-art FR
VQA model that is already used in this way in the streaming
industry [2], and its scores map approximately linearly against
perceptual quality, which is convenient for video selection
and distinction. To create downscaled/compressed versions
of each content that are perceptually separable from each
other, we selected four compressed videos on the curve hav-
ing VMAF adjacent score differences approximately between
10 and 20. The compressed videos at the four compression lev-
els have VMAF scores within the ranges [80,90] (compression
level 1), [60,70] (compression level 2), [40,50] (compression
level 3), and at the heaviest [20,30] (compression level 4),
respectively. We applied the same process on all contents,
yielding four perceptually different downscaled/compressed
versions of each, or 220 intentionally impaired UGC videos
overall, in addition to the original 55 (275 total). Since the
convex hull curve of each content is unique, likewise the
parameter combinations selected for each content are as well.
During the human study, the compressed videos were up-
scaled to 1080p before being displayed on the monitor.

Although using the convex hull curve to (Pareto) optimize
compression is highly effective (given pristine high quality
reference videos), it is not reliable if the reference videos
are not of high quality. For example, in Fig. 1, the lightly
compressed video I ′

l receives a high VMAF score, even though
both it and its reference video Il are both of very low quality.
Indeed, using VMAF to conduct perceptual RDO might lead to
even higher compression (and good VMAF scores), but even
lower perceptual quality.

It is important to note that using VMAF to create the
compressed content introduces a database bias so that VMAF
(or models using the same features as VMAF, like VIF [6]
and ST-RRED [7]), unfairly benefit from when applied on the
new database, and indeed, this bias has been observed. Hence
VMAF is separately analyzed in the later comparisons.

We adopted the H.264 video compression format in our
experiments. While more recent formats, such as HEVC,
VP9 and AVI exist, H.264 remains the most widely used
compression format. Moreover, H.264 is largely representative

of modem compression standards, which are sophistications of
the classic block DCT hybrid codec. In any case, the frame-
work taught here is extensible to arbitrary compression
schemes. We used the ffmpeg version 4.0.2 libx264 encoder
to apply H.264 compression. The compression speed was set
to slow mode, and the output video type was yuv420p.

C. Human Study

In order to obtain subjective quality labels on each video
(for model training, testing, and comparison), we conducted
a human study in the LIVE subjective study laboratory. The
participating subjects were mostly UT-Austin students without
a background in video quality. Each subject completed two
test sessions of duration about 45 mins, separated by at least
24 hours. The database of 275 videos was divided randomly
into two parts in each session, one containing 27 contents
and another containing 28 contents, including both refer-
ence videos and their respective four downscaled/compressed
versions, hence each subject viewed 135 and 140 videos
in consecutive sessions on different days. We adopted a
single stimulus continuous-scale quality evaluation protocol,
as detailed in [41] and used in [10], [11], [38], [42]. The
videos were played in a randomized order with each video
shown only once during each session, and where different
distorted versions of each unique content were separated
by at least 5 videos. The source videos were included as
references. The total number of subjects that took part in
the study was 40, and all of them successfully finished both
sessions.

At the start of the first session, each subject participated in
a visual acuity (Snellen) test, and were asked whether they
had any uncorrected visual deficiency. A viewing distance of
approximately two feet was maintained during the test. The
video sequences were displayed on an HP VH240a 23.8-inch
1080p monitor at their native 1920 x 1080 resolution, and
the subjects were asked to adjust the height and angle of
the monitor to find their best position. Before starting the
experiment, each subject was required to read and sign a
consent form including general information about the human
study, then the procedures and requirements of the test were
explained. A short training session was also presented at
the beginning of the first session, using a different set of
videos than in the test experiment, to help the subjects become
familiar with the procedures. After watching each video, each
subject was asked to provide an overall opinion score of the
video’s quality by dragging a slider along a continuous rating
bar. As shown in Fig. 4(a), the quality range was labeled
from low to high with two adjectives: Bad and Excellent. The
subjective scores obtained from the subjects were converted
to numerical quality scores in [0, 100]. We believe this is
superior to the ITU-R Absolute Category Rating scale, which
uses a five-category quality scale, since using a continuous
scale can expand the range of scores while providing richer,
denser data to train learning based models [10], [11], [38],
[42]. A screenshot of the subjective study instruction interface
is shown in Fig. 4(b). The interface was developed on a
Windows PC using the PsychoPy software [43].
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Fig. 4. (a) Screenshot of the rating bar shown to the subjects. (b) Screenshot
of the instruction interface shown to the subjects.

As described above, each subject was required to complete
a short training session before participating in the first test
session. The subject was given enough time to read instruc-
tions which explained the purpose and procedures of the study.
The subject was allowed to ask questions after reading the
instructions, which were answered by one of the researchers
conducting the study. Then, the subject was instructed to
open the study interface, and begin the training session. There
were six training videos in total, broadly covering the quality
range, allowing the subject to obtain a sense of the possible
video qualities they would encounter during the test session. A
researcher was present during the training session to ensure the
subject understood the procedures. During training, the subject
was encouraged to rate the quality of the videos, rather than
aesthetic aspects. Each subject was also encouraged to utilize
the full range and continuity of the rating bar, which was
labeled with Likert markings only at the end points, to avoid
biases caused by intermediate markings.

D. Data Processing

The subjective MOS were then computed following the
procedures described below. The collected raw scores were
first converted into Z-scores. Let si j k denote the score rated
by the i -th subject on the j -th video in the session k = {1, 2}.
The Z-scores were computed as follows:

zi j k = si j k − s̄ik

σik
, (1)

where s̄ik is the mean of the collected raw scores over all
videos assessed by subject i in session k, and σik is the
standard deviation. Conversion to z-scores removes subject
biases in the form of differences in the location and range of
values used by the subjects. Details of data processing such
as z-score computation can be found in [10].

While we applied the subject rejection procedure described
in [41], [44] to remove outlier subjects, we found that it was
not necessary. First, the criteria in [41] was designed for high-
quality television studies, rather than analysis UGC video.
Human subjects’ expectations of, and perception of UGC
video quality are naturally much broader than of television.
Moreover, we also found the inter-group correlations with and
without rejection to be nearly identical, as were the corre-
lations against the various tested objective models. Subject
scores of UGC content tend to be noisy, and hence include
more outliers that occur by chance, rather than by malintent.
Indeed, the largest outlier ratio was only 8.36%, from one of
the subjects. We are elaborating this point since we believe it
is worth re-thinking the use of some of the traditional data-
cleaning techniques when analyzing UGC content. Indeed,

Fig. 5. (a) MOS distribution across the entire LIVE Wild Compressed Video
Quality Database. (b) Scatter plot of the MOS obtained on all the videos in
the database.

it may result in an excess of data smoothing, reduced relevance
to reality, and a loss of valuable data. While 10 of the
40 subjects were marginally rejected, we elected to retain
all of the data, while noting that this changed the results
negligibly. Of course, with all subjects scores available, users
of the database may set their own rejection criteria.

The Z-scores of the 40 subjects were subsequently lin-
early rescaled to [0, 100]. Finally, the MOS were obtained
by computing the mean of the rescaled Z-scores of each
video.

E. Analysis

We first conducted a consistency test. We randomly split
the subjective ratings gathered on each video into two disjoint
equal groups, and computed and compared the MOS on
each video. We repeated the random splits 1000 times and
the median SROCC between the two groups was 0.9849,
which is excellent. We also compared the correlation of the
MOS of the 55 reference videos used in our new study,
against the previously obtained (crowdsourced) MOS on the
same 55 videos from the LIVE VQC database, and found
SROCC = 0.8390. The SROCC results show that our data are
reliable.

The overall MOS distribution and a scatter plot of the MOS
of the LIVE Wild Compressed Video Quality Database are
plotted in Fig. 5. Fig. 6(a) is a box plot of the MOS of
the reference videos and the four compression levels (but
across downscaling). The MOS decreases as the compression
is increased. Box plots indicate points as outliers if they are
greater than q3 +w×(q3 −q1) or less than q1 −w×(q3 −q1),
where w is the maximum whisker length 1.5, and q1 and q3
are the 25th and 75th percentiles of the sample data, respec-
tively. The plotted whisker extends to the adjacent value, which
is the most extreme data value that is not an outlier. A higher
index indicates heavier compression. Fig. 6(b) plots the MOS
across all contents, each color coded at a different compression
level. While the curves are nicely separated by content, it is
important to observe the mixing of MOS across contents,
which is largely caused by the reference distortions, rather
than the applied downscaling/compression. Fig. 6(c) shows
the 95% confidence intervals of MOS for the five different
compression levels (including uncompressed reference). As the
compression was increased, the confidence intervals became
narrower, suggesting that the perceived qualities of the videos
became slightly more concentrated within a narrower range.
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Fig. 6. (a) Box plot of MOS of videos in the LIVE Wild Compressed
Video Quality Database for different compression levels. The central red
mark represents the median, while the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, while outliers are plotted
individually using the ‘+’ symbol. (b) MOS of all contents for four different
compression (distortion) levels and reference videos, coded by color. (c) 95%
confidence intervals of MOS of videos for five different compression levels
(including reference videos).

V. 1STEPVQA MODEL

Research on the relationship between visual perception and
the statistics of natural images has aroused widespread atten-
tion [45]. These models become well-behaved when expressed
in bandpass domain, e.g., wavelets, DCT and Gabor trans-
forms, etc [46]. The 1stepVQA model utilizes an extended set
of video NSS models, that capture directional bandpass space-
time attributes and uses them to predict quality. In addition,
we developed an extended version of 1stepVQA, dubbed
1stepVQA-R, which combines the 1stepVQA features with
a reference module. An overview of the 1stepVQA and
1stepVQA-R models is shown in Fig. 7. We discuss the spatial
features and spatial-temporal features next.

A. Natural Frame Statistics

Here forward to distinguish them from more general spatial-
temporal NSS models, we shall refer to spatial (frame) NSS
as Natural Frame Statistics (NFS). The application of NFS
models in 1stepVQA is quite similar to BRISQUE [24].
To capture quality-aware NFS features, apply a local non-
linear bandpass operation on the luminance component of each
video frame, in the form of local mean subtraction followed
by divisive normalization. Given a video having T luminance
frames I1, I2 . . . , It . . . , IT , define spatial coordinates (i, j),
where i ∈ 1, 2 . . . M, j ∈ 1, 2 . . . N are spatial indices of
It , then the mean subtracted contrast normalized coefficients
(MSCN) Ît are:

Ît (i, j) = It (i, j) − μt (i, j)

σt (i, j) + C
(2)

where

μt (i, j) =
K∑

k=−K

L∑
l=−L

wk,l It (i − k, j − l) (3)

Fig. 7. (a) Flow diagram of 1stepVQA and 1stepVQA-R. (b) Feature
Extraction and MAX processing flows in 1stepVQA.

and

σt (i, j) =
√√√√ K∑

k=−K

L∑
l=−L

wk,l
(
It (i − k, j − l) − μt (i, j)

)2 (4)

where C = 1 is a stability constant, and w = {wk,l |k =
−K , . . . , K , l = −L, . . . , L} is a 2D circularly-symmetric
Gaussian weighting function with K = L = 3.

If there are spatial distortions present, then the statistical
distribution of frame MSCN coefficients tend to become
predictably altered [24]. For example, Fig. 8 plots the GGD
model of the MSCN coefficients of a frame of a UGC source
video, along with various compressed versions of it.

Following [24], [35], we use a Generalized Gaussian Distri-
bution (GGD) model of the MSCN coefficients. A GGD with
zero mean is given by:

f (x; α, σ 2) = α

2β�(1/α)
ex p(−(

|x |
β

)α) (5)

where

β = σ

√
�(1/α)

�(3/α)
(6)

and �(·) is the gamma function:
�(α) =

∫ ∞

0
tα−1e−t dt a > 0. (7)

There are two GGD parameters: a shape parameter α
which controls the ‘shape’ of the distribution, and a variance
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Fig. 8. GGD models of MSCN coefficients of a frame of a UGC source
video and various compressed versions of it. A higher index indicates heavier
compression.

parameter which is controlled and represented by σ . These
are estimated using the popular moment-matching approach
in [47]. We include both parameters as part of the feature set.

B. Natural Video Statistics

Here we refer to the spatial-temporal NSS of videos as
Natural Video Statistics (NVS), which are also significantly
affected by distortions, such as jitter, ghosting, and motion
compensation mismatches, as well as compression and trans-
mission artifacts. Moreover, UGC videos are often afflicted
by mixed in-capture distortions, such as camera shake, under-
or over-exposure, sensor noise, and color distortions, which
cannot be easily modeled.

While it is difficult to find regularities in the statistics of
motion, there are strong regularities of temporal bandpass
videos, such as frame difference signals [7]. However, our
model goes further, and also utilizes models of the statistics
of displaced frame differences. Given two adjacent frames,
perform a spatial translation of one of them, then compute the
displaced frame difference between the two frames. By doing
so, we seek to capture space-time statistics of videos without
computing motion. As it turns out, bandpass processing of dis-
placed frame differences are also very regular, and predictive
of quality. For simplicity, we used four diagonal directions to
compute displaced frame differences. Given a video with T
luminance frames I1, I2 . . . , It . . . , IT and spatial coordinates
(i, j), i ∈ 1, 2 . . . M, j ∈ 1, 2 . . . N , the four diagonal
displaced frame differences between each pair of adjacent
shifted frames are defined and depicted in Fig. 9. The four
displaced frame differences are:

Dt1(i, j) = It (i, j) − It+1(i − 1, j − 1) (8)

Dt2(i, j) = It (i, j) − It+1(i + 1, j − 1) (9)

Dt3(i, j) = It (i, j) − It+1(i − 1, j + 1) (10)

Dt4(i, j) = It (i, j) − It+1(i + 1, j + 1) (11)

The reason that we capture NVS in opposite directions
is because they provide complementary, and not redundant
distortion information relative to the direction of any motion
field. One of two opposite directions will generally be more in
the direction of local motion, and the other less so, presenting

Fig. 9. Depiction of a pixel in frame t and the non-displaced and four
displaced pixels in frame t + 1 it is differenced with.

different (more vs. less) statistical regularity in the correspond-
ing frame differences, which can be affected by distortion.
Then compute the MSCN coefficients of each of the four
diagonal displaced frame differences, D̂tk(i, j), k = 1, . . . , 4,
using (2). The corresponding values of μtk(i, j) and σtk(i, j)
are computed in the same way as in (3) and (4). As with NFS,
the GGD model (5) - (7) is a good fit to the spatial-temporal
MSCN histograms. Thus the histograms of each directional
difference D̂tk(i, j) also nicely fit the GGD model, each fit
yielding two GGD parameters.

Motion occurs along diverse different directions and over
different time durations, hence, the corresponding displaced
frame differences are statistically different, each expressive of
possible (or lacking) motion information. We assume that the
true local motion will best match one of the displacement
directions. In separate work, we have shown that the MSCN
coefficients of frame differences displaced in the direction of
motion strongly tend towards Gaussianity [48]. Hence, we find
the displacement direction where the largest GGD shape
value is obtained among the MSCN coefficients of the four
displaced frame differences, and only make use of the shape
and variance parameters obtained from the frame difference in
this direction. We will refer to this as the ‘MAX’ operation.
We apply this process on every frame of the reference video
to obtain four averaged shape features αk , k ∈ 1, 2, 3, 4 from
the four displaced differences. However, we only utilize the
displacement dmax where the shape value is the largest:

dmax = argmaxk∈{1,2,3,4} (αk) (12)

We thus compute the frame differences in the displacement
direction corresponding to dmax on both the reference and
compressed videos, and collect the maximum shape parameter
along with the associated variance parameters as features of
the 1stepVQA model.

Figs. 10 and 11 show frames from two exemplar UGC
source videos, containing high and low degrees of motion,
respectively. We will use these two contents to illustrate the
results of MSCN processing and the construction of GGD
models of displaced frame differences, and to compare these
with the MSCN and GGD models of non-displaced frame
differences.

Figs. 10(b) and 10(c) plot the GGD models of histograms
of MSCN coefficients of non-displaced and displaced frame
differences computed on the high motion video, and also of
several compressed versions of it, while Figs. 11(b) and 11(c)
plot similar GGD models of the same low motion video.
While the GGD models of the MSCN histograms of the source
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Fig. 10. (a) A luminance frame of a UGC source video containing high motion. (b) Histogram of the MSCN coefficients of the non-displaced frame difference
and several compressed versions of it. (c) Histogram of the MSCN coefficients of the displaced frame difference D̂t1(i, j) and compressed versions of it.
A higher index indicates heavier compression.

Fig. 11. (a) A luminance frame of a UGC source video containing low motion. (b) Histogram of the MSCN coefficients of the non-displaced frame difference
and several compressed versions of it. (c) Histogram of the MSCN coefficients of the displaced frame difference D̂t1(i, j) and compressed versions of it.
A higher index indicates heavier compression.

videos follow a Gaussian distribution, the GGD models of the
compressed videos deviate towards a heavy-tailed distribution
shape, especially at heavier compressions. It is interesting
to observe that the GGD models of the displaced frame
differences are less peaked than those of the non-displaced
frame difference.

However, there are significant differences between the
GGD models of non-displaced and displaced MSCN frame-
difference signals, those of the former being much more
peaked than those of the latter. In other words, displaced
MSCN frame differences tend to retain Gaussianity as the
compression parameter is varied. Although they remain
monotonic and are well separated, they are also more regular
(and as well we shall see, more predictable). One reason for
this is that in motion regions, where the motion direction
is similar to the frame-level displacement, redundancy is
better exploited. In directions opposite to motion, displaced
MSCN frame differences will produce very marked localized
changes, which tend to broaden the MSCN histograms. Even
on low-motion or static videos, the displaced frame differ-
ences become similar to spatial directional gradient operators,
which have been previously observed to enhance bandpass
statistical regularity and to enhance quality prediction [49],
[50]. However, as shown in Fig. 11, on low-motion video,
non-displaced frame differences fail to be predictive, as the
corresponding GGD models are not well separated across
different compression levels. On heavily compressed videos,
a high percentage of the MSCN coefficients of non-displaced
frame differences tend towards zero, tending to sharply peaked
distributions.

C. Reference VQA Module

In addition to the NFS and NVS features described above,
we also combined 1stepVQA with a reference VQA mod-
ule, forming a more generalized version, which we called
1stepVQA-R. The reference VQA component aims to capture
perceptual quality differences, mainly caused by compression
artifacts, between a compressed video and a reference video.
The quality prediction of compression distortion has been well
studied, and many VQA models are able to measure the degree
of compression artifacts quite well. We include the predicted
quality scores from any reference VQA model as one feature
of 1stepVQA-R. We show in Section VI-D that this additional
feature boosts the performance of 1stepVQA.

D. Feature Summary and Training

Table I summarizes the features that comprise 1stepVQA.
Images and videos are naturally multiscale, and it has been
observed and demonstrated that incorporating multiscale infor-
mation in both space and time (and space-time) enhances
quality prediction performance [7], [18], [24]. We extract all
of the listed features in Table I, at two scales. Scale 1 is the
original video resolution, while scale 2 is the downscaled (by a
factor of 2) resolution. This is accomplished by Gaussian pre-
filtering before down-sampling, as with BRISQUE. 1stepVQA
extracts features from both the source videos and compressed
videos, while the displacement dmax is computed only from
the source videos. While 1stepVQA is a reference VQA
model, it is unique since it deploys feature sets designed to
capture both NR aspects (of the source video) and FR aspects
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TABLE I

SUMMARY OF 1STEPVQA FEATURES

(of both). A total of 16 1stepVQA features are used, none
of which require motion estimation. In 1stepVQA-R version,
the predicted quality score of a reference VQA model supplies
one more feature.

Feature pooling in 1stepVQA and 1stepVQA-R is also
simple: all features are computed on a per frame basis, then
averaged across all frames. In our implementation, a Sup-
port Vector Machine Regressor (SVR) is used to learn a
regression model from the extracted feature space to quality
scores. Specifically, we conducted a cross-validation study on
1000 train-tests splits of each model on the new LIVE Wild
Compressed Video Quality Database, as detailed in Section VI.
Similar approaches are implemented in [24]–[26].

In Section VI-C, we study the performance of 1stepVQA,
and compare it against other models and feature combinations.

VI. PERFORMANCE AND ANALYSIS

We used the newly built LIVE Wild Compressed Video
Quality Database to evaluate and compare the performance
of the 1stepVQA model against other FR, RR and NR VQA
models. It is first worth noting that while DMOS labels are
typically supplied with existing quality research databases,
those have available pristine undistorted videos as references.
As discussed in Section III, DMOS only captures the quality
degradations of a test video with respect to a reference
video, which is a relative subjective quality score. However,
the ultimate goal of objective VQA models is to predict the
absolute quality of a tested video as represented by MOS.
Although VQA models are often evaluated against DMOS,
this is inappropriate unless the reference video is pristine.
Also, as discussed in [38], given imperfect references, DMOS
is unable to capture absolute video quality, as for example,
on UGC reference (original) videos suffering from pre-existing
distortions. Thus, when conducting subjective (or objective)
VQA on UGC videos, only MOS is appropriate.

We evaluated the relationships between predicted quality
scores and MOS using SROCC, Pearson’s (linear) correlation
coefficient (LCC) and the Root Mean Squared Error (RMSE).
To compute LCC and RMSE, the predicted scores are passed
through a logistic non-linearity before computing performance.
SROCC measures the ranked correlation of the given samples,
and does not require any remapping. Larger values of SROCC
and LCC indicate better performance, while larger values of
RMSE imply worse performance.

The best way to evaluate the generality of training based
algorithms is to conduct cross-database training and testing.
However, in our situation, there is no similar database that is
publicly available. Hence we were only able to test on the
new database. To do this, we randomly divided the database
into non-overlapping 80% training and 20% test sets, with
no overlap of original content between sets. In each iteration,

the number of samples in the training and test sets was
176 and 44, respectively. The same randomized splits were
repeated over 1000 iterations to avoid biased results, and we
report the median values of the results. During each iteration,
we conducted a cross-validation test using grid search to find
the best parameters C and g of the SVR model. All of the
compared VQA models, including 1stepVQA, were trained
(if needed) and tested on the new database using the same
process as described above, for fair comparison. When testing
the models that do not need training, we only report the median
values of each such model’s results on the 1000 test sets,
as with the training based models.

For comparison, we tested against prominent FR and
RR models: PSNR, MS-SSIM, FSIM, ST-MAD, VSI, and
our previously developed 2stepQA, and NR models: NIQE,
BRISQUE, V-BLIINDS, and TLVQM. We also included the
results of the modern deep learning NR VQA model VSFA.
We made use of the source codes released publicly by the
authors of the compared VQA models, and used their default
settings, including original code for chroma components,
if any.

Since we found that the 70th feature of TLVQM was the
same on all of the videos, we excluded it when training the
model.

A. Comparisons Against Mainstream VQA Methods

We first computed and compared the performance
of 1stepVQA and 1stepVQA-R against several reference and
NR VQA models, with the results shown in Table II. The
reference VQA component of 1stepVQA-R can be any ref-
erence VQA model. We chose FSIM because of its good
performance and singular phase feature, and included its scores
as one feature in 1stepVQA-R. We also show its performance
in Table II. To determine whether there exists significant
differences between the performances of the compared models,
we conducted a statistical significance test. We used the
distributions of the obtained SROCC scores computed over
the 1000 random train-test iterations. The non-parametric
Wilcoxon Rank Sum Test [51], which compares the rank of
two lists of samples, was used to conduct hypothesis testing.
The null hypothesis was that the median for the row model
was equal to the median of the column model at the 95% sig-
nificance level. The alternate hypothesis was that the median
of the row was different from the median of the column. A
value of ‘1’ in the table represents that the row algorithm was
statically superior to the column algorithm, while a value of
‘-1’ means the counter result. A value of ‘0’ indicates that the
row and column algorithms were statistically indistinguishable
(or equivalent). The statistical significance results comparing
the performances of the compared VQA algorithms using
SROCC are tabulated in Table V. The significance tests
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TABLE II

PERFORMANCES OF 1STEPVQA AGAINST VARIOUS FULL-REFERENCE, REDUCED-REFERENCE AND NO-REFERENCE VQA MODELS ON THE LIVE WILD
COMPRESSED VIDEO QUALITY DATABASE USING NON-OVERLAPPING 80% TRAINING AND 20% TEST SETS. ITALICS INDICATE NO-REFERENCE

ALGORITHMS. BOLDFACE INDICATES THE BEST PERFORMING MODEL

TABLE III

PERFORMANCES OF 1STEPVQA AGAINST VARIOUS FULL-REFERENCE, REDUCED-REFERENCE AND NO-REFERENCE VQA MODELS ON THE LIVE WILD

COMPRESSED VIDEO QUALITY DATABASE USING NON-OVERLAPPING 70% TRAINING AND 30% TEST SETS. ITALICS INDICATE NO-REFERENCE
ALGORITHMS. BOLDFACE INDICATES THE BEST PERFORMING MODEL

TABLE IV

PERFORMANCES OF 1STEPVQA AGAINST VARIOUS FULL-REFERENCE, REDUCED-REFERENCE AND NO-REFERENCE VQA MODELS ON THE LIVE WILD

COMPRESSED VIDEO QUALITY DATABASE USING NON-OVERLAPPING 60% TRAINING AND 40% TEST SETS. ITALICS INDICATE NO-REFERENCE

ALGORITHMS. BOLDFACE INDICATES THE BEST PERFORMING MODEL

Fig. 12. Box plot of the SROCC distributions of the compared algorithms
in Table II over 1000 randomized trials on the LIVE Wild Compressed Video
Quality Database.

show that 1stepVQA significantly outperformed most of the
other models. One exception was FSIM, which did nearly
as well using an expensive phase measurement model. Thus,
we included FSIM as the reference component of 1stepVQA-
R. By integrating with FSIM, 1stepVQA-R achieves much
better performance as compared with all other models. Fig. 12
shows a box plot of the attained SROCC correlations computed
over 1000 iterations, for each of the compared algorithms
in Table II. The 1stepVQA and 1stepVQA-R models yielded
more reliable results, with higher median SROCC values and
lower standard deviations than did the other compared models.
The median value of SROCC for 1stepVQA on the training
set, over 1000 randomized iterations, was 0.9271, which is not
much higher than the performance on the test set (0.8918) as
shown in Table II, strongly indicating that the trained model
was not overfitted.

We also repeated the same training and test procedures but
instead divided the database into 70% training and 30% test
sets, and 60% training and 40% test sets, with the results
given in Table III and IV respectively, to show the robustness
and generalization of the proposed 1stepVQA model. The per-
formance of most models was decreased, but 1stepVQA and

Fig. 13. Scatter plots and convex hulls of VMAF scores and MOS of videos
at four compression levels. ‘VMAF 1’, ‘VMAF 2’, ‘VMAF 3’, and ‘VMAF 4’
are the VMAF scores of videos compressed at levels 1, 2, 3, and 4 respectively.
A higher index indicates heavier compression.

1stepVQA-R were still the best performers among all models.
FSIM performed well using 80% training and 20% test set
divisions, but its performance decreased in Table III and IV,
showing that it is not as robust as 1stepVQA.

B. Limits of Reference Models

As mentioned in Section III, reference VQA models are
only able to measure the perceptual fidelity of a compressed
video relative to a possibly distorted reference video, but
existing reference models do not account for the pre-existing
quality of the reference. We use the popular FR VQA model
VMAF as an example to show this. As mentioned earlier,
the database is biased towards VMAF, since VMAF was used
to create a realistic RDO optimization schedule to enhance
the authenticity of the dataset. Since the compressed videos
were selected using VMAF RDO curves, VMAF is able to
perfectly distinguish between the compression levels of each
set of the four compressed versions of the same video content
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TABLE V

RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED BETWEEN SROCC VALUES OF THE VQA ALGORITHMS COMPARED IN TABLE II.
A VALUE OF “1” INDICATES THAT THE ROW ALGORITHM WAS STATISTICALLY SUPERIOR TO THE COLUMN ALGORITHM; “−1” INDICATES

THAT THE ROW WAS WORSE THAN THE COLUMN; A VALUE OF “0” INDICATES THAT THE TWO ALGORITHMS WERE STATISTICALLY

INDISTINGUISHABLE. ITALICS INDICATE NO-REFERENCE ALGORITHMS. BOLDFACE INDICATES THE BEST PERFORMING MODEL

Fig. 14. Scatter plots and convex hulls of FSIM scores and MOS of
videos at four compression levels. ‘FSIM 1’, ‘FSIM 2’, ‘FSIM 3’, and
‘FSIM 4’ are the FSIM scores of videos compressed at levels 1, 2, 3, and
4 respectively. A higher index indicates heavier compression. The outlier
points were excluded when drawing convex hulls.

in the new database, as shown in Fig. 13. As expected,
the database bias significantly elevates the overall performance
of VMAF. To show that this limitation generalizes to other
FR models, we also show scatter plots of another FR VQA
model FSIM in Fig. 14. For better visualization, we excluded
outliers when drawing convex hulls. FSIM also effectively
distinguishes between compression levels, but the correla-
tion against subjectivity decreases within each compression
level, similar to the VMAF. For example, at compression
level 1, both VMAF and FSIM predict all videos to be of
good quality, but their predicted MOS spans a much wider
range. This also shows the inaccuracy and limits of reference
models.

We also compared the performance of two reference models,
VMAF and FSIM, against 1stepVQA and 1stepVQA-R at
compression levels 2 and 3, using videos compressed at level
1 as references in Table VI. We chose FSIM as the reference
VQA module of 1stepVQA-R. FSIM, which is the second
best model in the Section VI-A, performed the worst in this
instance. At compression level 2, 1stepVQA and 1stepVQA-R
significantly outperformed VMAF. At compression level 3,
VMAF performed the best, while 1stepVQA was better than
FSIM. When combined with FSIM, 1stepVQA-R performed
much better at compression level 3. When comparing
overall performance at compression levels 2 and 3,

TABLE VI

SROCC BETWEEN VMAF, FSIM, 1STEPVQA AND 1STEPVQA-R
SCORES AND MOS AT COMPRESSION LEVELS 2 AND 3. VMAF, FSIM,

1STEPVQA AND 1STEPVQA-R SCORES WERE COMPUTED USING

VIDEOS COMPRESSED AT LEVEL 1 AS REFERENCES. FSIM WAS

USED AS THE REFERENCE VQA MODULE IN 1STEPVQA-R.
BOLDFACE INDICATES THE BEST PERFORMING MODEL

1stepVQA and 1stepVQA-R outperformed VMAF
and FSIM.

C. Feature Combination Performance Evaluation

We also conducted a series of feature studies to eval-
uate other possible 1stepVQA feature combinations. First,
we studied the efficacy of only selecting the displacement
direction yielding the largest shape parameter value among
four diagonal directions, against using GGD features from all
eight adjacent directions, and also against using non-displaced
frame differences. Second, we tested performance including
displaced frame differences along the same four diagonal
directions, but using larger displacements (than single pixel).
Finally, we also studied the efficacy of using eight displace-
ment directions (instead of four) to compute the direction
yielding the largest GGD shape value. To summarize:

• 1stepVQA-I: NVS features computed along all four diag-
onal directions without the MAX operation.

• 1stepVQA-II: NVS features computed along eight adja-
cent directions, without the MAX operation.

• 1stepVQA-III: Along with 1stepVQA features, include
features of frame differences spatially displaced by two
pixels.

• 1stepVQA-IV: Same as 1stepVQA, except applying the
MAX operation on the shape features from eight direc-
tions instead of four.

• 1stepVQA-V: NFS features only.

We show the number of features in each of these extended
versions in Table IX. We tested the four extended models
and report the obtained results in Table VII. Table VIII
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TABLE VII

PERFORMANCES OF THE 1STEPVQA MODEL AND FIVE EXTENDED
1STEPVQA MODELS, USING DIFFERENT FEATURE GROUPS.

BOLDFACE INDICATES THE BEST PERFORMING MODEL

TABLE VIII

RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED

BETWEEN SROCC VALUES OF THE VQA ALGORITHMS COMPARED

IN TABLE VII. A VALUE OF “1” INDICATES THAT THE ROW
ALGORITHM WAS STATISTICALLY SUPERIOR TO THE

COLUMN ALGORITHM; “− 1” INDICATES THAT THE ROW

WAS WORSE THAN THE COLUMN; A VALUE OF “0”
INDICATES THAT THE TWO ALGORITHMS WERE

STATISTICALLY INDISTINGUISHABLE

TABLE IX

COMPARISON OF THE NUMBER OF FEATURES OF VARIOUS

EXTENDED 1STEPVQA VQA MODELS

shows the results of the obtained statistical significance tests
comparing the performance of 1stepVQA against those of
the four extended versions of 1stepVQA. It is evident that
using the MAX operation to obtain the shape parameter
yielded improved performance (while eliminating the need
to compute multiple variances) as compared with including
all features from all of the displacement direction. Moreover,
many fewer features are required to train on. The perfor-
mance of 1stepVQA-IV was statistically equivalent to that
of 1stepVQA, indicating that the additional data was not
useful, but requires significantly more computation. Overall,
1stepVQA was statistically superior to all the feature combi-
nations other than 1stepVQA-IV.

D. 1stepVQA-R Model

The combination of 1stepVQA and various reference mod-
els provides a more general and robust approach which
boosts performance. Table X plots the performances of various
1stepVQA-R models incorporating 1stepVQA with different
reference VQA models. We considered five reference VQA
models: PSNR, MS-SSIM, FSIM, ST-MAD and VSI. The
high-performing reference model FSIM was able to boost
performance the most. PSNR and VSI provided limited
improvement to the integrated model. While 1stepVQA is
able to predict quality considering both authentic distortions
on reference videos and compression artifacts, incorporat-
ing a reliable reference model provided better prediction
of quality degradation between reference and compressed
videos.

TABLE X

PERFORMANCES OF 1STEPVQA-R WITH REFERENCE VQA MODULES
PSNR, MS-SSIM, FSIM, ST-MAD. BOLDFACE INDICATES THE BEST

PERFORMING MODEL

TABLE XI

PERFORMANCES OF 1STEPVQA MODEL APPLIED ON LUMINANCE AND

CHROMA SPACE RESPECTIVELY, AND THEIR COMBINATION

TABLE XII

SROCC PERFORMANCES OF TWO-STEP COMBINATIONS OF REFERENCE

AND NO-REFERENCE VQA MODELS ON THE LIVE WILD

COMPRESSED VIDEO QUALITY DATABASE. BOLDFACE
INDICATES THE BEST PERFORMING MODEL

E. Chroma Feature Analysis

Most existing VQA models only make use of features
from the luminance domain. However, we also explored the
influence of chroma features defined in other color spaces.
Specifically, we analyzed the performance of 1stepVQA fea-
tures applied in chroma space. The LAB chroma space that
we used is defined below:

C∗
ab =

√
a∗2 + b∗2 (13)

where a∗ and b∗ are the two chrominance components of a
given frame [52].

Table XI shows the results of applying the 1stepVQA
model on the LAB chroma space. As compared to luminance,
the influence of the chroma features was weak, even when
combined with the luminance features. This might suggest that
luminance features are enough when predicting the perceptual
quality of UGC videos, but it might also suggest that other,
more chroma-sensitive features could be designed to obtain
better performance.

F. 2stepQA and General Two-Step Model

The previous 2stepQA model [38] was designed to address
the quality assessment problem of distorted-then-compressed
images by a simple product combination of separate Refer-
ence and NR modules. It performs well, as shown in [38].
However, since it makes use of scores from two models, its
performance depends on the efficacy of both of the models
(NR and FR). When attempting to extend 2stepQA to the
VQA problem, we have been unable to find a sufficiently
good NR VQA model that can adequately boost performance
within a 2stepQA framework, as shown in Table XII. Only
a few combinations are able to boost performance compared
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TABLE XIII

COMPARISON OF TOTAL COMPUTE TIMES OF COMPARED VQA MODELS ON THE SAME 300 FRAME 1080P VIDEO, ON A XEON E5 1620 v3 3.5GHz PC
WITH 64 GB OF RAM. ALGORITHMS WERE RUN IN MATLAB. ITALICS INDICATE NR ALGORITHMS

TABLE XIV

COMPARISON OF THE NUMBER OF FEATURES OF THE COMPARED

FEATURE-BASED VQA MODELS. ITALICS INDICATE NR ALGORITHMS

TABLE XV

SROCC PERFORMANCES OF 1STEPVQA, MS-SSIM, AND VMAF ON THE

H.264 AND MPEG-2 COMPRESSED VIDEOS FROM THE LIVE
VIDEO QUALITY DATABASE

with reference models alone. Naturally, this will change as NR
VQA models continue to evolve. Another recent work [53]
also discussed this limitation of 2stepQA.

G. Computational Complexity

As compared with other VQA models, 1stepVQA computes
the fewest features, and hence is very efficient. We also com-
pared the overall computational complexity of 1stepVQA with
those of the FR VQA model ST-MAD and the NR VQA mod-
els V-BLIINDS and TLVQM. Table XIII lists the time required
(in sec.) to compute each quality model on a single compressed
video and its reference video from the LIVE Wild Compressed
Video Quality Database. All algorithms were run in Matlab
using publicly available online source code. 1stepVQA proved
to be faster than the other spatio-temporal VQA models (ST-
MAD, V-BLIINDS, TLVQM, VSFA). While some frame-
based (spatial) IQA models are faster than 1stepVQA, they do
not compute any temporal features and perform significantly
worse than 1stepVQA. In Table XIV, we list the number of
features used by each of the training-based VQA models.
As Tables XIII and XIV show, 1stepVQA is quite efficient.

H. 1stepVQA Performance on LIVE Video Quality Database

We also tested the 1stepVQA model on the H.264 and
MPEG-2 compressed videos and corresponding subjective
scores in the LIVE Video Quality Database (LIVE VQA),
which contains 10 contents, each having four H.264 com-
pressed versions and four MPEG-2 compressed versions,
yielding 80 compressed videos overall. Since 1stepVQA
requires training, for fair comparison we divided the 10 con-
tents into non-overlapping 80% training and 20% test sets,
and iterated training and testing over all 45 combinations,
and report the median obtained SROCC in Table. XV, along
with those of MS-SSIM and VMAF. However, the reference
videos in LIVE VQA are all of very high pristine quality,
hence convey little or no intrinsic distortion information to
1stepVQA. Even so, 1stepVQA is able to provide results

comparable to those of MS-SSIM, and similar to those of
VMAF on the MPEG-2 compression group, although VMAF
(which is specifically trained on H.264), outperformed on
those compressed contents, and hence overall.

VII. CONCLUSION

We have presented a new VQA model, called 1stepVQA,
that is designed to tackle the problem of assessing the quality
of compressed videos given reference videos afflicted by pre-
existing, authentic distortions. 1stepVQA is computed using
information from both the reference and compressed videos,
but does not require pristine reference videos. It uses features
that capture the deviations of spatial and spatial-temporal
statistical regularities caused by the presence of pre-existing
in-capture distortions as well as post-capture compression arti-
facts. Our method utilizes both NFS features, as well as NVS
features extracted from displaced frame differences. We find
that 1stepVQA is able to outperform mainstream VQA models,
while requiring relatively fewer features, making it more effi-
cient and easy to implement. We show that an extended version
called 1stepVQA-R is able to achieve higher performance by
adding a reference module. We also developed a significant
new resource for researchers working on this problem, called
the LIVE Wild Compressed Video Quality Database, which
contains both UGC reference videos and many compressed
versions of them, along with subjective quality labels assigned
to them as the outcome of a human study. 1stepVQA also
has potential industrial value as a practical and fast way to
improve the performance of video encoding optimization on
UGC videos.
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