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ABSTRACT Blind or no-reference video quality assessment of user-generated content (UGC) has become a
trending, challenging, heretofore unsolved problem. Accurate and efficient video quality predictors suitable
for this content are thus in great demand to achieve more intelligent analysis and processing of UGC videos.
Previous studies have shown that natural scene statistics and deep learning features are both sufficient to
capture spatial distortions, which contribute to a significant aspect of UGC video quality issues. However,
these models are either incapable or inefficient for predicting the quality of complex and diverse UGC videos
in practical applications. Here we introduce an effective and efficient video quality model for UGC content,
which we dub the Rapid and Accurate Video Quality Evaluator (RAPIQUE), which we show performs
comparably to state-of-the-art (SOTA) models but with orders-of-magnitude faster runtime. RAPIQUE com-
bines and leverages the advantages of both quality-aware scene statistics features and semantics-aware deep
convolutional features, allowing us to design the first general and efficient spatial and temporal (space-time)
bandpass statistics model for video quality modeling. Our experimental results on recent large-scale UGC
video quality databases show that RAPIQUE delivers top performances on all the datasets at a considerably
lower computational expense. We hope this work promotes and inspires further efforts towards practical
modeling of video quality problems for potential real-time and low-latency applications.

INDEX TERMS Video quality assessment, natural scene statistics, temporal, video compression, perceptual
quality, user-generated content, image quality assessment, deep learning.

I. INTRODUCTION
Recent years have witnessed an explosion of user-generated
content (UGC) captured and streamed over social media plat-
forms such as YouTube, Facebook, TikTok, and Twitter. Thus,
there is a great need to understand and analyze billions of
these shared contents to optimize video pipelines of efficient
UGC data storage, processing, and streaming. UGC videos,
which are typically created by amateur videographers, often
suffer from unsatisfactory perceptual quality, arising from im-
perfect capture devices, uncertain shooting skills, and a vari-
ety of possible content processes, as well as compression and
streaming distortions. In this regard, predicting UGC video
quality is much more challenging than assessing the quality
of synthetically distorted videos in traditional video databases.

UGC distortions are more diverse, complicated, commingled,
and no “pristine” reference is available.

Traditional video quality assessment (VQA) models have
been widely studied [1] as an increasingly important toolset
used by the streaming and social media industries. While full-
reference (FR) VQA research is gradually maturing and sev-
eral algorithms [2], [3] are quite widely deployed, recent at-
tention has shifted more towards creating better no-reference
(NR) VQA models that can be used to predict and monitor the
quality of authentically distorted UGC videos. One intriguing
property of UGC videos, from the data compression aspect,
is that the original videos to be compressed often already
suffer from artifacts or distortions, making it difficult to decide
the compression settings [4]. Similarly, it is of great interest

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 425

https://orcid.org/0000-0002-7594-2292
https://orcid.org/0000-0002-2710-2969
mailto:zhengzhong.tu@utexas.edu


TU ET AL.: RAPIQUE: RAPID AND ACCURATE VIDEO QUALITY PREDICTION OF USER GENERATED CONTENT

to be able to deploy flexible video transcoding profiles in
industry-level applications based on measurements of input
video quality to achieve even better rate-quality tradeoffs
relative to traditional encoding paradigms [5]. The decision
tuning strategy of such an adaptive encoding scheme, how-
ever, would require the guidance of an accurate and effi-
cient NR or blind video quality (BVQA) model suitable for
UGC [6].

Many blind video quality models have been proposed
to solve the UGC-VQA problem [4], [6]–[19]. Among
these, BRISQUE [8], GM-LOG [11], FRIQUEE [12], V-
BLIINDS [9], and VIDEVAL [6] have leveraged different sets
of natural scene statistics (NSS)-based quality-aware features,
using them to train shallow regressors to predict subjective
quality scores. Another well-founded approach is to design
a large number of distortion-specific features, whether indi-
vidually [20]–[22], or combined, as is done in TLVQM [13]
to achieve a final quality prediction score. Recently, convo-
lutional neural networks (CNN) have been shown to deliver
remarkable performance on a wide range of computer vision
tasks [23]–[25]. Several deep CNN-based BVQA models have
also been proposed [18], [19], [26], [27] by training them
on recently created large-scale psychometric databases [28],
[29]. These methods have yielded promising results on syn-
thetic distortion datasets [1], but still struggled on UGC qual-
ity assessment databases [30]–[32].

Prior work has mainly focused on spatial distortions, which
have been shown to indeed play a critical role in UGC video
quality prediction [6]. The exploration of the temporal statis-
tics of natural videos, however, has been relatively limited.
The authors of [6] have shown that temporal- or motion-
related features are essential components when analyzing the
quality of mobile captured videos, as exemplified by those in
the LIVE-VQC database [30]. Yet, previous BVQA models
that account for temporal distortions, such as V-BLIINDS and
TLVQM, generally involve expensive motion estimation mod-
els, which are not practical in many scenarios. Furthermore,
while compute-efficient VQA models exist, simple BVQA
models like BRISQUE [8], NIQE [33], GM-LOG [11] are
incapable of capturing complex distortions that arise in UGC
videos. Complex models like V-BLIINDS [9], TLVQM [13],
and VIDEVAL [6], on the contrary, perform well on exist-
ing UGC video databases, but are much less efficient, since
they either involve intensive motion-estimation algorithms or
complicated scene statistics features. A recent deep learning
model, VSFA [19], which extracts frame-level ResNet-50 [34]
features followed by training a GRU layer, is also less prac-
tical due to the use of full-size, frame-wise image inputs and
the recurrent layers.

We have made recent progress towards efficient modeling
of temporal statistics relevant to the video quality problem, by
exploiting and combining spatial and temporal scene statis-
tics, as well as deep spatial features of natural videos. We
summarize our contributions as follows:
� We created a rapid and accurate video quality predic-

tor, called RAPIQUE, in an efficient manner, achieving

superior performance that is comparable or better than
state-of-the-art (SOTA) models, but with a relative 20x
speedup on 1080p videos. The runtime of RAPIQUE
also scales well as a function of video resolution, and
is 60x faster than the SOTA model VIDEVAL on 4 k
videos.

� We built a first-of-its-kind BVQA model that combines
novel, effective, and easily computed low-level scene
statistics features with high-level deep learning features.
Aggressive spatial and temporal sampling strategies are
used, exploiting content and distortion redundancies, to
increase efficiency without sacrificing performance.

� We created a new spatial NSS feature extraction mod-
ule within RAPIQUE, which is a highly efficient and
effective alternative to the popular but expensive feature-
based BIQA model, FRIQUEE. The spatial NSS features
used in RAPIQUE are suitable for inclusion as basic
elements of a variety of perceptual transforms, leading to
significant efficiencies which might also be useful when
developing future BVQA models.

� We designed the first general, effective and efficient tem-
poral statistics model (beyond frame-differences) that is
based on bandpass regularities of natural videos, and
which can also be used as a standalone module to
boost existing BVQA methods on temporally-distorted
or motion-intensive videos.

The rest of this paper is organized as follows. Section II re-
views previous literature relating to video quality assessment
models, while Section III unfolds the details of the RAPIQUE
model. Experimental results and concluding remarks are given
in Section IV and Section V, respectively.

II. RELATED WORK
A. TRADITIONAL BVQA MODELS
Many early BVQA/BIQA models have been ‘distortion spe-
cific’ in that they were designed to quantify a specific type
of distortion such as blockiness [35], blur [36], ringing [20],
banding [21], [37], [38], or noise [22], [39] in compressed im-
ages and videos. Recent high-performing BIQA/BVQA mod-
els are almost exclusively learning-based, operating by train-
ing sets of generic quality-aware features, which are combined
to conduct quality predictions [7]–[10], [12]–[15]. Learning-
based BVQA models are more versatile and generalizable
than ‘distortion specific’ models, in that the selected features
are broadly perceptually relevant, while powerful regression
models can adaptively map the features onto quality scores
learned from the data in the context of a specific application.

The most popular BVQA algorithms deploy perceptually
relevant, low-level features based on simple, yet highly regu-
lar parametric bandpass models of scene statistics [40]. These
natural scene statistics (NSS) models often are predictably
altered by the presence of distortions [41], although they have
more limited power to characterize complex, commingled
distortions. Successful picture quality models of this type
have been explored in the wavelet (BIQI [42], DIIVINE [7],
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C-DIIVINE [43]), DCT (BLIINDS [44], BLIINDS-II [45])
and spatial domains (NIQE [33], BRISQUE [8]), and
have been further extended to encompass natural bandpass
space-time video statistics models [9], [46]–[48], among
which the most well-known model is Video-BLIINDS [9].
Other extensions of empirical NSS include models of the
joint statistics of the gradient magnitude and Laplacian
of Gaussian (GM-LOG [11]), in log-derivative and log-
Gabor spaces (DESIQUE [49]), as well as in the gradient
domain of LAB color transforms (HIGRADE [10]). The
FRIQUEE model [12] achieves excellent performance on
UGC/consumer video/picture databases [29], [31], [32], [50],
[51] by leveraging a bag of NSS features drawn from diverse
color spaces and perceptually motivated transform domains.

Time-domain behavior is the key attribute that differenti-
ates videos from still pictures. The perception of video corre-
lates highly with motion and temporal change [52]. Amongst
BVQA models, Video-BLIINDS [9] was the first to explore
the use of (spatio-) temporal scene statistics of video using
DCT coefficient statistics in the time-differenced domain.
V-BLIINDS also involves calculating motion coherence and
global motion features, which requires expensive motion esti-
mation, to account for temporal masking effects.

Instead of using DCT transforms, Mittal et al. proposed
a completely blind model called VIIDEO [47], which in-
spects the divisively normalized spatial statistics of frame
differences. Bandpass filtering followed by divisive normal-
ization was applied to frame differences, after which the inter-
subband correlations are modeled over the temporal variation
of the extracted generalized Gaussian parameters. As a highly
experimental temporal-only model, VIIDEO includes no spa-
tial features, hence does not perform well on natural UGC
video datasets [30], [31].

Regarding the joint modeling of spatiotemporal statistics,
Li et al. proposed to adopt 3D-DCT transforms of local
space-time regions from videos to extract quality-aware fea-
tures [46]. More recently, the authors of [53] leveraged 3D
divisive normalization transformed (DNT) and spatiotemporal
Gabor-filtered responses of 3D-DNT coefficients of natural
videos. The 3D transforms adopted therein, however, are too
expensive for practical use; neither have these models been
observed to perform well on UGC datasets [30], [32].

Another intriguing and more practical approach to integrat-
ing temporal features into BVQA models is to design separa-
ble spatial-temporal statistics [4], [48], [54], [55]. Spatial fea-
tures can be modified to capture temporal effects within BIQA
models like BRISQUE, whereby simple frame-differences or
spatially displaced frame-differences are deployed [4], [48],
[56], [57].

A very recent feature-based BVQA model called
TLVQM [13] uses a two-level feature extraction mechanism
to achieve efficient computation of a set of impairment/
distortion-relevant features. Unlike NSS-based models,
TLVQM relies on a comprehensive set of highly crafted
features that measure motion, specific distortion artifacts,
and aesthetics. TLVQM requires that a large number of

parameters be specified by the user, which may affect
its general performance on datasets or scenarios it has
not been exposed to. The model currently achieves very
good performance on natural video quality databases at a
reasonable complexity.

VIDEVAL [6] is currently the SOTA feature-based BVQA
model on recent large-scale video dataset like KoNViD-
1k [31] and YouTube-UGC [32]. It employs feature selection
and fusion on top of efficacious NSS-based models as well as
distortion-based features. It is also a very compact model as it
only utilizes 60 features. However, it has not been observed
to efficiently scale to high-resolution and high-framerate
videos.

B. DEEP LEARNING-BASED BVQA MODELS
Deep convolutional neural networks (CNNs) have been shown
to deliver standout performance in a wide variety of low-level
computer vision applications [17], [23], [25], [58]. Recently,
the release of several large-scale psychometric visual quality
databases [29]–[32], [51] have sped the application of deep
CNNs to perceptual video and image quality modeling. To
conquer the limits of small data size, researchers have ei-
ther proposed to conduct patch-wise data-augmentation dur-
ing training [59]–[61], or to pretrain deep nets on larger vi-
sual sets like ImageNet [62], then fine tune on target quality
databases. Several authors report remarkable performance on
synthetic distortion databases [63], [64] or on naturally dis-
torted databases [29], [51].

Deep CNN models have also been employed for natural
video quality prediction. Kim et al. [26] proposed a deep
video quality assessor (DeepVQA) to learn spatio-temporal
visual sensitivity maps via a deep CNN and a convolutional
aggregation network. The V-MEON model [65] leveraged a
multi-task CNN framework which jointly optimizes a 3D-
CNN for feature extraction and a codec classifier, and us-
ing fully-connected layers to predict video quality. Zhang
et al. [27] leveraged transfer learning to develop a general-
purpose BVQA framework based on weakly supervised learn-
ing and a resampling strategy. In the VSFA model [19], the au-
thors applied a pre-trained image classification CNN as a deep
feature extractor, then integrated the frame-wise deep features
using a gated recurrent unit and a subjectively-inspired tem-
poral pooling layer, reporting leading performance on several
natural video databases [31], [50], [66]. The authors then built
an enhanced version of VSFA, dubbed MDVSFA [67], by
employing a mixed datasets training strategy on top, training
a single VQA model on multiple datasets, and reporting supe-
rior performance on publicly available datasets. Several other
popular CNN-based BVQA models [19], [26], [27], [65],
[67] produce accurate quality predictions on legacy (single
synthetic distortion) video datasets [1], [68], but struggle on
recent in-the-wild UGC databases [31], [50], [66].
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FIGURE 1. Schematic overview of the proposed RAPIQUE model. Top block shows the spatial and temporal NSS feature extraction branch, while bottom
block depicts the CNN feature extraction flow. The final feature vector is simply concatenated from the extracted spatial and temporal NSS and the CNN
features, which is further used to train a regressor head.

III. RAPID AND ACCURATE VIDEO QUALITY EVALUATOR
(RAPIQUE)
Prior statistics-based video quality models have been shown
to be capable of capturing complex UGC distortions, such as
FRIQUEE [12], TLVQM [13], and VIDEVAL [6]. However,
these models are subject to time-consuming executions since
either expensive motion estimation or high-order statistical
features are required. CNN models are able to efficiently cap-
ture high-level features, which have also been observed to be
useful quality indicators [19], albeit directly applying a CNN
on high-resolution video frames is expensive. Here we pro-
pose an efficient two-branch framework, as depicted in Fig. 1,
which combines quality-aware, low-level NSS features with
high-level, semantics-aware CNN features. The NSS features
operate on higher-resolution spatial and temporal bandpass
feature maps, while the CNN feature extractor is applied on a
resized low-resolution frames for practical considerations. We
also adopt a sparse frame sampling strategy when extracting
features, which further accelerates the runtime. We present the
details of RAPIQUE in the following.

A. NATURAL SCENE STATISTICS
It has been observed that the spatial wavelet/subband coeffi-
cients of natural images exhibit strong regularities (Gaussian-
ity) following a divisive normalization transform (DNT) [7].
A simple but effective form of divisive normalization, called
mean subtraction and contrast normalization (MSCN), has
been observed to accurately characterize image natural-
ness in multiple feature transforms [8], [10], [12], [49].
We develop NSS-based features following the methodology

of FRIQUEE [12], which leverages multiple perceptually-
relevant feature transforms to extract a large number of sta-
tistical features. RAPIQUE uses simple yet effective low-
order bandpass statistics, achieving comparable performance
as the complex and time-consuming high-order features used
in FRIQUEE. We were inspired by the successful and ef-
ficient basic features developed as products of spatially-
adjacent MSCN responses, and log-derivative statistics in
BRISQUE [8] and DESIQUE [49], respectively. Specifically,
let Y (i, j) be a given intensity image or a transformed feature
map. The MSCN operator is applied on Y (i, j) to further
decorrelate and Gaussianize the local pixels:

Ŷ (i, j) = Y (i, j) − μ(i, j)

σ (i, j) + C
, (1)

where, (i, j) are spatial indices and C = 1 is a constant that
prevents instabilities caused by having a small variance in the
denominators. The factors μ(i, j) and σ (i, j) are the weighted
local mean and standard deviation within a spatial window
centered at location (i, j) calculated by:

μ(i, j) =
K∑

k=−K

L∑
�=−L

wk,lY (i − k, j − �) (2)

σ (i, j)=
√√√√ K∑

k=−K

L∑
�=−L

wk,�[Y (i − k, j − �) − μ(i, j)]2, (3)

where w = {wk,�|k = −K, . . ., K, � = −L, . . ., L} is a 2D
isotropic, truncated, unit-volume Gaussian weighting func-
tion. We used K = L = 3 in our implementations.
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It has been empirically observed that the MSCN coeffi-
cients of images or video frames have characteristic statisti-
cal properties that are altered by the presence of distortion,
and therefore, quantifying these deviations can help enable
the prediction of perceived quality [8], [40]. A well-known
model is the generalized Gaussian distribution (GGD) with
zero mean [8]:

f (x;α, σ 2) = α

2β�(1/α)
exp

(
−
( |x|

β

)α)
, (4)

where β = σ

√
�(1/α)
�(3/α) and �(·) is the gamma function: �(a) =∫∞

0 ta−1e−t dt . The two parameters are the shape α and the
spread σ , of the zero-mean symmetric GGD, which are esti-
mated using a popular moment-matching based method [69].
These are used as features to predict perceptual quality.

Another statistical observation is that the sample distri-
butions of products of pairs of neighboring pixels in the
MSCN coefficient map along four directions - horizon-
tal (H) (Ŷ (i, j)Ŷ (i, j + 1)), vertical (V) (Ŷ (i, j)Ŷ (i + 1, j)),
main-diagonal (D1) (Ŷ (i, j)Ŷ (i + 1, j + 1)), and secondary-
diagonal (D2) (Ŷ (i, j)Ŷ (i + 1, j − 1)) also exhibit a regu-
lar statistical structure, which are well-modeled as following
a zero mode asymmetric generalized Gaussian distribution
(AGGD) [8], [47]:

f (x; ν, σ 2
l , σ 2

r ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν

(βl +βr )�( 1
ν

)
exp

(
−
(

−x

βl

)ν)
x<0

ν

(βl +βr )�( 1
ν

)
exp

(
−
(

x

βr

)ν)
x>0,

(5)

where

βl = σl

√
�(1/ν)

�(3/ν)
and βr = σr

√
�(1/ν)

�(3/ν)
. (6)

An AGGD model has four parameters: ν controls the shape
of the distribution, while (σl , σr ) are scale parameters that
control the spread along each side of the mode; and η is the
mean of the distribution, given by η = (βr − βl )

�(2/η)
�(1/η) .

Apart from the second-order pair-product statistics, we also
extract another supplementary set of features by modeling
the log-derivative statistics of neighboring MSCN coefficient
pairs as introduced in [49]. Specifically, the absolute pixel
values of Ŷ (i, j) are first logarithmically transformed:

Z (i, j) = log[|Ŷ (i, j)| + 0.1], (7)

then seven types of log-derivative statistics (Eqs. (8))
along six paired orientations - horizontal (H: ∇xZ (i, j)),
vertical (V: ∇yZ (i, j)), main-diagonal (MD: ∇xyZ (i, j)),
secondary-diagonal (SD: ∇yxZ (i, j)), horizontal-vertical
(HV: ∇x∇yZ (i, j)), and two combined-diagonals (CDs:
∇cx∇cyZ (i, j)1, ∇cx∇cyZ (i, j)2), are modeled as GGD,
respectively, after which the estimated GGD parameters are
gathered as additional statistical features for learning the

eventual quality predictor.

D1 : ∇xZ (i, j) = Z (i, j + 1) − Z (i, j)

D2 : ∇yZ (i, j) = Z (i + 1, j) − Z (i, j)

D3 : ∇xyZ (i, j) = Z (i + 1, j + 1) − Z (i, j)

D4 : ∇yxZ (i, j) = Z (i + 1, j − 1) − Z (i, j)

D5 : ∇x∇yZ (i, j) = Z (i − 1, j) + Z (i + 1, j)

− Z (i, j − 1) − Z (i, j + 1)

D6 : ∇cx∇cyZ (i, j)1 = Z (i, j) + Z (i + 1, j + 1)

− Z (i, j + 1) − Z (i + 1, j)

D7 : ∇cx∇cyZ (i, j)2 = Z (i−1, j−1) + Z (i+1, j+1)

− Z (i − 1, j + 1) − Z (i + 1, j − 1)

(8)

For each pair log-derivative feature map, a single scale NSS
model is used to derive two parameters (α, σ ) by fitting a
GGD distribution using the same moment-matching proce-
dure, yielding a total of 14 additional features.

The variance field (or ‘sigma’ field) in Eq. (3) has been
previously shown to provide effective quality-aware features
deriving from the same NSS/retinal model [10], [12]. We
extract two additional quantities from the variance field (Eq.
(3)): the mean φσ and square of the reciprocal of the coeffi-
cient of variation (CoV):

φσ = 1

MN

M−1∑
i=0

N−1∑
j=0

σ (i, j) (9)

where the CoV is ρ = (φσ /ωσ )2 and where

ωσ =
√√√√ 1

MN

M−1∑
i=0

N−1∑
j=0

[σ (i, j) − φσ ]2. (10)

In order to visualize how these NSS regularities are per-
turbed by UGC distortions, we selected four pictures ranging
from high quality to low quality - 10004473376.jpg
(MOS=3.82), 6462096609.jpg (MOS=2.93) from
KoNIQ-10k [51] and t4.bmp (MOS=35.8), 12.bmp
(MOS=15.9) from LIVE-IQC [29], as shown in Fig. 2.
Fig. 3 plots the histograms of the MSCN and variance field
coefficients on these images of diverse perceptual quality.
Note that it is extremely difficult to isolate specific distortion
types on authentically distorted UGC pictures, since several
complex, commingled distortions usually co-exist, hence it
is difficult to predict how a given GGD histogram will vary
in the presence of quality degradations. However, we may
still observe in Fig. 3 that MSCN and sigma coefficients can
differentiate images having different perceptual qualities. In
this regard, the estimated parameters from these distributions
are good indicators of perceptual quality for UGC pictures or
videos.

We also plotted the histograms of adjacent pair products
and log-derivative statistics in Fig. 4 and 5, respectively. It
may be observed that the product statistics exhibit similar
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FIGURE 2. Exemplar test images exhibiting four categories of quality: (a)
img1 (best) and (b) img2 (good) are two good-quality images from
KonIQ-10 k (MOS range: [1,5]) [51], while (c) img3 (bad) and (d) img4
(worst) are two bad-quality pictures from CLIVE (MOS range: [0100]) [29].

FIGURE 3. Histograms of MSCN (left) and variance map (right) of the four
images shown in Fig. 2.

FIGURE 4. Histograms of four-orientation (H, V, D1, D2) MSCN
pair-production of the four images shown in Fig. 2.

behavior as the MSCN coefficients, in that their shapes are
significantly altered as a function of quality. These statistics
better characterize correlations introduced or lost by distortion
as compared to first-order MSCN and variance features. The
seven types of log-derivative statistics shown in Fig. 5 exhibit
distinct deviations against distortion, and all are effective at

FIGURE 5. Histograms of seven types of MSCN paired log-derivative (Eqs.
(8)) of the four images shown in Fig. 2.

TABLE 1. Summary of the Proposed NSS-34 Feature Extraction Module

capturing quality variations on UGC pictures. Therefore, it is
informative to include all these statistical features in the final
prediction model.

B. SPATIAL FEATURES
We built a basic statistical feature extraction module using
the NSS features mentioned in the previous section, as sum-
marized in Table 1. Given an input image or feature map,
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it extracts two features (α, σ ) from the MSCN transforms,
two features (φσ , ωσ ) from the variance field, 16 features
4 × (ν, η, σl , σr ) from the AGGD fit of MSCN adjacent pair
products along 4 directions, and 14 features 7 × (α, σ ) from
GGD fits of paired log-derivatives along 7 directions, yielding
a total of 34 features, which we dub NSS-34 for simplicity.

We also hypothesized that the NSS-34 operator is able to
extract valuable color quality information if applied in a chro-
matic space, which we deem to be a more unified and efficient
approach than crafting specific, complex features in different
feature spaces, as is done in FRIQUEE [12]. The proposed
NSS-34 feature set is based on fast, low-level statistics derived
from GGD and AGGD models only, which we will show to
deliver superior efficiency in the experimental section.

The gradient magnitude (GM) of a video frame is defined
as the root mean square of directional gradients along two
orthogonal spatial directions. GM is computed by convolving
with a linear filter such as the Roberts, Sobel, or Prewitt. We
utilized the Sobel kernels:

hx =

⎡
⎢⎣+1 0 −1

+2 0 −2

+1 0 −1

⎤
⎥⎦ and hy =

⎡
⎢⎣+1 +2 +1

0 0 0

−1 −2 −1

⎤
⎥⎦ (11)

whereby the GM of an image or frame I (i, j) is calculated by:

GM =
√

(I ∗ hx )2 + (I ∗ hy)2, (12)

where ∗ denotes the convolution operator.
It has been observed that two dimensional difference-of-

Gaussian (DoG) or Laplacian-of-Gaussian (LoG) operators
well-characterize the multiscale receptive fields of retinal gan-
glion cells [70]. We also extract two bandpass maps, using
LoG and DoG, and extract their corresponding NSS-34 fea-
tures, respectively. The LoG of image I is:

LoG = I ∗ hLoG, (13)

where the LoG kernel is defined as:

hLoG =
(

∂2

∂x2
+ ∂2

∂y2

)
gσ (x, y)

= x2 + y2 − 2σ 2

2πσ 6
exp

(
−x2 + y2

2σ 2

)
,

(14)

where gσ (x, y) is an isotropic Gaussian function with scale
parameter σ . We used a window size of 9 × 9 for LoG filter-
ing.

While the GM and LoG are used by RAPIQUE to amplify
high-frequency responses relating to local frame structures,
the DoG is configured to capture mid-frequencies, expressive
of structure at larger bandpass scales. The DoG response is
defined as the difference of the responses of two Gaussian
filters with different standard deviations

DoG = I ∗ gσ1 − I ∗ gσ2 = I ∗ (gσ1 − gσ2 ). (15)

To avoid redundant information between the LoG and DoG,
only the first level of an N-level DoG decomposition with

FIGURE 6. Extracted feature maps defined in Section III-B. 1st row: Y , GM,
LoG, DoG; 2nd row: O2, O3, GMO2, GMO3; 3 rd row: BY , RG, GMBY , GMRG;
4th row: A, B, GMA, GMB.

k = 1.6, σi = ki−1, i = 1, . . ., N − 1 is utilized. Fig. 6 shows
the differences between the GM, LoG, and DoG responses on
a sample video frame. Overall, the four luma channel feature
maps (Y, GM, LoG, DoG) (where Y = 0.299R + 0.587 G +
0.114B) are fed into the NSS-34 module to obtain useful
statistical features.

Most previous BVQA models have overlooked the im-
portance of chromatic features, whereas recent work [6],
[10], [55], [66] has shown the efficacy of color compo-
nents for UGC video quality prediction. Previous efforts on
the chromatic statistics of quality models involve opponent
color spaces such as YIQ/YUV [15], [71], O1O2O3 [72],
LMS [12], [72], perceptual color spaces like CIELAB [10],
[12], [73], HSI [12], [74], Yellow color [12], and “color-
fulness” features [6], [13], [75]. Here we deploy percep-
tually relevant color transforms from RGB frames (where
R(i, j), G(i, j), B(i, j) are red, green, and blue channels)
to O1O2O3, red-green (RG), and blue-yellow (BY) as
follows:

⎡
⎢⎣O1

O2

O3

⎤
⎥⎦ =

⎡
⎢⎣0.06 0.63 0.27

0.30 0.04 −0.35

0.34 −0.60 0.17

⎤
⎥⎦
⎡
⎢⎣R

G

B

⎤
⎥⎦ (16)

and

R(i, j) = log[R(i, j) + 0.1] − μR

G(i, j) = log[G(i, j) + 0.1] − μG

B(i, j) = log[B(i, j) + 0.1] − μB

, (17)

where μR, μG, and μB are the average values of log[R(i, j) +
0.1], log[G(i, j) + 0.1], and log[B(i, j) + 0.1], respectively,
over each entire frame. Then the RG and BY opponent color
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space values are

L̂ = (R + G + B)/
√

3

BY = (R + G − 2B)/
√

6

RG = (R − G)/
√

2

. (18)

We also included chroma maps A, B from the most widely
used CIELAB perceptual color space [10], [12], which can be
converted from RGB via CIEXYZ [76]. Note that we extract
both chroma maps as well as their corresponding gradient
maps (via Eq. (12)) following the suggestions in [10]. The
above defined luma and chroma feature transforms are visual-
ized in Fig. 6.

Images are naturally multiscale, and distortions affect im-
age structures across scales. Incorporating multiscale infor-
mation in quality models provides significant performance
improvements [8], [77]. Hence, we extract NSS-34 features
from the four luma feature maps (Y, GM, LoG, DoG) at two
scales: the original image scale and a reduced (by a factor
two) resolution. However, we only extract NSS-34 features
at the half scale on the twelve chroma feature maps, since
frames are often compressed in YUV420 format, which al-
ready contain chroma information in reduced scale; addition-
ally, it has also been observed that humans are more sensi-
tive to luma distortions than chroma distortions [55]. To sum
up, the entire collection of spatial features is collected by
applying two-scales NSS-34 to the luma feature maps and
single-scale NSS-34 to the chromatic maps, yielding a total of
34 × 2 × 4 + 34 × 1 × 12 = 680 features. It is worth noting
that this 680-dim spatial model is an improved alternative to
the SOTA 560-dim FRIQUEE model [12] since it achieves
comparable performance as FRIQUEE, but is 20x faster.

C. TEMPORAL FEATURES
Prior BVQA methods accounting for temporal distortions,
however, either rely on expensive motion estimation [9], [13],
or underperform on UGC videos by only accounting for sim-
ple frame-difference statistics [4], [47], [48], even including
complex CNN models [19], [26]. Here we attempt to ex-
ploit more general temporal scene statistics of natural videos
to develop and improve BVQA models. To the best of our
knowledge, we propose the first general, effective and efficient
temporal statistics model based on bandpass regularities of
natural videos along the time dimension, going beyond sim-
pler frame-difference models [78].

Inspired by the efficacy of temporal bandpass statistics in
the prediction of frame rate-dependent video quality [54],
our proposed temporal model utilizes 1D temporal bandpass
representations. Specifically, consider a bank of K temporal
bandpass filters denoted hk, k ∈ {0, . . ., K − 1}, where k de-
notes the subband index. The temporal bandpass responses of
a video F (x, t ) (where x = (x, y) and t represents spatial and
temporal co-ordinates, respectively) is

Yk (x, t ) = F (x, t ) ∗ hk (t ) k = 0, . . ., K − 1, (19)

where ∗ and Yk are 1D temporal convolution operations and
the bandpass response of the kth filter, respectively. Note that
frame differences are a special case of Eq. (19) (the high-
pass component of a 2-tap Haar wavelets). Fig. 7 visually
illustrates the bandpass responses of a natural video from the
LIVE-VQA dataset [1] using 3-level Haar wavelet filters.

Attempting to generalize the spatial NSS as mentioned in
Section III-A to the temporal domain, we instead analyze
the statistics of the temporal bandpass coefficients Yk (x, t ),
k = 1, . . ., 7 (ignoring the lowest band k = 0) by again ap-
plying MSCN transforms, as in Eq. (1), to further decorre-
late the subband representations, over a set of frame time
samples t ∈ {t0, t1, . . ., tN } (note that t does not need to be
densely sampled). Note that in Eq. (1), μk (x, t ) and σk (x, t )
are replaced by the local mean and standard deviation within
a spatial window centered at location (x, t ), for each subband
k.

We have found that the MSCN coefficients of the tem-
poral bandpass coefficients of natural videos also exhibit a
Gaussian-like appearance, as shown in Fig. 8, while the reg-
ularities are modified by the presence of distortion, strongly
suggesting the possibility of quantifying deviations to predict
perceived video quality. We model the distributions of sub-
band MSCN coefficients again using the pre-defined GGD and
AGGD distributions, by merely passing them into the NSS-34
feature extractor (Section III-B). Similar to the spatial feature
processing, we also extract the temporal statistical features
over two scales (original and half scale), yielding a 476-dim
feature vector ((34 features/band)×(7 subbands)×(2 scales)
= 476).

Inspired by the efficacy of standard deviation pooling as
first introduced in GMSD [79] and later also shown effective
when utilized for temporal pooling in [6], [13], we calculate
the 680 spatial features at two frames per second within each
non-overlapping one-second chunk, then enrich the feature set
by applying average and absolute difference pooling [80] of
the frame features within each chunk, based on the hypothesis
that the variation of spatial features also correlates with the
temporal properties of the video. Finally, all of the chunk-wise
feature vectors are average pooled across all chunks to derive
the final set of features over the entire video.

D. DEEP LEARNING FEATURES
CNN-based solutions have been observed to generally per-
form well on UGC picture quality problems [17], [27], [51]
thanks to several recently released large-scale picture quality
datasets [17], [51], [82]. Still, none of them have proven ef-
fective on UGC video quality databases [30]–[32]. However,
the authors of [6] have shown that the simple feature vector
from an FC-layer, without fine-tuning, to be a useful quality
indicator if training a shallow regressor on top. Therefore,
we, for the first time, propose to leverage the best of both
worlds, by combining powerful quality-aware NSS features as
described in Section III-A, III-B, III-C, with pre-trained deep
learning features, by jointly training a regressor on them to
predict the final quality score.

432 VOLUME 2, 2021



FIGURE 7. Top row: eight exemplar consecutive frames sampled from sequence Tractor in LIVE-VQA [1]. Middle row: temporal bandpass-filtered
responses by convolving with the filters in an 8-subband Haar-wavelet filter bank, which are shown in the bottom row. The subband frequency increases
from left to right: k = 0, . . ., 7, for both the responses and wavelet functions.

FIGURE 8. Histograms of raw subband (left) and the corresponding MSCN
normalized coefficients (right) of a natural video Tractor, where the
normalized coefficients exhibit homogeneous regularities across bands.

One issue encountered when dealing with quality pre-
diction problems is the mismatch of picture sizes between
the standard inputs of CNN models such as VGG-16 [83],
ResNet-50 [34], and IQA-valid high-resolution images. Two
possible solutions have been attempted to solve this. The
authors of [17], [61] suggested applying a CNN on spatially
sampled small patches, then aggregating the locally predicted
scores to obtain global quality scores. The authors of [51]
presented a CNN operating on full-sized images, but with ei-
ther global average pooling (GAP) or spatial pyramid pooling
(SPP) [84], feeding FC layers. These two schemes, however,
increase the computation load of the CNN models. Since
our proposed model is already armed with powerful spatial
and temporal quality-aware features, we added CNN features
only to exploit its ability to capture high-level semantic in-
formation, supplementing the low-level NSS features. In this
regard, we aggressively downscaled the frames to fit the CNN
model inputs when extracting these semantic-aware features,
yielding greater efficiency than previous CNN VQA models.
Another reason to use a pre-trained CNN without fine-tuning
is to prevent overfitting, since existing video quality datasets
are of limited sizes. In our implementation, we used a ResNet-
50 (2048-dim) as a semantic feature extractor.

E. LEARNING A VIDEO QUALITY PREDICTOR
We summarize the feature extraction process as follows. Since
our goal is to build an efficient BVQA model, we devised

TABLE 2. Summary of the Tested BVQA Datasets

spatial and temporal sampling strategies to further improve its
speed. Specifically, given an input video F (x, t ), RAPIQUE
uniformly samples 2 frames per second, based on which the
680-dim spatial NSS features (in Section III-B) are extracted,
then average and absolute-difference pools these to obtain
680 spatial and 680 temporal variation features, respectively.
RAPIQUE also uniformly samples 8 consecutive frames each
second, then applies temporal Haar filter (Eq. (7)) to extract 7
bandpass responses, from which 476 features are calculated
at each time sample. The above features are calculated at
a higher resized resolution while maintaining the aspect ra-
tio (we used 512p in our experiments). However, the CNN
backbone (ResNet-50) operates on resized frames at a sparse
temporal sampling of 1 frame/sec to attain an additional 2048
features.

After obtaining all the spatial, temporal, and CNN features
within each one-second chunk, we adopt a simple approach to
concatenate them all into a totally 3884-dimensional feature
vector for each video chunk, then average-pool each to obtain
a single 3884 feature vector over the entire video. A shallow
or deep regressor head can then be trained on the aggregated
feature vector to predict the final video quality scores.

IV. EXPERIMENTS
A. EXPERIMENT SETTINGS
Datasets and Baselines: We used three recent BVQA
datasets as testbeds for the performance evaluations:
KoNViD-1k [31], LIVE-VQC [30], and YouTube-UGC [32],
as summarized in Table 2. We also used the combined set
(denoted All-Combined) as introduced in [6] as an additional
composite benchmark. The All-Combined dataset is simply
the union of KoNViD-1 k (1200), LIVE-VQC (575), and
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TABLE 3. Performance Comparison of the Evaluated BVQA Models on the Four BVQA Datasets

The Underlined and Boldfaced Entries Indicate the Best and Top Three Performers on Each Database for Each Performance Metric, Respectively.
∗The results are cited from experiments reported in their original papers

YouTube-UGC (1380) after MOS calibration:

yadj = 5 − 4 × [
(5 − yorg)/4 × 1.1241 − 0.0993

]
(20)

yadj = 5 − 4 × [
(100 − yorg)/100 × 0.7132 + 0.0253

]
(21)

where equations (20) and (21) are used to calibrate KoNViD-
1 k and LIVE-VQC, respectively (YouTube-UGC does not
need to be changed). Here yadj denotes the adjusted scores,
while yorg is the original MOS. We refer the reader to [6] for
details regarding assumptions and derivations of the calibra-
tion process.

The baseline models used for comparison are
BRISQUE [8], GM-LOG [11], HIGRADE [10],
FRIQUEE [12], the codebook-based models CORNIA [14]
and HOSA [81], and the deep learning models, Kon-
Cept512 [51], PaQ-2-PiQ [17] which are all spatial-only
models. All the spatial models extract features at 1 fps, which
were average-pooled to obtain the final video-level feature
vector used for training. We also compared against three
feature-based BVQA models, V-BLIINDS [9], TLVQM [13],
and VIDEVAL [6], and the deep learning-based models,
V-MEON [65] and VSFA [19] as well as its enhanced
version, MDVSFA [67]. Since ‘completely blind’ models
such as NIQE [33] and VIIDEO [47] were not observed to
perform reasonably well on these natural video datasets [6],
we did not include them.

Evaluation Method: We used a support vector regressor
(SVR) as the back-end regression model to learn the feature-
to-score mappings [8], [9], [12], [13], [61]. We optimized
the SVR parameters (C, γ ) via a randomized grid-search on
the training set. Following convention, we randomly split
the dataset into training and test sets (80%/20%) over 20
iterations, and the overall median test performance was re-
ported. All of the evaluated methods were implemented using
the original release by the respective authors. Four perfor-
mance metrics were used: the Spearman Rank-Order Corre-
lation Coefficient (SRCC) and the Kendall Rank-Order Cor-
relation Coefficient (KRCC) are non-parametric measures of

prediction monotonicity, while the Pearson Linear Correlation
Coefficient (PLCC) with corresponding Root Mean Square
Error (RMSE) were computed to assess prediction accuracy.
Note that PLCC and RMSE are computed after performing a
nonlinear four-parametric logistic regression to linearize the
objective predictions to be on the same scale as MOS [1]:

f (x) = β2 + β1 − β2

1 + exp (−x + β3/|β4|) . (22)

B. MAIN EVALUATION RESULTS
Table 3 shows the main comparison results on the four eval-
uated datasets. It may be observed that RAPIQUE achieved
the best performance on KoNViD-1 k, even outperforming
the most recent, dense deep learning models such as VSFA
and MDVSFA. On LIVE-VQC, which contains many mo-
bile videos exhibiting large camera motions [6], TLVQM,
which contains numerous heavily crafted motion-relevant fea-
tures, was the best performer. However, RAPIQUE ranked
a clear second, indicating that the temporal NSS features in
RAPIQUE are powerful indications of temporal and motion-
related distortions.

The most recent deep still picture quality models, Kon-
Cept512 and PaQ-2-PiQ, have been observed to perform
poorly on UGC-VQA datasets. One reason for this is that
these models were trained on picture quality datasets [17],
[51], containing strictly spatial content and distortions. A
leading blind deep video quality model, V-MEON, also does
not perform well, likely because it was trained on compres-
sion artifacts rather than on complex combinations of UGC
distortions.

On the larger datasets, RAPIQUE delivered the second-best
correlation against the subjective data on YouTube-UGC, only
slightly worse than the current SOTA model VIDEVAL, while
RAPIQUE ranked the best on the 3165-video composite set,
All-Combined. Since VIDEVAL was created by a supervised
feature selection process (using subjective labels) on the com-
posite combined set, wherein YouTube-UGC accounts for a

434 VOLUME 2, 2021



FIGURE 9. Scatter plots and nonlinear logistic fitted curves of (c) RAPIQUE versus MOS, compared against (a) TLVQM [13] and (b) VIDEVAL [6], using a
grid-search SVR using k-fold cross-validation on KoNViD-1k [31], LIVE-VQC [30], YouTube-UGC [32], and the All-Combined set (Section IV-A), respectively.

large portion, it would be expected to outperform on these
two sets. The RAPIQUE model, on the contrary, is database-
agnostic, and also exhibited uniformly well performance on
all four test sets. In this regard, RAPIQUE has the potential
to perform better on future larger-scale datasets and in real-
world application scenarios it has not been exposed to. The
scatter plots and fitted curves of RAPIQUE predictions versus
MOS in Fig. 9 visually demonstrate that the performance of
RAPIQUE remains stable on video sequences from different
databases, achieving smaller RMSE on larger databases.

C. EFFECTS OF TRAINING DATA SIZE
To study the degree of performance variation by the compared
algorithms, we vary the training-test splits from 10% to 90%
of the content used for training, using the rest for testing on
the composite combined set. As might be seen in Fig. 10,
the RAPIQUE model was able to already achieve better than
0.8 in PLCC provided only 50% of the data for training. When
compared to SOTA methods, although RAPIQUE was not ob-
served to outperform VIDEVAL when the fraction of training
data was less than 40%, it delivered improved performances
relative to VIDEVAL and TLVQM as the proportion of train-
ing data was increased, as shown in Fig. 10. This suggests
that RAPIQUE is very data-efficient, with the potential to

FIGURE 10. Performance comparison of SRCC / PLCC as a function of the
percentage of the content used to train the compared blind VQA models on
the composite All-Combined set. Note that this result is self-explanatory as
we used a slightly different evaluation method (20 iterations, SVR with
randomized search cross-validation) compared to previous experiments.

achieve even better results when larger-scale datasets become
available.

D. ABLATION STUDY
To analyze the importance of each module in RAPIQUE, we
conducted an ablation study. Fig. 11 shows the incremental
performance attained when adding each module sequentially.
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FIGURE 11. Ablation study of RAPIQUE on (a) four benchmarks and (b)
different content types - Spat denotes the spatial model (Section III-B), Var
is the temporal difference-pooled spatial models (Section III-C), CNN
represents deep features (Section III-D), and Temp presents the Haar
bandpass-filtered features introduced in Section III-C.

It is worth mentioning the dataset biases of the evaluated
benchmarks. For example, the authors of [6] observed that the
LIVE-VQC videos generally contain more (camera) motions
and temporal distortions than other databases, while spatial
distortions predominate on KoNViD-1 k and YouTube-UGC.
It may be observed in Fig. 11(a) that the spatial NSS module
(Section III-B) performs quite well on the UGC databases
that mainly present spatial distortions, like KoNViD-1 k and
YouTube-UGC, indicating its efficacy in capturing authentic
spatial distortions. LIVE-VQC, which mainly contains videos
with large motions, challenges the spatial NSS module, align-
ing with the empirical observations made above [6]. Adding
spatial variation and temporal NSS features (Section III-C)
improves the performance of RAPIQUE on LIVE-VQC, in-
dicating that these two types of temporal features capture
important attributes of motion-intensive videos. Interestingly,
we also noticed that including the SpatialNSS-Var features
degraded performance on YouTube-UGC. It is possible that
the SpatialNSS-Var features are redundant with SpatialNSS
features on YouTube-UGC, causing the training algorithm to
underperform. We also observed that temporal statistics did
not contribute much to the assessment of Internet UGC videos
from YouTube and KoNViD-1 k (Flickr).

It is also important to note that including deep learning
features (Section III-D) significantly boosts the performance
over only using NSS features on all these UGC datasets, fur-
ther validating our assumptions expressed in Section II-B, that

TABLE 4. Performance of RAPIQUE Combined With Different Deep
Learning Features. RAPIQUE ((w/ ResNet-50) is the Default Version
Proposed in This Paper

high-level semantic features are also informative when con-
ducting UGC video quality prediction. To better understand
which types of videos are advantageously analyzed by the
CNN features, we divided the combined set into three subsets
of differing contents: 2667 natural videos, 163 screen con-
tents, and 209 gaming videos, as shown in Fig. 11(b). Notably,
we observed that the CNN features provided more benefits
on screen content and gaming videos than on natural videos.
The new temporal statistical features yielded noticeable im-
provements relative to using only spatial features. Lastly, our
deployment of CNN modules is essentially different from
other methods [17], [51] in that RAPIQUE only requires a
single pass of the resized frames (224x224), making it highly
advantageous in application scenarios having high-speed re-
quirements.

E. PERFORMANCE ON DIFFERENT DEEP FEATURES
To determine which kinds of deep features most effec-
tively complement the proposed NSS features, we conducted
another ablation study. We compared the performance of
RAPIQUE variants that use features from different back-
bones: VGG-19, ResNet-50, PaQ-2-PiQ (trained on LIVE-
FB [17]), and KonCept512 (trained on KonIQ-10k [51]).
Since PaQ-2-PiQ was designed for local quality prediction,
we included the predicted 3 × 5 local quality scores along
with the single global score. For KonCept512, the 256-dim
feature vector immediately before the last linear layer in the
fully connected head was included. We also included VGG-19
and ResNet-50, except for they were pre-trained on ImageNet
classification.

The overall performance results are tabulated in Table 4. It
may be observed that combining NSS features with ResNet-
50 yielded the best or top performances on all benchmarks,
slightly better than KonCept512, suggesting that features
pre-trained on classification tasks provide valuable high-level
semantic information to the quality assessment process.
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TABLE 5. Feature Dimensionality and Average (CPU/GPU) Runtime
Comparison (In Seconds) Evaluated on 1080p Videos

Moreover, using features pre-trained on a specific IQA dataset
may limit model generalizability to future, unseen distortions.
Another important reason why we prefer ResNet-50 over
KonCept512 is the gigantic model size of the InceptionRes-
NetV2 [85], used as the backbone of KonCept512.

F. COMPLEXITY AND RUNTIME COMPARISON
Apart from performance analysis, computational efficiency is
also of great importance for BVQA models. Thus, we also
study the model (feature) dimension and runtime comparisons
in Table 5. For a fair comparison, all the experiments were
carried out in the same desktop computer, a Dell OptiPlex
7080 Desktop with Intel Core i7-8700 CPU@3.2 GHz, 32 G
RAM, and GeForce GTX 1050 Graphics Cards. The models
were implemented using their original releases on MATLAB
R2018b and Python 3.6.7 under Ubuntu 18.04.3 LTS system.
It should be noted that our comparison of computing com-
plexity involves methods that use different sampling rate (or
FPS), which is critical to model efficiency. However, we re-
gard the design of FPS itself as an important aspect of BVQA
algorithms, and thus our comparison still provides insights on
developing more efficient BVQA models.

It may be seen that RAPIQUE is extremely efficient as com-
pared to other complex top-performing BVQA models like
TLVQM and VIDEVAL. Specifically, RAPIQUE is 10x faster
than TLVQM, which also aims to efficiency. Fig. 12 shows
the scatter plots of SRCC versus runtime, which indicates that
RAPIQUE achieves comparable prediction accuracy, but with
20x less computational expense as compared to VIDEVAL,
the current SOTA model on the UGC-VQA problem [6]. We
observe however that, CNN models that benefit from op-
timized low-level implementations are generally faster than
NSS models executed in MATLAB; we have observed a ∼10x
speedup by switching from CPU to GPU on the CNN-based
models, KonCept512, PaQ-2-PiQ, V-MEON, VSFA, and MD-
VSFA.

Predicting the quality of videos having multiple diverse
resolutions is also a pressing problem, but has barely

FIGURE 12. Scatter plots of SRCC (on All-Combined) of selected BVQA
algorithms versus CPU runtime (per 1080p video on average). Purple
indicates the proposed RAPIQUE model.

FIGURE 13. Our proposed RAPIQUE model enables high-resolution video
quality prediction at significantly lower runtimes than existing BVQA
methods. Particularly, as seen in the plot our model is 2-150x faster than
baselines, depending on resolution, and the higher, the faster.

TABLE 6. Complexity Analysis of RAPIQUE. Tabulated Values Reflect the
Partial Time Devoted to Each Sub-Component in RAPIQUE

been discussed, since most video datasets only contain
single-resolution contents. Thanks to the large-scale dataset,
YouTube-UGC [32], which contains videos at five different
resolutions, we were able to extend the complexity analysis to
videos ranging from 540p to 4 k, to study computational scal-
ability with respect to video size. Fig. 13 compares computa-
tion time as a function of video resolution. We may observe
that RAPIQUE has superior computational scalability in terms
of data sizes, making it attractive and preferable for potential
real-time, low-latency, and light-weight applications requiring
high-resolution video inputs. Particularly, as seen in the plot
our model is 2-150x faster than baselines, depending on reso-
lution, and the higher, the faster. In Table 6 we list the partial
compute time of each sub-module in RAPIQUE on 1080p
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videos. Since all of the NSS-based features are implemented
in MATLAB, a high-level prototyping tool, we would expect
further accelerations to be possible (by orders-of-magnitude)
if implemented in low-level languages like C/C++, or GPU-
friendly frameworks such as Tensorflow or PyTorch.

V. CONCLUSION
We have proposed an effective and efficient model for pre-
dicting the subjective quality of user-generated videos, which
we call the Rapid and Accurate Video Quality Evaluator
(RAPIQUE). The model, for the first time, leverages a com-
posite of spatio-temporal scene statistics features and deep
CNN-based high-level features in a two-branch framework,
then jointly learns a regressor head for video quality predic-
tion. Within the model, we developed new spatial scene statis-
tics models in an efficient way and further extended the overall
model to include normalized temporal bandpass responses,
yielding the first general efficacious temporal NSS model for
UGC video quality problems. Experiments on recent large-
scale UGC video databases show the superior accuracy and ef-
ficiency of the proposed model in that it achieves competitive
or substantially higher accuracy than both SOTA conventional
as well as deep learning video quality models. RAPIQUE is
computationally less expensive by orders-of-magnitude than
the most accurate benchmark methods and scales remarkably
well with video resolution. To support reproducible research,
an implementation of RAPIQUE is available.1
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