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Abstract— Video dimensions are continuously increasing to
provide more realistic and immersive experiences to global
streaming and social media viewers. However, increments in
video parameters such as spatial resolution and frame rate
are inevitably associated with larger data volumes. Transmit-
ting increasingly voluminous videos through limited bandwidth
networks in a perceptually optimal way is a current chal-
lenge affecting billions of viewers. One recent practice adopted
by video service providers is space-time resolution adaptation
in conjunction with video compression. Consequently, it is
important to understand how different levels of space-time
subsampling and compression affect the perceptual quality of
videos. Towards making progress in this direction, we con-
structed a large new resource, called the ETRI-LIVE Space-
Time Subsampled Video Quality (ETRI-LIVE STSVQ) database,
containing 437 videos generated by applying various levels of
combined space-time subsampling and video compression on
15 diverse video contents. We also conducted a large-scale
human study on the new dataset, collecting about 15,000 subjec-
tive judgments of video quality. We provide a rate-distortion
analysis of the collected subjective scores, enabling us to
investigate the perceptual impact of space-time subsampling
at different bit rates. We also evaluated and compare the
performance of leading video quality models on the new data-
base. The new ETRI-LIVE STSVQ database is being made
freely available at (https://live.ece.utexas.edu/research/ETRI-
LIVE_STSVQ/index.html).
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I. INTRODUCTION

THE streaming and social media industry is continuously
progressing towards providing more realistic and immer-

sive experiences to video consumers. Display companies and
content providers are enabling higher spatial resolutions, frame
rates, and high dynamic range (HDR). Televisions and moni-
tors are now available that support 8K HDR and/or true 120Hz
10-bit input and playout. Popular media streaming services,
such as YouTube, Netflix, and Amazon, now provide contents
at 4K/60fps/HDR, and it is expected that increases in these
video parameters will be met by even larger, faster, and deeper
displays and streamed video content. However, increases in
video dimensions inevitably increase streamed data volume,
hence service providers are increasingly challenged to deliver
high-quality videos with limited bandwidths. while providing
the highest possible quality.

Video compression is the principal technology that enables
bandwidth-constrained video streaming, as exemplified by the
global ITU standards H.264 [1], HEVC [2], and the emerging
Versatile Video Coder (VVC), as well as the open source
standards VP9 [3] and AV-1 [4].

Given increases in video dimensions, a recent approach
taken by streaming video providers is to combine resolu-
tion adaptation with compression. For example, a spatially
subsampled video may require less quantization (compres-
sion) to meet a given bit rate requirement, and possibly
resulting in a perceptually less degraded video, depending on
the content. Thus far, this practice has been largely limited
to spatial subsampling, but temporal, and more generally,
space-time subsampling, also offer the potential for increased
efficiencies.

There have been some studies that have investigated the
combined effects of spatial subsampling and compression on
perceptual video quality [5], [6]. The authors of [7] inves-
tigated the perceptual quality of videos with varying spatial
adaptation filters including the nearest-neighbor, bicubic, and
Convolutional Neural Network (CNN) based super resolution
filter.

Other authors have studied temporal subsampling and its
effects on subjective video quality, but without considering
coincident compression or spatial subsampling. They used
these results to motivate resolution adaptation methods which
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Fig. 1. Sample frames from source contents in the ETRI-LIVE space-time subsampled video quality database.

reduce video frame rate if the content does not perceptually
benefit from a higher frame rate [8], [9]. In [10], a spatio-
temporal resolution adaptation method for video compression
was proposed, but quality prediction and consequent down-
sampling decisions were conducted separately in space and
time. The authors of [11] did study the joint application of
space-time subsampling and compression, but the codec was
confined to H.264, and the maximum considered frame rate
was 60 Hz.

These prior efforts have helped us to understand how
spatial and temporal video density affect perceptual quality.
However, given that spatial and temporal (space-time) sub-
sampling and compression are likely to be applied in concert,
studies are needed to be able to understand and model how
they affect perceived video quality when they are jointly
applied. Towards advancing progress in this direction, we have
constructed a large-scale video quality database entitled the
“ETRI-LIVE Space-Time Subsampled Video Quality (ETRI-
LIVE-STSVQ)” database, which contains a large number of
videos operating at different space resolutions, temporal frame
rates, and levels of compression, along with collected subjec-
tive human opinion scores on all of them. The contributions
that we make include:

• The first database with subjective quality scores ren-
dered on 4K 10-bit videos at frame rates up to 120Hz,
subjected to simultaneous space-time subsampling and
compression (HEVC) distortions applied at multiple lev-
els. A total of 437 space-time subsampled and com-
pressed videos were created.

• We conducted a large-scale laboratory human study on
the videos, using a high-speed video playout system
capable of displaying true 120 Hz 10-bit video signals
in real-time.

• Since the new database can be uniquely used to design
and compare video quality models that can predict
the perceptual quality of space-time subsampled and

compressed videos, we conducted a comparative study of
relevant popular VQA models on the prediction problem.

• The new database is a unique psychometric resource for
understanding the perceptual effects of space-time sub-
sampling and compression, and for designing strategies
for subsampling and compression parameter control to
achieve perceptually optimized streaming.

The ETRI-LIVE STSVQ database is being made freely
and publicly available at (https://live.ece.utexas.edu/
research/ETRI-LIVE_STSVQ/index.html) to assist future
research and development on space-time video quality
modeling and perceptually optimized video coding. The rest
of the paper is organized as follows: Section II provides
a detailed description of the construction of the database.
Section III describes the subjective experiment protocol.
Section IV describes the data processing and analysis of
the subjective opinion scores. Section V compares the
performances of various relevant high-performance video
quality models on the new database. Finally, conclusions are
drawn in Section VI.

II. CONSTRUCTION OF THE DATABASE

A. Source Contents

We collected 15 high quality 4K 10-bit source contents
having wide variety of spatiotemporal properties. Of the
15 contents, five are from the Ultra Video Group (UVG)
dataset [12], two are Harmonic 4K footages, and eight are
from the Netflix public video library [13]. Fig. 1 shows sample
frames of each of the source contents, while Table I the formats
of the source videos. As shown in the table, all of the source
contents are of high spatial resolutions and frame rates of at
least 3840 × 2160 and 60 fps, respectively. We set the video
format of the source contents as 3840 × 2160, YUV420p, and
10 bits. A few contents of spatial resolution 4096×2160 were
slightly cropped, and those of format YUV422p were chroma
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TABLE I

SUMMARY OF SOURCE CONTENT VIDEO FORMATS

Fig. 2. Spatial information (SI) versus colorfulness (CF), and (b) temporal
information (TI) versus colorfulness (CF) measured on the source contents
of the ETRI-LIVE STSVQ database. The convex hull is indicated in red
boundaries.

subsampled. Among the 15 source contents, five taken from
the UVG dataset have frame rates of 120fps, while the other
ten have frame rates of 60fps. Each video content was clipped
to the range 5∼7 second duration, taking care to exclude scene
changes or disruptions of content, such as a sport play or an
actor speaking. The average duration of the video contents is
5.61 seconds.

The diversity of the source contents was confirmed by
measuring the spans of (i) low-level space-time video features
and (ii) encoding complexities. The low-level feature mea-
surements included the spatial information (SI) and temporal
information (TI) suggested in [14], representing the com-
plexity of spatial details and temporal change of the videos,
respectively. Another low-level feature that was used is the
colorfulness (CF) measure proposed in [15]. Figs. 2(a) and (b)
show plots of SI against CF and SI against TI with their
corresponding convex hulls superimposed. The plots illustrate
a diverse span of spatial and temporal characteristics covered
by the source contents. We also computed the relative range
and the uniformity of coverage [16] on each low-level feature,
to quantify how well the feature space is covered by the
selected source contents. The relative ranges of SI, TI, and CF

Fig. 3. Encoding complexity across contents, expressed in terms of Mbps
when encoding using HEVC (libx265) at QP 29.

were 0.85, 0.93, and 0.85, respectively, and the uniformity of
coverage values for SI, TI, and CF were 0.84, 0.80, and 0.81,
respectively. Again, the values illustrate the diverse space-time
characteristics of the selected contents. We also considered
content complexity as measured by encoded bitrate [17].
We encoded all of the source contents using HEVC (libx265)
with a fixed quantization parameter (QP) of 29, then measured
the bit rate of each content. As shown in Fig. 3, the source
contents span a wide range of encoding complexities, ranging
from less than 1Mbps to 130Mbps.

B. Distorted Video Generation

Each of the 15 source contents was subjected to various
levels of distortion, in the form of space-time subsampling and
compression. Since a main goal of our study is to understand
the joint effects of space-time subsampling and compression,
with an aim to improve perceptually optimal video coding
strategies in practical settings, we constrained the videos used
in the experiments to each approximate one of five “target” bit
rates. These cover a range of perceived video qualities from
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Fig. 4. Workflow for viewing space-time subsampled videos in the subjective experiment described in Section III.

very high to very low, while allowing for noticeable perceptual
separations between bit rate levels. We then generated distorted
videos having various combinations of space-time subsam-
pling and degree of compression to approximately meet the
determined bit rates. In this way, we generated 437 distorted
videos affected by space-time subsampling and compression.

In the subjective study to be described shortly, all of the
videos that were rated were viewed on a display supporting
the video format of 3840 × 2160, 60/120 fps, YUV420p, and
10 bits. Hence, subsampled videos were up-sampled back to
this format before being viewed. Fig. 4 shows the processing
flow on space-time subsampled videos for our subjective
experiment. As shown in the figure, space-time subsampled
videos are restored to the original space-time resolutions
before being viewed, thereby avoiding visual effects from the
display’s space-time up-sampling engines. Next, we explain
how each distortion was applied to the source videos.

1) Spatial Subsampling: The database includes videos of
four different spatial resolutions, including the source resolu-
tion (3840 × 2160) and three subsampled resolution (1920 ×
1080, 1280 × 720, and 960 × 540). The videos were down-
sampled prior to encoding using the Lanczos kernel [18]. The
spatially subsampled videos were then up-sampled back to
the original spatial resolution (3840 × 2160), also using the
Lanczos kernel, prior to displaying them.

2) Temporal Subsampling: The database contains original
source videos that have frame rates of 120 or 60 fps, and
temporally downsampled (“half frame rate”) versions of them
at 60 or 30 fps, respectively. The “full frame rate” videos
were temporally downsampled to half frame rate, by simply
dropping alternate frames, analogous to capturing the video at
a lower shutter speed [19], without introducing motion blur.

However, when upsampling videos for viewing by the
human subjects (Fig.4), we did not apply simple frame dupli-
cation, since this tends to produce visually unpleasant stutter-
ing effects. We also did not rely on the frame rate interpolation
engine of the display, since although it is designed to promote
motion smoothness, it can produce severe and unexpected
distortions. While Motion Compensated Interpolation (MCI)
methods can deliver results having high visual quality, they
can also introduce severe quality degradations when motion
estimation failures occur [20], and they are major contributor
to the “soap opera effect”. Moreover, there are no agreed-
upon best methods of MCI, which varies across display
manufacturers. To avoid the severe distortions that can be
produced by frame duplication or MCI, we instead utilized

Linear Filter Interpolation [21], which linearly interpolates
between adjacent frames. Generally, LFI yields stable and
consistent results that may be regarded as a lower bound of the
best results provided by modern displays, without producing
the more severe artifacts that can occur.

3) Video Compression: The videos were compressed by the
Main 10 profile of HEVC, using the FFmpeg libx265 encoder.
We fixed the intra period to 1 second, to ensure that I-pictures
would be regularly inserted as in the Random Access (RA)
configuration of the reference software [22]. The compression
levels were controlled by varying the QP parameters, where
higher values of QP increased the degrees of compression.

The source videos exhibit different space-time characteris-
tics, and consequently, the bitrates arrived at by processing
each content with spatial and temporal downsampling and
compression were varied by content to span a wide range of
perceptual qualities. Instead of imposing the same bit rates
on all contents, we determined a set of five bit rates on
each source video so that a wide range of well-separated
perceptual qualities were represented. Each source content
was compressed at their full space-time resolutions using
QP values ranging from 1 to 51. Among these, we visually
selected five videos judged to fall into each of the following
approximate quality levels resulting from compression:

• Level 1: Excellent quality video, perceptually difficult to
distinguish from the uncompressed video.

• Level 2: Good quality video, having light compression-
induced blur or flattening.

• Level 3: Fair quality video, having moderate blur and
subtle but visible blocking artifacts.

• Level 4: Poor quality video, having noticeable levels of
blur and blocking.

• Level 5: Bad quality video, with severe blur and blocking.

We did not use image/video quality models like PSNR,
SSIM or VMAF to determine the compression qualities,
since this would bias video selection relative to the applied
quality model. Instead, our goal, as in many prior studies,
was to produce a set of videos covering a wide range of
well-separated perceptual quality levels. While the range of
bitrates produced adequately encompasses most applications,
we did not predetermine any target bitrate, since our goal
was to model perceptual principles rather than any specific
application. Thus, each source videos “target bitrates” were
determined by this process.

Once these videos and their corresponding bit rates were
determined for each source content, the space-time subsampled
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Fig. 5. Example of QP determination on space-time subsampled versions of
the ‘Jockey’ video.

videos were then compressed (via QP selection) to have
bit rates as similar as possible as these “target” bit rates.
Fig. 5 shows an example of the QP determination process on
space-time subsampled versions of the ‘Jockey’ sequence. The
top curve indicates the source content having full space-time
resolution, while the lower curves indicate various combina-
tions of space-time subsampling. Once a bit rate is selected,
the QP values of each space-time subsampled video was
determined to be most similar to the “target” bitrate. Detailed
listings of the bit rates associated with each source video,
along with the corresponding QP and bit rates of the space-
time subsampled videos, are also provided at the ETRI-LIVE
STSVQ webpage (https://live.ece.utexas.edu/research/ETRI-
LIVE_STSVQ/index.html).

III. SUBJECTIVE EXPERIMENTS

A. Experiment Design

In subjective experiments, we adopted a Single-Stimulus
Continuous Quality Evaluation (SSCQE) procedure with hid-
den reference [23]. The participants delivered the subjective
quality scores using a continuous scale score bar after viewing
the video once. The original reference videos are presented but
‘hidden’, i.e., without being identified as such. The scores on
reference videos are useful as high-quality anchors, and are
used to calculate difference mean opinion scores (DMOS) as
a way of removing content biases.

Given that the average duration of each presented video is
5.61 seconds, and the average time subjects expend scoring
each video is about 6 seconds, a participant requires approxi-
mately 90 minutes to view and score all of the 437 videos in
the database. To avoid viewer fatigue, we therefore divided the
study into three 30-minute sessions, each comprising 145 or
146 distorted videos and 15 hidden references. The subjects
each participated in three sessions separated by least 24 hours,
hence every subject evaluated all of the videos in the database.

When constructing the playlist of videos for each session,
we sought to eliminate any biases introduced if the videos
were displayed in the same order to every subject. We also
avoided the successive presentations of same contents. There-
fore, to minimize contextual and memory effects, which can

Fig. 6. Illustration of the round-robin method used to determine which video
groups are presented to a given participant.

affect judgements of video quality [17], we randomized the
playlist using the following procedures.

1) Initial Randomization: An initial randomization was
used to reduce any clustering of the source contents. The list
was shuffled repeatedly until there were less than 10 occur-
rences of any video content (distorted or not) that appeared
consecutively. Of course, this does not adequately remove the
effects of memory, so additional randomization was applied in
the final step (to follow).

2) Video Groups: The randomized 437 videos from the
previous steps were then divided into 30 ‘video groups’, each
containing 14 or 15 videos. Since each subject participated in
three sessions, 10 video groups were viewed in each session.

3) Round-Robin Ordering: We also employed a round-robin
presentation ordering, to minimize the possibility of subjec-
tive opinions being affected by contextual factors, such as
combinations of videos being shown together to all of the
participants. Fig. 6 illustrates how the round-robin method was
applied to decide which video groups were presented to each
participant within each session. As shown in the figure, the
video groups comprising sessions 1, 2, and 3 will be different
for all participants. This round-robin approach also guarantees
each video group will appear an equal number of times within
each session (across all subjects). For example, in a study with
30 subjects, the videos in group 1 will appear 10 times in each
of sessions 1, 2 and 3.

4) Final Randomization: After the 10 video groups were
selected for a given participant in a given session, the 15 undis-
torted hidden references were included, and the entire col-
lection of references and 10 video groups were collectively
randomly shuffled again into a single session playlist. How-
ever, during the shuffling, videos having the same content were
constrained to have at least three different contents lie between
them, i.e., to be separated by at least four display periods.
Proceeding in exactly this way throughout, we generated
distinct playlists for every session created throughout the
study.

B. Experimental Set-up

As explained previously, all of the videos included in the
study are stored in 10-bit raw YUV format. To be able to
successfully play out the UHD high frame rate videos without
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Fig. 7. Hardware slider interface (top) and video score voting screen
(bottom).

hitches, we relied on a powerful ClearView system provided by
Video Clarity [24], which enables real-time playout of raw 4K
10-bit YUV format videos at 120fps. The system is connected
to a 27-inch Acer Predator X27 display which also supports
true 120fps 10-bit video signal input and playout [25]. Before
each subject entered the study room, the entire experimental
dataset and script was preloaded to present the session using
the playlist generated for that session. After viewing each
test video, a voting screen appeared and the subject used a
Pallete hardware slider [26] to control and select the scores
from an onscreen slider bar, as shown in Fig. 7. The quality
bar is marked with five Likert labels ranging from ‘Bad’ to
‘Excellent.’ However, the quality scale is continuous, and the
subjects were instructed that they could move the slider bar to
any position between the labels. Once the score was selected,
it was converted to a numerical value ranging from 0 to 39,
where 0 is ‘Bad’ and 39 is ‘Excellent.’

C. Experimental Procedure

Each subject was presented with a brief oral summary of the
overall experiment, and given written instructions explaining
how to use the hardware slider to assign scores to each video,
and that scores should reflect the degree of satisfaction they felt
regarding the level of overall video quality, while discounting
the aesthetic value or interestingness of the content. Each
subject was seated in front of the display at a distance of
about 1.5 times the height of the display, as recommended
in [27] for 4K videos. The subjects then participated in a short
training session using 10 videos different from those viewed in
the actual study, but also covering a wide range of perceptual
qualities and distortions representation of those seen during the
actual experiment. The training session enabled the subjects
to become familiar with the types and qualities of videos
to be judged, to attain facility with the hardware interface
used to score them. Following the training session, each
subject proceeded immediately to the actual session where the
subjective data was collected. The training session was only
given prior to each subject’s first session.

IV. DATA PROCESSING AND ANALYSIS

A. Processing of Subjective Scores

A total of 34 naïve subjects from The University of Texas at
Austin took part in the study. Each subject participated in all
three sessions, and thus, each video was rated by all 34 sub-
jects. The collected scores were converted to DMOS according
to [28]. Let si j k refer to the score given by subject i to video
j during session k ∈ {1, 2, 3}. Then, the difference score di jk

for video j at session k is computed by subtracting the score
given to the video from that given to the corresponding (same
content) reference video jre f in the same session k

di jk = si jre f k − si j k . (1)

The difference scores for the reference videos are, of course,
0, and were then removed from all sessions. To normalize
the scores collected on different sessions, we computed the
Z-score per session [29] as:

μik = 1

Nik

Nik∑
j=1

di jk, (2)

σik =

√√√√√ 1

Nik − 1

Nik∑
j=1

(
di jk − μi j k

)2
, (3)

and

zi j k = di jk − μi j k

σik
, (4)

where Nik is the number of videos the subject i viewed
during session k. We collected the Z-scores from all sessions
and formed a matrix zi j with element zi j corresponding to
the Z-score assigned by subject i to video j , where j ∈
{1, 2, . . . , 437}.

Subject rejection was performed according to the procedure
from [23]. The normality of the Z-scores for each content was
evaluated by computing the kurtosis β2 via

z̄ j = 1

N

N∑
i=1

zi j , (5)

mx j =
∑N

i=1

(
zi j − z̄ j

)x

N
, (6)

and

β2 j = m4 j(
m2 j

)2 , (7)

where N refers to the number of subjects that evaluated video
j , which in our case, is 34. If 2 ≤ β2 j ≤ 4, we considered the
scores for the video j to be normally distributed. We identified
potential outlier subjects according to the predicate

if zi j ≥ z̄ j + 2σ j , then Pi = Pi + 1,
if zi j ≤ z̄ j − 2σ j , then Qi = Qi + 1,

where

σ j =
√√√√ N∑

i=1

(
zi j − z̄ j

)2

N − 1
. (8)
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Fig. 8. Histogram of DMOS in 15 equally spaced bins.

If β2 j did not fall between 2 and 4, we instead used

if zi j ≥ z̄ j + √
20σ j , then Pi = Pi + 1,

if zi j ≤ z̄ j − √
20σ j , then Qi = Qi + 1.

In either case, for each subject i , we determined if the
following conditions:

Pi + Qi

N
> 0.05, (9)

and ∣∣∣∣
Pi − Qi

Pi + Qi

∣∣∣∣ < 0.3 (10)

were met. For a certain subject i , if both (9) and (10) were
true, then we rejected the subject. Overall, only four out of the
34 subjects were rejected. We linearly rescaled the Z-scores of
the remaining 30 subjects to final DMOS values in the range
[0, 100] using

z′
i j = 100(zi j + 3)

6
. (11)

Fig. 8 shows the histogram of the resulting DMOS values,
showing a distribution of opinions. The extreme DMOS values
were 25.30 and 82.45, while the mean and standard deviation
of DMOS were found to be 50 and 13.62, respectively.

To check the consistency of the collected subjective data,
we randomly split the subjects into two randomly selected,
non-overlapping groups of equal size, and measured the Spear-
man’s Rank Correlation Coefficient (SRCC) between their
scores. Fig. 9 shows a scatter plot of DMOS between a pair
of such randomly split groups, exhibiting an approximately
linear unit slope. The SRCC between the subject halves for
this split was 0.958, indicating a high consistency between
the groups. This random procedure was repeated 1000 times,
yielding SRCC values lying between 0.941 and 0.972 with a
median value of 0.960, indicating a reliably high degree of
inter-subject consistency.

B. Analysis of Opinion Scores

We observed how the average DMOS values varied with
content across various levels of distortions. Fig. 10(a) plots
the average DMOS values of each content across the bit rates.
The labels denoted Lv. refer to distortion levels, which in

Fig. 9. Scatter plot of DMOS of a random division of the human subjects
into two non-overlapping groups of equal size. The plot indicates a strong
agreement between the subjects.

Fig. 10(a) refers to H.265 compression. More specifically, Lv.
1 refers to videos that were compressed to the highest bit
rate, while Lv. 5 indicates the highest degree of compression
(lowest bit rate). The target bit rate decreases with increases
of the compression level. Generally, DMOS increased with
increased compression, although, as expected, the relationship
is not monotonic because of content effects (e.g., masking).

When observing the perceptual effects of different levels
of spatial and/or temporal subsampling, consideration must be
given to an assumed available bit rate. This is because the
spatial and/or temporal subsampling can drive the perceptual
quality of a video in different directions depending on an
imposed bit budget. For example, videos subjected to little
or no space-time subsampling may yield very high levels of
perceived quality given a large enough budget. However, the
quality may be severely degraded if the budget is small (hence
compression is heavy). Figs. 10(b)-(e) depict the effects of
different levels of spatial and temporal subsampling of the
videos, conditioned on low and high bit rates, where the low
bit rates were taken to be levels 4 and 5, and levels 1-3 were
regarded as high bit rates.

Figs. 10(b) and (c) plots the average DMOS across full
and half frame rates. Fig. 10(c) shows that, at sufficiently
high bit rates, the full frame rate videos, generally, yielded
lower DMOS (higher perceptual quality) probably in large part
because of smoother motion. However, as shown in Fig. 10(b),
when the available bit budget was low, the tendency was
reversed, and the half frame rate videos resulted in better
reported quality than the full frame rate videos. This is because
videos at full frame rate require heavy compression to meet a
given low bit budget, which will introduce severe compression
artifacts that significantly degrade perceptual quality. The
videos at half frame rate, on the other hand, may involve
loss of some temporal information, possibly resulting in less
smooth motion or stutter artifacts, but they also require much
less compression to meet the bit budget. Because of this,
videos at half frame rate can present better overall perceptual
experiences than full frame rate videos having severe com-
pression artifacts.

Figs. 10(d) and (e) plot the DMOS across differ-
ent spatial resolutions. A similar trend may be observed,
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Fig. 10. Variation of average DMOS of each content for each (a) compression level, (b) temporal subsampling level at low bit rates, (c) temporal subsampling
level at high bit rates, (d) spatial subsampling level at low bit rates, and (e) spatial subsampling level at high bit rates. The error bars represent 95% confidence
intervals.

Fig. 11. Rate distortion curves plotted on the entire database to observe the effects of (a) spatial subsampling only, and (b) space-time subsampling. Plot
(c) depicts the rate distortion curves of the video at the original space-time resolutions, using the convex hull constructed via spatial subsampling, and the
convex hull constructed via space-time subsampling. The error bars represent 95% confidence intervals.

e.g., in Fig. 10(e), low perceptual quality (higher DMOS)
was reported on heavily subsampled 540p videos. However,
as shown in Fig. 10(d), at low bit rates, the tendency again
reversed, and the 540p videos generally provided better per-
ceptual qualities as compared to the full resolution (2160p)
videos. These interesting results nicely exemplify the some-
what complex relationships between spatial and temporal
resolution, compression, and perceived quality, and provide
evidence that it should be possible to perceptually optimize
video coding strategies by considering spatial and/or temporal
subsampling combined with compression, especially when
trying to attain lower bit rates.

Fig. 11 plots rate distortion (RD) curves on the entire
ETRI-LIVE database, further revealing the effects of space-
time subsampling. The bit rate and DMOS values of each point
on a curve corresponds to the average DMOS of all videos
in the database having the same space-time subsampling
configuration, as specified in the legend. Note that the vertical
axis is set 100− Avg.DM OS, hence higher values correspond
to higher perceptual quality.

Fig. 11(a) focuses on the effects of spatial subsampling on
the RD curve. As the legend of Fig. 11(a) indicates, the consid-
ered videos were at full frame rate while the spatial resolutions
were varied. The plot reveals the interesting tendency that
lower spatial resolution videos are favored over the higher
resolution videos as the bit rate is reduced (increased com-
pression). This is not unexpected, since retaining full video
spatial dimension is not the best strategy at very low bit rates,
as heavy compression artifacts are introduced. While spatial
subsampling results in a loss of information and degradations
of quality, much less compression is required to meet the
bit budget, yielding less perceptually degraded videos. It is
possible to construct a convex hull that can be used to help
choose the best spatial subsampling strategy at each bit rate to
maintain the best possible perceptual quality. We indicate such
a spatial convex hull using a green dashed curve, in Fig. 11(b).

Fig. 11(b) also considers the effects of temporal subsam-
pling. The videos were subsampled in both space and time.
As shown in the figure, the perceptual quality at low bit
rates can be further improved using simultaneous spatial and
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Fig. 12. Rate distortion curves of the video content ‘American Football’ at
half frame rate, compared against the convex hull constructed using spatial
subsampling.

temporal subsampling, as compared to the convex hull con-
structed from just spatial subsampling. While this additional
temporal subsampling may introduce some level of visual
degradation arising from loss of temporal information (such
as stutter) it significantly reduces the amount of applied
compression, thereby improving the overall perceptual quality.
Fig. 11(c) depicts comprehensive RD curves obtained at orig-
inal space-time resolutions, from the convex hull constructed
using spatial subsampling only, and from the convex hull
constructed using both space and time subsampling, along with
95% confidence intervals superimposed. It is easily observed
that perceptual quality can be significantly improved at low
bit rates by using space and/or time subsampling. Indeed,
statistically superior quality improvements are obtained by
considering both space and time subsampling, as opposed to
considering only one kind of subsampling.

Of course, the aforementioned observations are comprehen-
sive on the whole database, and the results may vary depending
on the content characteristics. For example, Fig. 12 shows the
RD curve of the ‘American Football’ sequence, which contains
significant and rapid motions, including those arising from
camera movements and from the action of football players.
In this kind of video, the impact of temporal information loss
can be much more significant than on more static contents.
As shown in Fig. 12, the convex hull constructed from
only spatial subsampling on this high-motion video produced
better subjective quality results as compared to deploying any
temporal subsampling. An optimal strategy for this content
would likely employ only spatial subsampling, even at low bit
rates. Understanding the effects of space-time subsampling as
a function of content characteristics, and devising perceptually
optimal strategies are among the topics that could be fruitfully
investigated by analyzing the rich information available in the
new database.

V. EVALUATION OF OBJECTIVE VIDEO QUALITY MODELS

As a way of both demonstrating and exploiting the useful-
ness of the new ETRI-LIVE STSVQ database we evaluated
and compared the performances of a variety of relevant
and widely-used image/video quality assessment models on
it. We studied both Reference (including full and reduced

reference) and No-reference models. The former assume that
at least some information is derived from an undistorted refer-
ence image/video to compare against, while the latter predict
image/video quality without using any reference information,
which is often not available.

The reference models that we evaluated include the image
quality assessment (IQA) models such as PSNR, SSIM [30],
MSSSIM [31], and VIF [32], computed on each frame yielding
predictions that were averaged (pooled) over all frames to
obtain overall video quality scores. We also considered video
quality assessment (VQA) models that utilize both spatial and
temporal video features. Among these, ST-RRED [33] and
SpEED [34] are natural scene statistics (NSS) based models
that measure the statistical space-time statistical deviations
between a distorted videos and their references. VMAF [35]
is a learning-based VQA model that fuses a set of quality-
aware video features using a Support Vector Regressor (SVR).
We also included a popular deep learning-based quality model
called LPIPS [36], which utilizes the intermediate coefficients
of a deep learning-based classification network to capture
information relevant to perceptual similarity. LPIPS calibrates
the AlexNet based classification network by adding a linear
layer on top, to measure the perceptual similarities between
a reference and a distorted video. Finally, we also include a
results of a recent prototype model we have developed [37],
which is a space-time NSS based model that is based on
statistical measurements of Video’s Space-Time Regularity
(VSTR). The prediction performance of the reference models
is evaluated by comparing them to DMOS.

The no-reference models that we evaluated include
BRISQUE [38] and NIQE [39], which are NSS-based, and
TLVQM [40], which is a learning-based model that uses a
large set of hand-designed features, including motion statistics
and estimates of specific distortions. Since no-reference meth-
ods evaluate the intrinsic quality of videos, we evaluated no-
reference model performance against MOS. MOS computation
is similar to that for DMOS in Section IV-A, with (1) modified
to read di jk = si j k .

The quality prediction performances of the compared mod-
els was evaluated using Spearman’s rank order correlation
coefficient (SRCC), the Kendall rank correlation coefficient
(KRCC), the Pearson linear correlation coefficient (PLCC),
and the root mean squared error (RMSE). SRCC and KRCC
measure ordinal correlations, while PLCC measures linear
correlation between variables. Higher values are favorable for
SRCC, PLCC, and KRCC, and lower values are favorable
for RMSE. Before computing PLCC and RMSE, we used
logistic regression to linearize the model prediction following
the procedure in [23].

A. Overall Performance Comparison

We evaluated the prediction performance of the compared
models on the new ETRI-LIVE STSVQ database. For models
that involve machine learning, we first tested the model
as pre-trained on an other database, or used one of their
representative features. In this way, we measured holistic
model performance over all 437 videos of our database
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TABLE II

PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT TEMPORAL
SUBSAMPLING LEVELS. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

without applying train-test split procedures. Of course, we also
obtained cross-validation results of all learned models trained
on our database, in the following section. For VMAF, we used
the vmaf_4k_v.0.6.1 model available at [41]. For LPIPS
implementation, we used version 0.1 with pre-trained AlexNet
weights available at [42]. For VSTR, we used one of its
representative features, an entropic difference (ED) feature
computed on space-time displaced frame differences. For
BRISQUE, we used the model trained on the LIVE image
database provided by the authors. For TLVQM, we used the
average of thirty high complexity features (HCF) to capture a
wide variety of distortions.

Table II reports the performances of the compared mod-
els over different temporal subsampling levels and overall.
As shown in the Table, the no-reference models performed
much worse than the reference models. It is interesting that
the references models attained very high performance on full
frame rate videos, which they have been amply validated
on in the past, but performed much worse on temporally
subsampled videos. This suggests that there is ample room
for improvement of solutions to the underdeveloped topic
of assessing the quality of temporally subsampled and com-
pressed videos. Overall, VIF, VMAF and VSTR-ED yielded
the highest prediction performances. Fig. 13 shows scatter
plots of the model predictions against the subjective opinion
scores. The orange data points refer to videos that were
temporally subsampled to half frame rate, while the blue data
points refer to full frame rate videos. One notable tendency
is that for no-reference (NR) models, the orange and blue
points tend to significantly overlap, while the reference models
result in less overlap and somewhat parallel distributions of
blue and orange points. This is because half frame rate videos
have in-between frames that are generated by LFI, and the
reference models explicitly compare those frames with original
frames, which can introduce discrepancies. This may lead the
models to underestimate quality, sending the orange points
to the left side. The amount of underestimation may vary
depending on the content characteristics, whereby videos with
high motion may suffer more than static videos. The separation
of blue and orange points is less apparent for reference models
that employ a feature fusion stage. For instance, VMAF and
LPIPS may also extract features that underestimate the quality

of half frame rate videos. However, since the models fuse
multiple features using a pre-trained regressor or multi-layer
perceptron, it penalizes the half frame rate videos less. On the
other hand, reference models that rely on a single feature or
that use simple averaging of features may result in a separation
of orange and blue points, as shown for ST-RRED, SpEED,
and VSTR-ED in Fig. 13. Of course, the underestimation effect
on half frame rate videos can be alleviated by extracting richer
sets of features and by fusing them into a video quality model.
We explore this in more detail on Section V.C, where we also
show how the prediction power of VSTR can be improved
relative to the single feature VSTR-ED model through multiple
feature fusion.

Table III tabulates the prediction performance against
amount of spatial subsampling. The no-reference models
again underperformed against the reference models. However,
unlike the results in Table II, similar prediction performance
was obtained across spatial resolutions. VMAF yielded good
performance across all resolutions, VIF delivered good per-
formance at lower spatial resolutions (540p and 720p), and
VSTR-ED delivered good performance at higher spatial reso-
lutions (1080p and 2160p).

B. Statistical Significance

We verified the statistical significance of the performance
differences among the compared models in Tables II and III
via an F-test. Table IV shows the F-test results performed on
the residuals between the model predictions and the subjective
opinion scores. The underlying assumption is that the distrib-
ution of residuals follows a zero mean Gaussian distribution.
The F-test evaluates the ratio of variances of the residuals,
and determines whether the variances are equal at the 95%
confidence level. Table IV contains 7 entries, corresponding
to half frame rate, full frame rate, 540p, 720p, 1080p, 2160p,
and all of the videos, in that order. As shown in the Table, VIF,
VMAF and VSTR-ED attained statistically superior prediction
performances as compared to the other methods.

C. Cross-Validation Results on Learning-Based Models

We also evaluated the cross-validation performances of the
learning-based models trained specifically on our database.
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Fig. 13. Scatter plots of VQA/IQA model predictions plotted against subjective opinion scores of all of the distorted videos in the ETRI-LIVE STSVQ
database. The orange data points refer to videos that were temporally subsampled to half frame rate, while the blue data points refer to full frame rate videos.

TABLE III

PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT SPATIAL

SUBSAMPLING LEVELS. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

We split the database into non-overlapping train and test sets.
The learning-based models learned to map features to video
quality by training on the train set, and their prediction per-
formances were evaluated on the test set. While the prediction
performances here don’t represent the holistic performance
on all 437 videos in the database, cross-validation results are
important for understanding how well learning-based models
can generalize to unseen test data, which is especially impor-
tant in practical application.

The trained models include VMAF, VSTR, BRISQUE, and
TLVQM which each consists of 6, 16, 36 and 75 features,

respectively. In addition, we also evaluated the VIDEVAL
model [43], which uses a feature ensemble and selection
procedure to extract 60 features from among 763 perceptual
features. The VIDEVAL is a highly optimized feature-fusion
based method that is known to deliver robust state-of-the-art
performances on many video quality databases. The features
from the models were pre-processed by min-max normal-
ization and were then used to train an SVR with a radial
basis function (RBF) kernel. The SVR-RBF parameters were
determined using cross-validation within the training set,
as in [44].

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 16:09:07 UTC from IEEE Xplore.  Restrictions apply. 



LEE et al.: SUBJECTIVE AND OBJECTIVE STUDY OF SPACE-TIME SUBSAMPLED VIDEO QUALITY 945

TABLE IV

RESULT OF F-TEST ON RESIDUALS OF MODEL PREDICTION AND OPINION SCORES AT 95% CONFIDENCE. EACH CELL CONTAINS 7 ENTRIES
CORRESPONDING TO THE HALF FRAME RATE, FULL FRAME RATE, 540P, 720P, 1080P, 2160P AND ALL VIDEOS. A SYMBOL ‘-’ INDICATES

STATISTICAL EQUIVALENCE BETWEEN THE ROW AND THE COLUMN. A VALUE ‘1’ INDICATES THE ROW HAVING LESS RESIDUAL

VARIANCE (BETTER QUALITY PREDICTION) THAN THE COLUMN. A VALUE ‘0’ INDICATES COLUMN HAVING LESS RESIDUAL

VARIANCE THAN THE ROW

TABLE V

CROSS-VALIDATION PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT TEMPORAL
SUBSAMPLING LEVELS. THE NUMBERS DENOTE MEDIAN VALUES OVER 1000 ITERATIONS OF RANDOMLY SPLIT TRAIN AND TEST SETS. THE

VALUES INSIDE THE BRACKETS DENOTE STANDARD DEVIATIONS. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

TABLE VI

CROSS-VALIDATION PERFORMANCE COMPARISON OF VQA/IQA MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT SPATIAL

SUBSAMPLING LEVELS. THE NUMBERS DENOTE MEDIAN VALUES OVER 1000 ITERATIONS OF RANDOMLY SPLIT TRAIN AND TEST SETS. THE

VALUES INSIDE THE BRACKETS DENOTE STANDARD DEVIATIONS. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

Since the ETRI-LIVE database consist of videos afflicted
by various distortions applied on the same source contents,
we took particular care to separate the train and test sets
‘content-wise.’ Hence, the train and test sets did not share
any videos derived from the same source contents. For the
performance evaluation, we used 5-fold cross validation. Since
the database contains 15 unique source contents, the model
was trained on all the distorted versions of 12 source contents

(and their DMOS or MOS, as appropriate), and tested on
the distorted videos derived from the other three source
contents. We ran 1000 train/test iterations, in this manner,
where the train/test sets were randomly divided at each
iteration while following the content-wise separation. The
results in Table V and VI show the medians and standard
deviations of PLCC and SRCC of the compared learning-based
models across the 1000 iterations. We also list the median

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 16:09:07 UTC from IEEE Xplore.  Restrictions apply. 



946 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 14. Bar plots of SRCC performances of the compared quality models across (a) different frame rates, where the three best models in each SRCC column
of Table V (VSTR, VMAF, and VIF for half frame rate and SpEED, ST-RRED, and VSTR for full frame rate) are compared, and across (b) different spatial
resolution, where three best models in each SRCC column of Table VI (VSTR, VIF, and VMAF for all resolutions) are compared.

performances of the other non-learning-based models, but on
the same randomized splits for comparison.

Table V shows the cross-validation performance over dif-
ferent temporal subsampling levels and overall. No-reference
models underperformed against the reference models. Refer-
ence models again attained high performances on full frame
rate videos, but performed comparatively worse on temporally
subsampled videos. Fig. 14(a) shows a bar plot of SRCC
performance across frame rates. The compared models were
chosen to include the three best models in each column of
Table V. For the full frame rate case, SpEED, ST-RRED,
and VSTR attained the best SRCC performances (higher than
0.8), suggesting that they are reliable models when assessing
the quality of videos afflicted only by compression and spa-
tial subsampling. However, the performances of SpEED and
ST-RRED fell steeply when temporal subsampling was intro-
duced, where the performance decreased by 49% and 43%,
respectively. For the half frame rate case, the learning-based
reference models, such as VMAF and VSTR, were able
to effectively predict the video quality. These models still
performed comparatively worse than on the full frame rate
case, but the performance decrease was less severe, at 26%
for both models. These learning-based reference models are
likely more reliable predictors when the application scenario
includes frame rate adaptation.

Table VI presents the cross-validation performance over
different spatial subsampling level and overall. Fig. 14(b)
shows a bar plot of the SRCC performances of the three best
models in each column of Table VI, across different spatial
resolutions. As may be seen in Table III and Fig. 14(b), sim-
ilar prediction performance was obtained across the different
spatial resolutions, suggesting that the prediction power of the
models was not very affected by the different levels of spatial
subsampling.

For most quality models, the attained prediction perfor-
mance mainly depends on whether the frame rate variations
are present or not. This suggests the need for further investiga-
tions into the underdeveloped topic of temporally subsampled

and compressed video quality. Overall, the learning-based
reference models, VMAF and VSTR, outperformed the other
models.

VI. CONCLUSION AND FUTURE WORK

We conducted a large-scale human study to more gener-
ally understand combined space-time subsampling and com-
pression affect the perceptual quality of videos. The new
ETRI-LIVE STSVQ database contains 15 unique source con-
tents and 437 distorted versions of them, on which almost
15,000 subjective opinion scores were collected. This study is
the first to include the subjective scores on 4K 10bit videos
with frame rates up to 120Hz, subjected to simultaneous space-
time subsampling and compression.

Analysis of the subjective scores reveals that, while space-
time subsampling inevitably results in a loss of information
and subsequent degradations on quality, it may be a good
tradeoff against increased compression, given a fixed bit rate
budget. A rate distortion analysis of the subjective scores
showed that space-time subsampling prior to video compres-
sion can significantly improve video perceptual quality at
low bit rates. An interesting topic for further study, would
be to understand content-wise trade-offs between space-time
subsampling and compression. For instance, contents con-
taining large motions may be affected more significantly by
temporal information loss and artifacts, and thus, the optimal
strategy for this kind of content may be to not include
temporal subsampling, even at low bit rates. On the other
hand, static contents may benefit from simultaneous space-
time subsampling, where less compression is required to
meet a limited bit budget. The new database may be further
studied towards developing space-time resolution adaptation
algorithms, whereby the space-time characteristics of videos
and the available bit rate are jointly considered to determine
optimal space-time resolution parameters prior to perceptual
video coding. Successfully addressing this problem could
provide significant optimization of the workflows of streaming
media providers.
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We also evaluated several high-performance objective
image/video quality models on the new database. The results
from this benchmark study indicate that, while the compared
models can effectively predict the quality of videos subjected
to spatial subsampling and compression, they are much less
effective if temporal subsampling is included in the mix of
distortions. This suggests that further study could lead to
significant improvements of existing models, or new models
altogether, more capable of capturing the deleterious percep-
tual effects of temporal subsampling. Such quality models
could be utilized in media streaming applications where the
space-time sensitive VQA models are used to monitor stream-
ing video quality while delivering feedback to the server to
affect perceptually optimal video encoding.

The ETRI-LIVE STSVQ database is being made pub-
licly and freely available at (https://live.ece.utexas.edu/
research/ETRI-LIVE_STSVQ/index.html) with the desire to
improve future research and development on topics such as
video quality modeling and perceptual video coding.
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