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Abstract

The paper introduces a reduced order model (ROM) for numerical integration of a dynamical system which depends on
ultiple parameters. The ROM is a projection of the dynamical system on a low dimensional space that is both problem-

ependent and parameter-specific. The ROM exploits compressed tensor formats to find a low rank representation for a sample
of high-fidelity snapshots of the system state. This tensorial representation provides ROM with an orthogonal basis in a universal
space of all snapshots and encodes information about the state variation in parameter domain. During the online phase and
for any incoming parameter, this information is used to find a reduced basis that spans a parameter-specific subspace in the
universal space. The computational cost of the online phase then depends only on tensor compression ranks, but not on space
or time resolution of high-fidelity computations. Moreover, certain compressed tensor formats enable to avoid the adverse effect
of parameter space dimension on the online costs (known as the curse of dimension). The analysis of the approach includes
an estimate for the representation power of the acquired ROM basis. We illustrate the performance and prediction properties
of the ROM with several numerical experiments, where tensorial ROM’s complexity and accuracy is compared to those of
conventional POD-ROM.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In numerical optimal control, inverse modeling or uncertainty quantification, one commonly needs to integrate a
arameter-dependent dynamical system for various values of the parameter vector. For example, inverse modeling
ay require repeated solutions of the forward problem represented by a dynamical system, along the search

ath in a high-dimensional parameter space. This may lead to extreme-scale computations that, if implemented
traightforwardly, often result in overwhelming computational costs. Reduced order models (ROMs) offer a
ossibility to alleviate these costs by replacing a high-fidelity model with a low-dimensional surrogate model [1,2].
hanks to this practical value and apparent success, ROMs for parametric dynamical systems have already attracted
onsiderable attention; see, e.g., [3–8].
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In this paper, we are interested in projection based ROMs that build the surrogate model by projecting a high-
fidelity model onto a low-dimensional problem-dependent vector space [3]. Projection-based ROMs for dynamical
systems include such well-known model order reduction techniques as proper orthogonal decomposition (POD)
ROMs [9,10] (and its variants such as POD-DEIM [11] and balanced POD [12]) and PGD-ROMs [13,14]. In these
approaches the basis for the projection space is computed by building on the information about the dynamical
system provided through high-fidelity solutions sampled for certain time instances and/or parameter values, the
so-called solution snapshots. However, building a general low-dimensional space for all times and parameters of
interest might be challenging, if possible at all, for wide parameter ranges and long times. Several studies aimed to
address this challenge: In [15–17] the authors considered partitioning strategies which introduce a subdivision of the
parameter domain and assign an individual local reduced-order basis to each subdomain offline. Another idea [18,19]
is to adapt precomputed equal-dimension reduced order spaces by interpolating them for out-of-sample parameters
along geodesics on the Grassmann manifold. The present paper introduces a different approach that builds on recent
developments in tensor decompositions and low-rank approximations to quickly compute parameter-specific reduced
bases for projection based ROMs.

For parameterized systems of time-dependent differential equations, the generated data (the input of ROM)
naturally takes a form of a multi-dimensional tensor of solution snapshots, with dimensionality D + 2, where
D is the dimension of the parameter space and 2 accounts for the spatial and time-wise distributions. Modern

OMs often proceed by unfolding such tensors into a matrix to perform standard POD based on truncated SVD.
his leads to the loss of information about the dependency of solutions on parameters. We propose to overcome

hese issues by working directly with tensor data, and by exploiting low-rank tensor approximations based on the
anonical polyadic (CP), high order SVD (HOSVD), and Tensor Train (TT) decompositions. The approach consists
f two stages. First, at the offline stage, the compressed snapshot tensor is computed using one of the three tensor
ecompositions, thus preserving the essential information about variation of the solution with respect to parameters.
p to the compression accuracy, each of these decompositions provides a (global) basis for the universal space

panned by all observed snapshots. The so-called core of the compressed representation is then transmitted to the
econd stage, referred to as the online stage. At the online stage the transmitted part of compressed tensor allows for
fast computation of a parameter-specific reduced basis for any incoming out-of-sample parameter vector through

n interpolation and fast linear algebra routines. The reduced order basis is then given in terms of its coordinates
n the global basis that can be stored offline. For CP and TT formats, the cost of these computations is free of
xponential growth with respect to the parameter space dimension. On analysis side of this work, we prove an
stimate for prediction power of the parameter-specific reduced order basis. The estimate explicitly depends on the
pproximation accuracy of the original tensor by the compressed one, parameter interpolation error, and singular
alues of a small-size parameter-specific matrix.

Despite an outstanding recent progress in numerical multi-linear algebra and, in particular, in understanding
ensor decompositions (see, e.g., review articles [20–22]), the application of tensor methods in reduced order
odeling of dynamical systems is still rather scarce. We mention two reports by Nouy [23,24], who reviewed tensor

ompressed formats and discussed their possible use for sparse function representation and reduced order modeling,
s well as a series of publications on the treatment in compressed tensor formats of algebraic systems resulting from
he stochastic and parametric Galerkin finite element method, see e.g. [25–29]. A POD-ROM was combined with
low-rank tensor representation of a mapping from a parameter space onto an output domain in [30]. The authors

f survey [3] observe that “The combination of tensor calculus . . . and parametric model reduction techniques for
ime dependent problems is still in its infancy, but offers a promising research direction”. We believe the statement
olds true, and the present study contributes to this largely open research field.

The remainder of the paper is organized as follows. In Section 2 we set up a parameter-dependent Cauchy
roblem and recall the basics of POD-ROM approach that is needed for reference purpose later in the text. Section 3
ntroduces a general idea of the interpolatory tensorial ROM and considers its realization using three popular tensor
ompression formats. Details are worked out for a Cartesian grid-based sampling of the parameter domain, and then
he approach is extended to a more general parameter sampling scheme. A separate subsection discusses online–
ffline complexity and storage requirements of the method. An estimate on the prediction power of the reduced order
asis is proved in Section 4. Numerical examples in Section 5 illustrate the analysis and performance of the method.
n particular, we compare the delivered accuracy with standard POD-ROM that employs a global low-dimensional

asis.
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2. Parameterized Cauchy problem and the conventional POD-ROM

To fix ideas, consider the following multi-parameter initial value problem. For a vector of parameters α =

(α1, . . . , αD) from the parameter domain A ⊂ RD find the trajectory u = u(t,α) : [0, T ) → RM solving

ut = F(t, u,α), t ∈ (0, T ), and u|t=0 = u0, (2.1)

with a given continuous flow field F : (0, T ) × RM
×A → RM . Hereafter we denote all vector quantities by bold

lowercase letters. We assume that the unique solution exists on (0, T ) for all α ∈ A. Examples considered in this
paper include parameter-dependent parabolic equations, in which case one can think of (2.1) as a system of ODEs
for nodal values of the finite volume or finite element solution to the PDE problem, where material coefficients,
boundary conditions, or the computational domain (via a mapping into a reference domain) are parameterized
by α.

We are interested in projection based ROMs, where for an arbitrary but fixed α ∈ A an approximation to u is
sought as a solution to equations projected onto a reduced space. Projection based approaches aim at retaining the
structure of the model and thus at preserving the physics present in the high-fidelity model [3]. Among the projection
based approaches to model reduction for time-dependent differential equations, Proper Orthogonal Decomposition
(POD) and its variants are likely the most widely used ROM technique, which provides tools to represent trajectories
of a dynamical system in a low-dimensional, problem-dependent basis [31–33]. We summarize the POD-ROM below
for further reference and for the purpose of comparison to our approach in Section 5.

Assume for a moment that α is fixed. The POD-ROM computes a representative collection of states φk(α) =

u(tk,α) ∈ RM at times 0 ≤ t1, . . . , tN < T , referred to as snapshots, through high-fidelity numerical simulations.
Next, one finds a parameter-specific low-dimensional basis {zpod

i (α)}n
i=1 ⊂ RM , n ≪ N , referred to hereafter as

the reduced basis, such that the projection subspace span
{
zpod

1 (α), . . . , zpod
n (α)

}
approximates the snapshot space

span{φ1(α), . . . ,φN (α)} in the best possible way.
To determine the reduced basis, form a matrix of snapshots

Φpod(α) = [φ1(α), . . . ,φN (α)] ∈ RM×N , (2.2)

compute its SVD

Φpod(α) = UΣVT , (2.3)

and define zpod
i (α), i = 1, . . . , n, to be the first n left singular vectors of Φpod(α), i.e., the first n columns of U.

Hereafter we denote all matrices with upright capital letters. The singular values in Σ provide information about
the approximation power of span

{
zpod

1 (α), . . . , zpod
n (α)

}
. We refer to [31,34] and references therein for a discussion

about algebraically different ways to define POD and their equivalence.
For parameters α varying in A, a parametric POD-ROM builds a global reduced basis by sampling the parameter

domain, generating snapshots for each sampled parameter value and proceeding with SVD (2.3) for a cumulative
matrix of all snapshots. Possible sampling strategies include using a Cartesian grid in A, Monte-Carlo methods, and
greedy algorithms based on a posteriori error estimates; see, e.g., [3,4]. Regardless of the sampling procedure, the
resulting basis can accurately reproduce only the data from which it originated. Without parameter-specificity, the
basis may lack robustness for out-of-sample parameters, i.e., away from the reference simulations. This is a serious
limitation for using POD based ROMs in inverse modeling. We plan to address this limitation by introducing
tensorial techniques for finding reduced bases that are both problem- and parameter-specific.

3. Tensorial ROMs

We first consider in Section 3.1 a Cartesian grid-based sampling of the parameter domain A in the case when
A is the D-dimensional box

A =

D⨂
i=1

[αmin
i , αmax

i ], (3.1)

and the sampling points are placed at the nodes of a Cartesian grid. Next, we describe three tensorial ROMs
(TROMs) based on three different tensor decompositions, canonical polyadic (CP, Section 3.5), high order SVD

(HOSVD, Section 3.6) and tensor train (TT, Section 3.7).
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3.1. Cartesian grid-based parameter sampling

To generate the sampling set Â, we distribute ni nodes {̂α
j
i } j=1,...,ni within each of the intervals [αmin

i , αmax
i ] in

(3.1) for i = 1, . . . , D, and define

Â =

{
α̂ = (̂α1, . . . , α̂D)T

: α̂i ∈ {̂α
j
i } j=1,...,ni , i = 1, . . . , D

}
. (3.2)

ereafter we use hats to denote parameters from the sampling set Â, and the cardinality of Â is denoted by

K =

D∏
i=1

ni . (3.3)

The corresponding snapshots φk (̂α) = u(tk, α̂), α̂ ∈ Â, are organized in a multi-dimensional array

(Φ):,i1,...,iD ,k = φk (̂αi1
1 , . . . , α̂

iD
D ), (3.4)

which is a tensor of order D +2 and size M ×n1 × . . .×nD × N . We reserve the first and the last indices of Φ for
he spatial and temporal distributions, respectively. All tensors hereafter are denoted with bold uppercase letters.

Unfolding Φ along the first index in an M × (n1 · · · nD)N matrix and applying (truncated) SVD to determine
he first n left singular vectors is equivalent to the POD with grid-based parameter sampling. The disadvantage
f this approach for ROM construction is that it neglects any information about the dependence of snapshots
n parameter variation reflected in the tensor structure of Φ. To preserve this information, we proceed with a
ompressed approximation Φ̃ of Φ rather than with the low rank approximation of the unfolded matrix.

.2. Tensor compression and universal space

The notion of a tensor rank and low-rank tensor approximation is ambiguous and later in this section we consider
hree popular compressed tensor formats. For now we only assume that Φ̃ satisfiesΦ̃ −Φ


F ≤ ε̃

ΦF (3.5)

or some small ε̃ > 0, where tensor Frobenius norm is simply

∥Φ∥F :=

( M∑
j=1

n1∑
i1=1

· · ·

nD∑
iD=1

N∑
k=1

Φ2
j,i1,...,iD ,k

)1/2
(3.6)

he “low-rank” (compressed) tensor Φ̃ is computed during the first, offline stage of TROM construction and a part
f Φ̃ is passed on to the second, online stage which uses this information about variation of snapshots with respect
o changes in parameters to compute a parameter-specific TROM.

We call universal space the space Ṽ spanned by the first-mode fibers of Φ̃, i.e., Ṽ is the column space of the
ode-1 unfolding matrix. For the exact decomposition (i.e., for ε̃ = 0), Ṽ is the space of all observed system states.

n general, Ṽ depends on a compression format, dimension of Ṽ does not exceed M and depends on ε̃ and snapshot
ariation. We shall see that Ṽ does approximate the full space of high-fidelity snapshots, while the CP, HOSVD and
T formats all deliver an orthogonal basis for Ṽ . In the online stage of TROM we find a local (parameter-specific)
OM basis by specifying its coordinates in Ṽ .

.3. In-sample prediction

During the online stage we wish to be able to approximately solve (2.1) for an arbitrary parameter α ∈ A in an
-specific reduced basis. For this step we need to introduce the notion of k-mode tensor–vector product Ψ ×k a of
tensor Ψ ∈ RN1×···×Nm of order m and a vector a ∈ RNk : the resulting tensor Ψ ×k a has order m − 1 and size

N1 × · · · × Nk−1 × Nk+1 × · · · × Nm . Specifically, elementwise

(Ψ ×k a) j1,..., jk−1, jk+1,..., jm =

Nk∑
Ψ j1,..., jm a jk . (3.7)
jk=1

4
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For a moment, consider some α̂ = (̂α1, . . . , α̂D)T from the sampling set Â and define D vectors, ei (̂α) =

ei
1 (̂α), . . . , ei

ni
(̂α)
)T

∈ Rni , i = 1, . . . , D, as

ei
j (̂α) =

{
1 if α̂i = α̂

j
i

0 otherwise,
j = 1, . . . , ni . (3.8)

n other words, ei (̂α) encodes the position of α̂i among the grid nodes on [αmin
i , αmax

i ], i = 1, . . . , D.
Vectors ei (̂α) defined above allow us to extract the snapshots corresponding to a particular α̂ ∈ Â. Specifically,

e introduce the following extraction operation

Φe (̂α) = Φ ×2 e1 (̂α) ×3 e2 (̂α) . . . ×D+1 eD (̂α) ∈ RM×N , (3.9)

which extracts from tensor of all snapshots Φ the matrix of snapshots (2.2) for the particular α̂ ∈ Â, i.e., Φe (̂α) =
Φpod(̂α).

Combining (3.9) with compressed approximation (3.5), we conclude that is should be possible to extract from
Φ̃ the information about the space spanned by the snapshots {u(ti , α̂)}N

i=1, for a particular α̂ ∈ Â up to the accuracy
f approximation in (3.5). Indeed, let φi (̂α) = u(ti , α̂), i = 1, . . . , N , and denote by {z j (̂α)}Ñ

j=1, Ñ ≤ N , an
orthonormal basis for the column space of

Φ̃e (̂α) = Φ̃ ×2 e1 (̂α) ×3 e2 (̂α) . . . ×D+1 eD (̂α) ∈ RM×N , (3.10)

where Ñ = rank
(
Φ̃e (̂α)

)
. Then, it holds

N∑
i=1

φi −

Ñ∑
j=1

⟨φi , z j ⟩z j


2

ℓ2

≤ ε̃2
Φ2

F , (3.11)

where we use the shortcut φi = φi (̂α), zi = zi (̂α). To establish (3.11), consider (thin) SVD Φ̃e (̂α) = ŨΣ̃ ṼT and
compute

N∑
i=1

φi −

Ñ∑
j=1

⟨φi , z j ⟩z j


2

ℓ2

=
(I − ŨŨT )Φe (̂α)

2
F

=
(I − ŨŨT )

(
Φe (̂α) − Φ̃e (̂α)

)2
F

≤
I − ŨŨT

2 Φe (̂α) − Φ̃e (̂α)
2

F ≤
Φe (̂α) − Φ̃e (̂α)

2
F

=
(Φ − Φ̃) ×2 e1 (̂α) ×3 e2 (̂α) . . . ×D+1 eD (̂α)

2
F

≤
Φ − Φ̃

2
F ≤ ε̃2

Φ2
F ,

here we used linearity of (3.7) and the inequality ∥AB∥F ≤ ∥A∥∥B∥F for matrices A, B, and spectral matrix
orm ∥ · ∥. We also used ∥P∥ ≤ 1 for an orthogonal projection matrix P = I − ŨŨT .

Since zi (̂α) ∈ Ṽ for all in-sample α̂, the bound in (3.11) provides an estimate on how accurate the true snapshots
an be approximated in the universal space. Furthermore, from (3.11) we conclude that given Φ̃ and α̂ ∈ Â we
an obtain a parameter-specific (quasi)-optimal reduced basis by taking the first n left singular vectors of Φ̃e (̂α).
epresentation power of this basis is determined by ε̃ from (3.5) and σi , i > n, the singular values of Φ̃e (̂α).

f ε̃ is sufficiently small, i.e., the snapshot tensor admits an efficient low-rank representation, then the computed
educed basis better represents the snapshot space for a given α̂ than the first n left singular vectors of the unfolded
napshot matrix (i.e., better than the POD basis); see numerical results in Section 5 which show up to several orders
f accuracy gain for some of the examples.

The arguments above apply only to parameter values α̂ from the sampling set Â ⊂ A. Next, we consider ROM
asis computation for an arbitrary α ∈ A that may not necessarily come from the training set Â, the so-called
ut-of-sample α. Below we explore the option of building ROM basis for an out-of-sample α using interpolation
n the parameter space. This approach is based on an assumption of smooth dependence of the solution u(t,α) of

2.1) on α. We refer to the corresponding tensorial ROMs as interpolatory TROMs.
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3.4. Interpolatory TROM

To construct parameter-specific ROM basis for an arbitrary α = (α1, . . . , αD)T
∈ A we introduce the interpolation

procedure defined by

ei
: α → Rni , i = 1, . . . , D. (3.12)

Entrywise, we write ei (α) =
(
ei

1(α), . . . , ei
ni

(α)
)T

∈ Rni . The interpolation procedure should satisfy the following
property. For a smooth function g : [αmin

i , αmax
i ] → R, it holds

g(αi ) ≈
ni∑

j=1

ei
j (α)g(̂α j

i ), i = 1, . . . , D, (3.13)

where α̂
j
i , j = 1, . . . , ni , are the grid nodes on [αmin

i , αmax
i ].

We further consider Lagrangian interpolation of order p: for a given α ∈ A let α̂
i1
i , . . . , α̂

i p
i be the p closest grid

nodes to αi on [αmin
i , αmax

i ], for i = 1, . . . , D. Then

ei
j (α) =

⎧⎪⎪⎨⎪⎪⎩
p∏

m=1,
m ̸=k

(̂αim
i − αi )

/ p∏
m=1,
m ̸=k

(̂αim
i − α̂

j
i ), if j = ik ∈ {i1, . . . , i p},

0, otherwise,

(3.14)

are the entries of ei (α) for j = 1, . . . , ni . For the numerical experiments in Section 5 we use p = 2 or 3, i.e., linear
or quadratic interpolation. The Lagrangian interpolation is not the only option and depending on parameter sampling
and solution smoothness other fitting procedures can be more suitable.

Vectors ei extend the notion of position vectors ei defined in (3.8) for out-of-sample vectors. Indeed, from (3.14)
it is easy to see that both vectors coincide if α̂ ∈ Â and so we use the same notation hereafter. Therefore, we can
define a snapshot matrix Φ̃e(α) through the extraction–interpolation procedure:

Φ̃e(α) = Φ̃ ×2 e1(α) ×3 e2(α) . . . ×D+1 eD(α) ∈ RM×N , (3.15)

o generalize (3.9) for any α ∈ A. Note that (3.15) and (3.9) are the same for α = α̂ ∈ Â ⊂ A, while (3.15)
efines Φ̃e(α) also for out-of-sample parameter vectors. If the low-rank representation of the snapshot tensor is
xact, i.e., Φ̃ = Φ, then Φ̃e(α) is the interpolation of the snapshot matrices Φpod(̂α).

Once α ∈ A is fixed and Φ̃e(α) is given by (3.15), our parameter-specific reduced basis {zi (α)}n
i=1 is defined as

he first n left singular vectors of Φ̃e(α). Later we demonstrate that the coordinates of this basis in the universal
pace can be calculated quickly (i.e., using only low-dimensional calculations) online without actually computing˜e(α).

In a non-interpolatory TROM, a parameter-specific reduced basis can be constructed as follows. Choose p ≥ 2
nd fix α ∈ A, then let α̂

i1
i , . . . , α̂

i p
i be the p closest grid nodes to αi on [αmin

i , αmax
i ], for i = 1, . . . , D, similarly

o the interpolatory construction above. Define the set

Âp :=

{
α̂ = (̂α1, . . . , α̂D)T

: α̂i ∈ {̂α
j
i } j∈{i1,...,i p}, i = 1, . . . , D

}
⊂ Â. (3.16)

hen, assemble a large matrix by concatenating Φ̃e (̂α) for all α̂ ∈ Âp and take {zi (α)}n
i=1 to be its first n left singular

ectors. Of course, hybrid strategies (e.g., interpolation only in some parameter directions) are also possible. For
on-interpolatory or hybrid TROMs it is also possible to compute local basis online with only low-dimensional
alculations following same steps as considered below.

In the rest of paper we focus on the interpolatory TROM and consider three well-known compressed formats for
ow rank tensor approximation Φ̃ ≈ Φ: canonical polyadic (CP), Tucker, a.k.a. higher order SVD (HOSVD), and
ensor train (TT) decomposition formats. Note that the notion of tensor rank(s) differs among these formats. When
pplied to TROM computation, these formats lead to different offline computational costs to build Φ̃, different
mounts of information transmitted from the offline stage to the online stage (measured by the compression rate, as
xplained in Section 3.9), and slightly varying amounts of online computations for finding the reduced basis given

n incoming α ∈ A.

6
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3.5. CP-TROM

The first tensor decomposition that we consider is the canonical polyadic decomposition of a tensor into the
sum of rank one tensors [20,35–37]. In CP-TROM we approximate Φ by the sum of R (where R is the so-called
anonical tensor rank) direct products of D + 2 vectors ur

∈ RM , σ r
i ∈ Rni , i = 1, . . . , D, and vr

∈ RN ,

Φ ≈ Φ̃ =

R∑
r=1

ur
◦ σ r

1 ◦ · · · ◦ σ
r
D ◦ vr , (3.17)

r entry-wise

(Φ̃) j,i1,...,iD ,k =

R∑
r=1

ur
jσ

r
1,i1

. . . σ r
D,iD

vr
k .

CP decomposition often delivers excellent compression. However, there are well-known difficulties in determin-
ng the accurate canonical rank R and working with the CP format, see, e.g., [38,39]. Since we are interested in the
pproximation Φ̃ to Φ, the alternating least squares (ALS) algorithm [20,40] can be used to minimize ∥Φ−Φ̃∥F for
specified target canonical rank R to find the approximate factors ur

∈ RM , σ r
i ∈ Rni , and vr

∈ RN , r = 1, . . . , R.
We further assume R ≤ M , where M is the dimension of high-fidelity snapshots.

Note that the second-mode product of a D + 2-dimensional rank-one tensor ur
◦ σ r

1 ◦ · · · ◦ σ
r
D ◦ vr and a vector

1(α) ∈ Rn1 is the D+1-dimensional rank-one tensor
⟨
σ r

1, e
⟩
(ur

◦σ r
2◦· · ·◦σ

r
D◦vr ). Proceeding with this computation

or other modes, in the decomposition (3.17) we find that the definition (3.15) yields representation of Φ̃e(α) as the
um of rank one matrices for any α ∈ A:

Φ̃e(α) =
R∑

r=1

sr ur
◦ vr

∈ RM×N , with sr =

D∏
i=1

⟨
σ r

i , ei (α)
⟩
∈ R. (3.18)

owever, (3.18) is not the SVD of Φ̃e(α), since vectors ur (and vr ) are not necessarily orthogonal. To avoid
omputing Φ̃e(α) and its SVD online, the following preparatory offline step is required. Organize the vectors ur

nd vr from (3.17) into matrices

Û = [u1, . . . , uR] ∈ RM×R, V̂ = [v1, . . . , vR] ∈ RN×R, (3.19)

nd compute the thin QR factorizations

Û = URU , V̂ = VRV , (3.20)

f R > N let further RV = V̂ and V = I. The columns of U form an orthogonal basis in the universal space Ṽ .
atrix U is stored offline (V is not used and can be dropped), while low-dimensional matrices RU and RV together
ith vectors σ r

i form the online part of Φ̃,

online(Φ̃) =
{
RU , RV ∈ RR×R, σ r

i ∈ Rni , i = 1, . . . , D
}
, (3.21)

hich is transmitted to the online stage.
At the online stage and for any incoming α ∈ A, we compute the SVD of the R × R core matrix

C(α) = RU S(α)RT
V , (3.22)

here S(α) = diag(s1, . . . , sR), with sr from (3.18): C(α) = UcΣcVT
c . Since

Φ̃e(α) = UC(α)VT
= (UUc)Σc (VVc)

T (3.23)

s the SVD of Φ̃e(α), the first n columns of Uc, denoted by
{
β1(α), . . . ,βn(α)

}
, are the coordinates of the local

educed basis in the universal space Ṽ . The parameter-specific basis in the physical space is then {zi (α)}n
i=1, with

i (α) = Uβ i (α). Note that zi (α) are not actually computed.
Under certain assumptions on F , the dynamical system (2.1) is projected offline onto Ṽ and passed to the online

tage, where for any α ∈ A it is further projected onto the local basis
{
β1(α), . . . ,βn(α)

}
. This avoids any online
omputations with high-dimensional objects used in high-fidelity simulations; see further discussion in Section 3.10.

7
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We summarize the above in the following algorithm.

Algorithm 1 (CP-TROM).

• Offline stage.
Input: snapshot tensor φ ∈ RM×n1×...×nD×N , target canonical rank R;
Output: CP decomposition factors, universal basis matrix U ∈ RM×R , and upper triangular matrices RU ,
RV ∈ RR×R ;
Compute:

1. Use ALS algorithm to minimize ∥φ−φ̃∥F to find CP decomposition factors ur , σ r
i , and vr of φ̃ satisfying

(3.17);
2. Assemble matrices V̂, Û as in (3.19) and compute their thin QR factorizations (3.20) to obtain RU , RV

and U.

• Online stage.
Input: online(Φ̃) as defined in (3.21), reduced space dimension n ≤ R, and parameter vector α ∈ A;
Output: Coordinates of the reduced basis in Ṽ : {β i (α)}n

i=1 ⊂ RR ;
Compute:

1. Use (3.22) to assemble the core matrix C(α);
2. Compute the SVD of the core matrix C(α) = UcΣcVT

c , with Uc = [̃u1, ũ2, . . . , ũR];
3. Set β i (α) = ũi , i = 1, . . . , n.

Note that we do not have direct control over ALS algorithm to enforce a priori CP decomposition accuracy
Φ − Φ̃∥F < ε̃∥Φ∥F . One option is to rerun the offline stage for different trial values of R. Given that the offline
tage is computationally expensive, this may become prohibitive in cases where a desired accuracy ε̃ must be strictly
nforced. The other two variants of TROM presented below are free from this limitation.

.6. HOSVD-TROM

As we already mentioned, truncated variant of CP decomposition is not known to satisfy any simple minimization
roperty (unlike the SVD decomposition for matrices). A classical tensor decomposition, known to deliver a (quasi)-
inimization property, is the so-called higher order SVD (HOSVD) [41]. In HOSVD-TROM variant we approximate

he snapshot tensor with a Tucker tensor [20,42] Φ̃ of the form

Φ ≈ Φ̃ =

M̃∑
j=1

ñ1∑
q1=1

· · ·

ñD∑
qD=1

Ñ∑
k=1

(C) j,q1,...,qD ,ku j
◦ σ

q1
1 ◦ · · · ◦ σ

qD
D ◦ vk, (3.24)

ith u j
∈ RM , σ qi

i ∈ Rni , and vk
∈ RN . The numbers M̃ , ñ1, . . ., ñD and Ñ are referred to as Tucker ranks

f Φ̃. The HOSVD delivers an efficient compression of the snapshot tensor, provided the size of the core tensor
∈ RM̃×ñ1×···×ñD×Ñ is (much) smaller than the size of Φ.
In what follows, it is helpful to organize the column vectors from (3.24) into matrices

U = [u1, . . . , uM̃ ] ∈ RM×M̃ , V = [v1, . . . , vÑ ] ∈ RN×Ñ ,

Si = [σ 1
i , . . . , σ

ñi
i ]T

∈ Rñi×ni , i = 1, . . . , D.
(3.25)

In contrast with CP decomposition, HOSVD computes vectors u j , j = 1, . . . , M̃ , and vk , k = 1, . . . , Ñ , that are
rthonormal. Therefore, the columns of U form an orthogonal basis in the universal reduced space Ṽ . The dimension
f this space is defined by the first Tucker rank, dim(Ṽ ) = M̃ . The information about Φ̃ to be transmitted to the
nline stage includes matrices Si and the core tensor C. Explicitly,

online(Φ̃) =
{

C ∈ RM̃×ñ1×···×ñD×Ñ , Si ∈ Rni×ñi , i = 1, . . . , D
}

. (3.26)
8
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To find coordinates of the local basis for α ∈ A, define the α-specific core matrix Ce(α) as

Ce(α) = C ×2
(
S1e1(α)

)
×3

(
S2e2(α)

)
. . . ×D+1

(
SDeD(α)

)
∈ RM̃×Ñ . (3.27)

sing the definition of k-mode product, (3.15) and (3.24), one computes

Φ̃e(α) =
M̃∑

j=1

ñ1∑
q1=1

· · ·

ñD∑
qD=1

Ñ∑
k=1

(C) j,q1,...,qD ,k⟨σ
q1
1 , e1(α)⟩ · . . . · ⟨σ qD

D , eD(α)⟩u j
◦ vk

=

M̃∑
j=1

ñ1∑
q1=1

· · ·

ñD∑
qD=1

Ñ∑
k=1

(C) j,q1,...,qD ,k
(
S1e1(α)

)
q1
· . . . ·

(
SDeD(α)

)
qD

u j
◦ vk

=

M̃∑
j=1

Ñ∑
k=1

(
C ×2

(
S1e1(α)

)
×3

(
S2e2(α)

)
. . . ×D+1

(
SDeD(α)

))
jk u j

◦ vk
= UCe(α)VT

onsider the thin SVD of the core matrix

Ce(α) = UcΣcVT
c . (3.28)

ombining this with the representation above we get

Φ̃e(α) = (UUc)Σc (VVc)
T , (3.29)

hich is the thin SVD of Φ̃e(α) since both matrices U and V are orthogonal. We conclude that the coordinates
β1(α), . . . ,βn(α)

}
of the local reduced basis in the universal space Ṽ are the first n columns of Uc from (3.28).

he parameter-specific basis is then {zi (α)}n
i=1, with zi (α) = Uβ i (α) (not actually computed at the online stage).

To compute the low-rank HOSVD approximation (3.24) we employ the standard algorithm [41] based on repeated
omputations of truncated SVD for unfolded matrices. In particular, one may compute Φ̃ with either prescribed
ucker ranks or prescribed accuracy ε̃. Moreover, for fixed Tucker ranks one can show that the recovered Φ̃ satisfies
quasi-minimization property [41] of the form

∥Φ − Φ̃∥ ≤
√

D + 2∥Φ −Φopt
∥ and ∥Φ − Φ̃∥ ≤

(
D+1∑
i=1

∆2
i

) 1
2

, (3.30)

where Φopt is the best approximation to Φ among all Tucker tensors of the given rank (such approximation always
exists), and ∆i measures truncated SVD error on the i th step of the HOSVD. We summarize the above in the
following algorithm.

Algorithm 2 (HOSVD-TROM).

• Offline stage.
Input: snapshot tensor φ ∈ RM×n1×...×nD×N and target accuracy ε̃;
Output: Compressed tensor ranks, HOSVD decomposition matrices as in (3.25), and core tensor C;
Compute: Use algorithm [41] with prescribed accuracy ε̃ to compute HOSVD decomposition matrices and the
core tensor.

• Online stage.
Input: online(̃φ) as defined in (3.26), reduced space dimension n ≤ min{M̃, Ñ }, and parameter vector α ∈ A;
Output: Coordinates of the reduced basis in Ṽ : {β i (α)}n

i=1 ⊂ RM̃ ;
Compute:

1. Use the core tensor C and matrices Si , i = 1, . . . , D, to assemble the core matrix Ce(α) ∈ RM̃×Ñ as in
(3.27);

2. Compute the SVD of the core matrix Ce(α) = UcΣcVT
c with Uc = [̃u1, . . . , ũM̃ ];

3. Set β (α) = ũ , i = 1, . . . , n.
i i

9
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3.7. TT-TROM

A third low-rank tensor decomposition of interest is the Tensor Train (TT) decomposition [43]. In TT-TROM
we seek to approximate the snapshot tensor with Φ̃ in the TT-format, namely

Φ ≈ Φ̃ =

r̃1∑
j1=1

· · ·

r̃D+1∑
jD+1=1

u j1 ◦ σ
j1, j2
1 ◦ · · · ◦ σ

jD , jD+1
D ◦ v jD+1 , (3.31)

ith u j1 ∈ RM , σ ji , ji+1
i ∈ Rni , and v jD+1 ∈ RN , where the positive integers r̃i are referred to as the compression

ranks (or TT-ranks) of the decomposition. For higher order tensors the TT format is in general more efficient
compared to HOSVD. This may be beneficial for large D, the dimension of parameter space. In [43,44] a stable
algorithm for finding Φ̃ based on truncated SVD for a sequence of unfolding matrices was introduced and the
optimality property similar to (3.30) was proved.

Once an optimal TT approximation (3.31) is computed, we organize the vectors and matrices from (3.31) into
matrices

U = [u1, . . . , ur̃1 ] ∈ RM×r̃1 , V = [v1, . . . , ṽrD+1 ] ∈ RN×r̃D+1 , (3.32)

and third order tensors Si ∈ Rr̃i×ni×r̃i+1 , defined entry-wise as

(Si ) jkq = (σ jq
i )k, j = 1, . . . , r̃i , k = 1, . . . , ni , q = 1, . . . , r̃i+1, (3.33)

for all i = 1, . . . , D. Note that matrix U is orthogonal and so its columns provide an orthogonal basis in the
universal space Ṽ . The dimension of Ṽ is defined by the first TT-rank, dim(Ṽ ) = r̃1.

While U is an orthogonal matrix, the columns of V are orthogonal, but not necessarily orthonormal. Thus, we
introduce a diagonal scaling matrix

Wc = diag
(
∥v1

∥, . . . , ∥ṽrD+1∥
)
∈ Rr̃D+1×r̃D+1 . (3.34)

The essential information about Φ̃ to be transmitted to the online phase includes Si tensors and the scaling factors:

online(Φ̃) =
{
Si ∈ Rr̃i×ni×r̃i+1 , i = 1, . . . , D, Wc ∈ Rr̃D+1×r̃D+1

}
. (3.35)

To find the coordinates of the local basis, we define the parameter-specific core matrix Ce(α) ∈ Rr̃1×r̃D+1 as the
roduct

Ce(α) =
D∏

i=1

(
Si ×2 ei (α)

)
. (3.36)

sing the definition of k-mode product, (3.15) and (3.31), one computes

Φ̃e(α) =
r̃1∑

j1=1

· · ·

r̃D+1∑
jD+1=1

⟨σ
j1, j2
1 , e1(α)⟩ · . . . · ⟨σ jD , jD+1

D , eD(α)⟩u j1 ◦ v jD+1

=

r̃1∑
j1=1

· · ·

r̃D+1∑
jD+1=1

(
S1 ×2 e1(α)

)
j1, j2

· . . . ·
(
SD ×D+1 eD(α)

)
jD , jD+1

u j1 ◦ v jD+1

=

r̃1∑
j1=1

r̃D+1∑
jD+1=1

( D∏
i=1

(
Si ×2 ei (α)

))
j1 jD+1

u j1 ◦ v jD+1 = UCe(α)VT .

onsider the SVD of the rescaled core matrix:

Ce(α)Wc = UcΣcVT
c . (3.37)

sing this and the above representation of Φ̃e(α) we compute˜ −1 T (
−1 )T
Φe(α) = UCe(α)WcWc V = (UUc)Σc VWc Vc . (3.38)

10
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The right-hand side of (3.38) is the thin SVD of Φ̃e(α), since matrices U, Uc, VW−1
c , and Vc are all orthogonal.

We conclude that the coordinates
{
β1(α), . . . ,βn(α)

}
of the local reduced basis in the universal space Ṽ are the

first n columns of Uc. The parameter-specific basis is then {zi (α)}n
i=1, with zi (α) = Uβ i (α) (not actually computed

t the online stage).
We summarize the above in the following algorithm.

lgorithm 3 (TT-TROM).

• Offline stage.
Input: snapshot tensor φ ∈ RM×n1×...×nD×N and target accuracy ε̃;
Output: Compression ranks, TT decomposition matrices and third order tensors as in (3.32)–(3.33);
Compute: Use algorithm from [43] with prescribed accuracy ε̃ to compute TT decomposition (3.31).

• Online stage.
Input: online(̃φ) as defined in (3.35), reduced space dimension n ≤ min{̃r1, r̃D+1}, and parameter vector α ∈ A;
Output: Coordinates of the reduced basis in Ṽ : {β i (α)}n

i=1 ⊂ Rr̃1 ;
Compute:

1. Use tensors Si to assemble the core matrix Ce(α) ∈ Rr̃1×r̃D+1 as in (3.36);
2. Compute the SVD of the scaled core matrix Ce(α)Wc = UcΣcVT

c with Uc = [̃u1, . . . , ũr̃1 ];
3. Set β i (α) = ũi , i = 1, . . . , n.

.8. General parameter sampling

Grid-based sampling of parameter space can be computationally expensive or not applicable if the set of
dmissible parameters A is not a box (or an image of a box) in Euclidean space. However, interpolatory TROMs
ntroduced above can be extended to accommodate a more general sampling set Â. If A does have the Cartesian
tructure (a box or an image of a box), then one way to reduce offline computational costs is to compute the
napshots for only a few parameter values from a Cartesian grid Â ⊂ A. To recover the missing entries of the full
napshot tensor Φ, one may use a low-rank tensor completion method, e.g., one of those studied in [45–49]. The
ow-rank completion can be performed for any of the three compressed tensor formats considered above. We shall
nvestigate this option elsewhere. In this paper, we consider another (more general) approach.

With a slight abuse of notation, let Â = {̂α1, . . . , α̂K } ⊂ A be a set of sampled parameter values. We assume thatˆ is a frame in RD and so K ≥ D. Note that K does not obey (3.3) for a general sampling. Given an out-of-sample
ector of parameters α ∈ A, let

e : α → RK (3.39)

e the representation of α in Â, i.e.,

α =

K∑
j=1

a j α̂ j , e(α) = (a1, . . . , aK )T , (3.40)

ith an additional constraint enforcing uniqueness of the representation.
Similarly to (3.13) for the Cartesian grid case, we assume that for a smooth function g : A → R it holds

g(α) ≈
K∑

j=1

a j g(̂α j ). (3.41)

n Section 5.1 we describe one particular choice of e(α) that is used in all numerical experiments reported in
ection 5.

To assemble the snapshot tensor, for each α̂ j ∈ Â, j = 1, . . . , K , collect the snapshot vectors u(tk, α̂ j ) =

u1(tk, α̂ j ), . . . , uM (tk, α̂ j )
)T , k = 1, . . . , N , and arrange them in a third order tensor Φ ∈ RM×K×N with entries

ˆ
(Φ)i jk = ui (tk,α j ), i = 1, . . . , M, j = 1, . . . , K , k = 1, . . . , N . (3.42)

11
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Then, for any α ∈ A, the parameter-specific reduced basis is defined as the first n left singular vectors of

Φ̃e(α) = Φ̃ ×2 e(α), (3.43)

where Φ̃ is a low rank approximation of the snapshot tensor Φ with entries (3.42). The same three compressed
tensor formats considered above (CP, HOSVD and TT) can be used for Φ̃, with TT format being inferior to HOSVD
(for 3D tensors both HOSVD- and TT-decomposition are Tucker tensors). An orthogonal basis in the universal space
of Φ̃ and coordinates of a local parameter-specific basis in it are computed similarly to the Cartesian grid sampling
cases considered previously in Sections 3.5–3.7. The only difference is that all the calculations therein are performed
setting D = 1 and replacing e1(α) with e(α). This includes the optimality result (3.30), where the factor

√
D + 2

becomes
√

3.

.9. Complexity and compression analysis

Projection-based parametric ROM framework consists in general of the following steps.

(i) High-fidelity simulations of (2.1) to generate the snapshot tensor Φ;
(ii) Offline stage: computing the compressed approximation Φ̃ to Φ in one of low-rank tensor formats;

(iii) Passing the online(Φ̃) part of the compressed tensor to the online stage;
(iv) Online stage: using online(Φ̃) to compute the coordinates of the parameter-specific reduced basis for an input

α;
(v) Solving (2.1) projected onto the reduced space.

Since steps (i) and (v) are common for all projection-based ROM approaches, we focus below on the computational
and storage/transmission costs invoked in steps (ii)–(iv). The necessary details on step (v) are included in
Section 3.10.

First, we discuss briefly the computational costs at the more expensive offline stage. For CP-TROM, the standard
algorithm for finding Φ̃ in CP format (3.17) is the ALS method [40] which for a given CP rank R iteratively fits
a rank R tensor Φ̃ by solving on each iteration D + 2 least squares problems for the factors ur , σ r

i , i = 1, . . . , D,
and vr , r = 1, . . . , R. While straightforward to implement, the method is sensitive to the choice of initial guess and
may converge slowly. We refer the reader to [20] for a guidance on the literature on improving the efficiency of
ALS and possible alternatives. On the other hand, computing Φ̃ in either HOSVD or TT formats relies on finding
truncated SVDs for matrix unfoldings of Φ [41,43]. Therefore, the computational complexity and cost of step (ii)
for HOSVD- and TT-TROM is essentially the same as that of standard POD-ROM.

Second, to measure the amount of information transmitted to the online stage at step (iii), we introduce the
compression factor CF, defined as

CF =
#(Φ)

#(online(Φ̃))
, (3.44)

where we denote by #(Ψ ) the number of floating point numbers needed to store a tensor Ψ . Specifically,
(Φ) = M K N is simply the total number of entries in Φ, while #(online(Φ̃)) is the number of entries needed
o store all the factors passed to the online stage, as defined in (3.21), (3.26) and (3.35) for CP-, HOSVD- and

TT-TROMs, which we summarize in Table 3.1.
Table 3.1 shows that the compression factor is largely determined by the compression ranks. In turn, the ranks

depend on ε̃ and variability of observed states.
Third, the computational complexity of finding α-specific reduced basis in step (iv) is determined by the

interpolation procedure and the computation of first n left singular vectors of the core matrix. Since vectors ei (α)
contain very few non-zero entries, e.g., p = 2 or 3 of them for the Cartesian sampling, the number of operations
or computing core matrices C(α) for CP-, HOSVD- and TT-TROM is

O
(
R2) , O

(
M̃ Ñ

D∏
i=1

ñi

)
, and O

( D∑
i=2

r̃i−1̃ri r̃i+1

)
, (3.45)

espectively. CP-, HOSVD- and TT-TROM algorithms proceed to compute the SVD of small core matrices of sizes˜ ˜
R × R, M × N and r̃1 × r̃D+1, respectively. If a reduced basis in the physical space is desired, then one finds

12
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Table 3.1
Number of entries needed to store online(Φ̃) for CP, HOSVD and TT formats.

Format #(online(Φ̃))

Cartesian grid-based General

CP R
( D∑

i=1
ni + R + 1

)
R
(
K + R + 1

)
HOSVD Ñ M̃

D∏
i=1

ñi +
D∑

i=1
ñi ni Ñ M̃ñ1 + ñ1 K

TT r̃D+1 +
D∑

i=1
r̃i ni r̃i+1 r̃2 + r̃1 Kr̃2

its vectors as linear combinations of columns of U, which requires O(M Rn), O(M M̃n) or O(Mr̃1n) operations
or CP-, HOSVD- or TT-TROM, respectively. Section 3.10 discusses how these costs can be avoided at the online
hase. We note that for a fixed compression accuracy ϵ̃, it is often observed in practice that the corresponding ranks
f HOSVD and TT formats satisfy M̃ ≃ r̃1, Ñ ≃ r̃D+1.

In summary, the computational costs of the offline stage for TROMs are comparable to those of POD-ROM for
multi-parameter problem. At the online stage complexity of all preparatory steps depends only on compressed

ensor ranks rather than the size of the snapshot tensor Φ. The amount of information transmitted from offline to
nline stages is determined by the compressed tensor ranks, as should be clear from Table 3.1.

.10. TROM evaluation

Besides finding a suitable reduced basis, a fast evaluation of the reduced model for any incoming α ∈ A is
equired for a reduced modeling scheme to be effective. Efficient implementation of a projected parametric model
s a well-known challenge that have been addressed in the literature with various approaches; see, e.g., [3,4,11,50–
4]. The tensorial approach presented here does not directly contribute to resolving this issue, but it does not make
t harder either and so techniques known from the literature can be adapted in the TROM framework.

For example, assume that F(t, u,α) from (2.1) has an affine dependence on parameters and linear dependence
n u:

F(t, u,α) =
P∑

i=1

fi (α)Ai u,

ith some fi : A → R and parameter-independent Ai ∈ RM×M . We assume that P is not too large, at least
ndependent of other dimensions. Then the offline stage of model reduction consists of projecting matrices onto the
niversal space by computing Âi = UT Ai U, where U is an orthogonal basis matrix for Ṽ provided by the tensor
ecompositions. The new matrices Âi have the reduced size Tr × Tr , with Tr ∈ {R, M̃, r̃1} for CP-, HOSVD- and
T-TROMs, respectively.

For each of TROMs, denote by Uc(n) the matrix of the first n columns of Uc, left singular vectors of α-specific
ore matrices. During the online stage one solves the system projected further on the parameter-specific local basis:

vt =

P∑
i=1

fi (α)UT
c (n)Âi Uc(n)v,

here v(t) is the trajectory in a space spanned by the columns of Uc(n) ∈ RTr×n , i.e., the corresponding physical
tates are given by u(t) = UUc(n)v(t). We see that online computations depend only on reduced dimensions (tensor
anks) and the small dimension n of parameter-specific basis. This observation can be extended to the case when F
as a low order polynomial non-linearity with respect to u. For example, quadratic nonlinear terms, as in Burgers
r Navier–Stokes equations, can be evaluated in O(T 2

r ) operations on each time step given a vector v in the local
educed basis.

To evaluate more general nonlinear terms, one can use a hyper-reduction technique such as the discrete empirical

nterpolation method (DEIM) [11]. In this approach, the nonlinear term is approximated in a basis of its snapshots.

13
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As an example, consider F(t, u,α) = Au+ f (t, u(t),α), with Au representing linear and f (t, u(t),α) representing
he non-linear part of F . Define the snapshots fi = f (ti , u(ti ),αi ), i = 1, . . . , NDEIM for some “greedy” choice
f parameters and time instances and high-fidelity solution u. Denote by Q an orthogonal basis matrix for
pan{f1, . . . , fNDEIM}, then DEIM approximates

f (t, u,α) ≈ Q(PQ)−1P f (t, u,α),

here PT is an NDEIM × M “selection” matrix such that for any f ∈ RM , P f contains NDEIM selected entries of f .
particular P corresponds to the choice of spatial interpolation nodes, cf. [11]. In TROM one may pre-compute
= UT Q and Â = UT AU during the offline stage, then solve at the online stage

vt = UT
c (n)ÂUc(n)v + UT

c (n)Q̂(PQ)−1P f (t, UUc(n)v,α),

ith costs depending on compressed tensor ranks, n, and the dimension of DEIM space, but not on the dimensions
f high-fidelity simulations. It is an interesting question, whether the tensor technique can be applied to make the
EIM space parameter-specific for more efficient reduce online computations. We plan to address this question

lsewhere.

. Prediction analysis

In this section we assess the prediction power of the reduced basis Zn(α) = {z1, . . . , zn} consisting of the first n
eft singular vectors of Φ̃e(α) from (3.15), for a parameter α = (α1, . . . , αD)T

∈ A, not necessarily from a sampling
et; i.e., [z1, . . . , zn] = UUc(n).

For the discussion below we also need the following notation. Given an α ∈ A, we denote by ψ i = u(ti ,α) ∈ RM ,
= 1, . . . , N , the snapshots of a high-fidelity solution to (2.1) and let Ψ (α) = [ψ1, . . . ,ψN ] ∈ RM×N be the

orresponding snapshot matrix. Note that in practice the snapshots for out-of-sample parameters are not available,
o the matrix Ψ (α) should be treated as unknown.

We estimate the prediction power of Zn(α) in terms of the quantity

En(α) =
1

N M

N∑
i=1

ψ i −

n∑
j=1

⟨ψ i , z j ⟩z j


2

ℓ2

, (4.1)

which measures how accurate the solution u(t,α) at time instances ti can be represented in the reduced basis for
the arbitrary but fixed α ∈ A. The scaling 1/(N M) accounts for the variation of dimensions N and M , which
may correspond to the number of temporal and spatial degrees of freedom, respectively, if (2.1) comes from a
discretization of a parabolic PDE defined in a spatial domain Ω . In this case and for uniform grids, the quantity in
(4.1) is consistent with the L2(0, T, L2(Ω )) norm.

Below we prove an estimate for En(α) in terms of ε̃ from (3.5), the singular values of Φ̃e(α) and interpolation
properties of ei (α), i = 1, . . . , D. To make use of the latter, we introduce the following quantities related to the
interpolation procedure. For Cartesian grid-based sampling we define the maximum grid step

δi = max
1≤ j≤ni−1

⏐⏐̂αi
j − α̂i

j+1

⏐⏐ , i = 1, . . . , D. (4.2)

Relation (3.14) implies that the interpolation procedure (3.12)–(3.14) is of order p, i.e., for any sufficiently smooth
f : [αmin

i , αmax
i ] → R it holds

sup
a∈[αmin

i ,αmax
i ]

⏐⏐⏐ f (a) −
ni∑

j=1

ei
j (aei ) f (̂α j

i )
⏐⏐⏐ ≤ Ca∥ f (p)

∥C([αmin
i ,αmax

i ])δ
p
i , (4.3)

for i = 1, . . . , D, where ei ∈ Rni is the i th column of an ni × ni identity matrix. The constant Ca does not depend
on f . We let δ p

=
∑D

i=1 δ
p
i and also assume that the interpolation procedure is stable in the sense that⎛⎝ ni∑⏐⏐ei

j (aei )
⏐⏐2⎞⎠ 1

2

≤ Ce, (4.4)

j=1

14
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with some Ce independent of a ∈ [αmin
i , αmax

i ] and i = 1, . . . , D. For the example of linear interpolation with p = 2
and αmin

i , αmax
i included among the grid nodes, bounds (4.3) and (4.4) hold with Ca =

1
8 and Ce = 1.

To estimate En(α), consider the SVD of Φ̃e(α) ∈ RM×N given by

Φ̃e(α) = ŨΣ̃ ṼT , with Σ̃ = diag(̃σ1, . . . , σ̃N ). (4.5)

hen Z = [z1, . . . , zn] ∈ RM×n is build as the first n columns of Ũ, the reduced basis vectors, i.e., Z = UUc. Then,

En(α) =
1

N M

(I − ZZT )Ψ (α)
2

F

≤
1

N M

((I − ZZT )(Ψ (α) − Φ̃e(α))


F +
(I − ZZT )Φ̃e(α)


F

)2

≤
1

N M

(Ψ (α) − Φ̃e(α)


F +
(I − ZZT )Φ̃e(α)


F

)2
, (4.6)

where we used triangle inequality and ∥I − ZZT
∥ ≤ 1 for the spectral norm of the projector. For the last term in

(4.6), we observe

(I − ZZT )Φ̃e(α)


F =
Ũ diag(0, . . . , 0, σ̃n+1, . . . , σ̃N ) ṼT


F =

⎛⎝ N∑
j=n+1

σ̃ 2
j

⎞⎠ 1
2

. (4.7)

o handle the first term of (4.6), consider the extraction

Φe(α) = Φ ×2 e1(α) ×3 e2(α) . . . ×D+1 eD(α) (4.8)

and proceed using the triangle inequalityΨ (α) − Φ̃e(α)


F ≤
Ψ (α) − Φe(α)


F +

Φe(α) − Φ̃e(α)


F . (4.9)

We use the stability of interpolation (4.4) and (3.5) to bound the second term of (4.9). Specifically,Φe(α) − Φ̃e(α)


F =
(Φ − Φ̃) ×2 e1(α) ×3 e2(α) . . . ×D+1 eD(α)


F

≤
Φ − Φ̃


F ∥e1(α)∥ℓ2∥e2(α)∥ℓ2 . . . ∥eD(α)∥ℓ2

≤ (Ce)D
Φ − Φ̃


F ≤ (Ce)D ε̃ ∥Φ∥F .

(4.10)

It remains to handle the first term in (4.9). At this point we need more precise assumptions on the smoothness of
u(t,α), the solution of (2.1). In particular,

u ∈ C([0, T ] ×A)M ,
∂ ju

∂α
j1
1 . . . α

jD
D

∈ C([0, T ] ×A)M , |j| ≤ p. (4.11)

We note that (4.11) is guaranteed to hold if the unique solution to (2.1) exists on (0, T1) for all α ∈ A1, with
T < T1 and A ⊂ A1 and F is continuous with continuous partial derivatives in components of u and α of order
up to p [55].

Using interpolation property (4.3), we compute

(
Φ ×2 e1(α)

)
:,i2,...,iD ,k =

n1∑
j=1

e1
j (α)u(tk, α̂

j
1 , α̂

i2
2 , . . . , α̂

iD
D )

= u(tk, α1, α̂
i2
2 . . . , α̂

iD
D ) +∆1

:,i2,...,iD ,k,

(4.12)

ith the remainder term obeying a component-wise bound

|∆1
:,i2,...,iD ,k | ≤ Ca sup

min max

⏐⏐⏐⏐ ∂ pu
∂α

p (tk, a, α̂
i2
2 , . . . , α̂

iD
D )
⏐⏐⏐⏐ δ p

1 , (4.13)

a∈[α1 ,α1 ] 1
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where the absolute value of vectors is understood entry-wise. Analogously, we compute(
Φ ×2 e1(α) ×3 e2(α)

)
:,i3,...,iD ,k =

(
(Φ ×2 e1(α)) ×2 e2(α)

)
:,i3,...,iD ,k

=

n2∑
j=1

e2
j (α)

(
u(tk, α1, α̂

j
2 , α̂

i3
3 , . . . , α̂

iD
D ) +∆1

:, j,i3,...,iD ,k

)
= u(tk, α1, α2, α̂

i3
3 , . . . , α̂

iD
D ) +∆2

:,i3,...,iD ,k +

n2∑
j=1

e2
j (α)∆1

:, j,i3,...,iD ,k,

with a component-wise bound for the remainder⏐⏐⏐∆2
:,i3,...,iD ,k +

n2∑
j=1

e2
j (α)∆1

:, j,i3,...,iD ,k

⏐⏐⏐
≤ Ca sup

a∈[αmin
2 ,αmax

2 ]

⏐⏐⏐⏐ ∂ pu
∂α

p
2

(tk, α1, a, α̂
i3
3 , . . . , α̂

iD
D )
⏐⏐⏐⏐ δ p

2

+ Ce Ca sup
a∈[αmin

1 ,αmax
1 ]

⏐⏐⏐⏐ ∂ pu
∂α

p
1

(tk, a, α̂
i2
2 , . . . , α̂

iD
D )
⏐⏐⏐⏐ δ p

1 .

(4.14)

Applying the same argument repeatedly, we obtain

(Φe(α)):,k =
(
Φ ×2 e1(α) ×3 e2(α) . . . ×D+1 eD(α)

)
:,k

= u(tk, α1, α2, . . . , αD) +∆:,k = (Ψ (α)):,k +∆:,k,
(4.15)

with a component-wise bound for the remainder⏐⏐∆:,k
⏐⏐ ≤ Ca

(
sup

a∈[αmin
D ,αmax

D ]

⏐⏐⏐⏐ ∂ pu
∂α

p
D

(tk, α1, . . . , αD−1, a)
⏐⏐⏐⏐ δ p

D + · · ·

+ (Ce)D−2 sup
a∈[αmin

2 ,αmax
2 ]

⏐⏐⏐⏐ ∂ pu
∂α

p
2

(tk, α1, a, α̂
i3
3 , . . . , α̂

iD
D )
⏐⏐⏐⏐ δ p

2

+ (Ce)(D−1) sup
a∈[αmin

1 ,αmax
1 ]

⏐⏐⏐⏐ ∂ pu
∂α

p
1

(tk, a, α̂
i2
2 , . . . , α̂

iD
D )
⏐⏐⏐⏐ δ p

1

)
.

Using the definition of the Frobenius norm, we arrive at

∥Ψ (α) − Φe(α)∥F ≤
√

N M CaCu max
{
(Ce)(D−1), 1

}
δ p, (4.16)

here Cu depends only on the smoothness of u with respect to the variations of parameters α. More precisely, we
an take Cu = ∥u∥C(0,T ;C p(A)), which is bounded due to assumption (4.11).

Summarizing (4.6)–(4.16), we proved the following result.

heorem 4.1. Assume the solution u to (2.1) satisfies (4.11), Â is a Cartesian grid in parameter domain A. Then
for any α ∈ A the interpolatory TROM reduced basis Z(α) = {z1, . . . , zn} delivers the following representation
stimate

1
3N M

N∑
i=1

u(ti ,α) −
n∑

j=1

⟨
u(ti ,α), z j

⟩
z j


2

ℓ2

≤
1

N M

(
(Ce)2D ε̃2

∥Φ∥F +

N∑
i=n+1

σ̃ 2
i

)
+ CaCu max

{
(Ce)2(D−1), 1

}
δ2p, (4.17)

with Cu = ∥u∥C(0,T ;C p(A)) independent of α, sampling grid and n.

We summarize here the definitions of quantities that appear in Theorem 4.1: N is a number of time steps for
snapshot collection, while M is the spatial dimension of snapshots, i.e., u(t ,α) ∈ RM , i = 1, . . . , N ; ε̃ is the
i
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relative accuracy of the snapshot tensor compression from (3.5); σ̃i are the singular values of Φ̃e(α) from (3.15)
(note that in TROMs we have an access to σ̃i as the singular values of core matrices (3.22), (3.28) and (3.37)
for CP-, HOSVD-, and TT-TROM, respectively); δ =

(∑D
i=1 δ

p
i

) 1
p is the grid step parameter of the Cartesian grid

n A; p is both the number of nearest grid points and the order of interpolation of the interpolation procedure
3.12)–(3.14); Ce is the interpolation stability constant from (4.4); and D is the dimension of parameter space.

For the general parameter sampling, prediction power analysis follows the same lines as above, simply setting
D = 1. However, the order of interpolation p is slightly more difficult to formalize, so instead of (4.3)–(4.4) we
rather assume

sup
α∈A

⏐⏐⏐⏐⏐⏐ f (α) −
K∑

j=1

(e(α)) j f (̂α j )

⏐⏐⏐⏐⏐⏐ ≤ ∥ f ∥C p(A)δ,
( K∑

j=1

|(e(α)) j |
2
) 1

2
≤ Ce (4.18)

with some δ depending on Â. The prediction estimate then becomes

1
3N M

N∑
i=1

u(ti ,α) −
n∑

j=1

⟨
u(ti ,α), z j

⟩
z j


2

ℓ2

≤
1

N M

(
(Ce)2 ε̃2

∥Φ∥F +

N∑
i=n+1

σ̃ 2
i

)
+ Cu max{(Ce)2, 1}δ2, (4.19)

with Cu = ∥u∥C(0,T ;C p(A)).
We finally, note that the feasibility of a sufficiently accurate lower rank representation of Φ depends on the

moothness of u as a function of x, t and α. This question can be addressed by considering tensor decompositions
f multivariate functions, e.g. [23,56]. For these functional CP, HOSVD and hierarchical Tucker (including TT)
ormats, the dependence of compression ranks on ε̃ from (3.5) and the regularity (smoothness) of u was studied
n [57–61]. This compression property for multivariate functions was exploited to effectively represent solutions of
arametric elliptic PDEs using tensor formats in [62–66] among other publications.

. Numerical experiments

We perform several numerical experiments to assess the performance of the three TROM approaches and compare
hem to the conventional POD-ROM. The testing in Section 5.2 is performed for a dynamical system originating

from a discretization of linear parameter-dependent heat equation. In Section 5.3 a similar set of tests is carried out
for a time-dependent parameterized advection–diffusion system.

5.1. General parameter sampling interpolation scheme

For the numerical examples in the general parameter sampling setting we employ the following interpolation
scheme. Fix an integer q ≥ D + 1 and let α = (α1, . . . , αD) ∈ A be an out-of-sample parameter vector. The
interpolation scheme is based on the weighted minimum norm fit over q nearest neighbors of α in the sampling
set. Thus, we denote by α̂i1 , . . . , α̂iq the q closest parameter samples in Â to α and set dk = ∥α̂ik − α∥ > 0,
k = 1, . . . , q . Next, define the weighting matrix

D = diag(d−1
1 , . . . , d−1

q ) ∈ Rq×q .

Also, assemble the matrix

X =

⎡⎢⎢⎢⎢⎢⎣
(̂αi1 )1 (̂αi2 )1 · · · (̂αiq )1

(̂αi1 )2 (̂αi2 )2 · · · (̂αiq )2
...

...
...

...

(̂αi1 )D (̂αi2 )D · · · (̂αiq )D

⎤⎥⎥⎥⎥⎥⎦ ∈ RD+1×q .
1 1 · · · 1
17
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Solve the weighted minimum norm fitting problem to obtain

â = D(XD)†
[
α

1

]
∈ Rq . (5.1)

Note that the last row of X and the last entry of (α, 1)T enforces the condition that the entries of â sum to one.
eanwhile, the presence of the weighting matrix puts more emphasis on the neighbors of α that are closest to it.
Once â is obtained from (5.1), we define a j , j = 1, . . . , K , the entries of e(α) as

a j =

{
âk, if j = ik ∈ {i1, . . . , iq}

0, otherwise

Clearly, such construction enforces representation (3.40).

5.2. Parameterized heat equation

We first assess performance of the three TROM approaches on a dynamical system resulting from the
discretization of a heat equation

wt = ∆w, (5.2)

in a rectangular domain with three holes Ω = Ωr \ (Ω1 ∪Ω2 ∪Ω3) ⊂ R2, where Ωr = [0, 10]× [0, 4], and the holes
re Ω1 = [1, 3]× [1, 3], Ω2 = [4, 6]× [1, 3], Ω3 = [7, 9]× [1, 3]. The PDE and geometry of Ω follow that of [67],
hile the boundary conditions are modified from those used in [67], as described below.
We parametrize the system with D = 4 parameters that enter the boundary conditions. Convection boundary

onditions are enforced on the left side of the rectangle Γo = 0 × [0, 4] and on the boundaries of each hole ∂Ω j ,
j = 1, 2, 3. Explicitly,

(n · ∇w + α1(w − 1) )|Γo = 0, (5.3)

nd (
n · ∇w +

1
2
w

)⏐⏐⏐⏐
∂Ω j

=
1
2
α j+1, j = 1, 2, 3, (5.4)

.e., the first parameter in α ∈ R4 is Biot number at Γo with a fixed outside temperature to = 1, while the other
three parameters are the temperatures at ∂Ω j , j = 1, 2, 3, respectively, with Biot numbers equal to 1

2 on all three
hole boundaries. The rest of the boundary of Ω is assumed to be insulated

(n · ∇w)|∂Ωr \Γo = 0. (5.5)

In (5.3)–(5.5), n is the outer unit normal. Observe that the boundary conditions (5.3)–(5.5) can be combined into

(n · ∇w + q(x,α)w)|∂Ω = g(x,α),

for the appropriate choices of q(x,α) and g(x,α) defined on ∂Ω with α ∈ A, a parameter domain that we take to
be the 4D box A = [0.01, 0.5] × [0, 0.9]3. The initial temperature is taken to be zero throughout Ω .

The system (5.2)–(5.5) is discretized with P2 finite elements on a quasi-uniform triangulation of Ω resulting in
M = 3, 562 spatial degrees of freedom. The choice of standard nodal basis functions {θ j (x)}M

j=1 defines the mass
M ∈ RM×M and stiffness K ∈ RM×M matrices, as well as boundary terms Q(α) ∈ RM×M , g(α) ∈ RM with entries
given by

(Q)i j (α) =
∫

∂Ω

q(x,α)θ j (x)θi (x)dsx, (g) j (α) =
∫

∂Ω

g(x,α)θ j (x)dsx,

for i, j = 1, . . . , M .
The vector-valued function of nodal values u(t,α) : [0, T ) ×A → RM solves

Mut + (K + Q(α)) u = g(α), (5.6)

i.e., it satisfies the dynamical system of the form (2.1) with

F(t, u,α) = −M−1 (K + Q(α)) u + M−1g(α)

and the initial condition u(0,α) = u = 0 ∈ RM corresponding to zero initial temperature condition for w.
0
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Fig. 5.1. Domain Ω and the solution w(T, x,α) of the heat Eq. (5.2)–(5.5) corresponding to α = (0.5, 0, 0, 0.9)T .

We compute the snapshots φk = u(tk,α) by time-stepping (5.6) at tk = 0.2k, k = 1, 2, . . . , N , with N = 100
time steps and T = 20 using Crank–Nicolson scheme. Setting Θ(x) = [θ1(x), . . . , θM (x)] allows to express the
solution w(t, x,α) of (5.2)–(5.5) as w(t, x,α) = Θ(x)u(t,α), hence the solution snapshots are

w(tk, x,α) = Θ(x)u(tk,α). (5.7)

The setting is illustrated in Fig. 5.1, where we display the domain Ω along with solution w(T, x,α) corresponding
to parameter values α = (0.5, 0, 0, 0.9)T .

For an arbitrary but fixed α ∈ A let Z = [z1, . . . , zn] ∈ RM×n be a matrix with columns being vectors constituting
the reduced basis, i.e. Z = UUc for TROM. Then, the projection ROM of (5.6) is

M̃ũt +
(
K̃ + Q̃(α)

)
ũ = g̃(α), (5.8)

where

M̃ = ZT MZ ∈ Rn×n, K̃ = ZT KZ ∈ Rn×n,

Q̃(α) = ZT Q(α)Z ∈ Rn×n, g̃(α) = ZT g(α) ∈ Rn,

and the initial condition is ũ(0,α) = ZT u0 = 0 ∈ Rn . As discussed in Section 3.10, the evaluation of (5.8) can be
effectively split between the offline and online stages. Solving (5.8) for ũ(t,α) allows to recover the approximate
solution at times tk as

w̃(tk, x,α) = Θ(x) Z ũ(tk,α) ≈ w(tk, x,α). (5.9)

5.2.1. In-sample prediction and compression study
We begin TROM assessment with in-sample prediction and compression study for the linear parabolic system

described Section 5.2. To measure TROM predictive power and to compare it to that of POD-ROM, we sample A
uniformly in each direction with n1 × n2 × n3 × n4 = 9 × 5 × 5 × 5 samples, for a total of K = 1, 125 samples in
the set Â = {̂α1, . . . , α̂K }. For each of the three TROMs and for POD-ROM we compute the following in-sample
prediction error

EL2(Â) =

⎛⎝ 1
M N K

K∑
j=1

(I − ZZT )Φe (̂α j )
2

F

⎞⎠1/2

, (5.10)

o quantify the ability of the CP-TROM, HOSVD-TROM, TT-TROM local bases and POD-ROM basis to represent
riginal snapshots for in-sample parameter values. Note that E2

L2(Â)
is the quantity from (3.11) averaged over Â

and scaled by (M N )−1.
We report in Tables 5.1 and 5.2 the in-sample prediction errors and compression factors CF defined in (3.44) for

Cartesian grid-based and general samplings, respectively. For general sampling we organize the sampling parameters
from the Cartesian grid in 1D array leading to snapshot tensors or order 3. Experimenting with the same number of
randomly sampled parameters showed very similar compression rates and in-sample prediction errors and so those
are not reported here. The results are reported in Tables 5.1 and 5.2 for a number of decreasing values of ε̃ and
orrespondingly increasing n, such that n ≤ min(Ñ , r̃ ), where Ñ and r̃ are the last Tucker and compression
D+1 D+1
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Table 5.1
Cartesian grid-based sampling in-sample prediction and compression study results reporting prediction errors EL2(Â) for HOSVD, TT, POD,
the number of compressed tensors elements transmitted to the online stage, and the corresponding compression factors CF. Φ̃ ranks comprise:
Tucker ranks for HOSVD-TROM in format [M̃, ñ1, ñ2, ñ3, ñ4, Ñ ], and compression ranks for TT-TROM in format [̃r1, r̃2, r̃3, r̃4, r̃5].

ε̃ 1e−4 1e−5 1e−6 1e−7 1e−9

n 12 16 19 23 30

HOSVD 3.45e−05 3.85e−06 2.78e−07 5.61e−08 –
EL2(Â) TT 6.15e−05 5.58e−06 5.21e−07 5.03e−08 5.41e−10

POD 1.67e−03 9.06e−04 5.84e−04 3.05e−04 7.76e−05

HOSVD [34, 4, 2, [46, 5, 2, [57, 6, 2, [66, 7, 2, –
Φ̃ ranks 2, 2, 12] 2, 2, 16] 2, 2, 20] 2, 2, 23]

TT [34, 35, 30, [46, 48, 41, [57, 61, 51, [69, 74, 60, [99, 97, 80,

21, 12] 29, 16] 36, 19] 43, 23] 57, 30]

HOSVD 13 122 29 515 54 804 85 101 –
#online(Φ̃) TT 20 382 37 993 53 877 86 022 156 607

HOSVD 3.05e+4 1.36e+4 7.31e+3 4.71e+3 –
CF TT 1.97e+4 1.05e+4 7.42e+3 4.66e+3 2.56e+3

Table 5.2
General parameter sampling in-sample prediction and compression study results reporting prediction errors EL2(Â)
for HOSVD, TT, POD, the number of compressed tensors elements transmitted to the online stage, and the
corresponding compression factors CF. Φ̃ ranks comprise: Tucker ranks for HOSVD-TROM in format [M̃, Ñ ],
and compression ranks for TT-TROM in format [̃r1, r̃2].

ε̃ 1e−4 1e−5 1e−6 1e−7 1e−9

n 12 16 19 23 30

HOSVD 5.69e−05 5.29e−06 4.66e−07 7.93e−08 –
EL2(Â) TT 5.63e−05 5.95e−06 5.72e−07 5.56e−08 5.43e−09

POD 2.05e−03 1.12e−03 5.84e−04 3.05e−04 8.46e−05

Φ̃ ranks HOSVD [33, 11] [45, 16] [56, 19] [65, 23] –
TT [32, 11] [43, 15] [55, 19] [66, 23] [95, 29]

HOSVD 11 904 18 450 26 268 36 680 –
#online(Φ̃) TT 396 011 725 640 1 175 644 1 633 522 3 099 404

HOSVD 3.37e+4 2.17e+4 1.53e+4 1.09e+4 –
CF TT 1.01e+3 5.52e+2 3.41e+2 2.45e+2 1.29e+2

ranks, respectively, for HOSVD- and TT-TROM. Available compression algorithm failed to deliver the accuracy
of 1e-9 for HOSVD, so we report only TT statistics for this extreme value of ε̃. Note that we leave EL2(Â) for

P-ROM out since there is no direct way to control its relative error ε̃, as discussed at the end of Section 3.5.
Instead, compression factors and canonical ranks for CP-TROM are illustrated in Fig. 5.2.

We observe in Tables 5.1 and 5.2 that both HOSVD- and TT-TROM outperform POD-ROM in terms of prediction
rror up to four orders of magnitude for larger n and correspondingly small ε̃. This result is consistent across
oth Cartesian grid-based and general parameter samplings. The #online(Φ̃) values tell us that for Cartesian based
ampling, HOSVD and TT are comparable in terms of memory and data transmission requirements with HOSVD
oing somewhat better for lower representation accuracy for the snapshot tensor of order 6. Compression achieved
aries in ε̃ (as should expected) and gives more than 3 orders of saving even for the finest available representation
ccuracy. If the Cartesian structure of Â is abandoned and snapshots are organized in tensors of order 3, then
OSVD format has a clear advantage over TT in terms of compression achieved; see #online(Φ̃) and CF statistics

n Table 5.2.
For CP-TROM we display in Fig. 5.2 compression factors CF and canonical ranks R for a number of values

f ε̃. For comparison we also show on the same plots CF for HOSVD, which shows that HOSVD-TROM is on
ar with CP-TROM if Cartesian sampling allows to organize snapshots in a higher order tensor. However, we were
ble to compute Φ̃ in CP compressed format only up to moderate values of ε̃, since the corresponding CP rank was
20
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Fig. 5.2. CP-TROM compression factor CF and canonical rank R as functions of ε̃. Left: Cartesian grid-based sampling; Right: general
sampling.

Fig. 5.3. Out-of-sample prediction error of TROM versus ROM basis dimension n (left plot), parameter mesh size δ (middle plot) and tensor
compression accuracy ε̃ (right plot).

growing fast as ε̃ decreases (see the left plot in Fig. 5.2). Smaller ε̃ become feasible with CP if the snapshots are
organized in tensors of order 3, but in this case HOSVD-TROM achieves much better compression than CP-TROM
(see the right plot in Fig. 5.2). We conclude that for this example with a relatively small number of parameters
(D = 4) HOSVD-TROM appears to be the best performing TROM. We finally note that for the same compression
accuracy ε̃ (if it was achieved) CP-TROM demonstrated very similar in-sample prediction error as HOSVD- and
TT-ROMs. This observation largely carries over to out-of-sample representation studied next.

5.2.2. Out-of-sample prediction study
To quantify the ability of the CP-, HOSVD- and TT-TROM local bases to represent the solution of (5.2) for

arbitrary out-of-sample parameter values, we use EL2(A) which is defined as in (5.10) but with α (in place of α̂)
running through a large number of random points from A. We also use

EL∞(A) = sup
α∈A

(
1

M N

(I − ZZT )Φe(α)
2

F

)1/2

,

for the maximum of representation error over the parameter domain. An estimate of EL∞(A) is given by Theorem 4.1.
Regarding constants appearing in (4.17) we note that for our choice of the uniform grid in A and p = 2, 3 one
computes Ce = 1, Ca =

1
8 (p = 2) and Ca =

1
48 (p = 2), while constant Cu is hard to evaluate. Experimentally

e found that the grid in the fourth parameter should be finer than for the first three parameters to balance the
bserved error suggesting that the solution is less smooth as a function of α4. To study the error dependence on the
arameter mesh size δ, we reduce the number of parameters to two, letting α1 = α2 = α3 in (5.4).

In Fig. 5.3 we plot EL∞(A) and EL2(A) versus ROM basis dimension n, parameter mesh size δ and tensor

compression accuracy ε̃. The results were computed using 100 randomly distributed parameters from A to evaluate
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the error quantities for HOSVD-TROM. For TT-TROM and CP-TROM the error dependence on n, δ and ε̃ was
virtually the same and are omitted. Variants of TROM of course may differ by complexity. While the cost of offline
phase of computing Φ̃ varies significantly depending on the format, the online distribution of costs was persistent for
all three formats showing between 30% and 40% of online time spent on finding Uc (coordinates of local basis),
less then 5% on projection to α-specific coordinates, and about 60% of time on the integration of the projected
system (this last step is common with standard POD approach).

The left plot in Fig. 5.3 shows the EL∞(A) error for different values of n and compares it to the error of POD-
ROM. We use ε̃ = 1e-7 and 65 × 33 parameter grid. Such fine compression accuracy and grid allows us to isolate
the effect of the second term on the right hand side of (4.17). Indeed, we see that the error curve follows closely
the graph of “SVD remainder” (the maximum over all α of the second term on the right-hand side of (4.17)) until
the interpolation error starts dominating for larger n. As can be expected, the interpolation error for p = 3 starts
affecting EL∞(A) for larger n than the interpolation error for p = 2.

The middle plot in Fig. 5.3 demonstrates that both EL∞(A) and EL2(A) for TROM decrease as O(δ2) for p = 2
(computed with ε̃ = 1e-7 and n = Ñ ) just as predicted by (4.17). Likewise, the right plot in Fig. 5.3 gives evidence
for O (̃ε) decrease of EL∞(A) and EL2(A) (computed with 65 × 33 parameter grid and n = Ñ ) in accordance to
(4.17) as long the first term on the right hand side of (4.17) dominates.

5.2.3. Out-of-sample TROMs vs. POD-ROM performance: heat equation
Performance of TROM and POD-ROM may vary for different out-of-sample parameter values. Therefore,

assessment of TROM vs. POD-ROM performance in this section is conducted in a statistical setting. The quantities
of interest are computed for Nr ≫ 1 out-of -sample realizations of α(r )

∈ A, r = 1, 2, . . . , Nr , where we use

Nr = 200 for the numerical studies below. Realizations α(r )
=

(
α

(r )
1 , α

(r )
2 , α

(r )
3 , α

(r )
4

)T
are drawn at random from

A = [0.01, 0.5] × [0, 0.9]3 with each αi distributed uniformly on [αmin
i , αmax

i ], i = 1, 2, 3, 4.
For statistical tests we use the following quantities to measure performance of TROM. First, we introduce the

elative L∞(0, T, L2(Ω )) ROM solution error

RX (α) =
maxk=1,...,N ∥w̃(tk, x,α) − w(tk, x,α)∥L2(Ω)

maxk=1,...,N ∥w(tk, x,α)∥L2(Ω)
≈

supt∈[0,T ] ∥w̃(t, x,α) − w(t, x,α)∥L2(Ω)

supt∈[0,T ] ∥w(t, x,α)∥L2(Ω)
, (5.11)

hich we compute for each realization α(r ), r = 1, 2, . . . , Nr , for both POD-ROM and each of the three TROMs
ith X∈ {POD, CP, HOSVD, TT}. The true and reduced order snapshots for (5.11) are computed as in (5.7) and

5.9), respectively. We report the mean, minimum, and standard deviation of the three relative gain distributions

G(r )
X =

RPOD
(
α(r )

)
RX
(
α(r )

) , r = 1, 2, . . . , Nr , (5.12)

for X∈ {CP, HOSVD, TT}, which quantify the error decrease of CP-TROM, HOSVD-TROM and TT-TROM,
respectively, relative to POD-ROM. We study the dependency of (5.12) with respect to K , the number of sampled
parameter values in A, and n, the dimension of the reduced space. The results are reported for both Cartesian
rid-based sampling and general parameter sampling.

We present in Table 5.3 the dependence of relative gain statistics on the values of K (statistics in the table
were computed setting ε̃ = 10−5 as the targeted accuracy of HOSVD-TROM, TT-TROM, and R = 250 as the
targeted rank for CP-TROM). We observe that as K increases, TROMs become both more accurate on average and
more robust. The robustness is observed in both the increase of the minimum relative gain and the decrease of its
standard deviation. On average, for K = 3, 430, all three TROMs are almost 40 times more accurate compared to
POD-ROM. The performance difference between the TROMs themselves is basically negligible for this particular
study.

The performance of TROMs in the example above is limited by the relatively small value of n = 10. The
effect of increasing n to 20 while keeping K = 3, 430 is shown in Table 5.4 (statistics in the table were computed
setting ε̃ = 10−7 as the targeted accuracy of HOSVD-TROM, TT-TROM, and R = 250 as the targeted rank
for CP-TROM). While the worst case scenario stays relatively unchanged, the average accuracy gain by TROMs
is over two orders of magnitude. An outlier here is CP-TROM that underperforms HOSVD- and TT-TROM in
case of Cartesian grid-based parameter sampling. Aside from that, performance difference of TROMs for general

and Cartesian samplings is negligible. It is also interesting to see if the interpolation of approximate snapshots
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Table 5.3
Statistics of relative gain (5.12) for various values of K , the number of sampled parameter values in A. The
study is performed with n = 10.

General parameter sampling Cartesian grid-based sampling

K G X CP HOSVD TT CP HOSVD TT

mean 24.17 24.17 24.17 24.76 25.08 25.08
135 = min 0.49 0.49 0.49 0.56 0.56 0.56
5 × 33 std 17.33 17.33 17.33 16.88 17.31 17.32

mean 34.60 34.60 34.61 35.21 35.52 35.51
1000 = min 2.80 2.80 2.80 1.72 1.72 1.72
8 × 53 std 15.36 15.36 15.37 15.03 15.11 15.11

mean 38.14 38.15 38.15 37.80 38.80 38.80
3430 = min 3.81 3.81 3.81 4.20 4.45 4.43
10 × 73 std 14.20 14.21 14.22 12.96 13.61 13.62

Table 5.4
Statistics of relative gain (5.12) for n = 10 and 20. The study is performed for K = 10 × 7 × 7 × 7 = 3430.

General parameter sampling Cartesian grid-based sampling

n G X CP HOSVD TT CP HOSVD TT

mean 38.14 38.15 38.15 37.80 38.80 38.80
10 min 3.81 3.81 3.81 4.20 4.45 4.43

std 14.20 14.21 14.22 12.96 13.61 13.62

mean 155.00 158.97 161.75 49.80 155.65 154.03
20 min 4.59 4.54 4.55 1.51 5.26 5.23

std 513.33 530.50 557.86 39.48 551.92 541.88

from the lower-rank tensor Φ̃ alone, i.e., without finding a reduced local basis and solving the projected problem,
gives reasonable approximation to high-fidelity solutions for out-of-sample parameters. Such interpolation-only
predicted solution for incoming α ∈ A is given by columns of Φ̃(α). Repeating the experiment with Cartesian
grid-based sampling and other parameters the same as used for results in Table 5.3 and Table 5.4, we find that the
mean relative gain of HOSVD-tROM compared to interpolation-only approach is {2.10, 1.51, 1.13} for n = 10,
K = {135, 1000, 3430} and {7.64, 7.60, 7.54} for n = 20 and same values of K . The numbers were very close
for other two TROMs. We see that TROM based on solving projected problem in general gives more accurate
results then pure interpolation, especially if more vectors are included in the reduced basis. If n is fixed, then for
sufficiently fine sampling the interpolation-only approach delivers the same (or even better) accuracy.

We conclude the numerical study for the parameterized heat equation with a comparison between the three
TROMs and another variant of POD-ROM often used in practice, the so-called greedy POD or POD-Greedy
approach to computing the reduced basis [68]. Replacing the conventional POD-ROM computation with POD-
Greedy algorithm, we perform the same out-of-sample performance study as presented in Table 5.4. The resulting
relative gain statistics are reported in Table 5.5. Qualitatively, the results are very similar to those in Table 5.4.
However, quantitatively we observe 20% to 40% increased relative gain for all TROMs. This is consistent with
the fact that POD-Greedy reduced basis is sub-optimal compared to the conventional POD-ROM reduced basis
computed from the snapshots corresponding to all parameter values in Â.

In terms of computational performance for this specific setting, POD-Greedy algorithm was found to be
significantly slower in the offline stage than all three TROM approaches and the conventional POD-ROM even if one
includes into the offline cost of TROM and POD-ROM the computation of K N snapshots φk (̂α j ), k = 1, . . . , N ,
j = 1, . . . , K . Indeed, the bulk of computational cost of POD-Greedy approach is in the evaluation of error estimator
that has to be performed at each of its n iterations for all α̂ j , j = 1, . . . , K , to determine the sample with the largest
error. In turn, each evaluation of the estimator requires the computation of the residual of the chosen time-stepping
scheme (e.g., Crank–Nicolson) that needs O(N ) matrix–vector products of a dense M × n matrix and a vector in
Rn . Thus, error estimator evaluations alone account for O(K N Mn2) operations of POD-Greedy offline stage. We

note that in other situations, when computing the snapshots is much more expensive compared to the evaluation of
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Table 5.5
Statistics of relative gain (5.12) for POD-ROM with POD-Greedy reduced basis for n = 10 and 20. The study
is performed for K = 10 × 7 × 7 × 7 = 3430.

General parameter sampling Cartesian grid-based sampling

n G X CP HOSVD TT CP HOSVD TT

mean 53.14 53.14 53.14 54.02 54.12 54.12
10 min 7.01 7.01 7.01 7.43 7.42 7.42

std 18.63 18.63 18.63 18.03 18.03 18.03

mean 188.57 195.57 198.77 62.18 193.66 191.86
20 min 7.39 7.35 7.36 1.87 8.51 8.47

std 571.50 607.44 634.94 49.07 649.81 639.61

the error estimator (e.g., when the matrices of systems to be solved on each time step are dense), both POD-ROM
and TROM may benefit from a greedy approach to parameter sampling.

5.3. Advection–diffusion PDE

In the second numerical example, for assessing performance of the three TROM approaches we are interested in
case with a higher order of parameter space compared to D = 4 in Section 5.2. To that end we set up a dynamical

ystem resulting from the discretization of a linear advection–diffusion equation

wt = ν∆w − η(x,α) · ∇w + f (x), (5.13)

n a unit square domain Ω = [0, 1] × [0, 1] ⊂ R2, x = (x1, x2)T
∈ Ω . Here ν is a constant diffusion coefficient,

η : Ω ×A → R2 is the advection field and f (x) is a Gaussian source

f (x) =
1

2πσ 2
s

exp

(
−

(x1 − x s
1)2

+ (x2 − x s
2)2

2σ 2
s

)
, (5.14)

where we take σs = 0.05, x s
1 = x s

2 = 0.25. We enforce homogeneous Neumann boundary conditions and zero
nitial condition

(n · ∇w)|∂Ω = 0, w(0, x,α) = 0. (5.15)

he model is parameterized with D = 9 parameters with only the advection field η depending on α ∈ R9. The
dvection field is given as follows

η(x,α) =
(

η1(x,α)
η2(x,α)

)
=

(
cos α9
sin α9

)
+

1
π

(
∂x2 h(x,α)
−∂x1 h(x,α)

)
, (5.16)

where h(x) is the cosine trigonometric polynomial

h(x,α) = α1 cos(πx1) + α2 cos(πx2) + α3 cos(πx1) cos(πx2)
+ α4 cos(2πx1) + α5 cos(2πx2) + α6 cos(2πx1) cos(πx2)
+ α7 cos(πx1) cos(2πx2) + α8 cos(2πx1) cos(2πx2).

(5.17)

Here α9 determines the angle of the dominant advection direction, while parameters αi , i = 1, . . . , 8, introduce
perturbations into the advection field. The parameter domain is a 9D box, see Section 5.3.1 for details.

The system (5.13)–(5.15) is discretized using P2 finite elements on a grid with either M = 1, 893 or M = 4, 797
nodes (depending on a particular experiment) using the standard nodal basis functions {θ j (x)}M

j=1 that define the
mass M ∈ RM×M , stiffness K ∈ RM×M and advection H(α) ∈ RM×M matrices, and the source vector f ∈ RM . The
vector-valued function of nodal values u(t,α) : [0, T ) ×A → RM solves
Mut + (K + H(α)) u = f, (5.18)
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˜

Fig. 5.4. Advection field (5.16) (left) and the solution w(T, x,α) of (5.13)–(5.15) (right) corresponding to a random realization of α from
B and ν = 0.01.

i.e., it satisfies the dynamical system of the form (2.1) with

F(t, u,α) = −M−1 (K + H(α)) u + M−1f, (5.19)

and the initial condition u(0,α) = 0 ∈ RM .
Similarly to the experiments in Section 5.2, we compute the snapshots φk = u(tk,α) by time-stepping (5.18)

at tk = (1/30)k, k = 1, 2, . . . , N , with N = 30 time steps and T = 1 using Crank–Nicolson scheme. Then, the
physical solution snapshots have the form (5.7). The setting is illustrated in Fig. 5.4 where we display the advection
field for a random realization of α ∈ A and the corresponding solution w(T, x,α).

Projection ROM of (5.18) is obtained similarly to that of (5.6) using the matrix of reduced basis vectors
Z = [z1, . . . , zn] ∈ RM×n . Specifically,

M̃ũt +
(
K̃ + H̃(α)

)
ũ = f̃, (5.20)

where M̃ and K̃ are defined as in Section 5.2, whereas H̃(α) = ZT H(α)Z ∈ Rn×n , f̃ = ZT f ∈ Rn , and the initial
condition is ũ(0,α) = 0 ∈ Rn . Efficient evaluation of (5.20) was discussed in Section 3.10. Solving (5.20) for
u(t,α) allows to compute the approximate solution snapshots w̃(tk, x,α) exactly as in (5.9).

5.3.1. Out-of-sample TROM performance: advection–diffusion equation
The testing of TROMs for out-of-sample parameters for the advection–diffusion system (5.13)–(5.15) is

performed similarly to that for the heat equation in Section 5.2.3. In particular, we compute the average over A of
the relative L∞(0, T ; L2(Ω )) and L2(0, T ; H 1(Ω )) errors for w̃ and use the statistical behavior of the TROM vs.
POD gain (5.12) to compare the three TROM variants to conventional POD-ROM.

First, we test TROM in the following setting. The flow behavior is balanced between advection and diffusion, with
a diffusion coefficient ν = 0.1 and M = 1893. The parameter domain is A = [−0.05, 0.05]8

×[0.1π, 0.3π ] sampled
at a Cartesian grid with K = 38

× 9 = 59,049 points to obtain the sampling set Â. We draw Nr = 200 out-of-
sample realizations α(r ) from A with each α

(r )
i , i = 1, . . . , 9, distributed uniformly in its corresponding interval. The

averaged relative L∞(0, T ; L2(Ω )) finite element error of HOSVD-TROM is evaluated as N−1
r
∑Nr

r=1 RHOSVD(α(r ))
with RHOSVD(α) defined in (5.11). The average relative L2(0, T ; H 1(Ω )) finite element error is computed in the
same way after modifying RHOSVD(α) accordingly. The TROM vs. POD gain statistic was defined in (5.12).

For such large values of K and therefore large Φ, #(Φ) = 3.3534e+09, the algorithm we use for finding CP
decomposition turns out to be the most memory-intensive and runs out of memory. Thus, in what follows we only
report the results for HOSVD- and TT-TROM approaches.

We present in Table 5.6 the averaged relative error of the HOSVD-TROM finite element solutions (for TT-TROM

the errors were very close and so are skipped) and the behavior of the gain statistics when tensor compression error
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Table 5.6
Tensor compression ranks, averaged relative error of the HOSVD-TROM finite element solutions, statistics of the gain (5.12) for ν = 0.1,
K = 38

× 9 = 59, 049.

n = 10, ε̃ = 10−5 n = 12, ε̃ = 10−6 n = 13, ε̃ = 10−7

HOSVD ranks [78,3,3,3,3,3, [116,3,3,3,3,3, [153,3,3,3,3,3,
3,3,3,6,11] 3,3,3,7,12] 3,3,3,9,13]

TT ranks [77,99,117,121,121, [116,162,204,219,218, [179,251,330,364,362,
107,85,62,37,11] 186,139,91,50,12] 298,209,126,63,14]

TROM FE error
L∞(0, T ; L2(Ω )) 1.15e−03 8.36e−04 7.95e−04
L2(0, T ; H1(Ω )) 9.86e−04 9.46e−04 9.14e−04

G X mean std min mean std min mean std min

HOSVD 9.17 5.87 3.11 11.32 10.42 1.16 10.69 9.06 1.28
TT 9.13 5.85 3.11 11.40 10.61 1.17 10.65 9.06 1.22

decreases, while simultaneously increasing n to be slightly less than or equal to Tucker rank Ñ for HOSVD or
ompression rank r̃D+1 for TT, respectively. We observe in

Table 5.6 a relatively weak dependence of the errors and TROM vs. POD gain mean on the choice of ε̃ and n,
ence, we conclude that higher tensor compression error and smaller n are more beneficial, since they correspond
o higher compression factors and possible faster run times for the offline stage of TROM algorithms.

For the second example we choose an advection-dominated flow with a smaller diffusion coefficient ν = 0.01
nd M = 4, 797. The parameter domain is A = [−0.01, 0.01]8

× [0.1π, 0.5π ] sampled on a Cartesian grid with
K = 20 × 28

= 5, 120 points to obtain Â. This gives the snapshot tensor with #(Φ) = 1.2280e+09 entries. We
raw Nr = 100 out-of-sample realizations α(r ) from A with each α

(r )
i , i = 1, . . . , 9, distributed uniformly in its

orresponding interval.
Table 5.7 shows tensor compression ranks, number of elements passed to the online stage, the averaged relative

rror of the HOSVD-TROM finite element solutions, the relative gain statistics for three different levels of tensor
ompression error ε̃ = 10−3, 10−5, 10−7 with three different reduced space dimensions n for each case. We observe
hat it is possible to achieve performance that is very close to the best one with ε̃ as large as 10−3, provided n
s large enough. Similarly to the results for ν = 0.1, we suggest that for the given problem, discretization and
arameter sampling, the finite element error is dominated by the interpolation error of the TROM and using a
ighter compression threshold or larger n does not lead to more accurate ROM solutions. It seems beneficial to use
ow-accuracy tensor decompositions to save on both the computation and storage, while not losing much in terms
f relative gain compared to more expensive options. As expected, the TT format becomes more cost-efficient for
he higher parameter space dimension D.

Overall, while the accuracy increase of HOSVD- and TT-TROM over POD-ROM is still substantial in the
dvection–diffusion setting with D = 9 parameters, it is smaller than the one for the heat equation considered in
ection 5.2. This is most probably caused by larger variability of the snapshots with respect to parameter variation
aking the problem a good candidate for non-interpolatory TROM (not studied here).

. Conclusions

Summarizing the findings of the paper, the tensorial projection ROM for parametric dynamical systems builds
n several new ideas:
i) To approximately represent the set of observed snapshots, it uses low-rank tensor formats, rather than a truncated
VD of the snapshot matrix. The corresponding tensor decompositions provide POD-type universal basis while
reserving information about solution variation with respect to parameters.
ii) This additional information is used to find a local (parameter-specific) ROM basis for any incoming parameter
hat is not necessarily from the training/sampling set.
iii) The local basis can be represented by its coordinates in the universal low-dimensional basis allowing an effective
plit of the ROM evaluation between the online and offline phases.

An interpolation procedure was suggested to extract the information about parameter dependence of the solutions,

nd thus of the ROM spaces, from the low-rank tensor decompositions. Online stage uses fast linear algebra with
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t

p
l
e
T

Table 5.7
Tensor compression ranks, number of elements passed to the online stage, averaged relative error of the HOSVD-TROM finite element
solutions, and statistics of relative gain (5.12) for ν = 0.01, K = 20 × 28

= 5120.

ε̃ = 10−3

HOSVD ranks [76,2,2,2,2,2,2,2,2,11,12] #(online(Φ̃)) = 2 568 444
TT ranks [75,77,79,76,77,75,71,67,61,11] #(online(Φ̃)) = 100 747

n 5 8 10

TROM FE error
L∞(0, T ; L2(Ω )) 3.45e−2 7.07e−3 5.58e−3
L2(0, T ; H1(Ω )) 5.59e−2 1.10e−2 5.86e−3

G X mean std min mean std min mean std min

HOSVD 6.95 1.10 5.41 22.56 6.97 12.02 32.66 24.70 10.00
TT 6.95 1.09 5.41 22.54 6.94 11.97 31.83 23.58 9.99

ε̃ = 10−5

HOSVD ranks [184,2,2,2,2,2,2,2,2,15,18] #(online(Φ̃)) = 12 718 412
TT ranks [183,235,288,305,319,295,246,187,128,18] #(online(Φ̃)) = 1 110 964

n 5 10 15

TROM FE error
L∞(0, T ; L2(Ω )) 3.45e−2 5.56e−3 5.51e−3
L2(0, T ; H1(Ω )) 5.59e−2 5.80e−3 5.08e−3

G X mean std min mean std min mean std min

HOSVD 6.95 1.10 5.41 33.34 25.90 10.01 19.45 16.33 5.60
TT 6.95 1.10 5.41 33.34 25.90 10.01 19.45 16.33 5.60

ε̃ = 10−7

HOSVD ranks [476,2,2,2,2,2,2,2,2,18,25] #(online(Φ̃)) = 54 835 592
TT ranks [528,618,753,858,866,725,520,341,211,25] #(online(Φ̃)) = 6 975 287

n 5 10 15

TROM FE error
L∞(0, T ; L2(Ω )) 3.44e−2 5.56e−3 5.51e−3
L2(0, T ; H1(Ω )) 5.59e−2 5.80e−3 5.08e−3

G X mean std min mean std min mean std min

HOSVD 6.95 1.10 5.41 33.34 25.90 10.01 19.45 16.33 5.60
TT 6.95 1.10 5.41 33.34 25.90 10.01 19.45 16.33 5.60

complexity depending only on the compression ranks. Non-interpolatory or hybrid approaches are also possible and
in fact can produce even more accurate and robust TROMs. We will study these options elsewhere. For interpolatory
TROMs, Theorem 4.1 proves an estimate on the representation power of the local ROM bases. Numerical experiment
with parameterized heat equation supported the estimate and illustrated the role of each of its terms.

Three popular compressed tensor formats were considered to represent the low-rank tensor in the TROM. Of
course, other low-rank tensor decompositions can be used within the general framework of TROM. Out of the three
tested, we found HOSVD to be most user-friendly and cost-efficient provided either the dimension of the parameter
space is not too large or no Cartesian structure is exploited in organizing the snapshots. Otherwise, TT-TROM
provides necessary tools to handle higher-dimensional parameter spaces. We also observed that the accuracy of
TROMs crucially depend on n, ε̃ and parameter domain sampling, but not as much on the particular low-rank
ensor format employed.

Finally, for higher-dimensional parameter spaces a grid-based sampling of the parameter domain becomes
rohibitively expensive in terms of offline computation costs. Significant offline costs also incur for problems with
ess smooth dependence of solution on parameters, which would require a denser sampling, and for problems where
ach high-fidelity solve is expensive because of fine spatial or temporal resolution. We see several ways to develop

ROMs addressing these challenges: (i) use a sophisticated sampling, e.g., based on a greedy strategy, and organize
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the snapshots in 3D tensors, (ii) to benefit from Cartesian structure and higher order tensor decompositions, apply
a tensor completion method to find a low-rank representation of the snapshot tensor sampled at a few nodes of the
parameter grid, and (iii) combine TROMs with compressed formats to represent high-fidelity snapshots. We leave
these options for a future research.
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