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Abstract— In Virtual Reality (VR), the requirements of much
higher resolution and smooth viewing experiences under rapid
and often real-time changes in viewing direction, leads to signif-
icant challenges in compression and communication. To reduce
the stresses of very high bandwidth consumption, the concept of
foveated video compression is being accorded renewed interest.
By exploiting the space-variant property of retinal visual acuity,
foveation has the potential to substantially reduce video resolution
in the visual periphery, with hardly noticeable perceptual quality
degradations. Accordingly, foveated image / video quality predic-
tors are also becoming increasingly important, as a practical way
to monitor and control future foveated compression algorithms.
Towards advancing the development of foveated image / video
quality assessment (FIQA / FVQA) algorithms, we have con-
structed 2D and (stereoscopic) 3D VR databases of foveated /
compressed videos, and conducted a human study of perceptual
quality on each database. Each database includes 10 reference
videos and 180 foveated videos, which were processed by 3 levels
of foveation on the reference videos. Foveation was applied by
increasing compression with increased eccentricity. In the 2D
study, each video was of resolution 7680×3840 and was viewed
and quality-rated by 36 subjects, while in the 3D study, each
video was of resolution 5376×5376 and rated by 34 subjects.
Both studies were conducted on top of a foveated video player
having low motion-to-photon latency (∼50ms). We evaluated dif-
ferent objective image and video quality assessment algorithms,
including both FIQA / FVQA algorithms and non-foveated
algorithms, on our so called LIVE-Facebook Technologies
Foveation-Compressed Virtual Reality (LIVE-FBT-FCVR) data-
bases. We also present a statistical evaluation of the relative
performances of these algorithms. The LIVE-FBT-FCVR data-
bases have been made publicly available and can be accessed at
https://live.ece.utexas.edu/research/LIVEFBTFCVR/index.html.

Index Terms— Foveation, subjective video quality, virtual real-
ity, subjective study, stereoscopic 3D, foveated video compression,
objective video quality, visual acuity.
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I. INTRODUCTION

V IRTURAL Reality (VR) has experienced a substantial
growth in popularity, due to recent advancements in con-

sumer head-mounted displays (HMDs) and associated com-
puting hardware technologies. While cable-tethered headsets
for personal computers such as the HTC Vive, Oculus rift,
and Microsoft Hololens remain popular, standalone, untethered
headsets like the Oculus Quest are even more successful
because of the freedom of movement they allow. Owing to
greatly increasing numbers of consumer applications, virtual
and augmented reality traffic is expected to increase 12-fold by
2022, as compared to 0.33 exabytes per month in 2017 [1].
While gaming has largely driven the VR space, immersive
and 360◦ videos are gaining wider acceptance and in the
future are expected to drive significant increases in demand
for bandwidth consumption.

To capture omnidirectional scenes, immersive videos are
usually generated by 360◦ cameras containing multiple
well-synchronized and calibrated lenses. The video frames
obtained from each lens are then stitched into various for-
mats, such as equirectangular projection (ERP), and cubemap
(CMP) [2]. While immersive videos provide higher degrees
of freedom and richer visual information, their bandwidth
consumption is much higher than traditional videos. Moreover,
efficiency of communicating immersive videos to HMDs is
limited both by bandwidth and the need for high resolution
displays. The resolutions of mainstream HMDs range from
1K×1K to 2K×2K per eye, and their fields of view (FOVs)
range from 90◦ to 130◦. To match the resolutions of the
HMD, the resolutions of immersive videos to be displayed
expand by more than 4-fold, from at least 4K×2K (UHD)
up to (currently) 8K×4K. Yet, the maximum resolution
of the human eyes is about 120 pixels per degree (ppd),
while the HMD screen resolution equates to 10 ∼ 20 ppd.
Hence, higher screen resolutions are desirable, but this
would require even higher bandwidths. At the same time,
delivering smooth, real-time experiences even during rapid
changes in viewing direction requires low motion-to-photon
latency, further constraining optimization of immersive video
streaming.

One way to remedy the aforementioned problems is by
developing foveated processing protocols, an idea that is again
gaining traction. Similar to the way that chroma subsampling
takes advantage of the reduced bandwidth of visual
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chrominance signals relative to luminance, foveation exploits
the reduced visual acuity in the visual periphery relative to
the foveal region. Foveated video compression first gained
attention more than two decades ago, but there was no driving
need for the technology at the time [3]–[6]. Foveated image
/ video quality assessment (FIQA / FVQA) models were also
integrated into foveated compression algorithms to control
their performance [7]–[10]. Due to the availability of consumer
eyetrackers that can be easily incorporated into HMDs, there
is an increasing research interest in the potential of foveation,
and foveated compression algorithms [11]–[14] that build
on modern video codec standards like H.264 / AVC [15]
and H.265 / HEVC [16].

As foveated compression algorithms evolve, there is an
increasing need for foveated image / video quality assessment
(FIQA / FVQA) algorithms that can be used to assess and
control compression. Towards advancing progress in this direc-
tion, and recognizing that there are no existing foveated video
quality databases addressing compression that are publicly and
freely available, we designed and created two databases of
foveated / compressed immersive VR videos, rated by human
subjects, which we will refer to as the LIVE-FBT-FCVR
databases. One of the databases contains 2D content, while
the other contains stereoscopic 3D content. The new databases
contain diverse contents and encompass important features:
1) To smoothly sample the space of the FOV, three levels of
foveation were applied on the content in both databases; 2) to
reduce aliasing and fully make use of the screen resolution
inside the HMD, the VR videos in the 2D database are of
spatial resolution 7680×3840, while those in the 3D VR data-
base are of 5376×5376; 3) we systematically combined com-
pression distortion with video foveation, both of which affect
foveated video quality as viewed by foveated eyes; 4) to ensure
smooth, foveated visual experiences, we designed a foveated
video player having low motion-to-photon latency (∼ 50ms).
On each database, we conducted a human subjective study
of foveated + compressed video quality, against which we
evaluated a variety of leading IQA / VQA and FIQA / FVQA
algorithms.

The rest of the paper is organized as follows: Section II
studies related work on foveated video quality assessment.
Section III discusses design choices made in the construction
of the databases. Section IV describes our subjective testing
methodology, and the ways we processed the collected data.
In Section V, the quality prediction performances of leading
IQA / VQA models are compared and analyzed on the new
databases. Finally Section VI concludes the paper along with
some remarks on possible future research directions.

II. RELATED WORK

A. Subjective Quality Assessment

Traditional VQA databases such as LIVE VQA [17], LIVE
MOBILE [18], CSIQ-VQA [19] and CDVL [20] have been
used to greatly advance the development of objective VQA
algorithms. Other databases dedicated to the study of video
quality of experience (QoE), such as the LIVE NFLX [21]
and LIVE Mobile Stall Video Databases [22], [23], have

also played an important role in the design of improved
video streaming services. Recently, a subjective database of
audio-visual signals (LIVE-SJTU A/V-QA database [24]) was
designed to study multimodal audio-video quality perception.
Towards improving VR experiences, important questions need
to be addressed: How can immersive IQA / VQA databases
be used to facilitate the development of objective VR IQA /
VQA algorithms, and, can they be used to achieve significant
bandwidth savings in immersive VR systems, especially, those
designed for video streaming?

Towards answering the questions, VR researchers have
developed several databases that include VR-specific features.
A testbed for conducting subjective studies on immersive
contents was proposed in [25], and a pilot experiment on JPEG
compression distortions was conducted. A 4K (4096×2048)
immersive image database called CVIQD was described in
[26]. CVIQD contains 165 compression distorted images gen-
erated from 5 pristine images, including JPEG, H.264 / AVC,
and H.265 / HEVC. In [27], [28], CVIQD was expanded
to include 16 reference images and 528 distorted / com-
pressed images. In [29], an omnidirectional IQA (OIQA)
database was proposed, containing 16 reference images of
resolutions ranging from 11332×5666 to 13320×6660, and
320 distorted images with 4 types of impairments: JPEG
compression, JPEG2000 compression, Gaussian blur, and
Gaussian noise. In [30], a stereo 3D database was proposed,
containing 450 distorted 3D immersive images generated from
15 pristine images, impaired by Gaussian noise, Gaussian
blur, downsampling, VP9 compression, HEVC compression,
and VR-specific stitching distortions. In [31], an immersive
VQA database comprising 48 sequences downloaded from
YouTube and VRCun was proposed, containing sequences
varying from 3K (2880×1440) to 8K (7680×3840). In [32],
another immersive VQA database called IVQAD 2017 was
described, containing 10 reference 4K videos resolution cap-
tured with an Insta360 camera, from which 225 distorted
videos were generated by applying spatial downsampling,
temporal downsampling, and compression distortions.

While these databases are valuable tools for understanding
immersive video quality, none of them address the great
potential of incorporating foveation into bandwidth-hungry
immersive VR systems.

B. Objective Quality Assessment

In practice, objective IQA / VQA algorithms serve as a
substitute for subjective quality assessment (QA). Generally,
objective QA models are classified into three categories: full
reference (FR), reduced reference (RR), and no reference
(NR). In our context, we also consider whether an algo-
rithm belongs to non-foveated (traditional) or foveated QA
categories.

While the PSNR and MSE are notorious for their poor cor-
relation with subjective quality scores [33], perceptually based
FR IQA algorithms such as SSIM [34], MS-SSIM [35], VIF
[36], and FSIM [37] exhibit much better performance on pre-
dicting picture quality. In scenarios when the reference images
are absent or not available, natural scene statistics (NSS)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 15:55:14 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: SUBJECTIVE AND OBJECTIVE QUALITY ASSESSMENT OF 2D AND 3D FOVEATED VIDEO COMPRESSION IN VR 5907

Fig. 1. Sample frames of the reference videos in the 2D database.

based NR IQA models, which capture deviations of distorted
scene statistics from those of pristine images are often quite
effective [38]–[41]. Another class of NR IQA models, BPRI
and BMPRI [42], [43] use a pseudo-reference image (PRI)
generated from the distorted image to attempt to facilitate
measurement of the severity of distortions.

Some early FR IQA models used for VR are based on
PSNR, such as WS-PSNR [44], CPP-PSNR [45], S-PSNR
[46]. SSIM-based 360◦ IQA models were also developed
to capture VR perceptual quality, such as S-SSIM [47] and
SSIM360 [48]. Recently, deep learning has been applied
in VR IQA problems. A VR-specific blind IQA model,
MC360IQA [28], used a hyper structure on a ResNet34
[49] network along with an image quality regressor to fuse
features from intermediate layers of the ResNet. Another deep
learning model, DeepVR-IQA [50], used adversarial learning
to improve the performance of their blind IQA predictor,
whereby a discriminator was designed to distinguish predicted
scores from the ground-truth scores.

IQA models can also be used to predict video quality
when applied on a frame-by-frame basis, where the tem-
poral information of videos is not considered. To capture
temporal distortions as well as spatial distortions, a variety
of models have been proposed. An early VQA model called
the Video Quality Metric (VQM) calculates quality features
on local spatial-temporal (S-T) regions, including temporal
features (mean and standard deviation) extracted from frame
differences [51]. An FR algorithm called the MOVIE index
[52] represents temporal artifacts by modeling the responses
of motion sensitive neurons in extra-cortical area MT [53].
The Video Multimethod Assessment Fusion (VMAF) [54]
combines features obtained from VIF [36], DLM [55], and
frame differences, using a Support Vector Regressor (SVR).

General-purpose NR VQA algorithms have proven difficult
to design, due to the high complexity of temporal distor-
tions and the absence of reference information. RR VQA
algorithms predict distorted video quality given a reduced
amount of information from the reference video. These include
NSS-based models such as RRED [57], STRRED [58], and
Speed-QA [59].

Progress have also been made on the development of NR
VQA algorithms. V-BLIINDS [60] employs natural video sta-
tistics (NVS) and a model of motion coherency to characterize
video quality. The authors of [61] model spatial-temporal

natural video statistics in a 3D discrete cosine transform (DCT)
domain, and use them to predict video quality. The Two Level
Video Quality Model (TLVQM) [62] utilizes low- and high-
complexity features to predict video quality, achieving high
performance on the CVD2014 [63], KoNViD-1K [64], and
Live-Qualcomm datasets [65].

While there has been extensive research on non-foveated
IQA / VQA models, progress on the development of
FIQA / FVQA models has been limited. An early FR
model called the Foveated Wavelet Quality Index (FWQI)
[66] measures foveated image quality by combining an
eccentricity-dependent contrast sensitivity function (CSF)
model [6] with a visually detectable noise threshold model
[67]. The Foveated PSNR (FPSNR) and foveated weighted
signal-to-noise ratio (FWSNR) models [69] use curvilinear
coordinate systems to model foveation. In [70], the authors
defined a Foveation-based Content Adaptive SSIM (FA-SSIM)
index, which extends the popular SSIM to account for
foveated viewing. A recently developed NR FVQA model
called Space-Variant BRISQUE (SVBRISQUE) achieves state-
of-the-art (SOTA) performance using NSS features and a
neural noise model to predict the quality of immersive
videos [68].

III. LIVE-FBT-FCVR DATABASES

A. Video Capture

We employed an Insta360 Pro camera to capture the
immersive videos. The camera supports a maximum resolution
of 7680×3840@30fps on 2D scenes, and 6400×6400@30fps
on 3D scenes. To reach this resolution, the videos were
captured using the six lens systems and compressed with
HEVC, then stitched into a single immersive video, on which
a second compression (HEVC) was applied. To minimize
compression artifacts, we chose high target bitrates for the
compression processes so that we could use the stitched videos
as references. Since, in practice, the FOV is affected by the
interpupillary distance (IPD) and by the amount of eye relief,
4K resolution is not sufficient to avoid the need for antialias-
ing. Given the trade-off between aliasing reduction and com-
putational complexity, we used 7680×3840@30fps as the
resolution of the 2D video contents, and 5376×5376@30fps
for the 3D videos.
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Fig. 2. Sample frames of the reference videos in the 3D database.

Fig. 3. Spatial information (SI), temporal information (TI), and colorfulness (CF) measurements on the 2D and 3D databases.

For each database, we selected 10 high-quality, diverse
reference videos of duration 10s each, captured in Austin,
Texas, as shown in Figs. 1 and 2. The videos were stored
in YUV 4:2:0 8 bit ERP format. We computed three popular
content measurements on all the videos: the Spatial Informa-
tion (SI), Temporal Information (TI), and Colorfulness (CF)
of the reference videos as in Fig 3. SI measures the spatial
activity in each luminance frame using Sobel kernels, TI mea-
sures the temporal variations of luminance frames by frame
differencing, [71], and CF measures the variety and intensity
of colors in the videos [72]. The plots illustrate the diversity of
scene complexity and colorfulness, but also a limited range in
temporal activity, since we did not capture or include videos
having large object or camera motions, both to reduce stitching
errors and the likelihood of induced motion sickness in the
VR environment.

B. Test Sequences

Foveated distortions are characterized by a perceptual qual-
ity falloff with increasing eccentricity. In foveated compres-
sion / streaming algorithms, this space-variant property is
usually implemented by dividing the FOV into two or three
concentric, annular regions, on which are applied different
levels of foveation, assigning greater quantization factors or
lower resolution to the outer regions [11]–[13]. We deployed
three regions / levels of foveation to model the falloff in
quality, in a manner that could be reasonably implemented by
multiple compression quantization parameters (QPs). Seeking
to find insights into the proper selection of QPs of both
the foveal and peripheral regions in foveated compression
algorithms, we used the globally-deployed VP9 codec to create
compression distortions. At each level of foveation, we used
the VP9 constant quantization mode (Q mode), by specifying

TABLE I

QUANTIZATION FACTORS AND ANNULAR RADII

the same -qmin and -qmax parameters in the FFmpeg libvpx-
vp9 encoder.

The design of test VR sequences having foveation / com-
pression distortions involves some unique difficulties. Unlike
traditional VQA studies, where the distortion level of a content
is determined using a single parameter, the distortion of
foveated and compressed videos are determined both by the
inner radius of each region and by the level of compression
distortion within the region. By using three levels of foveation,
the distortions are determined by two inner radii and three
QPs. Because of the curse of dimensionality, which heavily
impacts the duration of the study, we limited the number of
distortion parameters to five.

We created test sequences in three steps. We first sampled
the space of compressed videos using 4 QP values (−cr f in
VP9), yielding 5 levels of compression distortion (including
the references), which were determined to have perceptually
discriminable levels of distortion when viewed in VR. Second,
we divided the FOV into one central, three annular, and one
peripheral region, hence 4 radii overall. The selected QPs and
radii are shown in Table I. Each foveated / distorted video was
created by choosing 3 of 5 compression levels (including the
references), and 2 of 4 radii, as shown in Fig. 4. Thus, the high-
est quality is obtained by selecting [re f, −cr f 51, −cr f 56]
as the 3 compression levels in both the 2D and 3D databases,
where re f indicates the reference video, and by selecting
[0.24, 0.32] as the 2 radii for the 2D database, and [0.3, 0.4]
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Fig. 4. Illustration of methods of creating foveated / compressed videos.
The inner radii define concentric regions as shown in the second row. The
distorted videos are defined by selecting inner radii separating the multiple
adjacent foveation regions. The solid arrows indicate the best foveated quality
possible, while the dashed arrows indicate the worst foveated quality possible.

for the 3D database. The lowest quality, however, is obtained
when selecting [−cr f 56, −cr f 60, −cr f 63] as the com-
pression distortions (for both databases), and [0.08, 0.16] /
[0.1, 0.2] as the radii for the 2D / 3D databases, respectively.
The radii were chosen such that the quality range of the test
sequences was perceptually broad, i.e. the test sequences hav-
ing the highest quality would have nearly the same appearance
as their corresponding reference videos, while those having
the lowest quality would present very poor quality. Finally,
given the restriction that distortion increases (quality descends)
from the foveal region to the periphery, and that the inner
radius is always smaller than the outer radius, there were
in total 60 possible combinations of QPs and radii. It was
not possible to use all of these, since it would impractically
increase the duration of the study, hence we randomly sampled
18 combinations from each content, yielding 180 distorted
videos in each database. However, to ensure that a sufficiently
wide range of quality would be sampled for each content,
we first divided the 60 combinations into 5 broad quality
groups, based on a visual comparison by the study authors:
Excellent (E), Good (G), Fair (F), Bad (B). We then randomly
selected 3, 4, 4, 4, and 3 combinations from the 5 quality
groups, respectively.

C. Design Choices and Features of the Database

Next we explain a number of design particulars that helped
shape the database.

1) VP9 Compression: We selected VP9 codec to apply
compression distortions to the test videos. VP9 is one of
the most widely used video codecs, and is exemplar of the
increasing popularity of royalty-free video coding standards.
While the successor AV1 has recently become available, it is
not yet deployed in HMDs, and it is reasonable to expect

that the coding artifacts produced by these deeply related
technologies are perceptually similar.

2) Quantization Parameters: Compression artifacts are
often less noticeable in VR environments than when viewed
on traditional devices. This may be a result of downsampling
in HMDs, which can reduce blocking artifacts [73]. To better
represent compression distortions, an aggressive quantization
scheme was defined to produce five levels of distortions
that are generally perceptually distinguishable in VR. This
allows for less labeling ambiguity and more successful model
building, as we have discovered in many past studies.

3) Combinations of Quantization Factors and Radii: The
most significant difference between the new LIVE-FBT-FCVR
databases and traditional databases is that compression dis-
tortions were applied in a systematic foveated way, yielding
a wide variety of test sequences representative of plausible
combinations of distortion severities and foveal-to-peripheral
gradations.

IV. SUBJECTIVE STUDIES

A. Interface Design and Real-Time Foveation

The design of the subject interface required careful handling
of the system latency [74], which is the time elapsed between
the change in gaze direction and the completion of foveated
rendering. In [75], it was suggested that a total system latency
of 50 ∼ 70ms could be tolerated, due to the saccadic
omission of the HVS. Since we aimed to develop a database
that would provide smooth (albeit distorted) foveated viewing
experiences, it was crucial to control the system latency to
ensure smooth playback.

In the interface, the foveated videos were rendered in real
time based on measurements of the subjects’ gaze direc-
tions. This was made possible since, instead of compressing
/ foveating the videos in real time, as would be required
during application, we pre-compressed the ERP videos using
the QPs in Table I. Then to create the foveated experience,
we created a foveated video player which was able to read
3 raw / pre-compressed YUV videos and 2 radii from disk,
corresponding to three levels of foveation, and transferred
them to GPU for foveated rendering by a fragment shader.
To achieve this, we relied on a VideoClarity ClearView system
equipped with SSD Redundant Arrays of Independent Disks
(RAIDs), supporting a sequential reading speed of 10GB/s.
Then, the 3 YUV video frames were merged / foveated using
the 2 radii by the fragment shader, and finally displayed inside
the HMD. The YUV videos were strictly synchronized at
frame level to avoid any temporal artifacts during playout,
and none were observed. A more detailed description of the
foveated video player can be found in [78]. To remove per-
ceptual edge artifacts between the adjacent levels of foveation,
linear blending of the content across the sharp foveation
boundaries was used:

b(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

e − ei + w

w
, if ei − w < e < ei ,

0, if e ≤ ei − w,

1, if e ≥ ei ,

(1)
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Fig. 5. Best and worst case latency of the system.

where i ∈ 1, 2 indexes the two boundaries between the
3 levels / regions of foveation, w is the blending width,
and e = √

(x − x0)2 + (y − y0)2 is the eccentricity of (x, y)
with respect to the gaze point (x0, y0). For both 2D and 3D
databses, we fixed w = 0.02 radians for the inner boundary,
and w = 0.04 radians for the outer boundary. The blended
pixels were then calculated by

Ib(x, y) = b · Iout (x, y) + (1 − b) · Iin(x, y), (2)

where Iout (x, y) and Iin (x, y) denote the co-located pixels
at (x, y) from contents outside and inside the boundary,
respectively.

By estimating both the best and the worst case system
latencies, we ensured that our system satisfied the requirements
suggested in [75]. An HTC Vive HMD integrated with a
Tobii Pro VR eye tracker was employed in the study. The
refresh rate of the HMD screen is 90fps, while the sampling
frequency of the eye tracker is 120Hz. After a change in gaze
direction, the idealized best case would occur when the eye
tracker immediately captures the change, while the worst case
would occur when the change occurs immediately after the
last time sample. The latency in the two extremes would be
0ms and 8.3ms, respectively. The time expended capturing the
eye status and data processing by the eye tracker is about
10ms, after which the gaze data is available to the fragment
shader. The data could arrive 0 ∼ 8.3ms before the submission
of Direct3D [79] calls, and after that, 11.11ms is expended
rendering and another 11.11ms sending the rendered image
to the HMD panels prior to display [80]. Overall, the latency
is about 32ms in the best case and 49ms in the worst case,
as illustrated in Fig. 5.

The interface was built using Unity Game Engine, and
the foveated video player was compiled into dynamic link
libraries (DLL), and then integrated into Unity as native plug-
ins. The Tobii VR Unity SDK was employed for calibration
and processing of the gaze data [81].

B. Subjective Testing Design

The subjective study utilized a Single stimulus protocol
[82], where the subjects recorded scores on a continuous
quality scale, ranging from 0 to 1, where 0 denotes the worst
quality.

Both of the LIVE-FBT-FCVR databases (2D and 3D) were
randomly divided into two sessions, with each session contain-
ing 90 of the 180 distorted videos and 10 “hidden” reference
videos. To balance the display of distorted videos between the
two sessions, the 90 distorted videos were created by randomly

Fig. 6. Rating bar used by the human subjects.

selecting 9 of the 18 distorted versions of each content.
To avoid the effects of contextual or memory comparisons,
videos of the same contents were forced to be located at least
three videos apart in the presentations. Care was also taken
to avoid any bias owing to a specific order of the sequences,
by randomly generating a playlist for each subject. Since the
duration of each video is 10s, and the subjects, on average,
required less than 10s to assign each score, the total duration
of each session averaged less than 35 minutes.

For each subject, the two sessions were separated by at
least 24 hours apart to avoid fatigue in the second session.
During each session, subjects could terminate the experiment
at any time if they felt the need. After the playback of each
video, subjects rated the VR video quality using the continuous
rating bar shown in Fig 6. The rating bar was marked with
Likert labels ranging from “Poor” to “Excellent” to facilitate
anchoring the rating process, and subjects could use their
controllers to select and submit a score without taking off the
headset. The subjects were informed that they could assign
their ratings anywhere along the continuous scale. The rating
bar was attached to a virtual canvas in HMD local coordinates,
so that it remained on the center of the FOV regardless of head
movements.

C. Subjects Training

A total of 76 subjects were recruited to participate in the
subjective tests, all of them undergraduate students at The
University of Texas at Austin, aged between 20 to 30 years,
and unfamiliar with video quality assessment and video dis-
tortions. Among them, 38 participated in the 2D study, while
38 participated in the 3D study, and no subjects participated
in both studies. At the beginning of each study, the Snellen
test was conducted to ensure that each subject had normal or
corrected-to-normal visual acuity. Subjects were also asked
if they were prone to discomfort or nausea when exposed
to a VR environment. Prior to the 3D study, the subjects
also participated in a RanDot Stereo test of 3D perception.
Surprisingly, no subject was rejected as a consequence of
screening. The subjects were also asked to adjust the IPD
of the HTC Vive HMD to alleviate any discomfort. Subjects
having IPDs outside of the range of the HMD (60.3mm ∼
73.7mm) were allowed to participate in the study, with the
awareness that they could terminate the test if they wanted to.

Before the first session of each study, each subject was
orally briefed regarding the purpose of the study and presented
with detailed instructions in written form. Then, a training
session was conducted to help familiarize the subjects with
the system. For the 2D / 3D studies, 12 / 10 training
sequences were used, which were not included in the database.
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Fig. 7. Scatter plots of MOS from two non-overlapping, equal-size groups of
subjects. Left: Inter-subject consistency of the 2D database, SROCC=0.936.
Right: Inter-subject consistency of the 3D database, SROCC=0.915.

The quality range of these videos was similar to the quality
range of the test videos, giving the subjects a sense of what
they would see in the formal sessions.

At the beginning of each session, each subject was guided
through an eye tracker calibration process. During this process,
the subjects would stare at five red dots that were sequen-
tially displayed at regular spatial intervals. As each dot was
displayed and fixated, the gaze direction of the subject was
recorded and used to calibrate the eye tracker. During the
testing phase, the subjects were instructed to rate the videos
based on their own judgments of perceived quality, without
expressing any preference of the contents. The subjects were
also instructed to view as much as possible of the 360◦ envi-
ronment, by moving their eyes and head during the playback
of each video.

D. Data Processing

We calculated both subjective Mean Opinion Scores (MOS)
and Difference Mean Opinion Scores (DMOS) from the
recorded subject ratings. Within each database, denote si j k

as the subjective score given by the i th subject, on the j th

foveated video, during the kth session, where jre f is the
corresponding reference video. To compute MOS, the Z-scores
were first computed per session:

μM OS
ik = 1

Nik

Nik∑
j=1

si j k , (3)

σ M OS
ik =

√√√√√ 1

Nik − 1

Nik∑
j=1

(si j k − μM OS
ik )2, (4)

zM OS
i jk = si j k − μM OS

ik

σ M OS
ik

, (5)

wherein Nik denotes the number of distorted videos viewed by
the i th subject in session k. Since the reference videos were
rated twice by each subject, the corresponding Z-scores from
the two sessions were averaged:

zM OS
i jre f

= 1

2

∑
k=1,2

zM OS
i jre f k . (6)

To compute DMOS, the differences between the scores of each
distorted video and the corresponding hidden reference video
was computed,

di jk = si j k − si jre f k . (7)

Fig. 8. MOS in the 2D (top) and 3D (bottom) LIVE-FBT-FCVR databases.
The MOS of reference videos are highlighted in red.

Then, Z-scores were computed within each session,

μDM OS
ik = 1

Nik

Nik∑
j=1

di jk , (8)

σ DM OS
ik =

√√√√√ 1

Nik − 1

Nik∑
j=1

(di jk − μDM OS
ik )2, (9)

z DM OS
i jk = di jk − μDM OS

ik

σ DM OS
ik

. (10)

The Z-scores from the two sessions were then merged by
dropping the index k. Over 99% of the Z-scores were found
to lie within the range [-3,3]. Subject rejection was performed
following the procedure in [82].

Finally, the Z-scores were mapped to the range [0,100]:

z�
i j = 100(zi j + 3)

6
, (11)

where zi j are Z-scores of MOS or DMOS.
Among the 38 subjects who participated in the 2D study,

2 of them did not finish both sessions, while 6 / 3 of
the remaining 36 subjects included in the MOS / DMOS
calculations were rejected, respectively. In the 3D study, 4 of
the 38 the subjects did not finish both sessions, while 7 / 4 of
the remaining 34 subjects included in the MOS / DMOS
calculations were rejected. The MOS were found to lie in the
ranges [18.61, 73.64] and [20.02, 72.80] in the 2D and 3D
databases, respectively. The DMOS were found to lie within
the ranges [22.76, 70.28], and [25.04, 68.24], in the 2D and
3D databases, respectively.

E. Validation of Results

1) Inter-Subject Consistency: The inter-subject consistency
was explored by randomly dividing the subjects into two
disjoint and equal groups, then measuring the Spearman Rank
Correlation Coefficient (SROCC) correlation of the MOS
values computed from these two groups. We performed the
random division 1000 times, and the ranges of correlations
were found to be [0.90, 0.96] / [0.88, 0.94], with median
values 0.94 / 0.92 on the 2D / 3D databases. A high degree
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TABLE II

DIRECTIONS USED IN THE EVALUATION FRAMEWORK

Fig. 9. Comparison of MROS observed for different compression / radii combinations. Tables of MROS from the (a) 2D and (b) 3D databases. The trends
of the subjective quality scores could be observed by comparing the column / row combinations of compression / radii.

of subject consistency was observed between the randomly
divided groups on both databases, despite the complex viewing
conditions introduced by the VR environment, 3D stereo
vision, and foveation. The scatter plots of MOS from two
groups are shown in Fig. 7.

2) Intra-Subject Consistency: We also measured
intra-subject consistency by calculating the SROCC between
the Z-scores assigned by each individual subject against MOS
[83]. The median correlations on the 2D / 3D database were
found to be 0.746 / 0.706, a reasonable degree of intra-subject
agreement.

F. Analysis of Opinion Scores

The obtained MOS of the test videos are plotted in Fig 8.
The results show that a wide range of foveated / compressed
video quality was sampled. The error bars show that the
outcomes of the 3D study contain greater uncertainty than
those from the 2D study.

To explore the relationships between the scores reported
on the combinations of compression distortions and foveation
radii, we ranked the Z-scores (DMOS) assigned by each
subject on each content, averaged the ranked indices across all
subjects, and finally mapped the averaged indices referred to
as “Mean Ranked Opinion Scores” or MROS back to the table
of all combinations, as shown in Fig. 9, where “–” indicates
that the combination was not sampled. By comparing the rows
/ columns in both maps, on can observe trends in the scores
reported for changing combinations of compression / radii.

The maps obtained for the 2D (Fig. 9a) and the 3D (Fig. 9b)
databases reveal the expected result that higher scores were
assigned to foveated videos having less severe compression
artifacts and larger radii (upper left corner of each map), with
lowering scores towards the bottom right corners. Compare
corresponding rows in the two maps, the relative quality scores
may be observed to be in good general agreement. In a few
instances, there is disagreement, which may be due to the
introduction of 3D and the different display resolutions used
for the 2D and 3D studies.

V. OBJECTIVE QUALITY METRICS

We evaluate a wide variety of QA algorithms on the newly
created LIVE-FBT-FCVR databases. As in [76], four crite-
ria were adopted for evaluation: Pearson’s linear correlation
coefficient(PLCC), Spearmlan’s rank order correlation coef-
ficient (SROCC), Kendall’s rank order correlation coefficient
(KROCC), and root mean square (RMSE). DMOS were used
for evaluating FR / RR algorithms, and MOS were used
for training and evaluating NR algorithms. A four-parameter
logistic non-linearity was employed before calculating PLCC
and RMSE [77]:

Q(x) = β2 + β1 − β2

1 + exp(− x−β3
|β4| )

(12)

A. Evaluation Framework

To recover the foveated experience and enable the compar-
ison of algorithms, simulating the real-time foveation scheme
described in Section IV-A, we adopted a viewport-based
assessment framework, as discussed in [78] to simulate the
foveated images presented inside the HMD. First, we selected
18 3D directions, and created a viewport video for each
direction. The directions are listed in geographic coordinates
in Table II. The FOV of each viewport was set to 90◦, and
the resolution was set to 1024×1024. Finally, a foveated
viewport video was created for each viewing direction in the
2D database, and two foveated videos, associated with the
left and the right eye, were constructed for the 3D database,
using the same combinations of compression and region
radii.

B. Evaluation of FR and RR Algorithms

1) Non-Foveated IQA Algorithms: We first tested
7 non-foveated IQA algorithms on both databases: PSNR,
SSIM [34], MS-SSIM [35], VIF1 [36], S-RRED [58],

1We used the pixel domain implementation of VIF: https://live.ece.utexas.
edu/research/Quality/index_algorithms.htm
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TABLE III

PERFORMANCE COMPARISON OF FR / RR MODELS ON THE 2D DATABASE FOR EACH CONTENT AND FOR DIFFERENT QUALITY RANGES (UNDERLINED).
“HIGH” INDICATES THE DISTORTED CONTENTS ASSIGNED THE HIGHEST 30% DMOS, “MEDIAN” INDICATES THE FOLLOWING 40%, AND “LOW”

INDICATES THE REMAINING 30%. THE BEST VALUES ARE BOLDFACED

TABLE IV

RESULTS OF F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND DMOS VALUES ON THE 2D DATABASE. EACH ENTRY

IN THE TABLE IS A CODEWORD CONSISTING OF 14 SYMBOLS, WHERE THE FIRST 10 SYMBOLS INDICATE THE 10 VIDEO CONTENTS,
THE NEXT 3 DENOTE THE HIGH, MEDIAN, AND LOW CONTENT QUALITY RANGES, AND THE FINAL SYMBOL DENOTES THE OVERALL

PERFORMANCE. A SYMBOL VALUE OF “0” INDICATES THE MODEL IN THE ROW IS STATISTICALLY SUPERIOR TO THE ONE IN THE

COLUMN, A VALUE OF “1” INDICATES STATISTICALLY INFERIOR, AND A VALUE OF “-” INDICATES EQUIVALENT

Speed-IQA [59] and FSIM [37]. To accommodate these IQA
algorithms within our evaluation framework, we computed
the score of each frame on each viewport video, then
averaged (pooled) scores across all frames and viewports into
one final score. On the stereo 3D videos, the predictions from
left and right viewport videos were simply averaged.

2) Non-Foveated VQA Algorithms: We also included three
non-foveated VQA algorithms: ST-RRED [58], Speed-VQA
[59], and VMAF2 [54]. The score on each viewport video
were also computed and averaged into one final score.

3) Foveated IQA Algorithms: Finally, we implemented
the legacy foveated models FWQI [66] and FA-SSIM [70],
and evaluated their performances. For FA-SSIM, we set the
hyper-parameters γ and β to 30 and 1, respectively, on both
the 2D and 3D databases.

To evaluate the FR / RR algorithms, we computed the
PLCC, SROCC, KROCC, and RMSE of the predicted quality

2We used the pretrained VMAF model from https://github.com/Netflix/vmaf

Fig. 10. Example of inconsistent SROCC and PLCC on the 2D database.
(a) Scatter plot of Speed-VQA prediction vs. DMOS of content “Coco”.
(b) The scatter plots of FWQI prediction vs. DMOS on “Coco”.

scores against DMOS, and reported only PLCC and SROCC
in Table III and Table V for the 2D and the 3D database,
respectively, since KROCC and RMSE were observed to
follow similar trends. The scatter plots of each model against
DMOS are shown in Fig. 11 and Fig. 12.

In Table III and Table V, both the overall performance,
per-content performance, and performance in high, median,
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TABLE V

PERFORMANCE COMPARISON OF FR / RR MODELS ON THE 3D DATABASE FOR EACH CONTENT AND FOR DIFFERENT QUALITY RANGES (UNDERLINED).
“HIGH” INDICATES THE DISTORTED CONTENTS ASSIGNED THE HIGHEST 30% DMOS, “MEDIAN” INDICATES THE FOLLOWING 40%, AND “LOW”

INDICATES THE REMAINING 30%. THE BEST VALUES ARE BOLDFACED

and low quality ranges are compared. We employed the
logistic non-linearity in Eq. 12 to map the predicted scores
of each model to the range of DMOS before computing
the overall performance (PLCC), and computed per-content
PLCC and PLCC for different quality ranges without further
mapping. The “High” quality range were distorted contents
labeled by the highest 30% of DMOS, “Median” denotes the
following 40%, and “Low” denotes the lowest 30%.

As shown in Table III, when tested on the 2D database,
the overall performance of a non-foveated model, VIF, was
better than that of other models, including the foveated models,
FWQI and FA-SSIM. Overall, VIF, FWQI, and S-RRED were
the three best performing models. However, when analyzed
on a per-content basis, VIF generally performed worse than
FWQI. It may also be observed that the SROCC and PLCC of
the non-foveated models were generally not consistent (except
VIF), while opposite is observed of the foveated models
(FWQI and FA-SSIM). This is because the non-foveated
models generally had difficulties distinguishing the perceptual
relevance of heavily foveated contents, particularly in periph-
eral regions. Hence they failed to distinguish between per-
ceptually different foveated videos, yielding stucked columns
of scatter points, as in Fig. 10. Similar effects may be seen
in the all-model (FR and RR) plots in Fig. 11 among the
non-foveated models. The foveated models perform well over
the low quality ranges, since the importance of quality in the
foveal / near-foveal regions are given greater weight. It is also
interesting to observe that Speed-VQA and STRRED delivered
lower performance than their spatial-only counterparts.

As shown in Table V and Fig. 12, the 3D database, FWQI,
FA-SSIM, and VIF were the three best performing models

overall. Similar misaligned SROCC and PLCC plots were
observed on most of the non-foveated models.

Comparing the performances of models on the two data-
bases, the non-foveated models all experienced a significant
performance decrease, while the foveated models were robust
on both databases. While the reasons for this are mani-
fold, one of the most may be that: since the predictions
of non-foveated models are much more heavily impacted
by the heavily distorted periphery, the correlations between
peripheral quality and ground truth perceptual quality (DMOS)
largely determines the performance of non-foveated models.
As may be observed from the Tables in Fig. 9, on the 2D
database, MOS / DMOS were much more affected by the most
peripheral qualities, but much less so on the 3D database. This
suggests the possibility that the perceived depths of non-fixated
(likely background) regions were less attended to, i.e. a sort
of attentional depth masking.

C. Statistical Evaluation

As in [17], we evaluated the possible statistical superiority
of each FR / RR model over every other one based on F-tests
between objective models. By assuming that the distribution
of the residual errors between the predictions of an objec-
tive model and the DMOS follows a Gaussian distribution,
the ratios between the variances of residual errors between
two objective models follow an F distribution. An F-test was
then conducted, the null hypothesis being that the variances of
the two models were equal. The possible statistical superiority
of one model over another was determined at the 95% signif-
icance level. The results of the statistical significance tests
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Fig. 11. Scatter plots of all of the compared objective FR and RR VQA scores vs. DMOS on all videos in the new LIVE-FBT-FCVR 2D database. Red,
green, and blue points indicates high, median, and low quality ranges, respectively. The red curve indicates the best fitting logistic function.

Fig. 12. Scatter plots of all of the compared objective FR and RR VQA scores vs. DMOS on all videos in the new LIVE-FBT-FCVR 3D database. Red,
green, and blue points indicates high, median, and low quality ranges, respectively. The red curve indicates the best fitting logistic function.

on the 2D and 3D databases can be found in Table IV and
Table VI, respectively.

The results on the 2D database show that the FR FWQI
model was mostly statistically superior to the other models.
On the 3D database, the results of the F-test also indicate that
FWQI is statistically superior than the other compared models
overall.

D. NR Algorithms
We compared 5 NR algorithms on both the 2D and

3D databases: BRISQUE [39], NIQE [40], SVBRISQUE
[68], V-BLIINDS [60], and TLVQM [62]. BRISQUE,
SVBRISQUE, V-BLIINDS, and TLVQM, were learned
using a Support Vector Regressor (SVR) with radial basis
function [84].

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 15:55:14 UTC from IEEE Xplore.  Restrictions apply. 



5916 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE VI

RESULTS OF F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND DMOS VALUES ON THE 3D DATABASE. EACH ENTRY
IN THE TABLE IS A CODEWORD CONSISTING OF 14 SYMBOLS, WHERE THE FIRST 10 SYMBOLS INDICATE THE 10 VIDEO CONTENTS,

THE NEXT 3 DENOTE THE HIGH, MEDIAN, AND LOW CONTENT QUALITY RANGES, AND THE FINAL SYMBOL DENOTES THE OVERALL

PERFORMANCE. A SYMBOL VALUE OF “0” INDICATES THE MODEL IN THE ROW IS STATISTICALLY SUPERIOR TO THE ONE IN THE

COLUMN, A VALUE OF “1” INDICATES STATISTICALLY INFERIOR, AND A VALUE OF “-” INDICATES EQUIVALENT

TABLE VII

COMPARISON OF NR VQA MODELS ON THE 2D AND 3D DATABASES. THE

HIGHEST VALUES ARE BOLDFACED

Among the NR algorithms, SVBRISQUE is a recent
model specific to NR FVQA, whereby space-variant NSS
were deployed to capture perceptual distortions occurring at
different eccentricities. In the model, traditional GGD and
AGGD models [39] were extended to space-variant GGD
and AGGD models. An assumption of local smoothness was
used to estimate local NSS parameters, thereby supplying
space-variant eccentricity-dependent quality-aware features.
In addition, a neural noise model was deployed to capture
uncertainties in visual processing, and to reduce instabilities
introduced by image saturation. Finally, an SVR was learned
to predict subjective scores (MOS).

In each case, the model features were first computed on each
viewport video. For BRISQUE, the features from each view-
port video were obtained by averaging per-frame features, then
averaged across the 18 viewports (36 viewport videos for the
3D database). We chose the hyperparameters of SVBRISQUE
exactly as in [68]. Each database was randomly divided into a
training set, containing 80% of the sequences, and a test set,
containing the remaining 20%, with no overlapping contents
between the two subsets. This random division was conducted
1000 times, and the median performance figures reported
in Table VII. For NIQE, we computed the predicted scores
on each viewport frame, then averaged the scores across all
300 frames and 18 viewports (36 for the 3D database).

As may be observed in Table VII, SVBRISQUE achieved
the best quality prediction performance by wide margins. It is
interesting that the non-foveated NR models were more robust
across databases, in contrast to the FR / RR models. This
robustness could have been provided by the SVR.

E. Comparing FR and NR Algorithms

To enable comparisons between FR and NR algorithms,
we applied the same NR evaluation procedure to the FR

TABLE VIII

MEDIAN AND STANDARD DEVIATION OF PERFORMANCES OF FR VQA
MODELS ON THE 2D AND 3D DATABASES OVER 45 RANDOM

ITERATIONS OF 80-20 TRAIN-TEST SPLITS. THE HIGHEST

VALUES ARE BOLDFACED

algorithms. First, we randomly selected 2 of the 10 contents,
then computed the performance of each FR algorithm on
all distorted versions of the selected contents. We repeated
this process over

(10
2

) = 45 unique splits. We also used
1000 random train-test splits to match the NR procedure,
and the results were essentially the same. Finally, we report
the median and the standard deviation of performance in
TABLE VIII.

It may be observed that, on both databases, the performance
of FR algorithms when adopting the NR evaluation procedure
was higher than when evaluated on all the distorted videos.
On the 2D database, the non-foveated FR algorithms gener-
ally obtained higher performances than the NR algorithms.
It may be observed that the non-foveated FR model, VMAF,
the foveated FR model, FWQI, and the foveated NR model,
SVBRISQUE, were the top three models. On the 3D database,
it may be observed that the non-foveated NR algorithms,
however, were generally better than the FR algorithms. The
reason may be, as explained in Section V-D, that the SVR was
able to learn attentional depth masking on the 3D database.
It may also be observed that SVBRISQUE was still the best
performing model in terms of SROCC, KROCC, and PLCC.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 15:55:14 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: SUBJECTIVE AND OBJECTIVE QUALITY ASSESSMENT OF 2D AND 3D FOVEATED VIDEO COMPRESSION IN VR 5917

VI. CONCLUSION

We created a 2D and a stereo 3D VR database of foveated /
compressed videos, each containing 10 diverse contents and
180 distorted immersive videos derived from the 10 reference
videos. A 2D / 3D subjective study including 38 / 38 sub-
jects was then conducted on the videos. The resulting
LIVE-FBT-FCVR databases are unique in terms of the high
resolution, foveation distortion, and VR environment. We also
presented an evaluation of the performances of a wide variety
of objective algorithms on both databases.

A distinguishing feature of our database is that the foveation
distortion was considered as a combination of different levels
of compression and foveation radii. The results of the subjec-
tive evaluations show that, in the 2D study, subjective quality
was more affected by peripheral quality, while in the 3D study,
the subjective quality was largely affected by foveal quality.

The results of the objective VQA algorithm comparisons
provide insights into future algorithm development. In par-
ticular, the shortcomings of traditional (non-foveated) VQA
algorithms were laid bare.

We believe that the new LIVE-FBT-FCVR databases will
benefit the development of future FVQA algorithms, and help
facilitate the development of protocols to reduce bandwidth
consumption by immersive video streaming services. We also
believe that the databases will help understanding of the
relationships between the space-variant vision system and the
perceptual quality of foveated videos.
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