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Abstract— Being able to accurately predict the visual quality of
videos subjected to various combinations of dimension reduction
protocols is of high interest to the streaming video industry, given
rapid increases in frame resolutions and frame rates. In this
direction, we have developed a video quality predictor that is sen-
sitive to spatial, temporal, or space-time subsampling combined
with compression. Our predictor is based on new models of space-
time natural video statistics (NVS). Specifically, we model the
statistics of divisively normalized difference between neighboring
frames that are relatively displaced. In an extensive empirical
study, we found that those paths of space-time displaced frame
differences that provide maximal regularity against our NVS
model generally align best with motion trajectories. Motivated
by this, we built a new video quality prediction engine that
extracts NVS features that represent how space-time directional
regularities are disturbed by space-time distortions. Based on
parametric models of these regularities, we compute features
that are used to train a regressor that can accurately predict
perceptual quality. As a stringent test of the new model, we apply
it to the difficult problem of predicting the quality of videos
subjected not only to compression, but also to downsampling in
space and/or time. We show that the new quality model achieves
state-of-the-art (SOTA) prediction performance on the new
ETRI-LIVE Space-Time Subsampled Video Quality (STSVQ)
and also on the AVT-VQDB-UHD-1 database.

Index Terms— Video quality, natural video statistics, statistical
regularity, space-time displaced frame differences, space-time
resolution, video compression.

I. INTRODUCTION

THE media industry is steadily improving the realism of
video experiences streamed to the consumers by expand-

ing the ranges of video space along all dimensions. Consumer
video contents are being acquired and streamed at increas-
ingly higher spatial resolutions, frame rates, and dynamic
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ranges (HDR). Media streaming services like Amazon
Prime Video, Netflix, and YouTube now deliver high-quality
4K/60fps/HDR television and cinematic content to consumer,
and high-motion content, such as sports, is causing content
providers to consider even higher frame rates. Display manu-
facturers are ahead of the game, and televisions and monitors
that support 8K HDR and true 120Hz video signal playout are
available, albeit currently expensive. Indeed, recent high-end
smartphones and tablets have bright displays supporting HDR
and refresh rates of 120Hz. It is natural to expect that these
cycles of increments of video dimensions and launches of
sharper, faster, and deeper displays that support them will
continue, towards meeting the seemingly insatiable demand for
more realistic, immersive, high performance media delivery.

Increases of video dimensionality inevitably leads to enor-
mous data volumes, presenting significant challenges to con-
tent providers seeking to deliver them over limited bandwidth
channels in a perceptually satisfactory way. The principal
technology enabling bandwidth-constrained delivery is video
compression, as exemplified by the ITU standards H.264 [1],
HEVC [2], and VVC [3], and open-source standards like
VP9 [4] and AV1 [5]. While video compression technologies
effectively reduce the data volumes, they also introduce annoy-
ing compression artifacts, especially in a limited bit budget
environment [6]. A second enabling technology are globally
deployed perceptual video quality prediction like SSIM [7]
and VMAF [8], which are used to balance the perception-
bandwidth tradeoff. Nevertheless, as video data volumes
and streaming popularity continue to explode, more creative
compression augmentation protocols are needed. One recent
approach currently being deployed by content providers is to
combine video compression with spatial resolution adaptation,
whereby spatial subsampling is applied before compression
on some frames. Following decompression at the playback
side, these frames are spatially upsampled before display.
Subsampling decisions are typically made under the control
of perceptual quality algorithms.

The concept of combining resolution adaptation with com-
pression was embodied in earlier wavelet-based models of
scalable video coding [9], [10], whereby streams would be
generated that were scalable to spatial or space-time reso-
lutions to meet device compatibility or network conditions.
However, these methods did not consider the perceptual
effects of space-time subsampling. More recent studies that
have considered this perceptual trade-off include [11]–[13],
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where the authors investigated the combined effects of spatial
subsampling and compression on perceptual video quality.
More recently, the idea of also attempting temporal subsam-
pling before compression has also been considered, given
ongoing and future increases of frame rates. The authors of
[14], [15] considered the effects of temporal subsampling
on perceptual video quality, and proposed methods of frame
rate adaptation. The authors of [16] proposed a space-time
resolution adaptation method for video compression, but the
decision to subsample was considered separately in space
and time. However, while these studies have deepened our
understanding of how spatial and temporal subsampling each
individually affect perceptual quality, when used as precur-
sors to compression, less works has been applied towards
modelling the perceptual effects of simultaneously applying
spatial and temporal subsampling protocols prior to applying
compression.

Fortunately, very recent psychometric resources [17], [18]
have become available that may advance our understanding
of the joint perceptual effects, and tradeoffs, of spatial and
temporal subsampling and compression. The AVT-VQDB-
UHD-1 database [17] provides subjective opinion scores on
120 videos distorted by joint application of spatial and tem-
poral subsampling and compression on 5 source contents.
However, the maximum frame rate considered was 60Hz.
The much larger ETRI-LIVE STSVQ database [18] provides
a rich collection of contemporaneous resources, including
subjective quality scores rendered on 4K 10-bit videos at
frame rates up to 120Hz, processed by a wide range of
levels of simultaneous spatial and temporal subsampling and
compression using HEVC. The database contains scores on
437 space-time subsampled and compressed videos generated
from 15 source contents.

In order to be able to conduct perceptually optimized rate
control, what is needed are predictive models, that can be
translated into practical algorithms, of the perceptual effects of
combined compression, spatial, and temporal downsampling.
Towards advancing progress in this direction, we propose
a new video quality model based on our findings on the
space-time statistics of videos. The new video quality model
is able to account for varying degrees of spatial and temporal
subsampling applied jointly with compression. The new model
attains state-of-the-art (SOTA) performance on the new human
study database. The contributions that we make are as follows.

• We present a new model of the space-time statistics
of motion pictures. More specifically, we model the
statistics of the differences of neighboring frames that
are relatively displaced in space and time. Such displace-
ments relate to motion, but also to visual information-
gathering via small (microsaccadic) eye movements.
Perceptual models that we deploy derive from temporal
lag filtering in visual area of the thalamus LGN, and
space-time contrast normalization in cortical area V1.
We have discovered that space-time normalized differ-
ences possess a very high degree of inherent statistical
regularity when displaced along the motion trajectory.

• We devised a way to identify space-time displacement
paths that yield maximum statistical regularities, deploy

new models of how these regularities are disturbed
by distortions arising from, for example, subsampling
in space and/or time, and/or compression. Using these
we construct an entirely unique full reference (FR)
video quality predictor of perceived space-time video
distortions.

• The new video quality model is ideally suited to assist
the emerging problem of conjoint space-time resolution
adaptation strategies as a way of further optimizing
perceptual streaming video compression.

The rest of the paper is organized as follows: In Section II,
we discuss prior work on perceptual video quality pre-
diction. In Section III, we describe our recent findings on
the natural statistics of space-time displaced frame differ-
ences. In Section IV, we give a detailed description of our
video quality model. In Section V, we compare and analyze
the performances of the new model against relevant high-
performance video quality models. Finally, we draw conclu-
sions in Section VI.

II. RELATED WORK

Being able to accurately measure perceptual quality has
become recognized as an essential ingredient when designing
and optimizing streaming media services. Over the years,
a wide variety of objective image and video quality prediction
models have been developed that target these needs. Video
quality prediction models can be broadly classified as either
Reference (including full reference and reduced reference) and
No-reference models. The former assumes there is available
complete or partial information derived from an existing
reference pristine video, while the latter assumes that no such
reference information can be accessed. While both classes are
valuable tools for media quality optimizations, the control
of video codecs is a dominant application. As such, here
we focus on Reference models and applications, especially
towards problems arising in the context of spatial and/or
temporal dimension reduction (subsampling) methods applied
in concert with compression.

The field of Reference video quality prediction includes
such older frame-based (spatial) like MSE and PSNR, Struc-
tural SIMilarity index (SSIM) [7], and multi-scale SSIM
(MSSSIM) [19], Visual Information Fidelity (VIF) index [20],
Detail Loss Measure (DLM) [21], and Additive Impairment
Measure (AIM) [21]. All of these mentioned models are
widely used by the streaming video industry.

Frame based models like these can be applied to conduct
video quality prediction aggregating frame predictions using
some kind of temporal pooling [22]. However, aggregating
spatial (frame) scores does not capture temporal video distor-
tions. To remedy this, a variety of video quality models have
been devised that use temporal features. The Video Quality
Metric (VQM) [23], and variable frame delay sensitive version
(VQM-VFD) [24], partition videos into small, short-duration
space-time volumes, then extract simple features, such as
spatial gradients and frame-differences, which are pooled to
produce video quality predictions. ST-MAD [25] and ViS3
[26] measure motion artifacts on space-time slices of the orig-
inal and distorted video volumes, comparing them using the
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Most Apparent Distortion (MAD) model [27]. ST-RRED [28]
and SpEED [29] deploy natural video statistics (NVS) models
of statistical regularities inherent in video frames and frame-
differences, and how they are altered by distortions. Video
Multi-method Assessment Fusion (VMAF) [8] is a popular
high-performance video quality model that fuses quality-aware
video features from frame-differences, VIF, and DLM, using a
Support Vector Regressor (SVR). These video quality models
are able to achieve high prediction performances on popular
subject video quality databases such as LIVE VQA [30], CSIQ
[26], LIVE Mobile VQA [31], and VQEG HD3 [32].

More recent quality studies have expanded their scopes
to include the combined effect of video compression and
spatial subsampling [11]–[13]. These studies did not con-
sider another potential way of enhancing streaming video
compression: temporal downsampling or frame rate reduction.
Some work has been directed towards analyzing the qual-
ity of videos containing frame rate variations. The authors
of [33] constructed the BVI-HFR video quality database, and
used it to develop the Frame Rate dependent video Quality
Metric (FRQM) [34], which predicts the effects of frame
rate variations on perceptual quality, but without considering
compression, nor spatial subsampling. The authors of [35]
conducted a perceptual study on the combined effects of com-
pression and frame rate variations and constructed the LIVE-
YT-HFR video quality database. However, no study to date has
considered the combined perception of compression, spatial
subsampling, and temporal subsampling, a gap we aim to
fill.

In an earlier study [36], we proposed an early, prototype
video quality model for space-time distortions based on dis-
placed frame-differences, where the displacement direction
was chosen to be the one that best preserves the spatial
structure of the video frame. We have made significant
advancements to our model based on recently developed
theoretical concepts of space-time NVS. For example, space-
time displacement paths are now based on an elegant statistical
regularity of the displaced frame differences. When the dis-
placement paths are derived in this way, we obtain much better
predictions of perceptual fidelity. Further, we now model an
additive noise channel that accounts for neural noise along
the visual pathway and to stabilize prediction performances.
We provide a very extensive experimental analysis of the new
model by conducting benchmarks on various video quality
databases involving spatial and/or temporal subsampling.

III. ON THE SPACE-TIME STATISTICS

OF MOTION PICTURES

A key concept in visual neuroscience is that the statistical
properties of the visual environment to which we are exposed
greatly impact the way the visual brain processes visual infor-
mation [37]. Widely accepted models of natural scene statis-
tics involve linear band-pass decompositions, which accounts
for processes of scale and/or orientation sensitive decorrela-
tion, followed by divisive normalization mechanisms, which
approximate non-linear gain control in neurons along the
visual pathway [38]–[43]. These transforms reveal an inherent
statistical regularity of natural pictures and videos. The shapes

of the distributions of the transformed signals strongly tends
towards a Gaussian characteristic, in the absence of distortion.

Statistical models of natural videos have been used with
great success in video quality prediction applications, where
perceptual quality is inferred by quantifying distortion-induced
deviations from these models [28], [29], [44]–[46]. NVS
models of both frames and frame differences have been used to
capture spatial and temporal aspects of perceptual. However,
NVS models only exist for frame differences without space-
time directionality, which may fail to capture many aspects of
space-time distortions and perception of them.

In a recent study [47], we broadened and deepened the
modeling of frame difference statistics by introducing dis-
placements in both space and time prior to differencing neigh-
boring frames. One reason for our exploration of space-time
directional statistics is recent evidence that the eyes make
small (microsaccadic) eye movements around the point of gaze
to enhance efficient visual encoding in the brain [48], [49].
In that work, we model the statistics of spatial displacements
of temporally evolving retinal signals, followed by temporal
(lag) filtering in lateral geniculate nucleus (LGN) [50], which
may be viewed as smoothed space-time displaced frame
differences. We showed that displacements along the motion
field trajectories exhibit very strong statistical regularities.
Here, we make use of models of these observed space-time
regularities to build algorithms that can accurately predict the
quality of videos subjected to space-time distortions. Next,
we summarize several findings from [47] that are needed to
coherently explain the ideas in the current paper, then we
demonstrate the effect of various distortions on space-time
directional statistics.

A. Space-Time Displaced Frame Differences

To begin building our model, let the luminances of video
frames be denoted as I . Given a space-time displacement
vector d = (x, y, t), spatially and temporally displaced frame
differences between frames k and k + t may be generally
expressed

I f d (i, j, k) = I (i, j, k) − I (i + x, j + y, k + t) , (1)

where (i, j, k) are constrained by the finite dimension of the
video according to i ∈ [max (1, 1−x) , min (W, W − x)], j ∈
[max (1, 1−y) , min (H, H − y)], and k∈ [1,T − t], where H ,
W , and T refer to the height, width, and number of frames
of the video (or video clip or scene, as the case may be),
respectively.

B. Divisive Normalization

The space-time displaced frame differences are subjected
to divisive normalization, corresponding to non-linear gain
control. In our model, the coefficients are computed as

Î f d (i, j, k) = I f d (i, j, k)

σ (i, j, k) + C
, (2)

where I f d are the displaced frame differences, σ is the local
weighted rms contrast, and C is a saturation constant. Note that
local contrast σ is (3), as shown at the bottom of the next page,
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Fig. 1. Procedure for constructing a space-time regularity map. The displacement direction having the lowest KL divergence indicates the path associated
with the most regular frame differences.

where ωlm is a symmetric Gaussian window sampled out to
three standard deviations (L = 5, M = 5) and rescaled to unit
volume, and where the weighted mean luminance functions μ
is computed as

μ (i, j, k) =
L∑

l=−L

M∑
m=−M

ωlm I f d (i + l, j + m, k). (4)

C. Statistical Regularity Map Construction

It is perhaps not obvious at first that the shapes of the
empirical distributions of the divisively normalized coefficients
(1) heavily depend on the displacement vector d = (x, y, t),
or that proper choices of d yields highly predictable, regular
distributions while other choices do not. As it turns out, these
direction-dependent statistical regularities tend to align with
the directions of motion. As a first step towards demonstrating,
and subsequently exploiting this property, we have developed
a way to construct a statistical regularity map for finding a
space-time path having maximum regularity, which we later
use in our video quality model.

As shown in Fig. 1, first partition each video frame into
patches of size N × N , and compute displaced frame dif-
ferences using a range of displacement vectors constrained
to [−R, R]2, defined relative to the patch dimension N and
the temporal separation t: R = (�N/6� − �N/6� mod 2) × t .
The use of a limited search range reduces the computa-
tional complexity and is supported by the fact that per-frame
velocity is generally limited to small magnitudes [51]–[53].
Of course, larger displacements may be considered. These
displaced frame differences are subjected to divisive energy
normalization, followed by scaling to unit variance. We have
found that differences between frames displaced along the
direction of motion strongly tend towards Gaussianity to
a remarkable degree [47], but along other directions, they
do not. Thus, empirical probability distribution of the coef-
ficients obtained via the aforementioned processing steps

are then compared agaisnt the canonical gaussian distrib-
ution (∼N(0, 1)). We deploy the Kullback Leibler Diver-
gence (KLD) to compare the distributions (empirical against
ideal Gaussian model)

DK L(P|||Q) =
∑

i

P (i) log

(
P (i)

Q (i)

)
, (5)

where P (i) and Q (i) are the empirical probability densities
of the transformed coefficients and the canonical gaussian,
respectively. Each displacement location yields a correspond-
ing KLD value, which forms a space-time “regularity map”.
The optimal vector that yields the maximal degree of regularity
(Gaussianity) is determined by averaging those displacement
vectors that yield the lowest 5TH percentile of KLD values
on the space-time regularity map. This vector is deemed to
correspond to the displacement direction most aligned with
the local motion of the video, in the absence of distortion.

Fig. 2 illustrates examples of constructed space-time reg-
ularity maps of local space-time regions of videos from the
Middlebury optical flow database [54], as well as the average
ground truth motion vectors for each video patches. As shown
in the figure, the optimal displacement path yielding the
highest degree of regularity aligns well with the true motion
direction.

D. Directional Statistical Regularity Under Distortions

Frame-differences collected along the displacement trajec-
tory, derived by the aforementioned statistical regularity map,
exhibits high level of gaussianity, which is a perceptually
relevant property for estimating visual quality. Fig. 3 demon-
strates how directional statistical regularities are affected by
various space-time distortions. We used videos from the
ETRI-LIVE STSVQ database [18]. High motion patch vol-
umes were extracted from the ‘ReadySetGo’ sequence, which
contains high levels of local motion. Static patch volumes were
extracted from the static background region of the ‘Honeybee’

σ (i, j, k) =
√√√√ L∑

l=−L

M∑
m=−M

ωlm
[
I f d (i + l, j + m, k) − μ(i, j, k)

]2
, (3)
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Fig. 2. (a), (c) Space-time regularity maps constructed on local space-time
regions of videos from the Middlebury optical flow database. The optimal
space-time regular path is indicated by a red arrow, with the vector values
given below each figure. (b), (d) Visualization of a local video region with
average ground truth motion vector indicated by red arrows.

sequence. The videos were subjected to various space-time dis-
tortions, including spatial subsampling, temporal subsampling,
and video compression (x265). Video patch volumes were then
extracted from each distorted video by collecting video patches
of size 400×400 along the regularity maximizing trajectories.
On each patch volume, adjacent frame patches were differ-
enced to form frame difference volumes, which were then
subjected to divisive normalization as in (2), then scaled to unit
variance. In Figs. (a)-(f), the canonical Gaussian distribution
is plotted with black dashed lines while the distributions of
the original patch volumes, with no space-time distortions, are
plotted with green lines. As expected, the plots of the orig-
inal volume distributions collected along motion trajectories
exhibit highly Gaussian behavior. Figs. 3(a) and (d) show the
effects of spatial subsampling to half and quarter resolution
on the high motion and static patch volumes, respectively.
Similar tendencies may be observed from the two plots: the
larger degree of spatial subsampling is applied, the more the
distribution deviates from Gaussianity. Figs. 3(b) and (e) show
the effects of temporal subsampling to half and quarter frame
rate on high motion and static patch volumes, respectively.
It may be observed from Fig. 3(b) that on high motion patches,
increased temporal subsampling cause greater deviation from
expected statistical regularity, arising from distortions of high
motion contents such as motion stutter. By contrast, the
processed static patch volumes still exhibit gaussianity even
after temporal subsampling, as shown in Fig. 3(e). Of course,
static or slow-moving videos are less affected by frame rate
reduction. Lastly, Figs. 3(c) and (f) show the effects of video
compression (x265) using QP values of 35 and 50 on high
motion and static patch volumes, respectively. We may again
observe similar tendency in both plots, whereby increased
levels of video compression introduce greater deviation from
gaussianity.

We have thus found that the differential space-time displace-
ment paths of videos reveal strong regularities, and that space-
time distortions affect these regularities in ways that can be
used to predict perceptual video quality.

IV. VIDEO QUALITY MODEL

Now we introduce a new video quality model we have
developed that is based on statistical measurements space-time
regularities. As such, we refer to it as the Video Space-Time
Regularity (VSTR) model. An overall flowchart of VSTR
is presented in Fig. 4. The proposed model first determines
the “most regular” displacement vector, from the space-time
regularity map of the reference video, thereby avoiding the
effects of distortion. We then compare the space-time statistics
of the test videos against those of the reference along the
paths defined by the displacement vectors, to assess whether,
and by how much, they have been disturbed by distortion.
As explained in the foregoing, a set of quality-aware features
that quantify the degree of statistical divergence between
the space-time bandpass coefficients of the two videos are
extracted, and combined using an SVR that is trained to predict
the video quality of the distorted video.

A. Displacement Vector Determination

First, we describe the determination of the displacement
vectors in detail. Each optimal displacement vector is com-
puted on every one-second segment of the reference video.
By analyzing the initial portion (200msec) of each one sec-
ond segment, we derive a dominant per-frame displacement
vector at specified spatial patch coordinates that best reveals
the “regularity” of differences computed between adjacent
frames, using the criteria just described. This per-frame dis-
placement vector also is later used to determine space-time
displacement vectors for different amounts of temporal (frame)
separation.

From the initial 200msec segment, we first select N frames
(we use N = 3) temporally separated by 200msec/N . Then,
we also collect the next frame after each selected frame, form-
ing N adjacent frame pairs. Since videos generally contain
local motions presenting in many directions, we partition each
collected frame into M × M sized patches (here, M = 301).
Given all of the adjacent pairs of patches from consecutive
frames, construct a space-time regularity map following the
procedure detailed in Section III-C. Each frame patch pairs
yields a displacement vector maximizing the regularity of the
frame difference coefficients. This procedure resembles the
concept of block-wise motion estimation; however, it has a
different and specific aim: finding space-time paths having a
type of optimal statistical regularity.

Once the optimal displacement vectors are collected from
all of the patches, construct a polar histogram to determine
the dominant angle amongst the collected vectors. We used a
polar histogram containing 48 bins, where each bin subtends
an angular range of 7.5◦. The average of all the local vectors
that fall within the dominant angle bin is taken to be the
optimal displacement vector for the one-second segment. This
per-frame displacement vector corresponds to the optimal
spatial displacement that is applied between any frame pairs
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Fig. 3. Distribution plots of frame-differences collected along a regularity maximizing (motion) trajectory, followed by divisive normalization and various
space-time distortions. (a), (d) show the effects of spatial subsampling on the directional regularity of high motion and static patch volumes, respectively.
(b), (e) show the effects of temporal subsampling on the directional regularity of high motion and static patch volumes, respectively. (c), (f) show the effects
of video compression on the directional regularity of high motion and static patch volumes, respectively.

Fig. 4. Flowchart of the proposed quality model based on measurements of local spatial and temporal statistical irregularities.

having a temporal separation of 1 (i.e., adjacent frames) within
the current one second segment. The divisively normalized
bandpass coefficients computed from these displaced frame
differences will possess quality-aware statistical information
about possible loss of regularity arising from local video
distortions.

B. Bandpassed Plane Generation

After the optimal displacement vectors are determined,
generate multiple space-time bandpass planes from both the
reference and the distorted videos. Fig. 5 depicts the four
bandpass planes that are generated on each progression of
frames.

1) Spatial Bandpass: It has been amply shown that the
band-passed planes of pristine images or video frames reliably
reflect an underlying Gaussianity that is revealed by divisive
normalization, and that quantifying how distortions modify
this Gaussian characteristic can be effectively used to measure
perceptual spatial degradations [44], [46], [55]. Measuring
frame-wise statistical losses of regularity make it possible to
probe and measure perceptual degradations caused by spatial
artifacts, which is an important aspect of video quality. Thus,
generate a spatially bandpass plane on every reference and dis-
torted video frame, by applying the local “Mean Subtraction”
(MS) filter,

Ims (i, j, k) = I (i, j, k) − μ (i, j, k) , (6)
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Fig. 5. Different types of bandpass planes generated on each progression of
frames. One spatially bandpass plane is generated from local mean subtraction
on the current frame. Three spatio-temporally bandpass planes are generated
by computing space-time displaced frame differences using three different
temporal separations (T1, T2, and T3). The space-time displacement vector
for each temporal separation is depicted by the red arrows.

where I (i, j, k) is luminance at pixel location (i, j) of the kth

video frame, and μ(i, j, k) is computed as in (4).
2) Spatio-Temporal Bandpass: As described in Section III,

differencing frame patches that are displaced in space and
time tends to reduce correlations between them. The exis-
tence of displaced space-time dependencies may also relate to
hypothetical visual information-gathering processes involving
small eye movement [48], [49] followed by bandpass, spar-
sifying temporal lag filtering in LGN. Thus, generate three
spatio-temporally bandpass planes, by computing space-time
displaced frame differences. First, denote the optimal per-
frame displacement vector determined on the reference video
by the optimizing algorithm as v = (vx , vy). Then, define three
frame difference separations denoted as T1, T2, and T3 which
we used 1, 3, and 5, respectively. The space-time displaced
frame difference planes are then computed using (1), and the
space-time displacement vectors for each temporal separation
Ti are determined as dTi = (

vx × Ti , vy × Ti , Ti
)
, for i =

1, 2, 3. Applying divisive normalization on these directionally
bandpass filtered planes will ostensibly reveal Gaussianity of
the processed reference video, and deviations from Gaussianity
on the test video, if it is locally distorted. Statistical deviations
between the coefficients of the two videos will generally relate
to temporal or spatio-temporal aspects of video distortion.

C. Statistical Feature Extraction

The bandpass, divisively normalized planes of the reference
and distorted video coefficients are analyzed by computing
entropic differences between the processed coefficients of the
reference and distorted videos. These entropic differences are
similar to those used in VIF [20], RRED [44], and ST-RRED
[28] VQA models. Like these models, our approach relies on
the Gaussian Scale Mixture (GSM) model of bandpass images
used by these successful VQA models.

1) GSM Model of Bandpass Planes: Many prior studies
have shown that the bandpass coefficients of undistorted
natural pictures, video frames, and frame differences reliably
follow the Gaussian Scale Mixture (GSM) model [20], [28],
[44], [56], [57]. Here, we expand the concept of GSM statis-
tical regularity from spatial frames and frame differences, and

posit that bandpass, space-time frame difference planes also
contain space-time directional regularities accurately described
by a GSM model. Let p ∈ {0, 1, 2, 3} index the bandpass
planes from the reference video, where p corresponds to
spatial bandpass and spatio-temporal bandpass planes at tem-
poral separations T1, T2, and T3, respectively. Partition the
input bandpass planes into non-overlapping patches of size√

N ×√
N (we take N = 25) indexed by m ∈ {1, 2, . . . , Mp}.

If we denote coefficients from the mth patch in bandpass plane
p, generated from the t th frame of the reference video (R) as
B R

mpt , then the coefficients within each patch may be modeled
as

B R
mpt = SR

mpt U
R
mpt , (7)

where SR
mpt is a scalar pre-multiplier random variable that is

independent of the random field U R
mpt , which is distributed

as U R
mpt ∼ N(0, KR

pt ) with covariance matrix KR
pt . Given a

realization of the scalar SR
mpt = s R

mpt , then the distribution of

the mth patch may be modeled as B R
mpt ∼ N

(
0,(s R

mpt )
2
KR

pt

)
.

If we normalize the coefficients of each patch by the respective

s R
mpt , then NR

mpt = B R
mpt

s R
mpt

∼ N
(

0, KR
pt

)
. Then, aggregating

the divisively normalized coefficients NR
mpt over all patches

within each bandpass plane, we expect the coefficients from
each plane to follow a Gaussian distribution, corresponding
to a spatial or space-time directional regularity observed on
the reference video. Since s R

mpt is not known a priori, it must
be estimated, which can be optimally accomplished via the
Maximum Likelihood (ML) procedure:

ŝ R
mpt = argmax(

s R
mpt

) p
(

B R
mpt | SR

mpt

)

=
√

(B R
mpt )

T
(KR

pt )
−1

(B R
mpt )

N
, (8)

where N is the number of coefficients within each patch, and
ŝ R

mpt is the estimated normalization factor of the mth patch
of the pth bandpass plane generated from the t th frame of
the reference video. Similarly, we can model the bandpass
coefficients of the distorted video (D) as

B D
mpt = SD

mpt U
D
mpt , (9)

and estimate the divisive normalization factor ŝ D
mpt as

ŝ D
mpt = argmax(

s D
mpt

) p
(

B D
mpt | SD

mpt

)

=
√

(B D
mpt )

T
(KD

pt )
−1

(B D
mpt )

N
. (10)

If distortion is present, then the bandpass planes of the dis-
torted video may not follow a GSM distribution. Thus, GSM
modeling of the bandpass planes of a distorted video may be
considered as projecting the distorted video onto the space
of natural undistorted videos. Distortions cause deviations
from the regularity inherent in undistorted videos, which may
be measured by a meaningful distance from the projection
of the reference video. Since distortion may be viewed as
visual information loss, following the VIF paradigm [20],
we quantify the loss using entropic differencing.
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2) Entropic Differencing: We account for the uncertainties
introduced on the observed reference (R) and distorted (D)
videos by perceptual imperfections, such as neural noise along
the visual pathway, by modeling the bandpass patches as
passing through an additive Gaussian noise channel [20], [44],

B̃ R
mpt = B R

mpt + W R
mpt and B̃ D

mpt = B D
mpt + W D

mpt , (11)

where W R
mpt ∼ N

(
0, σ 2

W IN
)
, W D

mi ∼ N
(
0, σ 2

W IN
)
, B R

mpt
is independent of W R

mpt , B D
mpt is independent of W D

mpt , and
W R

mpt and W D
mpt are mutually independent. We fixed the

neural noise variance at σ 2
W = 0.1 as in [28], [29]. Let the

eigenvalues of KR
pt be β R

1pt , β
R
2pt , . . . , β

R
N pt , and those of KD

pt

be β D
1pt , β

D
2pt , . . . , β

D
N pt . Then, the local entropies h of the data

in the mth patch of the pth bandpass plane of the t th frame
of the reference video are computed as follows:

h
(

B̃ R
mpt | SR

mpt = ŝ R
mpt

)
= 1

2
log[(2πe)N|(ŝ R

mpt )
2KR

pt + σ 2
W IN |]

=
N∑

n=1

1

2
log

[
(2πe)

(
(ŝ R

mpt

)2
β R

npt

)
+ σ 2

W ], (12)

and similarly, for the distorted video

h
(

B̃ D
mpt | SD

mpt = ŝ D
mpt

)
= 1

2
log[(2πe)N|(ŝ D

mpt )
2KD

pt + σ 2
W IN |]

=
N∑

n=1

1

2
log

[
(2πe)

(
(ŝ D

mpt

)2
β D

npt

)
+ σ 2

W ]. (13)

The entropies (12) and (13) are scaled by factors γ R
mpt =

log(1 + ŝ R
mpt

2
) and γ D

mpt = log(1 + ŝ D
mpt

2
), respectively, which

provides increased locality and emphasis on higher energy
regions of the video [28], [29], [44]. The final entropic differ-
ences between the reference and distorted bandpass planes is
given by:

E Dp = 1

Mp (T − T3)

Mp∑
m=1

T −T3∑
t=1

∣∣∣αR
mpt − αD

mpt

∣∣∣ , (14)

where

αR
mpt = γ R

mpt h
(

B̃
R
mpt | SR

mpt = ŝ R
mpt

)
,

αD
mpt = γ D

mpt h
(

B̃
D
mpt | SD

mpt = ŝ D
mpt

)
,

and T refers to the total number of considered frames.
The number of frames might be, for example, those from
a single scene clip in a streaming scenario. Note that the
last frame on which entropic differencing can be applied
occurs at T − T3, ensuring that all considered frames generate
space-time displaced frame difference planes having temporal
separation T3. The values (14) computed for p = 0, 1, 2 and
3 each quantify how much spatial and space-time regularity
at temporal separations of T1, T2, and T3 are affected by
distortion.

D. Final Set of Features

In order to allow for the natural multi-scale behavior of both
videos and distortions, as well as for variations of viewing
conditions, we also applied the algorithm just described over
multiple spatial resolutions [19]. Several previous studies
have shown that features extracted at coarser scales generally
outperform prediction power of the features extracted from
a full resolution video [28], [29]. This may relate to the
motion down-shifting phenomena [58], whereby the vision
system becomes more sensitive lower spatial frequencies in
the presence of motion, which are better represented at coarser
scales. Similar to [28], [29], our model yielded higher per-
formances at scales k = 4 and 5, where the vertical and
horizontal dimensions of the video were each down-sampled
by a factor of 2k , on which the entire feature extraction
algorithm was applied. As explained in Section IV-C, since
each pair of reference and distorted video results in four
entropic difference values, operating at two scales yields a
feature vector composed of eight elements. These features are
combined using an SVR which learns to predict the final video
quality. The nomenclature used for the final set of features
follows the form of (Bandpass plane type)_ED_(scale type),
where

• Bandpass plane type: the spatial bandpass case (p =
0) is denoted by ‘S,’ while space-time displaced frame
differences at varying temporal separations (p = 1, 2,
and 3) are each denoted by ‘T1,’ ‘T2,’ and ‘T3.’

• Scale type: the case of scale factor k = 4 is denoted by
‘scale 1,’ while the case of scale factor k = 5 is denoted
by ‘scale 2.’

V. EXPERIMENTAL RESULTS

Now we present and compare the prediction perfor-
mance of our proposed features and the final video qual-
ity model (VSTR) against other leading video quality
models. The models are evaluated on video quality databases
having subjective quality scores rendered on videos sub-
jected to spatial and/or temporal subsampling combined with
compression.

A. Experiment Setting

The video quality datasets that we used are AVT-VQDB-
UHD-1 [17] and ETRI-LIVE STSVQ [18]. Table I summarizes
the attributes of each database. Both databases first determine
multiple target bit-rates to accommodate various bandwidth
conditions. The designers of the AVT-VQDB-UHD-1 database
used a universal set of eight target bit-rates identically applied
on all source contents. The creators of the ETRI-LIVE STSVQ
used a set of five target bit-rates adaptively chosen for each
source content to cover a wide range of qualities, while
also ensuring a noticeable perceptual separation between the
target bit-rates. The videos were then subsampled in space
and/or time at various levels, as specified in Table I, followed
by application of HEVC (libx265) compression to meet one
of the defined target bit-rates. One thing to note is that
the generated distorted videos were up-sampled back to the
original source content’s space-time resolution before being
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TABLE I

SUMMARIZATION OF SPACE-TIME SUBSAMPLED VIDEO QUALITY DATABASES: AVT-VQDB-UHD-1 [17] AND ETRI-LIVE STSVQ [18]

TABLE II

CROSS-VALIDATION PERFORMANCE COMPARISON OF MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT TEMPORAL SUBSAMPLING

LEVELS. THE LAST COLUMN INDICATES THE OVERALL PERFORMANCE. THE NUMBERS DENOTE MEDIAN VALUES OVER 1000 ITERATIONS OF
RANDOMLY SPLIT TRAIN AND TEST SETS. THE VALUES INSIDE THE PARENTHESES DENOTE STANDARD DEVIATIONS.

THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

TABLE III

CROSS-VALIDATION PERFORMANCE COMPARISON OF MODELS ON THE ETRI-LIVE STSVQ DATABASE ACROSS DIFFERENT SPATIAL SUBSAMPLING

LEVELS. THE LAST COLUMN INDICATES THE OVERALL PERFORMANCE. THE NUMBERS DENOTE MEDIAN VALUES OVER 1000 ITERATIONS OF

RANDOMLY SPLIT TRAIN AND TEST SETS. THE VALUES INSIDE THE PARENTHESES DENOTE STANDARD DEVIATIONS.
THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

viewed. This space-time resolution restoration procedure is not
only required for viewing, but also enables computation of
Reference quality models that require pristine and distorted
videos having the same spatial resolution and frame-rate.
In regards to this, the two databases took slightly different
approaches. The videos in the ETRI-LIVE STSVQ database
were upscaled via Lanczos interpolation and linear frame
interpolation, while those in the AVT-VQDB-UHD-1 database
used Bicubic interpolation and frame duplication to restore
the spatial and temporal dimensions of each video, respec-
tively. The databases also differ in terms of the subjective
experimental protocols that were used. AVT-VQDB-UHD-1
used the Absolute Category Rating (ACR) [59], whereby
each participant evaluated video quality on a discrete 5 cate-
gory scale, collected and converted to Mean Opinion Scores
(MOS). ETRI- LIVE STSVQ adopted a Single-Stimulus

Continuous Quality Evaluation (SSCQE) with hidden refer-
ence protocol [59], where the test participants used a contin-
uous scale score bar to evaluate the video quality. The scores
of the distorted videos and their respective reference videos
were collected to compute Difference Mean Opinion Scores
(DMOS). Since some database differences exist, the subjective
scores rendered on each database may portray slightly different
tendencies.

The space-time resolution adaptation framework is closely
related to Reference quality models, since it considers how
various dimension reduction methods affect the quality of
a reference video. We compared the performances of nine
relevant popular Reference video quality models, including
PSNR, SSIM [7], MSSSIM [19], VIF [20], ST-RRED [28],
SpEED [29], FRQM [34], VMAF [8], and the new model,
VSTR. VMAF and VSTR are learning based models that
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TABLE IV

RESULT OF WILCOXON RANKSUM TEST ON THE ETRI-LIVE STSVQ DATABASE. THE RESULTS ARE COMPUTED ON THE SRCC VALUES OF THE
COMPARED MODELS AT THE 95% CONFIDENCE LEVEL. EACH CELL CONTAINS 7 ENTRIES CORRESPONDING TO HALF FRAME RATE, FULL

FRAME RATE, 540P, 720P, 1080P, 2160P AND ALL VIDEOS. A SYMBOL ‘-’ INDICATES STATISTICAL EQUIVALENCE BETWEEN THE

ROW AND THE COLUMN. A VALUE ‘1’ INDICATES THAT THE ROW MODEL WAS STATISTICALLY SUPERIOR (BETTER QUALITY

PREDICTION) THAN THE COLUMN MODEL. A VALUE ‘0’ INDICATES THAT THE COLUMN MODEL WAS STATISTICALLY
SUPERIOR THAN THE ROW MODEL. A SYMBOL ‘X’ INDICATES CASE WHERE COMPARISON WAS IMPOSSIBLE, SINCE

FRQM CANNOT BE COMPUTED AT FULL FRAME RATES

TABLE V

CROSS-VALIDATION PERFORMANCE COMPARISON OF MODELS ON THE

AVT-VQDB-UHD-1 DATABASE. THE NUMBERS DENOTE MEDIAN

VALUES OVER 1000 ITERATION OF RANDOMLY SPLIT TRAIN AND
TEST SETS. THE VALUES INSIDE THE PARENTHESES DENOTE

STANDARD DEVIATIONS. THE TWO BEST MODELS IN EACH

COLUMN ARE BOLDFACED

each combines 6 and 8 spatio-temporal features, respectively,
to predict final video quality scores.

The prediction performances of the compared quality mod-
els were evaluated using the Spearman’s rank order correlation
coefficient (SRCC) and Pearson linear correlation coefficient
(PLCC). SRCC measure ordinal correlations, while PLCC
measures linear correlations between variables. Higher values
are favorable for both SRCC and PLCC. Before computing
PLCC, the predicted scores from the various quality models
were linearized using logistic regression, following the proce-
dure in [59].

B. Prediction Performances

Since the comparison models include the learning-based
models VMAF and VSTR, we report the cross-validation per-
formances so that the learning-based models can be properly
evaluated by training on each respective database. Since both
databases contain of videos afflicted by various combinations
of dimension reduction methods applied on the same source
contents, we took particular care to separate the train and test
sets ‘content-wise.’ This means that the videos from train
and test sets do not share videos having the same source
contents.

On the ETRI-LIVE STSVQ database, which has a total of
15 source contents, we used 5-fold cross validation, where
the model parameters were trained on videos generated from
12 source contents, and the performance was tested on videos
from the other 3 source contents. The VMAF and VSTR
models were both trained using an SVR with a radial basis

TABLE VI

RESULT OF WILCOXON RANKSUM TEST ON THE AVT-VQDB-UHD-1
DATABASE. THE RESULTS ARE COMPUTED ON THE SRCC VALUES OF

THE MODELS AT THE 95% CONFIDENCE LEVEL. A SYMBOL
‘-’ INDICATES STATISTICAL EQUIVALENCE BETWEEN THE ROW

AND THE COLUMN. A VALUE ‘1’ INDICATES THAT THE ROW

MODEL WAS STATISTICALLY SUPERIOR

(BETTER QUALITY PREDICTION) THAN THE
COLUMN MODEL. A VALUE ‘0’ INDICATES THAT

THE COLUMN MODEL WAS STATISTICALLY

SUPERIOR THAN THE ROW MODEL

TABLE VII

CROSS-VALIDATION PERFORMANCE COMPARISON OF MODELS ON THE
MCL-V DATABASE. THE NUMBERS DENOTE MEDIAN VALUES

OVER 1000 ITERATION OF RANDOMLY SPLIT TRAIN AND TEST

SETS. THE VALUES INSIDE THE PARENTHESES DENOTE

STANDARD DEVIATIONS. THE TWO BEST MODELS
IN EACH COLUMN ARE BOLDFACED

function (RBF) kernel, where the SVR-RBF parameters were
determined using cross validation within the training set,
as described in [60]. We ran 1000 train-test iterations, where
the train and test sets were randomly split over each iteration,
while abiding by the content-wise separation.

Table II reports median and standard deviations of pre-
diction performance across the 1000 train-test splits over
different temporal subsampling levels and overall. The median
performances of other non-learning-based models are reported
on the same randomized splits for comparison. Since FRQM
requires the distorted videos to have lower frame rates than the
reference video, we only report its performance for the half
frame rate case. An interesting tendency observed is that the
compared models attained relatively high performances on the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 15,2022 at 16:18:28 UTC from IEEE Xplore.  Restrictions apply. 



3654 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE VIII

CROSS-VALIDATION PERFORMANCE COMPARISON OF MODELS ON THE LIVE-YT-HFR DATABASE ACROSS DIFFERENT FRAME RATES. THE NUMBERS
DENOTE MEDIAN VALUES OVER 1000 ITERATIONS OF RANDOMLY SPLIT TRAIN AND TEST SETS. THE VALUES INSIDE THE PARENTHESES

DENOTE STANDARD DEVIATIONS. THE TWO BEST MODELS IN EACH COLUMN ARE BOLDFACED

full frame rate case as compared to the half frame rate case.
The full frame rate performances were computed from the
subset of test videos containing only spatial subsampling and
compression as distortion types. As the results suggest, most of
the models were able to accurately predict the quality of videos
afflicted by mixtures of these two distortions. However, the
performances of most models fell considerably when temporal
subsampling was also introduced. This is likely because of
introduced temporal effects such as stutter. This suggest that
there is ample room for improvement of the models to predict
the quality of temporally subsampled and compressed videos.
Among the models, the learning-based methods maintained
high prediction performances on both the half frame rate and
overall cases. In particular, the proposed VSTR outperformed
the other models by a wide margin.

Table III reports cross-validation performance over different
spatial subsampling levels and overall. Unlike the case for
separation by different temporal subsampling levels, here we
observe similar prediction performances across all resolutions.
VIF delivered good performance at low spatial resolution
(540p), while VMAF yielded good performances at higher
spatial resolutions (720p, 1080p, and 2160p). Overall, VSTR
delivered the best performances across all resolutions.

We verified the statistical significance of the performance
differences among the compared models in Tables II and
III, using the distribution of the SRCC scores computed on
1000 random train-test splits. Table IV shows the results
of a Wilcoxon ranksum test [61] performed on the SROCC
distributions of pairs of models. The null hypothesis was that
the median of the row model and the column model were equal
(or indistinguishable) at the 95% confidence level, which is
indicated by a symbol ‘-’ in the table. The alternate hypothesis
states that the median of the row model and the column model
were different at a statistically significant level, where a value
‘1’ indicates the row model had higher median values as
compared to the column model, while a value ‘0’ indicates
otherwise. Note that the symbol ‘x’ indicates cases where
comparison was impossible, since FRQM cannot be computed
on the full frame rate case. Table IV contains 7 entries per
cell corresponding to half frame rate, full frame rate, 540p,
720p, 1080p, 2160p, and all of the videos, in that order.
As shown in the Table, the proposed VSTR model attained
statistically superior prediction performance as compared to
the other models.

The AVT-VQDB-UHD-1 database [17] has a total of
5 source contents. We used a 3-to-2 train-test split, where the
model parameters were trained on videos from the 3 source

contents and the tested on the videos from the other 2 source
contents. On average, we tested 48 distorted videos per itera-
tion, which were generated from 2 source contents. We only
reported overall performances, since grouping the test videos
along different space or time subsampling levels would result
in correlations being computed on too small a number of
data points (<10). Table V and VI show the cross-validation
performances over 1000 random train-test splits and the sta-
tistical significance of the performance differences among the
compared models. The overall performances of all models
appeared higher as compared to the results on ETRI-LIVE
STSVQ, which may be caused by different contents, human
study protocol, space-time interpolation methods, and train-
test split ratio. Regardless, we still observe similar model
tendencies whereby VMAF and VSTR yielded statistically
superior prediction performances as compared to the other
models.

C. Performances on Other Space/Time VQA Databases

We investigated the generalizability of VSTR by evaluating
its prediction performances on two other VQA databases:
MCL-V [11] and LIVE-YT-HFR [35]. These databases con-
sider different combinations of distortion types, where each
focus on how one kind of subsampling, spatial or temporal,
affects perceptual quality when combined with compression.

The MCL-V database has 12 source contents of resolution
1920 × 1080 and frame rates 24∼30 fps. A total of 96 dis-
torted videos were generated from these source contents by
applying spatial subsampling and AVC (x264) compression.
We used an 8-to-4 train-test split, where the model parameters
were trained on videos from the 8 source contents and tested
on the videos from the other 4 source contents. Table VII
shows the cross-validation performances over 1000 random
train-test splits. From the Table, it may be seen that VSTR and
SpEED yielded superior prediction performances as compared
to the other models.

The LIVE-YT-HFR database has 16 source contents of
resolutions 3840 × 2160 or 1920 × 1080 and frame rate
120 fps. A total of 480 distorted videos were generated
by jointly applying temporal downsampling and VP9 com-
pression. Table VIII reports the cross-validation performance
evaluations against MOS of the videos, across all frame rates
and overall, over 1000 random train-test splits. We used
12-to-4 train-test splits. From the Table, it may be observed
that VSTR yielded competitive performances compared to the
other models. The learning-based models, VSTR and VMAF
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delivered high performance across frame rates, indicating
robustness to frame rate variations.

VI. CONCLUSION

We proposed a new video quality model called VSTR, that
can account for the perceptual effects of space-time distortions
such as spatial and/or temporal subsampling and compression
applied in concert. VSTR is based on new findings on the
space-time statistics of natural videos, where we showed
the existence of space-time directional regularities which are
revealed by differencing frames that are displaced in space and
time, followed by divisive normalization.

Motivated by these findings, we devised a way to iden-
tify optimal space-time regular paths of a pristine video.
We derived features that quantify how these space-time
directional regularities are disturbed by space-time distor-
tions such as spatial and/or temporal subsampling and com-
pression. These statistical features are combined using an
SVR to produce a video quality prediction model called
VSTR.

Comprehensive performance evaluations against human
subjective scores drawn from relevant video quality databases
show that VSTR is able to deliver accurate predictions on
videos afflicted by various levels of space-time subsampling
and compression. VSTR was able to provide robust prediction
performance across a variety of spatial and temporal sub-
sampling levels, and outperformed other models by a wide
margin. We envision that VSTR can be used to assist optimal
space-time resolution adaptation strategies for perceptual video
compression.
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