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Abstract

Recent progress on Transformers and multi-layer per-
ceptron (MLP) models provide new network architectural
designs for computer vision tasks. Although these models
proved to be effective in many vision tasks such as image
recognition, there remain challenges in adapting them for
low-level vision. The inflexibility to support high-resolution
images and limitations of local attention are perhaps the
main bottlenecks. In this work, we present a multi-axis MLP
based architecture called MAXIM, that can serve as an ef-
ficient and flexible general-purpose vision backbone for im-
age processing tasks. MAXIM uses a UNet-shaped hierar-
chical structure and supports long-range interactions en-
abled by spatially-gated MLPs. Specifically, MAXIM con-
tains two MLP-based building blocks: a multi-axis gated
MLP that allows for efficient and scalable spatial mixing
of local and global visual cues, and a cross-gating block,
an alternative to cross-attention, which accounts for cross-
feature conditioning. Both these modules are exclusively
based on MLPs, but also benefit from being both global
and ‘fully-convolutional’, two properties that are desirable
for image processing. Our extensive experimental results
show that the proposed MAXIM model achieves state-of-
the-art performance on more than ten benchmarks across a
range of image processing tasks, including denoising, de-
blurring, deraining, dehazing, and enhancement while re-
quiring fewer or comparable numbers of parameters and
FLOPs than competitive models. The source code and
trained models will be available at https://github.
com/google-research/maxim.

1. Introduction

Image processing tasks, such as restoration and enhance-
ment, are important computer vision problems, which aim
to produce a desired output from a degraded input. Vari-
ous types of degradations may require different image en-
hancement treatments, such as denoising, deblurring, super-
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Figure 1. Our proposed MAXIM model significantly advances
state-of-the-art performance on five image processing tasks in
terms of PSNR: 1) Denoising (4+0.24 dB on SIDD [1]), 2) De-
blurring (+0.15 dB on GoPro [57]) 3) Deraining (+0.86 dB on
Rain100L [95]), 4) Dehazing (+0.94 dB on RESIDE [43]), and 5)
Retouching (Enhancement) (+1.15 dB on FiveK [6]).

resolution, dehazing, low-light enhancement, and so on.
Given the increased availability of curated large-scale train-
ing datasets, recent high-performing approaches [13, 15,18,
20,47,48,56,100, 101, 115] based on highly designed con-
volutional neural network (CNN) have demonstrated state-
of-the-art (SOTA) performance on many tasks.

Improving the architectural design of the underlying
model is one of the keys to improving the performance
of most computer vision tasks, including image restora-
tion. Numerous researchers have invented or borrowed in-
dividual modules or building blocks and implemented them
into low-level vision tasks, including residual learning [40,
86, 110], dense connections [86, 111], hierarchical struc-
tures [34,38,39], multi-stage frameworks [14,32,101,103],
and attention mechanisms [60, 83,100, 101].

Recent research explorations on Vision Transformers
(ViT) [9, 22, 53] have exemplified their great potential as
alternatives to the go-to CNN models. The elegance of
ViT [22] has also motivated similar model designs with sim-
pler global operators such as MLP-Mixer [79], gMLP [50],
GFNet [69], and FNet [41], to name a few. Despite suc-
cessful applications to many high-level tasks [3,22,53,77,
81,93], the efficacy of these global models on low-level en-
hancement and restoration problems has not been studied
extensively. The pioneering works on Transformers for low-
level vision [8,13] directly applied full self-attention, which
only accepts relatively small patches of fixed sizes (e.g.,
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48x48). Such a strategy will inevitably cause patch bound-

ary artifacts when applied on larger images using crop-

ping [13]. Local-attention based Transformers [48,88] ame-

liorate this issue, but they are also constrained to have lim-

ited sizes of receptive field, or to lose non-locality [22, 85],

which is a compelling property of Transformers and MLP

models relative to hierarchical CNNs.

To overcome these issues, we propose a generic im-
age processing network, dubbed MAXIM, for low-level vi-
sion tasks. A key design element of MAXIM is the use
of multi-axis approach (Sec. 3.2) that captures both local
and global interactions in parallel. By mixing information
on a single axis for each branch, this MLP-based opera-
tor becomes ‘fully-convolutional’ and scales linearly with
respect to image size, which significantly increases its flex-
ibility for dense image processing tasks. We also define
and build a pure MLP-based cross-gating module (Sec. 3.3),
which adaptively gate the skip-connections in the neck of
MAXIM using the same multi-axis approach, and which
further boosts performance. Inspired by recent restora-
tion models, we develop a simple but effective multi-stage,
multi-scale architecture consisting of a stack of MAXIM
backbones. MAXIM achieves strong performance on a
range of image processing tasks, while requiring very few
number of parameters and FLOPs. Our contributions are:

e A novel and generic architecture for image processing,
dubbed MAXIM, using a stack of encoder-decoder back-
bones, supervised by a multi-scale, multi-stage loss.

e A multi-axis gated MLP module tailored for low-level
vision tasks, which always enjoys a global receptive field,
with linear complexity relative to image size.

e A cross gating block that cross-conditions two separate
features, which is also global and fully-convolutional.

e Extensive experiments show that MAXIM achieves
SOTA results on more than 10 datasets including denois-
ing, deblurring, deraining, dehazing, and enhancement.

2. Related Work

Restoration models. Driven by recent enormous efforts on
building vision benchmarks, learning-based models, espe-
cially CNN models, have been developed that attain state-
of-the-art performance on a wide variety of image enhance-
ment tasks [13-15, 34, 47, 48, 74, 101]. These increased
performance gains can be mainly attributed to novel ar-
chitecture designs, and/or task-specific modules and units.
For instance, UNet [73] has incubated many successful
encoder-decoder designs [18, 34, 101] for image restora-
tion that improve on earlier single-scale feature process-
ing models [42, 110]. Advanced components developed
for high-level vision tasks have been brought into low-
level vision tasks as well. Residual and dense connec-
tions [40, 86, 86, 110, 111], the multi-scale feature learn-
ing [18,38,88], attention mechanisms [60,83,100,101,111],

and non-local networks [49, 85, 111] are such good exam-
ples. Recently, multi-stage networks [14,32,101, 103] have
attained promising results relative to the aforementioned
single-stage models on the challenging deblurring and de-
raining tasks [21,32, 101]. These multi-stage frameworks
are generally inspired by their success on higher-level prob-
lems such as pose estimation [16, 45], action segmenta-
tion [23,44], and image generation [106, 107].

Low-level vision Transformers. Transformers were origi-
nally proposed for NLP tasks [82], where multi-head self-
attention and feed-forward MLP layers are stacked to cap-
ture non-local interactions between words. Dosovitskiy e?
al. coined the term Vision Transformer (ViT) [22], and
demonstrated the first pure Transformer model for image
recognition. Several recent studies explored Transform-
ers for low-level vision problems, e.g., the pioneering pre-
trained image processing Transformer (IPT) [13]. Similar
to ViT, IPT directly applies vanilla Transformers to image
patches. The authors of [8] presented a spatial-temporal
convolutional self-attention network that exploits local in-
formation for video super-resolution. More recently, Swin-
IR [48] and UFormer [88] apply efficient window-based lo-
cal attention models on a range of image restoration tasks.
MLP vision models. More recently, several authors have
argued that when using a patch-based architecture as in
ViT, the necessity of complex self-attention mechanisms be-
comes questionable. For instance, MLP-Mixer [79] adopts
a simple token-mixing MLP to replace self-attention in ViT,
resulting in an all-MLP architecture. The authors of [50]
proposed the gMLP, which applies a spatial gating unit on
visual tokens. ResMLP [80] adopts an Affine transforma-
tion as a substitute to Layer Normalization for acceleration.
Very recent techniques such as FNet [41] and GFNet [69]
demonstrate the simple Fourier Transform can be used as a
competitive alternative to either self-attention or MLPs.

3. Our Approach: MAXIM

We present, to the best of our knowledge, the first ef-
fective general-purpose MLP architecture for low-level vi-
sion, which we call Multi-AXis MLP for IMage process-
ing (MAXIM). Unlike previous low-level Transformers [8,
13, 48, 88], MAXIM has several desired properties, mak-
ing it intriguing for image processing tasks. First, MAXIM
expresses global receptive fields on arbitrarily large im-
ages with linear complexity; Second, it directly supports
arbitrary input resolutions, i.e., being fully-convolutional;
Lastly, it provides a balanced design of local (Conv) and
global (MLP) blocks, outperforming SOTA methods with-
out the necessity for large-scale pre-training [13].

3.1. Main Backbone

The MAXIM backbone (Fig. 2a) follows the encoder-
decoder design principles that originated with UNet [73].
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Figure 2. MAXIM architecture. We take (a) an encoder-decoder backbone with each (b) encoder, decoder, and bottleneck containing a
multi-axis gated MLP block (Fig. 3) as well as a residual channel attention block. The model is further boosted by (c) a cross gating block
which allows global contextual features to gate the skip-connections. More details can be found in supplementary materials.

We have observed that operators having small footprints
such as Conv3x3 are essential to the performance of UNet-
like networks. Thus, we rely on a hybrid model design for
each block (Fig. 2b) — Conv for local, and MLP for long-
range interactions — to make the most of them.

To allow long-range spatial mixing at different scales,
we insert the multi-axis gated MLP block (MAB) into each
encoder, decoder, and bottleneck (Fig. 2b), with a residual
channel attention block (RCAB) [91, 101] (LayerNorm-
Conv-LeakyReLU-Conv-SE [29]) stacked subsequently.
Inspired by the gated filtering of skip connections [61, 65],
we extend the gated MLP (gMLP) to build a cross gating
block (CGB, Fig. 2¢), which is an efficient 2nd-order alter-
native to cross-attention (3rd-order correlations), to interact,
or condition two distinct features. We leverage the global
features from Bottleneck (Fig. 2a) to gate the skip connec-
tions, while propagating the refined global features upwards
to the next CGB. Multi-scale feature fusion [18,76,100] (red
and blue lines) is utilized to aggregate multi-level informa-
tion in the Encoder—CGB and CGB—Decoder dataflow.

3.2. Multi-Axis Gated MLP

Our work is inspired by the multi-axis blocked self-
attention proposed in [113], which performs attention on
more than a single axis. The attentions performed on two
axes on blocked images correspond to two forms of sparse
self-attention, namely regional and dilated attention. De-
spite capturing local and global information in parallel, this
module cannot accommodate image restoration or enhance-
ment tasks where the test images are often of arbitrary sizes.

We improve the ‘multi-axis’ concept for image process-
ing tasks, by building a (split-head) multi-axis gated MLP
block (MAB), as shown in Fig. 3. Instead of applying multi-
axis attention in a single layer [113], we split in half the
heads first, each being partitioned independently. In the lo-

cal branch, the half head of a feature of size (H, W, C/2) is
blocked into a tensor of shape (£ x ¥ b x b, C/2), rep-
resenting partitioning into non-overlapping windows each
with size of (b x b); in the global branch, the other half head
is gridded into the shape (d x d, % X %, C'/2) using a fixed
(d x d) grid, with each window having size (£ x ). For
visualization, we set b = 2,d = 2 in Fig. 3. To make it
Sfully-convolutional, we only apply the gated MLP (gMLP)
block [50] on a single axis of each branch — the 2nd axis
for the local branch and the 1st axis for the global branch
— while sharing parameters on the other spatial axes. In-
tuively, applying multi-axis gMLPs in parallel correspond
to local and global (dilated) mixing of spatial information,
respectively. Finally, the processed heads are concatenated
and projected to reduce the number of channels, which are
further combined using the long skip-connection from the
input. It is worth noting that this approach provides an ad-
vantage for our model over methods that process fixed-size
image patches [13] by avoiding patch boundary artifacts.
Complexity analysis. The computational complexity of
our proposed Multi-Axis gMLP block (MAB) is:

Q(MAB) = d’HWC + B’HWC +10HWC?, (1)

Global gMLP Local gMLP Dense layers

which is linear with respect to image size H W, while other
global models like ViT, Mixer, and gMLP are quadratic.

Universality of the multi-axis approach. Our proposed
parallel multi-axis module (Fig. 3) presents a principled
way to apply 1D operators on 2D images in a scalable
manner. It also allows for significant flexibility and uni-
versality. For example, a straightforward replacement of a
gMLP with a spatial MLP [79], self-attention [22], or even
Fourier Transform [41, 69] leads to a family of MAXIM
variants (see Sec. 4.3D), all sharing globality and fully-
convolutionality. It is also easily extensible to any future
1D operator that may be defined on, e.g., Language models.
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Figure 3. Multi-axis gated MLP block (best viewed in color). The input is first projected to a [6, 4, C] feature, then split into two heads.
In the local branch, the half head is blocked into 3 x 2 non-overlapping [2, 2, C'/2] patches, while we grid the other half using a 2 x 2 grid in
the global branch. We only apply the gMLP block [50] (illustrated in the right gMLP Block) on a single axis of each branch - the 2nd axis
for the local branch and the 1st axis for the global branch, while shared along the other spatial dimensions. The gMLP operators, which run
in parallel, correspond to local and global (dilated) attended regions, as illustrated with different colors (i.e., the same color are spatially
mixed using the gMLP operator). Our proposed block expresses both global and local receptive fields on arbitrary input resolutions.

3.3. Cross Gating MLP Block

A common improvement over UNet is to leverage con-
textual features to selectively gate feature propagation in
skip-connections [61,65], which is often achieved by using
cross-attention [11, 82]. Here we build an effective alterna-
tive, namely cross-gating block (CGB, Fig. 2¢), as an ex-
tension of MAB (Sec. 3.2) which can only process a single
feature. CGB can be regarded as a more general condition-
ing layer that interacts with multiple features [11, 64, 82].
We follow similar design patterns as those used in MAB.

To be more specific, let X,Y be two input features, and
X1,Y; € REXWXC be the features projected after the first
Dense layers in Fig. 2c. Input projections are then applied:

X2 = O'(WlLN(Xl)) 5 YQ = O’(WQLN(Yl)) (2)

where o is the GELU activation [28], LN is Layer Nor-
malization [4], and W1, W5 are MLP projection matrices.
The multi-axis blocked gating weights are computed from
Xo, Yo, respectively, but applied reciprocally:

X =X,0G(Y2), Y=Y0GXs) A3)
where ® represents element-wise multiplication, and the

function G(-) extracts multi-axis cross gating weights from
the input using our proposed multi-axis approach (Sec. 3.2):

G(X) = W5([W38|0Ckb(Z1),W4Gridd(Z2)D (4)

where [-, -] denotes concatenation. Here (z1, z2) are two in-
dependent heads split from z along the channel dimension,
where z represents the projected features x after activation:

[z1,22] =z = 0(WsLN(x)), 5)

and W3, Wy are spatial projection matrices applied on the
2nd and 1st axis of the blocked/gridded features having

fixed window size b x b (Blocky), and fixed grid size of d x d
(Gridy), respectively. Finally, we adopt residual connec-
tion from the inputs, following an output channel-projection
that maintains the same channel dimensions as the inputs
(X1,Y}), using projection matrices W7, Wy, denoted by

Xs=X;+W:X, Ys=Y1 +WgY. 6)
The complexity of CGB is also tightly-bounded by Eq. (1).
3.4. Multi-Stage Multi-Scale Framework

We further adopt a multi-stage framework because we
find it more effective, as compared to scaling up the model
width or height (see ablation Sec. 4.3A). We deem full
resolution processing [14, 63,70] a better approach than a
multi-patch hierarchy [75, 101, 103], since the latter would
potentially induce boundary effects across patches. To
impose stronger supervision, we apply a multi-scale ap-
proach [16, 18,45] at each stage to help the network learn.
We leverage the supervised attention module [101] to prop-
agate attentive features progressively along the stages. We
leverage the cross-gating block (Sec. 3.3) for cross-stage
feature fusion. See supplementary materials for details.

Formally, given an input image I € R >*Wx3 we first
extract its multi-scale variants by downscaling: I,, n =
1,..., N. MAXIM predicts multi-scale restored outputs at
each stage s of S stages, yielding a total of S x N outputs:
R . Despite being multi-stage, MAXIM is trained end-
to-end with losses accumulating across stages and scales:

S N
L= Z Z[ﬁchar(Rsnu Tn) + Aﬁf’r‘eq(Rsnu Tn)]7 (7)
s=1n=1

where T,, denotes (bilinearly-rescaled) multi-scale target
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SIDD [1] DND [66] Average
Method PSNRT SSIM? | PSNRT SSIMT || PSNRT SSIMT
DnCNN [110] | 23.66 0.583 | 3243 0790 || 28.04 0.686
MLP [5] 2471  0.641 | 3423 0833 || 2947 0.737
BM3D [19] 3565 0.685 | 3451 0851 || 3508 0.768
CBDNet* [27] | 30.78  0.801 | 38.06 0942 || 3442 0.872
RIDNet* [2] 3871 0951 | 3926 0953 || 3899 0.952
AINDNet* [35] | 38.95 0952 | 39.37 0951 || 39.16 0.952
VDN [97] 3928 0956 | 3938 0952 || 39.33 0.954
SADNet* [10] | 39.46 0957 | 39.59 0952 || 39.53  0.955
CycleISP# [99] | 39.52 0957 | 39.56 0.956 || 39.54 0.957
MIRNet [100] | 39.72 0.959 | 39.88 0.956 || 39.80  0.958
MPRNet [101] | 39.71 0958 | 39.80 0.954 || 39.76  0.956
MAXIM-3S | 39.96 0960 | 39.84 0954 || 39.90 0.957

Table 1. Denoising results. Our model is only trained on SIDD [1]
and evaluated on SIDD [1] and DND [66], where * denotes meth-
ods using additional training data.

images, and L.p. is the Charbonnier loss [101]:

Lenar(R, T) = /[[R = T[]? + €2, (®)

where we set € = 1073, L, is the frequency reconstruc-
tion loss that enforces high-frequency details [18,33]:

Lirea(R, T) = [F(R) — F(T)]1 ©)

where F(-) represents the 2D Fast Fourier Transform. We
used A = 0.1 as the weighting factor in all experiments.

4. Experiments

We aim at building a generic backbone for a broad
spectrum of image processing tasks. Thus, we evaluated
MAXIM on five different tasks: (1) denoising, (2) deblur-
ring, (3) deraining, (4) dehazing, and (5) enhancement (re-
touching) on 17 different datasets. More comprehensive re-
sults and visualizations can be found in Appendix.

4.1. Experimental Setup

Datasets and metrics. We measured PSNR and SSIM [87]
metrics between ground truth and predicted images to make
quantitative comparisons. We used SIDD [1] and DND [66]
for denoising, GoPro [57], HIDE [74], and RealBlur [72]
for debluring, a combined dataset Rainl13k used in [101]
for deraining. The RESIDE [43] is used for dehazing, while
Five-K [6] and LOL [89] are evaluated for enhancement.

Training details. Our proposed MAXIM model is end-
to-end trainable and requires neither large-scale pretraining
nor progressive training. The network is trained on 256x256
random-cropped patches. We train different iterations for
each task. We used random horizontal and vertical flips,
90° rotation, and MixUp [102] with probability 0.5 for data
augmentation. We used the Adam optimizer [36] with an
initial learning rate of 2x10~*, which are steadily decreased
to 10~7 with the cosine annealing decay [55]. When test-
ing, we padded the input images to be a multiplier of 64x64

W
~J
~J
(98]

GoPro [57] HIDE [74] Average
Method PSNR?T SSIM?T|PSNRT SSIM?T||PSNR{ SSIM{
DeblurGAN [37] 2870 0.858 | 24.51 0.871 || 26.61 0.865
Nah et al. [57] 29.08 0914 | 2573 0.874 || 27.41 0.89%4
Zhang et al. [108] | 29.19  0.931 - - - -
DeblurGAN-v2 [38]| 29.55 0.934 | 26.61 0.875 || 28.08 0.905
SRN [78] 3026 0.934 | 2836 0915 || 29.31 0.925
Shen et al. [74] - -] 2889 0.930 - -
Gao et al. [26] 3090 0.935 | 29.11 0913 || 30.01 0.924
DBGAN [109] 3110 0.942 | 28.94 0915 || 30.02 0929
MT-RNN [63] 31,15 0.945 | 29.15 0918 || 30.15 0.932
DMPHN [103] 3120 0.940 | 29.09 0.924 || 30.15 0.932
Suin ef al. [75] 31.85 0.948 | 29.98 0.930 || 30.92 0.939
MPRNet [101] 32,66 0.959 | 30.96 0.939 || 31.81 0.949
Pretrained-IPT [13] | 32.58 - - - - -
MIMO-UNet+ [18] | 32.45 0.957 | 29.99 0.930 || 31.22 0.944
HINet [14] 3271 0959 | 3032 0.932 || 3152 0.946
MAXIM-38 | 32.86 0.961 | 32.83 0.956 || 32.85 0.959

Table 2. Deblurring results. Our model is trained on GoPro [57]
and evaluated on the GoPro and the HIDE dataset [74].

RealBlur-R [72] RealBlur-J [72] Average
Method PSNR?T SSIMT|PSNRT SSIM{||PSNRY SSIM?T
Hu et al. [31] 33.67 0916 | 26.41 0.803 || 30.04 0.860
Nah et al. [57] 3251 0.841 | 27.87 0.827 || 30.19 0.834
DeblurGAN [37] 3379 0.903 | 27.97 0.834 || 30.88 0.869
Pan et al. [62] 3401 0916 | 2722 0.790 || 30.62 0.853
Xu et al. [94] 3446 0937 | 27.14 0830 || 30.8 0.884
DeblurGAN-v2 [38] | 35.26 0.944 | 28.70 0.866 || 31.98 0.905
Zhang eral. [108] | 3548 0.947 | 27.80 0.847 || 31.64 0.897
SRN [78] 35.66  0.947 | 28.56 0.867 || 32.11 0.907
DMPHN [103] 3570 0.948 | 28.42 0.860 || 32.06 0.904
MPRNet [101] 3599 0952 | 28.70 0.873 || 32.35 0.913
MAXIM-3S 3578 0947 | 28.83 0.875 || 3231 0911
" DeblurGAN-v2 3644 0935 | 29.69 0.870 || 33.07 0.903
TSRN [78] 38.65 0.965 | 31.38 0.909 || 35.02 0.937
"MPRNet [101] 3931 0972 | 31.76  0.922 || 35.54 0.947
fMIMO-UNet+ [18]| - - 32.05 0.921 - -
TMAXIM-3S 3945 0962 | 32.84 0.935 || 36.15 0.949

Table 3. Deblurring results on RealBlur [72]. T denotes methods
that are trained on RealBlur, while those without  indicate meth-
ods trained only on GoPro.

using symmetric padding on both sides. After inference, we
cropped the padded image back to original size.

Architectural configuration. We designed two MAXIM
variants: a two-stage model called MAXIM-2S, and a three-
stage model, MAXIM-3S, for different tasks. We start with
32 initial channels for feature extraction, with 3 downsam-
pling layers, where the features contract from 2562 x 32,
1282 x 64, 642 x 128, to 322 x 256 processed by fwo
Bottlenecks (Fig. 2a), then symmetrically expanded back
to full resolution. The number of parameters and required
FLOPs of MAXIM-2S and MAXIM-3S, when applied on a
256 x 256 image are shown in the last two rows of Tab. 7A.

4.2. Main Results

Denoising. We report in Tab. 1 numerical comparisons on
the SIDD [1] and DND [66] datasets. As may be seen,
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Figure 4. Denoising comparisons. The example from SIDD [1] shows that our method produces cleaner denoising results.
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Figure 5. Deblurring comparisons. The top row shows an example from GoPro [57] while the second row shows one from HIDE [74].

our method outperformed previous SOTA techniques, e.g.,
MIRNet [100] by 0.24 dB of PSNR on SIDD while obtain-
ing competitive PSNR (39.84 dB) on DND. Fig. 4 shows
visual results on SIDD. Our method clearly removes real
noise while maintaining fine details, yielding visually pleas-
ant results to the other methods.

Deblurring. Tab. 2 shows the quantitative comparison
of MAXIM-3S against SOTA deblurring methods on two
synthetic blur datasets: GoPro [57] and HIDE [74]. Our
method achieves 0.15 dB gain in PSNR over the previ-
ous best model HINet [14]. It is notable that the GoPro-
trained MAXIM-3S model generalizes extremely well on
the HIDE dataset, setting new SOTA PSNR values: 32.83
dB. We also evaluated on real-world blurry images from
RealBlur [72] under two settings: (1) directly applied the
GoPro-trained model on RealBlur, and (2) fine-tuned the
model on RealBlur. Under setting (1), MAXIM-3S ranked
first on RealBlur-J subset while obtaining the top two per-
formance on RealBlur-R. Fig. 5 shows visual comparisons
of the evaluated models on GoPro [57], HIDE [74] and Re-
alBlur [72], respectively. It may be observed that our model
recovers text extremely well, which may be attributed to
the use of multi-axis MLP module within each block that
globally aggregates repeated patterns across various scales.

Deraining. Following previous work [32, 101], we com-
puted the performance metrics using the Y channel (in
YCbCr color space). Tab. 4 shows quantitative comparisons
with previous methods. As may be seen, our model im-
proved over the SOTA performances on all datasets. The av-
erage PSNR gain of our model over the previous best model

HINet [14] is 0.24 dB. We demonstrate some challenging
examples in Fig. 6, which demonstrates that our method
consistently delivered faithfully recovered images without
introducing any noticeable visual artifacts.

Dehazing. We report our comparisons against SOTA mod-
els in Tab. 5. Our model surpassed the previous best model
by 0.94 dB and 0.62 dB of PSNR on the SOTS [43] indoor
and outdoor sets. Fig. 7 shows that our model recovered im-
ages of better quality on both flat regions as well as textures,
while achieving a harmonious global tone.

Enhancement / Retouching. As Tab. 6 illustrates, our
model achieved the best PSNR and SSIM values on
FiveK [6] and LOL [89], respectively. As the top row of
Fig. 8 suggests, MAXIM recovered diverse naturalistic col-
ors as compared to other techniques. Regarding the bottom
example, while MIRNet [100] obtained a higher PSNR, we
consistently observed that our model attains visually better
quality with sharper details and less noise. Moreover, the
far more perceptually relevant SSIM index indicates a sig-
nificant advantage of MAXIM-2S relative to MIRNet.
Other benchmarks. Due to space limitations, we detail the
outcomes of our experiments on the REDS deblurring [58]
and the Raindrop removal task [67] in Appendix.

4.3. Ablation

We conduct extensive ablation studies to validate the
proposed multi-axis gated MLP block, cross-gating block,
and multi-stage multi-scale architecture. The evaluations
were performed on the GoPro dataset [57] trained on image
patches of size 256 x 256 for 10° iterations. We used the
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Input Target RESCAN [46] PreNet [70] MSPEN [32] MPRNet [101] HINet [14] MAXIM-2S

Figure 6. Deraining comparisons. The top and bottom rows present examples from Rain100L [95] and Test100 [105], respectively,
demonstrating the ability of MAXIM to remove rain streaks while recovering more details, hence yielding more visually pleasant results.

Input Target GCANet [12]  GridDehaze [51] DuRN [52] MSBDN [21] FFA-Net [68] MAXIM-2S

Figure 7. Dehazing comparisons. The top and bottom rows exemplify visual results from the SOTS indoor and outdoor sets [43].

RainlOOL [95] RainlO0H [95] Test100 [105] Test1200 [104] Test2800 [25] Average SOTS-Indoor SOTS-Outdoor
Method PSNR{ SSIM{|PSNR? SSIM{|PSNRT SSIMT|PSNR1 SSIMT|PSNRT SSIM?||PSNRT SSIM7 Method PSNR{ SSIMT|PSNR?T SSIM{
DerainNet [24] | 27.03 0.884 | 14.92 0.592 | 22.77 0.810 | 23.38 0.835 | 24.31 0.861 || 22.48 0.796 DehazeNet [7] | 21.14 0.847 | 22.46 0.851
SEMI [90] 25.03 0.842 | 16,56 0.486 | 22.35 0.788 | 26.05 0.822 | 24.43 0.782 || 22.88 0.744 GEN [71] 2230 0880 | 21.55 0.844

DIDMDN [104]| 25.23 0.741 | 17.35 0.524 | 22.56 0.818 | 29.65 0.901 | 28.13 0.867 || 24.58 0.770 GCANet [12] 30.23  0.959 | 19.98 0.704
UMRL [96] 29.18 0.923 | 26.01 0.832 | 24.41 0.829 | 30.55 0.910 | 29.97 0.905 || 28.02 0.880 GridDehaze [51]| 32.14 0.983 | 30.86 0.981
RESCAN [46] | 29.80 0.881 | 26.36 0.786 | 25.00 0.835 | 30.51 0.882 | 31.29 0.904 || 28.59 0.857 GMAN [54] 27.93 0.896 | 28.47 0.944
PreNet [70] 32.44 0950 | 26.77 0.858 | 24.81 0.851 | 31.36 0911 | 31.75 0.916 || 29.42 0.897 MSBDN [21] 3379 0.984 | 23.36 0.875

MSPEN [32] 3240 0933 | 28.66 0.860 | 27.50 0.876 | 32.39 0.916 | 32.82 0.930 || 30.75 0.903 DuRN [52] 3212 0.980 | 2447 0.839
MPRNet [101] | 36.40 0.965 | 30.41 0.890 | 30.27 0.897 | 3291 0.916 | 33.64 0.938 || 32.73 0.921 FFA-Net [68] 36.39 0.989 | 33.57 0.984
HINet [14] 37.20 0.969 | 30.63 0.893 | 30.26 0.905 | 33.01 0.918 | 33.87 0.940 || 33.00 0.925 AECR-Net [92] | 37.17 0.990 - -

MAXIM-2S | 38.06 0.977 | 30.81 0.903 | 31.17 0.922 | 32.37 0.922 | 33.80 0.943 || 33.24 0.933 MAXIM-2S 3811 0.991 | 34.19 0.985

Table 4. Deraining comparisons. Our method consistently yields better quality metrics with  Table 5. Dehazing comparisons. Our
respect to both PSNR or SSIM on all the tested datasets: Rain100L [95], Rain100H [95], model achieved the best results on both
Test100 [105], Test1200 [104], Test2800 [25] indoor and outdoor scenes.

MAXIM-2S model as the test-bed for Ablation-A and -B. UNet, (2) by adding the local branch of MAB (MABy),
A. Individual components. We conducted an ablation (3) by adding the global branch of MAB (MAB,), (4) by
by progressively adding (1) inter-stage cross-gating blocks adding the local branch of CGB (CGBy), (5) by adding the
(CGBys), (2) a supervised attention module (SAM), (3) global branch of CGB (CGB,). Note that the huge jump
cross-stage cross-gating blocks (CGBcs, and (4) the multi- (+1.04 dB) of PSNR by adding MAB, can be largely at-
scale supervision (MS-Sp). Tab. 7A indicates a PSNR gain tributed to the addition of input and output channel projec-

0f 0.25, 0.63, 0.36, 0.26 dB for each respective component. tion layers, because we also observe a high performance of
B. Effects of multi-axis approach. We further examined 31.42 dB PSNR if only MABy is added. Overall, we ob-
the necessity of our proposed multi-axis approach, as shown served a major improvement when including MAB, and a
in Tab. 7B. We conducted experiments over (1) baseline relatively minor gain when adding CGB.
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Input Target Retinex [89] GLAD [84]

MAXIM-2S

KinD [112]

EnlightenGAN MIRNet [100]

Figure 8. Retouching and low-light enhancement comparisons. The top row shows an example from the MIT-Adobe FiveK dataset [6],
while the bottom row exemplifies a comparison from LOL [89]. Our model generated variegated and more naturalistic colors (top) for
retouching, while achieving clearer and brighter visual enhancements in the bottom example.

FiveK [6] LOL [89]
Method PSNRT SSIM? || Method PSNRT  SSIM7T
CycleGAN [114] | 1823  0.835 || Retinex [89] 1677 0.559
Exposure [30] 22.35 0.861 GLAD [84] 19.71 0.703
EnlightenGAN 17.74  0.828 || EnlightenGAN | 17.48  0.657
DPE [17] 2408 0922 || KinD [112] 2037 0.804
UEGAN [59] 2500 0929 || MIRNet[100] | 24.14  0.830
MAXIM-2S | 2615 0945 || MAXIM-2S | 2343  0.863

Table 6. Enhancement results on FiveK [6] and LOL [89].

C. Why multi-stage? Towards understanding this, we
scaled up MAXIM in terms of width (channels), depth
(downscaling steps), and the number of stages. Tab. 7C sug-
gests that packing the backbone into multi-stages yields the
best performance vs. complexity tradeoff (32.44 dB, 22.2
M, 339.2 G), compared to making it wider or deeper.

D. Beyond gMLP: the MAXIM families. As described
in Sec. 3.2, our proposed multi-axis approach (Fig. 3) of-
fers a scalable way of applying any 1D operators on (high-
resolution) images, with linear complexity relative to image
size while maintaining fully-convolutional. We conducted
a pilot study using MAXIM-1S and -2S on SIDD [1] to ex-
plore the MAXIM families: MAXIM-FFT, -MLP, -gMLP
(modeled in this paper), -SA, where we use the Fourier
Transform filter [41, 69], spatial MLP [79], gMLP [50],
and self-attention [22] on spatial axes using the same multi-
axis approach (Fig. 3). As Tab. 7D shows, the gMLP and
self-attention variants achieved the best performance, while
the FFT and MLP families were more computationally effi-
cient. We leave deeper explorations to future works.

5. Conclusion

We have presented a generic network for restoration or
enhancement tasks, dubbed MAXIM, inspired by recently
popular MLP-based global models. Our work suggests
an effective and efficient approach for applying gMLP to

CGBjs SAM CGBcs MS—Sp‘PSNR MAB, MAB, CGB, CGB, ‘PSNR

[30.73 | 30.48
v [3098 v |31.52
oo/ 31.61 a4 31.68
oo/ 7 } 3197 v/ / 31.84
oo/ v/o|3223 v v v/ |3191

o]

A. Individual components. . Effects of multi-axis approach.

|S W D|PSNR|Params| FLOPs ~ Variant | PSNR | Params| FLOPs

Base |1 32 3|31.08| 6.IM| 936G MI-FFT |39.67| 4.IM| 7I1G
Wider |1 64 3]3209] 19.4M|309.9G MI-MLP |39.75| 54M| 83G
1963|3231 41.7M|6489G MI-gMLP| 39.80] 6.IM| 93G
MI-SA | 39.79| 53M| 111G

Deeper| ! 32 43T | 1OBMIIZLOG ) bt 139 74] 10.aM| 172G
132 513143 | 750M|1534G  np Mrp | 39.70] 12.7M] 195G

More |2 32 3|31.82| 14.1M|216.4G M2-gMLP| 39.83| 14.1M| 216G
stages |3 32 3 (3244 222M|3392G M2-SA | 39.85| 12.5M| 250G

C. Why multi-stage? D. Beyond gMLP.

Table 7. Ablation studies. Components in subtable A and B are
defined in Sec. 4.3. S, W, and D denote the number of stages,
width, and depth, respectively. M1 and M2 in subtable D denote
MAXIM-1S and MAXIM-2S models, respectively.

low-level vision tasks to gain global attention, a missing
attribute of basic CNNs. Our gMLP instantiation of the
MAXIM family significantly advances state-of-the-arts in
several image enhancement and restoration tasks with mod-
erate complexity. We demonstrate a few applications, but
there are many more possibilities beyond the scope of this
work which could significantly benefit by using MAXIM.
Our future work includes exploring more efficient models
for extremely high-resolution image processing, as well as
training large models that can adapt on multiple tasks.
Broader impacts. The proposed model can be used as an
effective tool to enhance and retouch daily photos. How-
ever, enhancing techniques such as denoising and deblur-
ring are vulnerable to malicious use for privacy concerns.
The models trained on specific data may express bias. These
issues should be responsibly taken care of by researchers.
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