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Abstract—For practical usage of quantum systems in solving
real-world problems, large amounts of classical data are required
to be transferred/encoded to the quantum domain. Arbitrary
classical data is usually encoded onto quantum devices by
synthesizing and initializing a corresponding quantum state.
Current techniques of arbitrary state synthesis, however, produce
deep and complex quantum circuits, leading to low state fidelity
and possible violations of decoherence constraints. In this work,
we propose an improved methodology and optimized circuits for
synthesizing any arbitrary quantum state from given classical
data. Compared to existing methods, the proposed methodology
results in circuits with lower gate count, lower circuit depth, and
high state fidelity. The proposed methods are evaluated by simu-
lation in MATLAB and IBM qasm, and realistic implementation
on an IBM quantum device. The experimental results show a
reduction in gate count and circuit depth by a factor of two over
existing methods.

Index Terms—Quantum Computing, Quantum Circuits

I. INTRODUCTION

In recent decades, significant progress has been made in the

research and development of quantum circuits and algorithms

[1]–[3]. While these algorithms expose the potential utility of

quantum computing, one of the major challenges preventing

quantum circuits and algorithms from serving a practical use is

the encoding of classical information into the quantum domain

[4]. Generally, when given classical data, a quantum circuit

is constructed to synthesize a corresponding initial quantum

state, on which further operations of the respective quantum al-

gorithm is performed. The process of initializing the quantum

state is known as arbitrary state synthesis or state initialization.

On state-of-the-art quantum computers [5]–[9], it is difficult

to run complex algorithms with large amounts of data, due

to the high costs of the spatial and temporal complexities

[10] of the state synthesis and initialization process. The state

initialization process can present problems of low fidelity of

the synthesized quantum state [11], [12], and even efficient

initialization circuits can exceed the decoherence time of many

modern NISQ devices [13]. For data-intensive applications

such as quantum image processing [14] and quantum machine

learning [15], it is vital to develop efficient circuits that can

encode input data for the respective quantum algorithms.

Over the years, a number of algorithms and methods have

been proposed for arbitrary state synthesis and initialization

[16]–[19]. The most efficient methods have a spatial complex-

ity of O(2n+2), where n is the number of quantum bits of

the corresponding state synthesis circuit. In each work, the

synthesis method has been evaluated by counting the total

number of quantum gates (gate count) in the synthesis circuit.

However, there has been insufficient emphasis on quantum

circuit depth [10] for state synthesis. The circuit depth is

defined as the number of gates or time-steps in the longest path

of a circuit. The circuit depth is closely related to the temporal

complexity [10] and can be used to determine whether a

quantum circuit can be run within the decoherence constraints

of a particular quantum device [20].

In this work, we propose an efficient methodology for

synthesizing and initializing any arbitrary quantum state from

given classical data. We present the corresponding optimized

synthesis circuits, along with analysis of quantum gate count,

and circuit depth. The proposed circuit for arbitrary state

synthesis is analysed to have half of the gate counts reported

in related work. In addition, the overall depth of the proposed

circuit is shown to be 50% lower compared to previously

reported methods. We experimentally evaluate the proposed

methods by generating synthesis circuits for complex random

data and grayscale image data. Accuracy of the state synthesis

is evaluated by measuring the quantum state fidelity. Results

are obtained from simulations in MATLAB and IBM qasm
[20], as well as implementations on a real 15-qubit IBM-Q

quantum computer [20].

The rest of the paper is organized as follows. Section II

contains background concepts and survey of related work.

Section III presents the proposed methodology, corresponding

quantum circuits, and complexity analysis. Section IV contains

experimental results and Section V is the conclusion and future

research directions of this work.

II. BACKGROUND AND RELATED WORK

A. Fundamental Concepts in Quantum Computing

1) Qubits and Superposition: The quantum bit or qubit is

the basic unit of information in a quantum computer [4]. The

qubit can exist in a linear superposition of its basis states, |0〉
and |1〉, defined by the superposition equation:

|ψ〉 ≡ α |0〉+ β |1〉 ≡
[
α
β

]
(1)

where the coefficients α and β are complex numbers such

that |α|2 and |β|2 are the probabilities that a measurement of

the qubit finds it in the basis state |0〉 or |1〉, respectively.

A qubit can also be represented using a Bloch sphere [4],
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Fig. 1: Elementary quantum gates.

with the quantum state defined by the elevation and azimuth

angles θ and φ respectively, and a global phase γ [4], see

(2). The pair of angles (θ, φ) specify a point on the Bloch

sphere that represents a pure quantum state of the qubit. For

a single qubit, the global phase factor eiγ is unobservable and

is usually ignored in quantum operations [4].

|ψ〉 = eiγ
(
cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉

)
(2)

2) Entanglement: Entanglement is a unique and fun-

damental property of qubits. Mathematically, entanglement

means that the quantum state of a qubit cannot be fac-

tored into a tensor product of the individual qubits, i.e.,

|ψ〉 = |qn−1qn−2...q1q0〉 �= |qn−1〉 ⊗ |qn−2〉 ⊗ ... |q1〉 ⊗ |q0〉.
Entanglement is useful for quantum computing, because it

allows operations and measurements of one qubit to affect

or give information about the state of other entangled qubits

[4].

3) Decoherence: Interactions with the environment affect

the states of qubits resulting in a phenomenon known as

quantum decoherence [21]. Factors including heat, radiation,

magnetic and electric fields, etc. cause information to be

lost and the qubit’s state to become increasingly mixed [4],

[21]. As time progresses past a certain limit (usually called

the decoherence time constant), further quantum interference

among qubits is suppressed which prevents further operations

from being conducted. Ensuring that all operations can be

executed within the decoherence time is a critical part of

designing an optimized quantum algorithm or circuit.

B. Quantum Gates

In circuit model of quantum computing [4], a quantum gate

represents a transformation on one or more qubits. Every quan-

tum gate has a corresponding transformation matrix. Some

commonly used elementary gates and their corresponding cir-

cuit symbols and matrices are shown in Fig. 1. We summarize

the operations of these gates in the following section.

1) Hadamard Gate: The Hadamard (H) gate acts on a

single qubit, where it maps the computational basis states into

superposition states and vice versa. When the Hadamard gate

H acts on a computational basis state |x〉, it transforms the

input according to H|x〉 = 1√
2
(|0〉+ (−1)x|1〉) [4].

2) Controlled-NOT Gate: The Controlled-NOT (CNOT)

gate is a 2-qubit gate, with one control qubit and one target

qubit. The CNOT gate inverts the target qubit if and only if

the control qubit is set to |1〉 [4].

3) Rotation Gates: A y-rotation or Ry(θ) gate maps a

state |ψ〉 to a new state Ry(θ) |ψ〉 represented in the Bloch

sphere by a rotation of an angle θ
2 around y-axis [4]. A z-

rotation Rz(φ) gate maps a state |ψ〉 to a new state Rz(φ) |ψ〉
represented in the Bloch sphere by a rotation of an angle φ

2
around z-axis [4].

C. Related Work

Song and Williams in [16] presented methodologies for

synthesizing any n-qubit pure state or mixed state. For syn-

thesizing a pure state, their algorithm involves first applying

Gram-Schmidt procedure on a matrix that contains the input

data as the leftmost column, to produce a unitary matrix. The

unitary matrix is then synthesized to a quantum circuit using

a recursive algebraic method that has a complexity of O(22n)
[4], where n is the number of qubits.

The authors in [17] presented transformations for one ar-

bitrary state |a〉 to another |b〉 using uniformly controlled

rotations. From their presented circuit transformation from |a〉
to |b〉, it can be inferred that transformation from |a〉 to |0〉 (or

to any basis state) would require half the reported gate count.

No analysis of circuit depth was provided in their work. To

compare with our proposed circuits, we considered their circuit

transforming state |a〉 to |0〉 and calculated the corresponding

gate count and circuit depth to be 2n+2 − 6.

The work in [18] presented a method based on disentangling

a qubit, i.e., producing a basis state |0〉 or |1〉 on the lowest

significant qubit. The authors state that this disentangling

method, which requires 2n − 2 CNOTs for an n-qubit circuit,

can be used recursively to transform any state to a desired

basis state. They reported that the resulting final transformation

circuit uses 2n+1 − 2n CNOT gates, however, no detailed

analysis was provided. Furthermore, only the CNOT gate

count was provided, while their proposed circuit also requires

single-qubit rotation gates that would double the total gate

count to 2n+2 − 2n.

In [19] the proposed methodology is based on applying

(n − 1) rotation steps with permutations on the amplitudes

in-between each rotation where additional gates are required

in the intermediate permutations. The total gate count reported

is 2n+2+4n−9 with no circuit representation of their method-

ology. To be consistent with our analyses, we calculated their

circuit depth to be 2n+2 + 3n− 8.

In this paper, we propose a methodology for arbitrary state

synthesis that results in a lower gate count than previous

methods. We present the analytic expression for circuit gate

depths that were not considered in prior work. We also present
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the full and optimized quantum circuits corresponding to our

methodology, and experimentally evaluate our circuits using

simulation as well as implementation on a real quantum

device. In addition, the state fidelity of the proposed circuits

is reported for the simulations on IBM qasm.

III. PROPOSED METHODOLOGY AND OPTIMIZED

CIRCUITS

Our proposed methodology for arbitrary circuit synthesis

involves the following. The classical data to be encoded is

normalized as the coefficients of a quantum state vector [4].

For each pair of coefficients, the corresponding parameters

necessary to produce the coefficients from ground state are

calculated. These parameters are used in a conditional quantum

logic circuit [16] that will produce the desired quantum state

vector. To construct the conditional quantum logic circuit, we

use Hadamard gates and uniformly-controlled y and z rotation

operations. Further optimizations are applied to decompose

each multi-controlled rotation. Details of each step are elabo-

rated upon in the next subsections.

A. Data Encoding

A quantum register of n qubits that are in ground state is

given by |ψ0〉 = |0〉⊗n
. Given a classical data set of N = 2n

elements, we arrange it as an N×1 column vector for encoding

onto a target input quantum state given by |ψ〉 in (3).

|ψ〉 = |qn−1〉 ⊗ |qn−2〉 ⊗ ... |q1〉 ⊗ |q0〉

= |qn−1qn−2...q1q0〉 =
N−1∑
i=0

αi |i〉
(3)

where αi are the basis state coefficients of the input quantum

state |ψ〉 and form the elements of the N × 1 data column

vector. For state initialization or synthesizing the initial arbi-

trary state, it is required to find a quantum circuit, Uinit, that

transforms |ψ0〉 to |ψ〉, i.e., |ψ〉 = Uinit |ψ0〉.
B. The Pauli Decomposition

Any arbitrary single-qubit gate can be decomposed as a

series of Rz and Ry gates known as the ZYZ or Pauli

decomposition [4], [18]. Therefore, a qubit in ground state

|0〉 can be taken to any arbitrary state |ψ〉 by applying a θ
rotation about y-axis followed by a φ rotation about z-axis:

|ψ〉 = Rz(φ) ·Ry(θ) · rei t
2 · |0〉 (4)

where rei
t
2 is the unobservable global phase factor for the

single qubit [4]. If the coefficients of the target state |ψ〉 are α

and β, such that |ψ〉 =
[
α
β

]
and |0〉 =

[
1
0

]
, then the parameters

r, t, θ, and φ for the transformation given in (4) could be

determined by substituting the transformation matrices of Rz ,

Ry , see Fig.1, in (4), and are given by:

r =
√
|α|2 + |β|2 , t = ∠β + ∠α

θ = 2 tan−1

( |β|
|α|

)
, φ = ∠β − ∠α

(5)

where,

|α| =
√

Re2(α) + Im2(α), ∠α = tan−1

(
Im(α)

Re(α)

)
,

|β| =
√

Re2(β) + Im2(β), ∠β = tan−1

(
Im(β)

Re(β)

)

C. Conditional Quantum Logic Circuit

Using the Pauli decomposition described by (4) and the pa-

rameters obtained by (5), we derive a method for transforming

an n-qubit register in the ground state |ψ0〉 = |0〉⊗n
to an

arbitrary state |ψ〉, see Fig. 2. To synthesize the jth pair of

coefficients, or |ψj〉 in the state vector of |ψ〉, we apply Uj on a

ground state |0〉, where j = 0, 1, 2, ..., (2n−1−1). However, we

cannot apply Uj on one qubit in the n-qubit register and realize

the desired pair of coefficients without also affecting the other

coefficients in |ψ〉. Hence, each transformation Uj needs to be

applied conditionally to synthesize the jth pair of coefficients

in the output state. The resulting conditional quantum circuit

can be represented by a block-diagonal matrix U , of which

each diagonal block is a 2× 2 transformation matrix Uj , see

Fig. 2 and (6). The elements of Uj are calculated using the

parameters rj , tj , θj , and φj obtained from the jth pair of

coefficients using (5).

Fig. 2: Pauli decomposition for single-qubit state synthesis.

U = U0 ⊕ U1 ⊕ ...Uj ...⊕ U(2n−1−1)

= diag(U0, U1, ..., Uj , ..., U(2n−1−1))
(6)

A block-diagonal matrix such as U can be implemented as

a quantum multiplexer [16], [18] with n qubits of which

(n − 1) control qubits acting on the least significant target

qubit. The corresponding circuit is shown in Fig. 3a. For each

combination of the control qubits, the corresponding Uj is

applied on the target qubit, where j = 0, 1, 2, ..., (2n−1 − 1).
To produce all combinations on the control qubits with equal

probability, a set of H gates must be applied on the (n − 1)
control qubits before applying the U transformation. The

desired final state |ψ〉 is produced at the output with the

target coefficients as a result of uniformly applying each

Uj transformation on the least significant qubit. The overall

transformation, Uinit, from ground state |ψ0〉 = |0〉⊗n
to |ψ〉

can be expressed by (7).

|ψ〉 = Uinit · |ψ0〉 = Uinit · |0〉⊗n
, where

Uinit = (
√
2)(n−1) · U · (H⊗(n−1) ⊗ I), and

I is a 2× 2 identity matrix

(7)
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(a) Quantum circuit for arbitrary state synthesis.

(b) Each Uj transformation can be factored into rje
i(

tj
2

), Ry(θj),
and Rz(φj).

Fig. 3: Conditional logic based quantum circuit for arbitrary

state synthesis. The white and black circles on the control

qubits represent bit values of zero and one respectively.

Each Uj block is a sequence of a phase multiplication,

followed by y-rotation, followed by z-rotation as shown in

Fig. 3b, and Uj is calculated from the corresponding set of

parameters {rj , tj , θj , φj} obtained by (5). Since each set

of operations are mutually exclusive from each other, we

can separate them into uniformly controlled groups of phase

multipliers, y-rotations, and z-rotations as shown in Fig. 4.

To represent uniformly controlled operations as a single gate

operation, we use a notation previously used in [18], where

the sequence of different combinations on the control qubits

are replaced with a ‘square box’ notation indicating multi-

control, and the parameterized operations for each combination

are replaced by a single box denoting the general operation.

We use this notation to simplify the circuit in Fig. 4 and the

resulting circuit representation is shown in Fig. 5.

Fig. 4: Expanded full quantum circuit for arbitrary state

synthesis.

Fig. 5: Simplified full quantum circuit for arbitrary state

synthesis with uniformly controlled operations.

Fig. 6: Decomposition of a uniformly controlled 3-qubit Ry

rotation operation.

D. Decomposition of Uniformly Controlled Rotation Circuits

The uniformly controlled Ry and Rz rotation operations in

Fig. 5 can be decomposed into a sequence of CNOT and one-

qubit rotation gates. A systemic decomposition method was

presented in [22] which we leverage for our methodology. The

method involves taking the binary reflected Gray code of the

control bit sequence to determine the control qubit positions

of the CNOT gates. As a demonstrative example, the decom-

position for a 3-qubit controlled Ry operation with rotation

angles {θj} is shown in Fig. 6. To calculate the new set of

rotation angles {θ̂j} for the one-qubit rotations in Fig. 6, a

transformation matrix Mk
ij = (−1)bi−1·gj−1 was formulated in

[22]. The exponent of this matrix is the bit-wise inner product

of the binary vectors for standard binary representation, bi−1,

and Gray code representation gj−1. Applying the inverse of

Mk
ij on the vector of angles {θj} consequently produces a

vector of angles {θ̂j}. The decomposition for one uniformly

controlled rotation operations takes 2n gates (2n−1 CNOTs

and 2n−1 one-qubit rotations) in total [18], [19], [22]. We

apply this decomposition for the uniformly controlled Ry and

Rz rotation operations in Fig. 5.

E. Spatial and Temporal Complexity Analysis

The spatial complexity of a quantum circuit could be de-

termined by considering the total number of gates used in the

circuit construction. For our proposed n-qubit arbitrary state

initialization circuit, see Fig. 5, we require (n−1) H gates for

creating superposition, and 2n gates (2n−1 CNOTs and 2n−1

one-qubit rotations) for the Ry and Rz uniformly controlled

operations respectively. A slight optimization [18] can be

applied, where the order of the gates in the Ry rotation is

reversed so that its first CNOT cancels the last CNOT from the
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Rz rotation circuit. The controlled rei
t
2 operation represents

different scalar multiplications of the global phase factors for

every value of the select qubits, and can be implemented as

a diagonal operator [18] acting on the select qubits. In earlier

studies, the global phase factor was usually not considered

in the circuit complexity as it is physically unobservable or

undetectable. The total gate count Gtotal for our optimized

circuit is given by (8). The temporal complexity of the circuit

can be analyzed by considering the circuit depth (number of

time-steps). For our final circuit in Fig. 5, the H gates can be

applied in parallel in one step with the first Ry rotation gate,

and therefore do not contribute any additional depth. The Ry

and Rz uniformly controlled operations combined consist of

2n − 2 CNOT gates and 2n one-qubit rotation gates, each of

which contribute a single unit in the longest circuit path. The

overall circuit depth dtotal is given by (8).

Gtotal = 2n+1 + n− 3, dtotal = 2n+1 − 2 (8)

For applications with real data, the encoded state coeffi-

cients will be real numbers. Since they have no imaginary

component, the Rz rotations become identity operations and

therefore do not contribute to the gate depth. The total gate

count for such applications is reduced to 2n + n− 3 and the

circuit depth is reduced to 2n − 2.

TABLE I: Comparison of proposed method to current methods

for arbitrary state synthesis.

We analyzed the complexities of the methods presented in

prior works related to arbitrary state synthesis. A quantitative

comparison of those methods with our proposed work, in

terms of the theoretical gate counts and circuit depth, is

shown in Table I. In general, the previous methods proposed

using uniformly controlled rotation operations recursively to

disentangle each qubit, which results in larger gate count and

depth. In our proposed method, in combination with Hadamard

gates on the select qubits, we can synthesize the desired state

using a single set of uniformly controlled Rz and Ry rotations

on the target qubit. This results in the reduction of gate count

and circuit depth by at least a factor of two, see Table I.

IV. EXPERIMENTAL WORK

Our proposed circuits have been modelled and verified

using two highly-productive and easy-to-use environments,

i.e., MATLAB for noise-free qubits, and IBM-Q [20] for

noisy qubits on a real Noisy Intermediate-Scale Quantum

(NISQ) device. Our methods are also portable to other de-

vices/platforms [6]–[9]. In the IBM-Q environment, simulation

was performed using the IBM qasm simulator, while real

TABLE II: Simulation and implementation of proposed syn-

thesis circuits using IBM-Q.

implementation was performed on the 15-qubit real quantum

processor, ibmq 16 melbourne. We tested the synthesis of two

types of target data: (1) complex randomized data, and (2) real

grayscale image data. The experimental results are presented

in Table II. For complex randomized data, the gate count and

circuit depth reach the theoretical upper bounds derived earlier

in (8) as the full synthesis circuit is required. For real image

data, the gate counts and circuit depths of the circuits were

reduced by at least a factor of two, as there are no imaginary

components (tj = φj = 0) in the data, and thus both the

uniformly-controlled Rz operations, i.e., Rz(φj) = I , and

their corresponding CNOT operations are eliminated. Results

obtained from ibm qasm simulations of up to 14-qubit circuits

were consistent with our theoretical expectations for gate count

and circuit depth, see Table I and Table II.

Due to hardware constraints for the ibmq 16 melbourne
device [20], gate counts and circuit depths were obtained for

circuits up to only 6 qubits (complex randomized data) and

8 qubits (real image data). Several of the gates used in our

proposed circuit, such as H , CNOT and Ry , are not physically

realizable on the ibmq 16 melbourne device and are instead

replaced in a transpilation process using a different subset of

universal gates that are native to the IBM-Q platform. The tran-

spilation step resulted in higher gate counts and circuit depths

for the implementations, compared to our theoretical expecta-

tions, see Table I and Table II. For larger data sets that require

a large number of qubits, and consequently larger synthesis

circuits, the system decoherence time on ibmq 16 melbourne
was exceeded [20], limiting implementations to only 6 qubits

(complex randomized data) and 8 qubits (real image data).

For simulations and implementations on IBM-Q, the circuits

were executed with 8000 shots (iterations) to measure the

probability distributions of the output states.

To verify the correctness of the proposed methodology

and circuits, the encoded images were reconstructed from the

synthesized state coefficients and the fidelity of the synthesized

state was calculated. The state fidelity is a measure for the

similarity of the measured output state |ψmeasured〉, observed

in simulation or implementation, to the theoretical or expected

state |ψexpected〉. The Uhlmann-Jozsa fidelity for pure states
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Fig. 7: Original and reconstructed images from synthesized

quantum states.

[11], [12], given in (9), is used for our experiments.

F = |〈ψexpected|ψmeasured〉|2 (9)

Figure 7 shows 16 × 16, 32 × 32, and 64 × 64 -pixel

grayscale images encoded using 8-qubit, 10-qubit, and 12-

qubit synthesis circuits respectively in both MATLAB and

IBM-Q. The reconstructed images from the synthesized state

are also shown along with the corresponding state fidelity

between the original data and the reconstructed data. When

the images were encoded as pure states using noise-free qubits

in MATLAB, the reconstructed images were identical to the

original images, i.e., F = 100%, see Fig. 7. For simulation on

realistic Noisy Intermediate Scale Quantum (NISQ) devices,

such as the ibmq 16 melbourne, the reconstructed images

were partially corrupted by device noise. The state fidelity

between the original data and the reconstructed data was

99.1644%, 96.5429%, and 94.0894% for 16 × 16, 32 × 32,

and 64× 64 -pixel images respectively, see Fig. 7.

V. CONCLUSIONS AND FUTURE WORK

To efficiently utilize quantum computers for real-world

applications, it is important to investigate efficient methods of

encoding classical data on to the quantum system. In this work

we presented a methodology for synthesizing and initializing

any arbitrary quantum state from given classical data. We

presented full and optimized synthesis circuits and provided

its spatial and temporal complexity analysis. Compared to

existing methods, the circuit gate count and circuit depth

are improved by at least a factor of 2. We experimentally

evaluated the proposed methods using simulation on classical

platforms as well as implementation on a real quantum device.

The experimental results show that the proposed methodology

correctly and efficiently encodes the classical data into syn-

thesized quantum states at a high degree of state fidelity.
Our future work will include further analysis of the physical

constraints and limitations posed by currently available NISQ

devices. Quantum Error Correction (QEC) techniques will be

investigated and added to our methodology to reduce the noise

effects of NISQ devices. The applicability of our proposed

method for arbitrary state synthesis could be demonstrated

by integrating it with real-world quantum algorithms such

as quantum search, quantum wavelet transform, and quantum

machine learning.
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