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Abstract—For practical usage of quantum systems in solving
real-world problems, large amounts of classical data are required
to be transferred/encoded to the quantum domain. Arbitrary
classical data is usually encoded onto quantum devices by
synthesizing and initializing a corresponding quantum state.
Current techniques of arbitrary state synthesis, however, produce
deep and complex quantum circuits, leading to low state fidelity
and possible violations of decoherence constraints. In this work,
we propose an improved methodology and optimized circuits for
synthesizing any arbitrary quantum state from given classical
data. Compared to existing methods, the proposed methodology
results in circuits with lower gate count, lower circuit depth, and
high state fidelity. The proposed methods are evaluated by simu-
lation in MATLAB and IBM gasm, and realistic implementation
on an IBM quantum device. The experimental results show a
reduction in gate count and circuit depth by a factor of two over
existing methods.

Index Terms—Quantum Computing, Quantum Circuits

I. INTRODUCTION

In recent decades, significant progress has been made in the
research and development of quantum circuits and algorithms
[1]-[3]. While these algorithms expose the potential utility of
quantum computing, one of the major challenges preventing
quantum circuits and algorithms from serving a practical use is
the encoding of classical information into the quantum domain
[4]. Generally, when given classical data, a quantum circuit
is constructed to synthesize a corresponding initial quantum
state, on which further operations of the respective quantum al-
gorithm is performed. The process of initializing the quantum
state is known as arbitrary state synthesis or state initialization.
On state-of-the-art quantum computers [5]-[9], it is difficult
to run complex algorithms with large amounts of data, due
to the high costs of the spatial and temporal complexities
[10] of the state synthesis and initialization process. The state
initialization process can present problems of low fidelity of
the synthesized quantum state [11], [12], and even efficient
initialization circuits can exceed the decoherence time of many
modern NISQ devices [13]. For data-intensive applications
such as quantum image processing [14] and quantum machine
learning [15], it is vital to develop efficient circuits that can
encode input data for the respective quantum algorithms.

Over the years, a number of algorithms and methods have
been proposed for arbitrary state synthesis and initialization
[16]-[19]. The most efficient methods have a spatial complex-
ity of O(2"*2), where n is the number of quantum bits of
the corresponding state synthesis circuit. In each work, the
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synthesis method has been evaluated by counting the total
number of quantum gates (gate count) in the synthesis circuit.
However, there has been insufficient emphasis on quantum
circuit depth [10] for state synthesis. The circuit depth is
defined as the number of gates or time-steps in the longest path
of a circuit. The circuit depth is closely related to the temporal
complexity [10] and can be used to determine whether a
quantum circuit can be run within the decoherence constraints
of a particular quantum device [20].

In this work, we propose an efficient methodology for
synthesizing and initializing any arbitrary quantum state from
given classical data. We present the corresponding optimized
synthesis circuits, along with analysis of quantum gate count,
and circuit depth. The proposed circuit for arbitrary state
synthesis is analysed to have half of the gate counts reported
in related work. In addition, the overall depth of the proposed
circuit is shown to be 50% lower compared to previously
reported methods. We experimentally evaluate the proposed
methods by generating synthesis circuits for complex random
data and grayscale image data. Accuracy of the state synthesis
is evaluated by measuring the quantum state fidelity. Results
are obtained from simulations in MATLAB and IBM gasm
[20], as well as implementations on a real 15-qubit IBM-Q
quantum computer [20].

The rest of the paper is organized as follows. Section II
contains background concepts and survey of related work.
Section III presents the proposed methodology, corresponding
quantum circuits, and complexity analysis. Section IV contains
experimental results and Section V is the conclusion and future
research directions of this work.

II. BACKGROUND AND RELATED WORK
A. Fundamental Concepts in Quantum Computing

1) Qubits and Superposition: The quantum bit or qubit is
the basic unit of information in a quantum computer [4]. The
qubit can exist in a linear superposition of its basis states, |0)
and |1), defined by the superposition equation:

¥ =alo)+ 51 = 9] 1)

where the coefficients o and  are complex numbers such
that |o|® and |3|? are the probabilities that a measurement of
the qubit finds it in the basis state |0) or |1), respectively.
A qubit can also be represented using a Bloch sphere [4],
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Fig. 1: Elementary quantum gates.

with the quantum state defined by the elevation and azimuth
angles 6 and ¢ respectively, and a global phase v [4], see
(2). The pair of angles (6, ¢) specify a point on the Bloch
sphere that represents a pure quantum state of the qubit. For
a single qubit, the global phase factor €?7 is unobservable and
is usually ignored in quantum operations [4].

[) = e”(cosg |0) + i? sing |1>) (2)

2) Entanglement: Entanglement is a unique and fun-
damental property of qubits. Mathematically, entanglement
means that the quantum state of a qubit cannot be fac-
tored into a tensor product of the individual qubits, i.e.,
V) = lgn-1qn—2--q190) # |@n—1) ® |gn—2) @ ... [q1) ® |qo)-
Entanglement is useful for quantum computing, because it
allows operations and measurements of one qubit to affect
or give information about the state of other entangled qubits
[4].

3) Decoherence: Interactions with the environment affect
the states of qubits resulting in a phenomenon known as
quantum decoherence [21]. Factors including heat, radiation,
magnetic and electric fields, etc. cause information to be
lost and the qubit’s state to become increasingly mixed [4],
[21]. As time progresses past a certain limit (usually called
the decoherence time constant), further quantum interference
among qubits is suppressed which prevents further operations
from being conducted. Ensuring that all operations can be
executed within the decoherence time is a critical part of
designing an optimized quantum algorithm or circuit.

B. Quantum Gates

In circuit model of quantum computing [4], a quantum gate
represents a transformation on one or more qubits. Every quan-
tum gate has a corresponding transformation matrix. Some
commonly used elementary gates and their corresponding cir-
cuit symbols and matrices are shown in Fig. 1. We summarize
the operations of these gates in the following section.

1) Hadamard Gate: The Hadamard (H) gate acts on a
single qubit, where it maps the computational basis states into
superposition states and vice versa. When the Hadamard gate
H acts on a computational basis state |z), it transforms the
input according to H|z) = % (10) + (—=1)®[1)) [4].

2) Controlled-NOT Gate: The Controlled-NOT (CNOT)
gate is a 2-qubit gate, with one control qubit and one target
qubit. The CNOT gate inverts the target qubit if and only if
the control qubit is set to |1) [4].

3) Rotation Gates: A y-rotation or R,(6) gate maps a
state |¢) to a new state R, (¢)|¢) represented in the Bloch
sphere by a rotation of an angle g around y-axis [4]. A z-
rotation R (¢) gate maps a state |1) to a new state R, (¢) |)
represented in the Bloch sphere by a rotation of an angle %
around z-axis [4].

C. Related Work

Song and Williams in [16] presented methodologies for
synthesizing any n-qubit pure state or mixed state. For syn-
thesizing a pure state, their algorithm involves first applying
Gram-Schmidt procedure on a matrix that contains the input
data as the leftmost column, to produce a unitary matrix. The
unitary matrix is then synthesized to a quantum circuit using
a recursive algebraic method that has a complexity of O(22")
[4], where n is the number of qubits.

The authors in [17] presented transformations for one ar-
bitrary state |a) to another |b) using uniformly controlled
rotations. From their presented circuit transformation from |a)
to |b), it can be inferred that transformation from |a) to |0) (or
to any basis state) would require half the reported gate count.
No analysis of circuit depth was provided in their work. To
compare with our proposed circuits, we considered their circuit
transforming state |a) to |0) and calculated the corresponding
gate count and circuit depth to be 272 — 6.

The work in [18] presented a method based on disentangling
a qubit, i.e., producing a basis state |0) or |1) on the lowest
significant qubit. The authors state that this disentangling
method, which requires 2" — 2 CNOTSs for an n-qubit circuit,
can be used recursively to transform any state to a desired
basis state. They reported that the resulting final transformation
circuit uses 2"t! — 2n CNOT gates, however, no detailed
analysis was provided. Furthermore, only the CNOT gate
count was provided, while their proposed circuit also requires
single-qubit rotation gates that would double the total gate
count to 22 — 2n,

In [19] the proposed methodology is based on applying
(n — 1) rotation steps with permutations on the amplitudes
in-between each rotation where additional gates are required
in the intermediate permutations. The total gate count reported
is 27*2 4+4n—9 with no circuit representation of their method-
ology. To be consistent with our analyses, we calculated their
circuit depth to be 2"+2 + 3n — 8.

In this paper, we propose a methodology for arbitrary state
synthesis that results in a lower gate count than previous
methods. We present the analytic expression for circuit gate
depths that were not considered in prior work. We also present
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the full and optimized quantum circuits corresponding to our
methodology, and experimentally evaluate our circuits using
simulation as well as implementation on a real quantum
device. In addition, the state fidelity of the proposed circuits
is reported for the simulations on IBM gasm.

III. PROPOSED METHODOLOGY AND OPTIMIZED
CIRCUITS

Our proposed methodology for arbitrary circuit synthesis
involves the following. The classical data to be encoded is
normalized as the coefficients of a quantum state vector [4].
For each pair of coefficients, the corresponding parameters
necessary to produce the coefficients from ground state are
calculated. These parameters are used in a conditional quantum
logic circuit [16] that will produce the desired quantum state
vector. To construct the conditional quantum logic circuit, we
use Hadamard gates and uniformly-controlled y and z rotation
operations. Further optimizations are applied to decompose
each multi-controlled rotation. Details of each step are elabo-
rated upon in the next subsections.

A. Data Encoding

A quantum register of n qubits that are in ground state is
given by [¢) = |0)®". Given a classical data set of N = 2"
elements, we arrange it as an /V x 1 column vector for encoding
onto a target input quantum state given by [¢) in (3).

V) = |gn-1) @ |gn—2) ® ... |q1) @ |qo)
N-1

= |gn-1¢n-2---q1G0) = Z a; 1)
i—0

3)

where «; are the basis state coefficients of the input quantum
state |¢)) and form the elements of the N x 1 data column
vector. For state initialization or synthesizing the initial arbi-
trary state, it is required to find a quantum circuit, U;,;;, that
transforms [t)g) to [¢)), i.e., [¢) = Uinit [%0)-

B. The Pauli Decomposition

Any arbitrary single-qubit gate can be decomposed as a
series of R, and R, gates known as the ZYZ or Pauli
decomposition [4], [18]. Therefore, a qubit in ground state
|0) can be taken to any arbitrary state |¢)) by applying a 6
rotation about y-axis followed by a ¢ rotation about z-axis:

) = R.(¢) - Ry(0) - re'* - |0) )

where 7€' is the unobservable global phase factor for the
single qubit [4]. If the coefficients of the target state |1)) are «
and $3, such that |¢)) = g and |0) = (1) ,

r, t, 0, and ¢ for the transformation given in (4) could be
determined by substituting the transformation matrices of R,
R, see Fig.1, in (4), and are given by:

r=VIaP+ 1B, t= 2B+ La
6 =2tan"! (|5|> , 0=4B— L«

then the parameters

®)

|
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where,

Im(cv)
Re(w)
Im(53)

Re ()

la| = \/Re*(a) + Im?*(a), Za = tan™* <

8] = \/Re?(B) +Im*(B), £8 =tan"! (

C. Conditional Quantum Logic Circuit

)
)

Using the Pauli decomposition described by (4) and the pa-
rameters obtained by (5), we derive a method for transforming
an n-qubit register in the ground state [1) = [0)*" to an
arbitrary state [1)), see Fig. 2. To synthesize the j*" pair of
coefficients, or |¢;) in the state vector of |¢), we apply U, on a
ground state |0), where j = 0,1,2,..., (2" 1—1). However, we
cannot apply U; on one qubit in the n-qubit register and realize
the desired pair of coefficients without also affecting the other
coefficients in |¢/). Hence, each transformation U; needs to be
applied conditionally to synthesize the j*" pair of coefficients
in the output state. The resulting conditional quantum circuit
can be represented by a block-diagonal matrix U, of which
each diagonal block is a 2 x 2 transformation matrix Uj;, see
Fig. 2 and (6). The elements of U; are calculated using the
parameters r;, t;, 0;, and ¢; obtained from the jth pair of
coefficients using (5).

t(ﬁ
Uj = R;(¢;) - Ry(6)) -1e \2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 2: Pauli decomposition for single-qubit state synthesis.

U=UgU,®..Uj...® U(anl_l)

6
:diag(UO,Ul,...,Uj,... ( )

Ugn-1_1y)

A block-diagonal matrix such as U can be implemented as
a quantum multiplexer [16], [18] with n qubits of which
(n — 1) control qubits acting on the least significant target
qubit. The corresponding circuit is shown in Fig. 3a. For each
combination of the control qubits, the corresponding Uj is
applied on the target qubit, where j = 0,1,2,..., (2771 — 1).
To produce all combinations on the control qubits with equal
probability, a set of H gates must be applied on the (n — 1)
control qubits before applying the U transformation. The
desired final state |¢)) is produced at the output with the
target coefficients as a result of uniformly applying each
U; transformation on the least significant qubit. The overall
transformation, Uspy, from ground state [¢g) = |0>®" to |¢)
can be expressed by (7).

1) = Usnit - [o) = Usnie - [0)™, where
Uinit = (vV2)Y .U . (H®™Y) @ I), and
I is a 2 x 2 identity matrix

(7
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Fig. 3: Conditional logic based quantum circuit for arbitrary
state synthesis. The white and black circles on the control
qubits represent bit values of zero and one respectively.

Each U; block is a sequence of a phase multiplication,
followed by y-rotation, followed by z-rotation as shown in
Fig. 3b, and Uj is calculated from the corresponding set of
parameters {r;,t;,0;,¢,;} obtained by (5). Since each set
of operations are mutually exclusive from each other, we
can separate them into uniformly controlled groups of phase
multipliers, y-rotations, and z-rotations as shown in Fig. 4.

To represent uniformly controlled operations as a single gate
operation, we use a notation previously used in [18], where
the sequence of different combinations on the control qubits
are replaced with a ‘square box’ notation indicating multi-
control, and the parameterized operations for each combination
are replaced by a single box denoting the general operation.
We use this notation to simplify the circuit in Fig. 4 and the
resulting circuit representation is shown in Fig. 5.

Fig. 4: Expanded full quantum circuit for arbitrary state
synthesis.
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Fig. 5: Simplified full quantum circuit for arbitrary state
synthesis with uniformly controlled operations.
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Fig. 6: Decomposition of a uniformly controlled 3-qubit R,
rotation operation.

D. Decomposition of Uniformly Controlled Rotation Circuits

The uniformly controlled 12, and I2, rotation operations in
Fig. 5 can be decomposed into a sequence of CNOT and one-
qubit rotation gates. A systemic decomposition method was
presented in [22] which we leverage for our methodology. The
method involves taking the binary reflected Gray code of the
control bit sequence to determine the control qubit positions
of the CNOT gates. As a demonstrative example, the decom-
position for a 3-qubit controlled R, operation with rotation
angles {6;} is shown in Fig. 6. To calculate the new set of
rotation angles {éj} for the one-qubit rotations in Fig. 6, a
transformation matrix M} = (—1)%-*9% -1 was formulated in
[22]. The exponent of this matrix is the bit-wise inner product
of the binary vectors for standard binary representation, b; 1,
and Gray code representation g;_i. Applying the inverse of
Mi’} on the vector of angles {;} consequently produces a
vector of angles {¢;}. The decomposition for one uniformly
controlled rotation operations takes 2" gates (2"~! CNOTs
and 2"~! one-qubit rotations) in total [18], [19], [22]. We
apply this decomposition for the uniformly controlled R, and
R, rotation operations in Fig. 5.

E. Spatial and Temporal Complexity Analysis

The spatial complexity of a quantum circuit could be de-
termined by considering the total number of gates used in the
circuit construction. For our proposed n-qubit arbitrary state
initialization circuit, see Fig. 5, we require (n—1) H gates for
creating superposition, and 2" gates (2”1 CNOTSs and 27!
one-qubit rotations) for the R, and R, uniformly controlled
operations respectively. A slight optimization [18] can be
applied, where the order of the gates in the R, rotation is
reversed so that its first CNOT cancels the last CNOT from the
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R, rotation circuit. The controlled re’z operation represents
different scalar multiplications of the global phase factors for
every value of the select qubits, and can be implemented as
a diagonal operator [18] acting on the select qubits. In earlier
studies, the global phase factor was usually not considered
in the circuit complexity as it is physically unobservable or
undetectable. The total gate count Gy for our optimized
circuit is given by (8). The temporal complexity of the circuit
can be analyzed by considering the circuit depth (number of
time-steps). For our final circuit in Fig. 5, the H gates can be
applied in parallel in one step with the first R, rotation gate,
and therefore do not contribute any additional depth. The R,
and R, uniformly controlled operations combined consist of
2™ — 2 CNOT gates and 2™ one-qubit rotation gates, each of
which contribute a single unit in the longest circuit path. The
overall circuit depth dy,tq; is given by (8).

Giotal = 2" +n =3,  diotar = 2" — 2 (8)

For applications with real data, the encoded state coeffi-
cients will be real numbers. Since they have no imaginary
component, the R, rotations become identity operations and
therefore do not contribute to the gate depth. The total gate
count for such applications is reduced to 2" +n — 3 and the
circuit depth is reduced to 2" — 2.

TABLE I: Comparison of proposed method to current methods
for arbitrary state synthesis.

Method Gate Count Circuit Depth
Mottonen [17], 2004 226 2"2.6
Shende [18], 2006 22 _2p 2™2 _2p
Niemann [19], 2016 2™244n-9 2™+ 3n-8

We analyzed the complexities of the methods presented in
prior works related to arbitrary state synthesis. A quantitative
comparison of those methods with our proposed work, in
terms of the theoretical gate counts and circuit depth, is
shown in Table I. In general, the previous methods proposed
using uniformly controlled rotation operations recursively to
disentangle each qubit, which results in larger gate count and
depth. In our proposed method, in combination with Hadamard
gates on the select qubits, we can synthesize the desired state
using a single set of uniformly controlled R, and R, rotations
on the target qubit. This results in the reduction of gate count
and circuit depth by at least a factor of two, see Table I.

IV. EXPERIMENTAL WORK

Our proposed circuits have been modelled and verified
using two highly-productive and easy-to-use environments,
i.e., MATLAB for noise-free qubits, and IBM-Q [20] for
noisy qubits on a real Noisy Intermediate-Scale Quantum
(NISQ) device. Our methods are also portable to other de-
vices/platforms [6]-[9]. In the IBM-Q environment, simulation
was performed using the IBM gasm simulator, while real
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TABLE II: Simulation and implementation of proposed syn-
thesis circuits using IBM-Q.

::t';"i’t::“c: ;‘:m:;; (MATLAB /ibm_gasm) | (ibmg_16_melbourne)
N) ") Gate Circuit Gate Circuit
Count Depth Count Depth
S | 200E+00 2 7.00E+00 | 6.00E+00 | 1.70E+01 | 1.50E+01
e 1.60E+01 1 3.30E<01 | 3.00E+01 | 9.20E+01 | 7.20E+01
83 [ G40E:01 6 131E+02 | 1.26E+02 | 3.38E+02 | 2.76E+02
E8 | 256E-02 8 517E+02 | 5.10E+02
8 o 1.02E+03 10 2 06E+03 | 205E+03 NA due to hardware
2 [ 2106403 12 B8.20E+03 | 8.19E+03 | limifations of IBM-Q
= 1.B4E+04 14 3.28E+04 | 328E+04
252 pixels 7 3.00E<00 | 2.00E+00 | 1.30E+01 | 1.10E+01
s 4% 4 pixels 4 1.70E+01 | 1.40E+01 | 5.80E+01 | 4.70E+01
] 8 x 8 pixels 6 6.70E+01 | 6.20E+01 | 238E+02 | 1.97E+02
o [ 16x16 pirels 8 261E+02 | 254E+02 | 8.71E+02 | 7.46E+02
g | 32432 pixels 10 1.03E+03 | 1.02E+03
E I 54x64 piels 12 4.11E+03 | 4.09E+03 Tglg:ﬁ)‘n‘;'::'lg‘::g
128 x 128 pixels| 14 1.64E+04 | 1.64E+04

implementation was performed on the 15-qubit real quantum
processor, ibmg_16_melbourne. We tested the synthesis of two
types of target data: (1) complex randomized data, and (2) real
grayscale image data. The experimental results are presented
in Table II. For complex randomized data, the gate count and
circuit depth reach the theoretical upper bounds derived earlier
in (8) as the full synthesis circuit is required. For real image
data, the gate counts and circuit depths of the circuits were
reduced by at least a factor of two, as there are no imaginary
components (t; = ¢; = 0) in the data, and thus both the
uniformly-controlled R, operations, i.e., R,(¢;) = I, and
their corresponding CNOT operations are eliminated. Results
obtained from ibm_gasm simulations of up to 14-qubit circuits
were consistent with our theoretical expectations for gate count
and circuit depth, see Table I and Table II.

Due to hardware constraints for the ibmg_16_melbourne
device [20], gate counts and circuit depths were obtained for
circuits up to only 6 qubits (complex randomized data) and
8 qubits (real image data). Several of the gates used in our
proposed circuit, such as H, CNOT and Rz, are not physically
realizable on the ibmg_16_melbourne device and are instead
replaced in a transpilation process using a different subset of
universal gates that are native to the IBM-Q platform. The tran-
spilation step resulted in higher gate counts and circuit depths
for the implementations, compared to our theoretical expecta-
tions, see Table I and Table II. For larger data sets that require
a large number of qubits, and consequently larger synthesis
circuits, the system decoherence time on ibmg_16_melbourne
was exceeded [20], limiting implementations to only 6 qubits
(complex randomized data) and 8 qubits (real image data).
For simulations and implementations on IBM-Q, the circuits
were executed with 8000 shots (iterations) to measure the
probability distributions of the output states.

To verify the correctness of the proposed methodology
and circuits, the encoded images were reconstructed from the
synthesized state coefficients and the fidelity of the synthesized
state was calculated. The state fidelity is a measure for the
similarity of the measured output state |1, casured), Observed
in simulation or implementation, to the theoretical or expected
state |Yeppected). The Uhlmann-Jozsa fidelity for pure states
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Fig. 7: Original and reconstructed images from synthesized
quantum states.

[11], [12], given in (9), is used for our experiments.

F= |<wexpected|1/]measured> |2 (9)

Figure 7 shows 16 x 16, 32 x 32, and 64 x 64 -pixel
grayscale images encoded using 8-qubit, 10-qubit, and 12-
qubit synthesis circuits respectively in both MATLAB and
IBM-Q. The reconstructed images from the synthesized state
are also shown along with the corresponding state fidelity
between the original data and the reconstructed data. When
the images were encoded as pure states using noise-free qubits
in MATLAB, the reconstructed images were identical to the
original images, i.e., I’ = 100%, see Fig. 7. For simulation on
realistic Noisy Intermediate Scale Quantum (NISQ) devices,
such as the ibmgq_I16_melbourne, the reconstructed images
were partially corrupted by device noise. The state fidelity
between the original data and the reconstructed data was
99.1644%, 96.5429%, and 94.0894% for 16 x 16, 32 x 32,
and 64 x 64 -pixel images respectively, see Fig. 7.

V. CONCLUSIONS AND FUTURE WORK

To efficiently utilize quantum computers for real-world
applications, it is important to investigate efficient methods of
encoding classical data on to the quantum system. In this work
we presented a methodology for synthesizing and initializing
any arbitrary quantum state from given classical data. We
presented full and optimized synthesis circuits and provided
its spatial and temporal complexity analysis. Compared to
existing methods, the circuit gate count and circuit depth
are improved by at least a factor of 2. We experimentally
evaluated the proposed methods using simulation on classical
platforms as well as implementation on a real quantum device.

The experimental results show that the proposed methodology
correctly and efficiently encodes the classical data into syn-
thesized quantum states at a high degree of state fidelity.

Our future work will include further analysis of the physical
constraints and limitations posed by currently available NISQ
devices. Quantum Error Correction (QEC) techniques will be
investigated and added to our methodology to reduce the noise
effects of NISQ devices. The applicability of our proposed
method for arbitrary state synthesis could be demonstrated
by integrating it with real-world quantum algorithms such
as quantum search, quantum wavelet transform, and quantum
machine learning.

REFERENCES

[1] Lov K Grover. Quantum mechanics helps in searching for a needle in
a haystack. Physical review letters, 79(2):325, 1997.

[2] Yaakov S Weinstein, MA Pravia, EM Fortunato, Seth Lloyd, and
David G Cory. Implementation of the quantum fourier transform.
Physical review letters, 86(9):1889, 2001.

[3] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303—
332, 1999.

[4] Colin P Williams. Explorations in quantum computing. Springer Science
& Business Media, second edition, 2011.

[5] Nikitas Stamatopoulos, Daniel J Egger, Yue Sun, Christa Zoufal, Raban
Iten, Ning Shen, and Stefan Woerner. Option pricing using quantum
computers. Quantum, 4:291, 2020.

[6] Google AI Quantum et al. Hartree-fock on a superconducting qubit
quantum computer. Science, 369(6507):1084—1089, 2020.

[7] Carmen G Almudever, Lingling Lao, Robert Wille, and Gian G Guer-
reschi. Realizing quantum algorithms on real quantum computing
devices. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 864-872. IEEE, 2020.

[8] IonQ. Scaling ionq’s quantum computers: The roadmap.

[9] Microsoft Quantum Team. Developing a topological qubit.

[10] John Watrous. Quantum computational complexity. arXiv preprint
arXiv:0804.3401, 2008.

Armin Uhlmann. The “transition probability” in the state space of a-
algebra. Reports on Mathematical Physics, 9(2):273-279, 1976.
Richard Jozsa. Fidelity for mixed quantum states. Journal of modern
optics, 41(12):2315-2323, 1994.

Daniel Koch, Brett Martin, Saahil Patel, Laura Wessing, and Paul M
Alsing. Demonstrating nisq era challenges in algorithm design on ibm’s
20 qubit quantum computer. AIP Advances, 10(9):095101, 2020.
Xi-Wei Yao, Hengyan Wang, Zeyang Liao, Ming-Cheng Chen, Jian Pan,
Jun Li, Kechao Zhang, Xingcheng Lin, Zhehui Wang, Zhihuang Luo,
et al. Quantum image processing and its application to edge detection:
Theory and experiment. Physical Review X, 7(3):031041, 2017.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,
Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549(7671):195-202, 2017.

Lin Song and Colin P Williams. Computational synthesis of any n-qubit
pure or mixed state. In Quantum Information and Computation, volume
5105, pages 195-203. International Society for Optics and Photonics,
2003.

Mikko Mottonen, Juha J Vartiainen, Ville Bergholm, and Martti M
Salomaa. Transformation of quantum states using uniformly controlled
rotations. Quant. Inf. Comp., 5(467), 2004.

Vivek V Shende, Stephen S Bullock, and Igor L Markov. Synthesis of
quantum-logic circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 25(6):1000-1010, 2006.

Philipp Niemann, Rhitam Datta, and Robert Wille. Logic synthesis for
quantum state generation. In 2016 IEEE 46th International Symposium
on Multiple-Valued Logic (ISMVL), pages 247-252. IEEE, 2016.

IBM. Get started with ibm quantum experience. https://quantum-
computing.ibm.com/docs/. Accessed: 2021-07-30.
Maximilian Schlosshauer. Quantum decoherence.
831:1-57, 2019.

Mikka Mottonen and Juha J Vartiainen. Decompositions of general
quantum gates. Trends in Quantum Computing Research, 2006.

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21] Physics Reports,

[22]

24

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on June 20,2022 at 21:46:18 UTC from IEEE Xplore. Restrictions apply.



