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Abstract—Determining the number of latent variables, or the
dimensions of latent states, is a ubiquitous problem in dimension
reduction. In this paper, we introduce a novel sequential method
that relies on the Bayesian approach to estimate the dimension of
a latent space of a Gaussian process latent variable model. The
proposed method also considers settings where the number of
latent variables varies with time. To evaluate our methodology,
we compared the estimated dimensions with the true dimensions
as they vary with time. Results on synthetic data demonstrate
that our method has a very good performance.

Index Terms—Latent Variables, Dimension reduction, Gaus-
sian processes

I. INTRODUCTION

Dimensionality reduction (DR) refers to techniques for
projecting high dimensional observed samples to a lower
dimensional set of latent input variables in a way that the low
dimensional variables preserve important properties of the high
dimensional observed samples. The primary problem here is to
determine the number of the latent variables, or the dimension
of latent states. This problem was initially addressed in [3],
which has motivated many researchers to study it. Several
most popular methods are documented and described in [9].
One of them, Kaiser’s eigenvalue-greater-than-one rule (K1)
only keeps the factors that have eigenvalues greater than a
benchmark [5]. Despite its simplicity, this work has received
criticism because of its unreliability. Parallel Analysis (PA)
is another approach that bootstraps on the correlation matrix
and then averages the eigenvalues [10]. By this method, the
factors that have eigenvalues larger than the eigenvalue of
the averaged data set are kept. The Cattell’s Scree test [12]
is a graphical and subjective approach, which first sorts the
eigenvalues in decreasing order and then picks the point where
the last significant drop occurs. The minimum average partial
method (MAP) is based on a subsequent analysis of the
partial correlation matrices in extracting common factors [19].
Silouhette width (SW) is another method that reduces the
number of data points [7]. The Bootstrap SVD utilizes both
the bootstrap and the singular values to determine the lower
dimension [11]. There are also log-likelihood based criteria
including ones based on the Akaike information criterion [1].
A common feature of all these methods is that they operate in

The authors thank the support of NSF under Award 2021002.

an offline mode and assume that the number of latent variables
is the same for all the observed samples.

In order to reduce the dimension in a sequential or online
mode, the online principal component analysis (PCA) has
been invoked in [2] and implemented by perturbation methods
[4], incremental SVD [18], stochastic optimization [14], and
randomized algorithms [17]. The probability PCA (PPCA) is
an extension of the PCA and assumes a linear relationship
between the observations and the latent states. Compared with
PPCA, the Gaussian process latent variable model (GPLVM)
is more powerful and compatible with nonlinear relationships.
The online GPLVM based on random features has been
proposed in [6], and the sequential sampling method in [15]
to retrieve the latent variables sequentially with variational
inference. However, the random feature-based Gaussian pro-
cesses is limited to have only shift-invariant kernels, and the
variational inference combined with the Monte Carlo method
produces a bias that cannot be ignored. Moreover, these
methods still assume a constant dimension of the latent states
and are not compatible with a time-varying system.

To overcome these limitations, we propose a sequential
sparse GPLVM (SSGPLVM), which can simultaneously de-
termine the proper dynamic dimension of the latent states and
obtain the latent states sequentially.

II. PRELIMINARY

In this section, we provide a brief review of GPLVMs and
their sparse version.

A. Gaussian Process Latent Variable Models

Under ordinary PCA [16], we assume that dy-dimensional
observations Y = [y1, . . . , yN ]> ∈ RN×dy are a linear func-
tion of dt-dimensional latent variables X = [x1, . . . , xN ]> ∈
RN×dt with likelihood

p(yn|W, β) =

∫
p(yn|xn,W, β)p(xn)dxn, (1)

where p(xn) is a Gaussian prior distribution N (xn|0, I), and
where p(yn|xn,W, β) = N (yn|Wxn, β

−1I) reflects the linear
relationship between the latent variables and the observations.
Further, we assume that the rows of W are i.i.d., which implies
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the prior p(W) =
∏dy

i=1N (0, α−1I). When W is integrated
out, we obtain a marginal distribution for Y given by

p(Y|X, β) =
1

(2π)
N×dy

2 |K| dy2
exp

(
−1

2
tr(K−1YY−1)

)
, (2)

where K = αXX>+β−1I. Then we can obtain the optimized
X and the hyper-parameters α, β by maximizing (2).

The GPLVM comes from various modifications of K [8]. A
Gaussian process [13] is defined by a mean function m(·) and
a kernel function k(·, ·), such that any finite subset of points of
the process is Gaussian distributed. A function f that follows
a Gaussian process is denoted by

f(x) ∼ GP(m(x), k(x, x′)). (3)

By choosing a specific nonlinear kernel function k(·, ·|γγγ)
instead of XX>, where γγγ is a hyper-parameter vector in the
kernel, we put a nonlinear prior relationship between the latent
variable X and the observations Y. In this paper, we choose
the RBF kernel. The equation (2) can still be applied in terms
of a nonlinear kernel function, and the latent variable X and
hyper-parameters α, β,γγγ are optimized by scaled conjugate
gradient (SCG).

B. Sparse Gaussian Process Latent Variable Models

The idea behind sparse GPs is in utilizing a small set of
points, which is known as inducing variables and denoted as
U = [u1, . . . , uM ] = [y1, . . . , yM ]. The optimized latent states
related to U are denoted as ΛΛΛ = [λλλ1, . . . ,λλλM ] .

The latent state xj under an observation point yj can be
derived from the inducing variables as a Gaussian distribution

p(yj |xj , α, β, γ) = N (yj |fj , σ2
j I), (4)

where fj = U>K−1
ΛΛΛ,ΛΛΛkΛΛΛ,j is the mean vector, kΛΛΛ,j denotes

the kernel vector between the optimized latent states ΛΛΛ and
the latent state xj , and σ2

j = k(xj , xj)− k>ΛΛΛ,jK−1
ΛΛΛ,ΛΛΛkΛΛΛ,j is the

variance. As a result, we can optimize (4) with respect to xj

using the scaled conjugate gradients approach. Thus, a sparse
GPLVM is determined by its inducing variables U.

III. CHOICES OF DIMENSIONS OF THE LATENT STATES

We adopt the Bayesian approach to determine the dimension
of the latent states. However, in practice, there are settings
where the observed data are acquired sequentially and the
dimension of the latent states may vary with time. In the rest
of the paper, we present our approaches under constant and
dynamic dimensions separately.

A. A Constant Dimension

Suppose we know the information that all observations are
generated from latent states with a constant dimension. Given
a set of candidate dimensions D, we denote the inducing vari-
ables as U = [u1, . . . , uM ]> and the corresponding optimized
latent states as {ΛΛΛ(d)}d∈D = {[λλλ(d)

1 , . . . ,λλλ
(d)
M ]>}d∈D, where

the superscript (d) refers to the specific latent dimension d. The
history of observations is denoted as Yt−1 = [y1, . . . , yt−1]>,
and the corresponding history of latent states are denoted as

{X(d)
t−1}d∈D = {[x(d)

1 , . . . , x(d)
t−1]>}d∈D. The estimate of the

latent state and latent dimension at time t are denoted by
(x̂(d̂t)

t , d̂t) and are derived by

(x̂(d̂t)
t , d̂t) = argmax

x(dt)
t ,dt

p(x(dt)
t , dt|yt,Yt−1, {X

(d′t)
t−1}d′t∈D) (5)

= argmax
x(dt)
t ,dt

p(yt|Yt−1,X
(dt)
t−1 , dt, x

(dt)
t )

× p(x(dt)
t |dt,Yt−1,X

(dt)
t−1)× p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D)

= argmax
x(dt)
t ,dt

p(yt|U,ΛΛΛ(dt), dt, x
(dt)
t )

× p(x(dt)
t |dt)× p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D),

where we assume that p(x(dt)
t |dt,Yt−1,X

(dt)
t−1) = p(x(dt)

t |dt)
is the prior distribution under dimension dt, and the last term
p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D) denotes the posterior probability of

the GPLVM according to latent dimension dt−1 at time t− 1.
The optimization process could be decomposed to two steps:

x̂(dt)
t = argmax

xt
l(xt) (6)

:= argmax
xt

p(yt|U,ΛΛΛ(dt), dt, xt)p(xt |dt), for dt ∈ D,

d̂t = argmax
dt∈D

l(x̂(dt)
t )× p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D), (7)

where the first step finds the optimal latent states x̂(dt)
t under

each candidate dimension dt, and the second step chooses the
optimal candidate dimension d̂t. The posterior probability is
updated by

p(dt|Yt, {X
(d′t)
t }d′t∈D) (8)

∝ p(yt|U,ΛΛΛ(dt), dt, x̂
(dt)
t )p(x̂(dt)

t |dt)p(dt|Yt−1, {X
(d′t)
t−1}d′t∈D)

= l(x̂(dt)
t )× p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D), for dt ∈ D.

The implementation under the constant dimension assumption
is shown in Algorithm 1.

Algorithm 1: Constant Dimensions

for d in D do
Assign the first M samples as inducing variable U;
Obtain ΛΛΛ(d) by optimizing (2);

for t = 1 to T do
Receive yt;
Find x(dt)

t via (6) for every dt ∈ D;
Find d̂t via (7);
Update posterior via (8).

B. Dynamic Dimensions

In this case, the inducing variables U consist of observations
whose latent states have different dimensions. We assume that
the true dimensions of the latent states are randomly sampled
from D. The main task is to classify the inducing variables
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so that the inducing variables in the same class have the same
latent dimension. Our method has three steps:

1) Classify the inducing variables into several classes;
2) Determine the latent dimensions for each class;
3) Predict the dimension and latent states on testing data.

The first two steps are implemented with the training data,
which aim to assign the new inducing variables U(d) =

[u(d)
1 , . . . , u(d)

M ]> to each candidate dimension d. Let ΛΛΛ(d) =

[λλλ
(d)
1 , . . . ,λλλ

(d)
M ]> denote the optimized latent states under U(d).

Notice that the inducing variables are not the same for every
candidate dimension compared with the constant dimension
assumption. Moreover, we apply the rolling window approach
on U(d) so that the inducing variables U(d)

t and the latent states
ΛΛΛ

(d)
t are time-varying.
Suppose the observation yt arrives at time instant t, and

we already updated the inducing variables {U(d)
t−1}d∈D and

the embedded latent states {ΛΛΛ(d)
t−1}d∈D at t − 1. Specifically,

U(d)
t−1 = [u(d)

t1 , . . . , u
(d)
tM ]> and ΛΛΛ

(d)
t−1 = [λλλ

(d)
t1 , . . . ,λλλ

(d)
tM ]>,

where the subscripts [t1, . . . , tM ] represent a strictly increasing
time instant sequence. Next, we classify yt into a proper class
d̂t and update U(d̂t)

t by arranging yt. The estimate of d̂t and
latent state x̂(d̂t)

t are derived from

(x̂(d̂t)
t , d̂t) = argmax

x(dt)
t ,dt

p(x(dt)
t , dt|yt,Yt−1, {X

(d′t)
t−1}d′t∈D) (9)

= argmax
x(dt)
t ,dt

p(yt|U
(dt)
t−1 ,ΛΛΛ

(dt)
t−1 , dt, x

(dt)
t )

× p(x(dt)
t |dt)× p(dt|Yt−1, {X

(d′t)
t−1}d′t∈D)

= argmax
x(dt)
t ,dt

p(yt|U
(dt)
t−1 ,ΛΛΛ

(dt)
t−1 , dt, x

(dt)
t )

× p(x(dt)
t |dt),

where p(dt|Yt−1, {X
(d′t)
t−1}d′t∈D) ≡ p(dt) because the true

dimension of the latent states is randomly sampled from D.
The rolling-window update of U(d̂t)

t and ΛΛΛ
(d̂t)
t is given by:

U(d̂t)
t = [u(d̂t)

t2 , . . . , u(d̂t)
tM , yt]

>, (10)

ΛΛΛ
(d̂t)
t = [λλλ

(d̂t)
t2 , . . . ,λλλ

(d̂t)
tM , x̂(d̂t)

t ]>. (11)

In other words, yt is appended into U(d̂t)
t−1 while the earliest

inducing variable u(d̂t)
t1 is dropped out, and x̂(d̂t)

t is appended

into ΛΛΛ
(d̂t)
t−1 while the earliest latent state λλλ(d̂t)

t1 is dropped out.
This rolling-window approach keeps the number of inducing
variables as M . In addition, only the sparse GPLVM with d̂t

dimension is updated, while the candidate sparse GPLVMs
with other dimensions remain the same. Consequently, the
class d̂t and its inducing variables U(d̂t)

t absorb the obser-
vations that are similar to it, while their number remains the
same.

Suppose the size of training data is t0, a candidate dimen-
sion d is called “fully trained” when the last updated inducing

variables U(d)
t0 is totally different from the initial one U(d)

0 ,
i.e., there is no row matched between them. It is acceptable
that some candidate dimensions are “partially trained” because
these candidate dimensions might be the perturbations. In prin-
cipal, we suggest to collect enough training data to guarantee
that the true latent dimensions are fully trained.

After classifying all the training data into proper classes
d ∈ D with inducing variables U(d)

t0 , the second step is to
determine the optimal latent dimension d0 under each class
d. Notice that the class d does not necessarily have d as
the optimal latent dimension. The reason that d 6= d0 is that
the initial inducing variable U(d)

0 at time 0 causes the wrong
arrangement of observations at the beginning, i.e., appending
an observation yt with true latent dimension d0 into U(d)

t ,
which then affects the following observations. However, it
does not impact the right classification of observations. The
optimal latent dimension d0 and latent states ΛΛΛ

(d0)
t0 for class

d are given by

(ΛΛΛ
(d0)
t0 , d0) = argmax

ΛΛΛ
(d′)
t0

,d′

p(U(d)
t0 |ΛΛΛ

(d′)
t0 , d′)p(ΛΛΛ

(d′)
t0 |d

′). (12)

Therefore, we substitute the notation U(d)
t0 with U(d0)

t0 and
construct the sparse GPLVM under d0 dimension by U(d0)

t0

and ΛΛΛ
(d0)
t0 .

The final step is to do the testing. Given the sparse GPLVMs
under different dimensions, the estimated dimension d̂t and
latent states x̂(d̂t)

t at time t is obtained via (9), and the inducing
variables are updated via (10) and (11). The procedures are
implemented by Algorithm 2.

Algorithm 2: Dynamic Dimensions

for d in D do
Set the first M samples as inducing variable U(d)

0 ;
Obtain ΛΛΛ

(d)
0 by optimizing (2);

Training:
for t = 1 to t0 do

Receive yt;
Find (x̂(d̂t)

t , d̂t) via (9);
Update U(d̂t)

t and ΛΛΛ
(d̂t)
t via (10) and (11);

for d in D do
Determine (ΛΛΛ

(d0)
t0 , d0) for U(d)

t0 via (12);
Testing:
for t = t0 + 1 to T do

Receive yt;
Find (x̂(d̂t)

t , d̂t) via (9);
Update U(d̂t)

t and ΛΛΛ
(d̂t)
t via (10) and (11);

IV. EXPERIMENTS

A. Synthetic test with a constant dimension

The observations are generated from

yt = Wxt + εt, (13)
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(a) Constant dimension.

(b) Dynamic dimensions.

Fig. 1. (a) The trajectory of posterior probability for each dimension under
a constant dimension assumption; (b) The error rate of predicted dimension
on testing data under a dynamic dimension setting.

where xt ∈ R3 is the latent state, yt ∈ R6 is the observation,
εt ∼ N (0, 0.01I), and W ∈ R6×3. Specifically, the elements
in W are randomly generated from -1 to 1, the xts are
generated from 5 different Gaussian distributed classes, and
the set of candidate dimensions is given by D = {2, 3, 4}. We
generate 300 samples in total, where the first 200 are set as
inducing variables while the remaining 100 are for testing.
From Fig. 1(a), the posterior probability p(dt|y1:t) always
reaches probability one for dt = 3, which is the true dimension
of the latent states. Moreover, dt = 3 quickly dominates the
other candidates. From Fig. 2, the obtained latent states in the
sequential mode converge to those of the offline mode only
under dt = 3, while the other dimensions differ significantly
between the sequential and offline modes.

B. Synthetic test with dynamic dimensions

The observations are again generated from

yt = Wtxt + εt, (14)

where yt ∈ R6 is an observation vector at time t, and
εt ∼ N (0, 0.01I). However, the true dimension of xt is
randomly sampled from D0 = {2, 3, 4}. The transformation
matrices Wt under the true dimensions D0 are denoted as

Fig. 2. The panels in the first column are the predicted latent states in
online mode while the panels in the second column are the latent states in
offline mode. The first row shows our online and offline methods under latent
dimension 2, respectively, while the second row presents 3-D plots for the
online and offline methods under latent dimension 3, respectively.

{W(2),W(3),W(4)}, where W(d) ∈ R6×d, d ∈ D0. In other
words,

yt = W(dt)xt + εt, (15)

when xt ∈ Rdt , and dt is the true latent dimension at t.
The elements in Wt are randomly generated from −2 to 2,
and the candidate dimensions are in the range from 2 to 5
(inclusively), where dimension 5 is set to be a candidate of
interference. We generated 2500 samples in total, where the
first 150 are set as inducing variables, the next 1850 samples
are treated as training data to classify the inducing variables,
and the remaining 500 are for testing. Figure 1(b) shows the
error rate among the last 500 samples, where the error rate on
testing data is defined by

et = 1−
∑t

t′=1[d̂t′ = dt′ ]

t
, (16)

where [i = j] is Iverson bracket such that [P ] = 1 when
statement P is true while [P ] = 0 when P is false. The error
prediction on testing data mostly comes from predicting the
true latent dimension with the perturbation dimension 5.

V. CONCLUSIONS

We developed a novel sequential sparse GPLVM by a rolling
window. Based on the SSGPLVM, we do not only handle the
constant dimension problem but also deal with latent states
whose dimensions change with time. In reality, the true latent
dimension might stay the same for a while and then increase
or decrease. The assumption used in developing our method,
however, is more general and can be applied on special cases
with minor modifications.
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