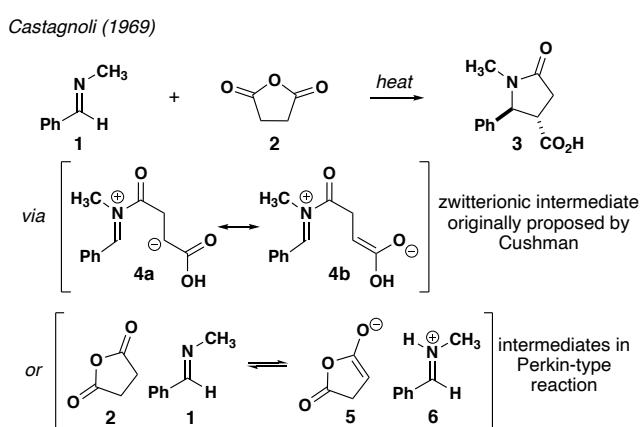

Mechanistic Investigation of Castagnoli-Cushman Multicomponent Reactions Leading to a 3-Component Synthesis of Dihydroisoquinolones

Sara Y. Howard,[†] Michael J. Di Maso,[†] Kristin Shimabukuro,[†] Noah P. Burlow,[†] Darlene Q. Tan,[†] James C. Fettinger,[†] Thomas C. Malig,[†] Jason E. Hein,[‡] and Jared T. Shaw^{†,*}

[†]Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616.

[‡]Department of Chemistry, University of British Columbia, 2036 Main Mall Vancouver, BC Canada V6T 1Z1.

Supporting Information Placeholder



ABSTRACT: The mechanisms for the 3- and 4-component variants of the Castagnoli-Cushman reaction (CCR) have been investigated. A series of crossover experiments were conducted to probe the structure and reactivity of known amide-acid intermediates for the 3- and 4-component variants of the CCR (3CR, 4CR). Control experiments paired with *in situ* reaction monitoring with infrared spectroscopy for the 4CR align with a mechanism in which amide-acids derived from maleic anhydride can reversibly form free amine and cyclic anhydride. Although this equilibrium is unfavorable, the aldehyde present is able to trap the primary amine through imine formation and react with the enol form of the anhydride through a Mannich-like mechanism. This detailed mechanistic investigation coupled with additional crossover experiments support an analogous mechanism for the 3CR and has led to the elucidation of new 3CR conditions with homophthalic anhydride, amines, and aldehydes to form dihydroisoquinolones in good yields and excellent diastereoselectivity. This work represents the culmination of more than a decade of mechanistic speculation for the 3 and 4-component variants of the CCR, enabling the design of new MCRs that exploit this novel mechanism.

Introduction

The Castagnoli-Cushman reaction (CCR) and its related 3- and 4-component reactions are powerful methods for the facile synthesis of densely substituted lactam products.^{1, 2} Lactams are commonly found in the core of natural products and other biologically relevant compounds, several of which have been synthesized using the CCR.³⁻⁶ The CCR was first discovered in 1969, when *N*-benzylidene methylamine and succinic anhydride were combined under refluxing conditions to form γ -lactam 3.⁷ This reaction typically proceeds with high diastereoselectivity for the thermodynamically favored trans diastereomer, however the mechanism for its formation has been disputed for some time.^{8, 9}

Lactam formation in the CCR can follow one of two mechanistic pathways. First, it was hypothesized that the reaction proceeds through an iminolysis pathway, forming *N*-acyl iminium ion 4 through acylation of the imine nitrogen (Figure 1). Subsequent intramolecular Mannich addition through the carboxylic acid enolate

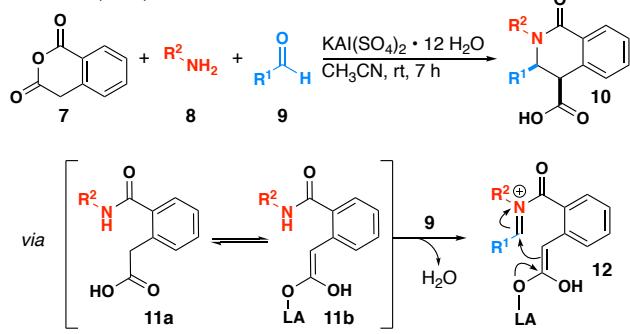
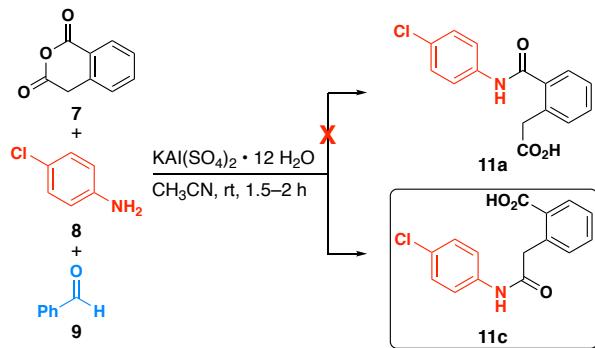


Figure 1. Initial discovery of the Castagnoli-Cushman Reaction and proposed reaction pathways.


4b leads to **3**. Alternatively, in analogy to the Perkin reaction, the CCR could proceed through Mannich addition of the anhydride enolate **5**, followed by *N*-acylation to form lactam **3**. Earlier studies by Cushman focused on the electronic and steric influences of the CCR with homophthalic anhydride and led to the acceptance of the former mechanistic pathway.⁸ Reactions with less reactive *N*-aryl and *N*-sulfonyl imines can be accelerated with hydrogen-bonding¹⁰ and basic catalysts,^{11,12} respectively.

The CCR also forms the basis of a 3-component reaction (3CR) of homophthalic anhydride, amines, and aldehydes with Lewis acid catalysts and additives.¹³⁻²³ In one case, a diacid is used as an anhydride precursor.²⁴ Similar zwitterionic intermediates were proposed for the 3CR of homophthalic anhydride with amines and aldehydes, wherein the amine attacks homophthalic anhydride to form amide-acid **11**, followed by condensation with the aldehyde **9** and successive Mannich addition (Figure 2A).¹⁵ Although these ions (**12**) are commonly invoked as intermediates, there is little precedent for their formation by the condensation of *N*-substituted amides with aldehydes. This proposed mechanism was supported by the isolation of what was thought to be regiosomer **11a**.¹⁵ However, a later study found that the isolated amide-acid intermediate was actually **11c** (Figure 2B).²⁴ It was suggested that a 3CR wherein amine, aldehyde, and homophthalic anhydride are simultaneously combined without additives was not possible, as amide-acid **11c** would be unproductive for lactam formation. These opposing results made it unclear how the 3CR proceeds to the lactam product if amide-acid **11a** is not formed.

A Azizian (2005)

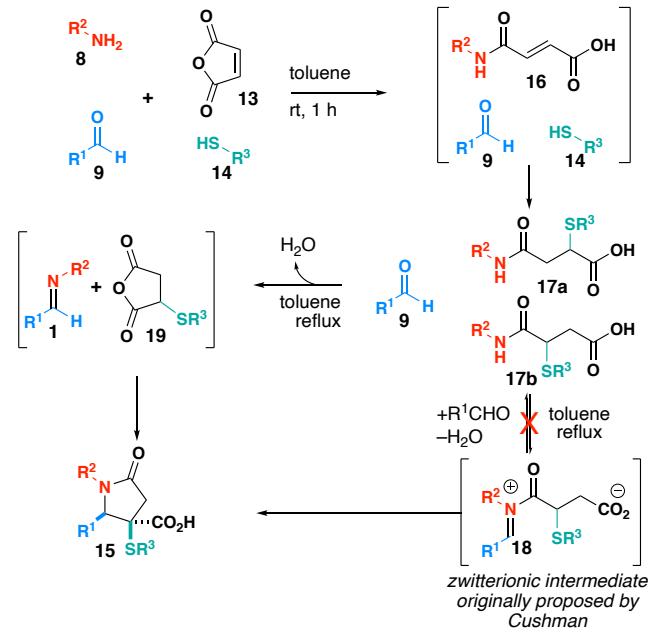

B Krasavin (2017)

Figure 2. A. Three-component variant and proposed mechanism. B. Observed amide-acid intermediate in the three-component variant of the Castagnoli-Cushman reaction.

The lactam-forming 4CR, developed in our group in 2007, emerged from initial reaction explorations of succinic anhydrides and imines.²⁵ Cushman used phenylsuccinic anhydride in refluxing chloroform as part of his mechanistic study of the CCR.⁸ Initially we

sought to replace the phenyl ring with a group that would both facilitate the reaction and serve as a functional handle for subsequent transformations; it was found that thioaryl succinic anhydride was suitable on both counts. After this discovery, a series of control experiments lead to the observation that pre-formation of either the imine or anhydride was unnecessary: simply mixing all four of the components and heating gave the lactam product in similar yield and diastereoselectivity. At the time of discovery, we assumed that the mechanism proceeded *via* the same zwitterionic intermediate originally proposed by Cushman (Figure 3). Specifically, we discovered that the imine, anhydride, and thiol lead to the room temperature formation of a mixture of amide-acid regiosomers. Heating this mixture with aldehyde led to a single regioisomer and diastereomer of product. This led us to propose that the amide nitrogen was condensing with the aldehyde to form *N*-acyl iminium ion **17**, analogous to the proposed 3CR mechanism (Figure 3). The previous work on the 4CR has described the scope and utility of the 4CR including the expansion to a variety of amines, aldehydes, and chiral thiols,²⁶ as well as applications to the synthesis of a complex natural product.^{4,27-30} Although there are other possible nucleophiles capable of conjugate addition, most are insufficiently nucleophilic or undergo competitive reaction with the aldehyde. As a result, the 4CR has remained limited to thiol reaction partners.

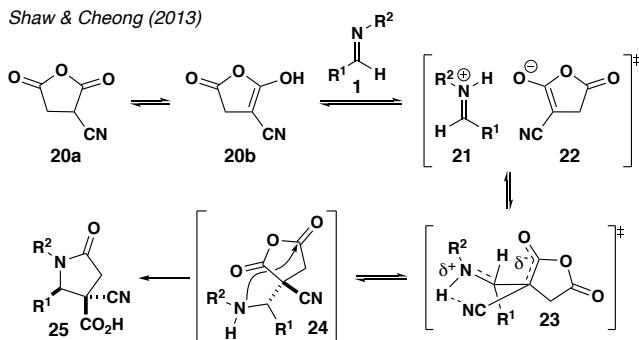
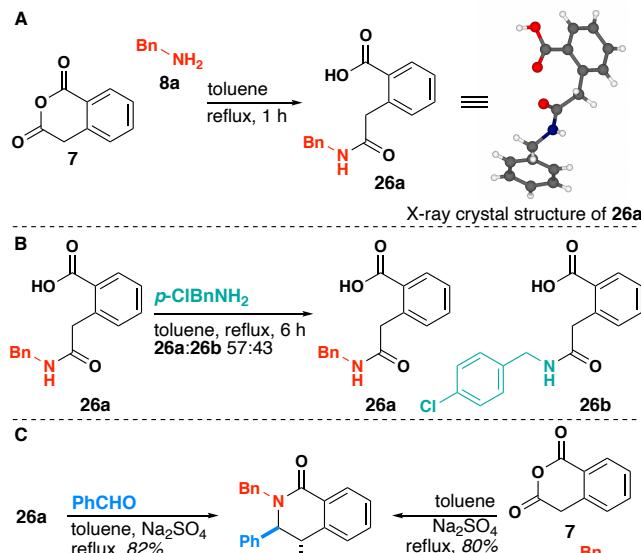


Figure 3. **17a** and **17b** have been isolated as intermediates in the 4CR, and lead to a single regioisomer and diastereomer of lactam **15**.

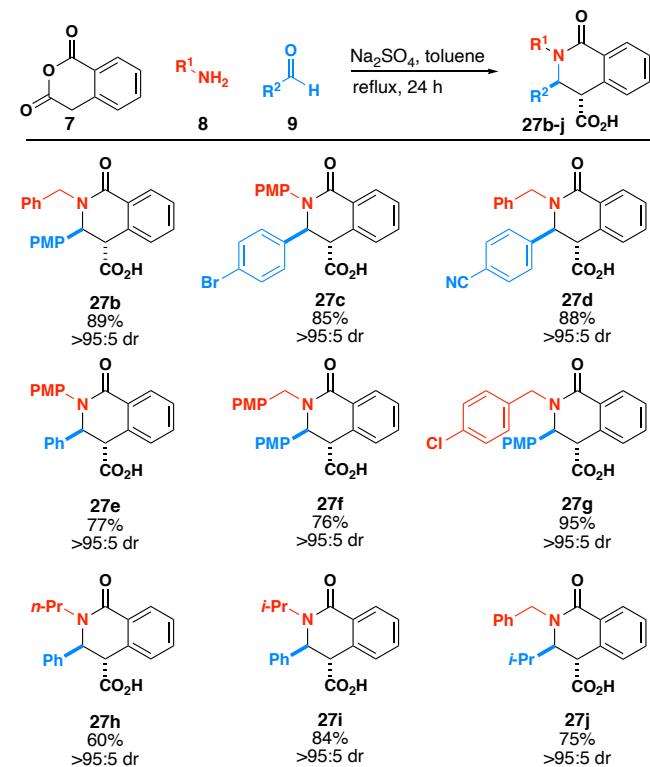
Later studies of cyano-succinic anhydride with imines revealed a *Mannich-like* mechanism was operative (Scheme 1). In the case of cyano-succinic anhydrides, computational studies suggest that a rapid enol-keto tautomerization of the anhydride enabled a reaction with the imine through a Zimmerman-Traxler-like six-membered ring transition state. (Scheme 1) Additionally, the carboxylic acid enolate **4** was computed to be unrealistically high in energy for the CCR.⁹ The Mannich-like mechanism for the reactions of cyano-succinic anhydride and imines served as a basis for explaining the previous reactions of Castagnoli and Cushman, as well as the original thiophenylsuccinic anhydride reaction and the ensuing reactions of cyano-glutaric anhydrides.^{18,31} Furthermore, this mechanistic picture is consistent with an earlier proposal made by Connon for the reactions of carbonyl compounds to form lactones.³² However, while this

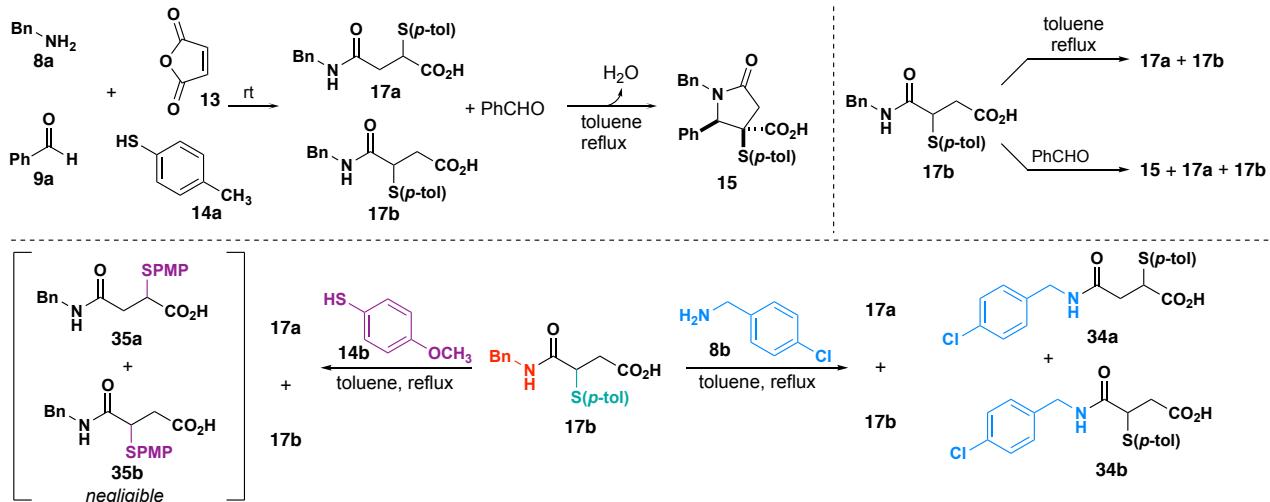
mechanism explains the reactions of thiosuccinic anhydrides with pre-formed imines, it does not explain how amide-acids **17a** and **17b** proceed to the lactam product. Herein we report detailed synthetic experiments and kinetic investigations that culminate in a novel mechanism for the 3- and 4-CR. This work upends our previous decade-old proposal and opens the door for the design of new multi-component reactions based on the reactivity that is described.


Shaw & Cheong (2013)

Scheme 1. Mannich-like mechanism computed for cyano-succinic anhydride.

Results and Discussion


Initial studies began by probing the mechanism of the 3CR. A series of experiments were conducted to understand the structure and reactivity of the amide-acid intermediate formed in this reaction. First, when homophthalic anhydride was heated in the presence of benzylamine for 1 h, a single amide-acid intermediate **26** was observed, the structure of which was determined by X-ray crystallography (Figure 4A). The same product was observed when the reaction was performed at room temperature for 24 h. This product was consistent with the regioisomer (**11b**) isolated and observed by Krasavin in the development of the 3CR of homophthalic diacid, aldehydes, and amines—as well as other similar reports.^{24, 33, 34} A crossover experiment was performed in order to probe the reaction mechanism of the 3CR. When amide-acid **26a** was isolated and treated with *p*-Cl-benzylamine in refluxing toluene for 6 h, a mixture of amide-acids


Figure 4. **A.** The reaction of homophthalic anhydride and benzylamine leads to a single regioisomer of amide-acid **26**. **B.** Crossover experiment with **26a** and *p*-chlorobenzylamine leads to a mixture of amide acids. **C.** Heating **26a** with benzaldehyde and Na_2SO_4 leads to a single diastereomer of CCR product.

26a and **26b** were observed by LCMS (Figure 4B). Next, amide-acid **26a** was isolated and combined with benzaldehyde and heated in toluene resulting in product **27a** in >95:5 dr and 84% yield (Figure 4C). Additionally, mixing homophthalic anhydride, benzylamine, and benzaldehyde in refluxing toluene yielded lactam **27a** in 82% yield and >95:5 dr for the trans diastereomer. To our knowledge, this is the first instance of a three-component CCR with homophthalic anhydride, amines, and aldehydes without the necessity of a Lewis acid leading to dihydroisoquinolone products **27**.

Interested in expanding the scope of this three-component reaction of homophthalic anhydride, amines, and aldehydes, we screened a variety of dehydrating agents. Interestingly, the reaction proceeds comparably regardless of the dehydrating agent used and can proceed in the absence of dehydrating agent as well.³⁵ When the reaction was run for 6 h, a mixture of cis and trans diastereomers was observed. Presumably, the kinetic cis diastereomer is formed first, and under reaction conditions it can epimerize to the trans diastereomer over time. Following screening, a series of substrates were synthesized using this three-component method. The reaction tolerates a variety of amine components, including primary and secondary aliphatic amines as well as benzyl and aryl amines. Both aromatic and aliphatic aldehyde derived imines also provided tetrahydroisoquinolone products in good yields and excellent diastereoselectivity for the trans diastereomer (Figure 5).

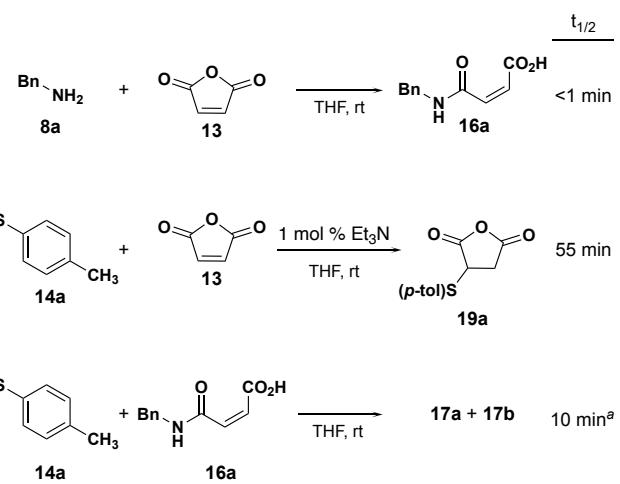
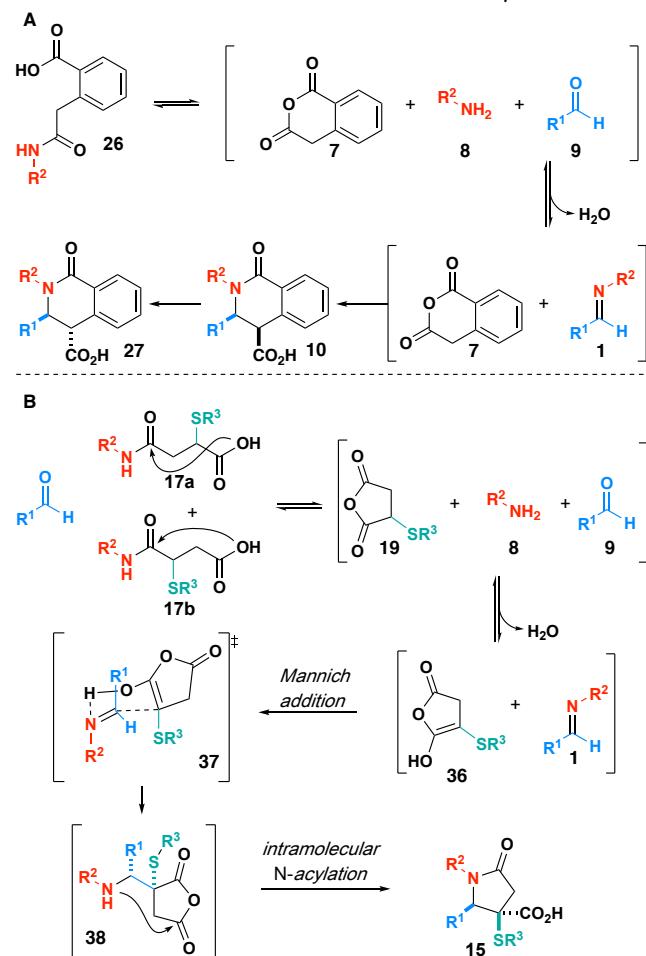

Figure 5. Substrate scope of the 3CR leading to dihydroisoquinolone products **27**.

Figure 6. (Top left) The lactam-forming 4CR proceeds via isomeric amide-acids **17a** and **17b**. (Top right) Isolated **17b** equilibrates with regioisomer **17a** under refluxing conditions, and in the presence of benzaldehyde proceeds to product. (Bottom) Isolated **17b** undergoes regioisomerization and amide scrambling when heated in the presence of **8b**.

Similar crossover experiments were performed for the 4CR (Figure 6). Several experimental observations were important in deciphering the mechanism: (1) At room temperature, the mixture of maleic anhydride, benzylamine, *p*-tolSH, and benzaldehyde led to the quantitative production of a 1:1 mixture of amide-acid regioisomers **17a** and **17b**. (2) Heating this mixture under anhydrous refluxing toluene conditions led to the formation of a single regioisomer of product, γ -lactam **15a**. (3) Additionally, **17a** and **17b** were also observed when **17b** was prepared, separated from **17a**, and refluxed independently; also, when benzaldehyde was added to **17b** and carried to partial conversion, a mixture of **17a** and **17b** was produced along with lactam **15a**. Two final experiments were informative. When isolated **17b** was heated in the presence of a second thiophenol (*p*-methoxythiophenol), **17a** and **17b** were observed as expected while the products of thiol exchange (**35a** and **35b**) were negligible by NMR and LCMS.³⁵ When this same experiment was executed in the presence of a second amine (*p*-Cl-benzylamine), **17a** and **17b** were observed in addition to the exchange products **34a** and **34b**.

Further investigation of the relative rates of the potential first steps leading to **17a** and **17b** using infrared spectroscopy *in situ* (React-IRTM) to monitor reaction progress was informative (Scheme 2). First, acylation of benzylamine with maleic anhydride proceeds instantaneously at ambient temperature in THF with a half-life ($t_{1/2}$) of less than one minute. Second, the conjugate addition of *p*-tolSH to maleic anhydride showed no background rate. Consistent with the conditions for the reaction on preparative scale, this reaction proceeded ($t_{1/2}$ =55 min) at room temperature once a catalytic quantity of triethylamine was added. The reaction of **16a** with *p*-tolSH was found to have a more complex kinetic profile than the previous reactions and the ($t_{1/2}$) was not determined. However, it was found that stirring the reaction at room temperature results in 50% conversion to a mixture of amide-acids **17a** and **17b** in ten minutes. Taken together, these experiments support that **17a** and **17b** are intermediates to a reaction with benzaldehyde that leads to the final formation of the lactam 4CR product. Further control experiments, including the investigation of natural abundance kinetic isotope


^a Time to reach 50% conversion.

Scheme 2. Relative rates of the addition of benzylamine and *p*-tolSH to maleic anhydride.

effects, failed to produce any insight into the final critical steps of this 4CR.¹⁶

Based on these results, we hypothesize that the mechanism of the 3 and 4-CR both proceed through the initial formation of amide-acids **26** and **17** respectively, which are in equilibrium with the anhydride (**7**, **19**) and amine **8** (Figure 7A,7B). In this scenario, a carboxylic acid would serve as a nucleophile capable of breaking an amide bond, which was consistent with the exchange reactions described above. Similar reactions have also been described in the literature.³⁶⁻³⁸ The mechanistic picture that emerged for the 3CR involves the attack of the amine on the phenylacetyl carbonyl of homophthalic anhydride to provide amide-acid **26**, which is in equilibrium with homophthalic anhydride **7** and amine **8** (Figure 7A). In the presence of aldehyde, the amine can condense to form imine, which can then proceed through Mannich addition to provide the *cis* product **10**. Under refluxing conditions, the *cis* lactam epimerizes to the *trans* isomer **27** over 24 h. Furthermore, the 4CR is consistent with a similar mechanism where rapid formation of the amide-acid regioisomers **17** (Figure 7B), followed by equilibration of the regiosomer amide-

acids with their corresponding anhydride **19**. Although this process is unfavorable, it is driven forward by the subsequent rapid formation of the imine. Once the imine is formed, it can react with the anhydride through a Mannich-like mechanism in a Zimmerman-Traxler Transition State **37** to form the γ -lactam **15**.

Figure 7. A. Proposed mechanism of the three-component CCR. **B.** Proposed mechanism of the four-component CCR

In summary, we have provided experimental evidence for the proposed mechanism of the 3- and 4CRs of the Castagnoli-Cushman reaction. These reactions proceed through analogous amide-acid intermediates which are formed through initial nucleophilic attack of the amine on the anhydride. This half-amide is in equilibrium with the anhydride and amine, which, in the presence of aldehyde, can condense to form imine and proceed through the classic CCR. This mechanistic investigation led to the development of new reaction conditions for the 3CR and allowed for the synthesis of a small series of dihydroisoquinolone products derived from alkyl and aryl amines and aldehydes. The multicomponent variants of the CCR have been shown to proceed with comparable substrate tolerance, yields, and reactivities to their classic CCR counterparts. The utility of multicomponent CCRs rests in the ability to achieve γ - and δ -lactams in a one pot single reaction format. Our new understanding of the mechanism of the 3CR will enable the development of novel

multicomponent reactions using anhydrides and anhydride derivatives with similar reactivity to homophthalic anhydride.

Experimental Procedures

Materials and Instrumentation

Unless otherwise specified, all commercially available reagents were used as received. All reactions using dried solvents were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumina. ^1H NMR spectra and proton- decoupled ^{13}C NMR spectra were obtained on a 400 MHz or 800 MHz Bruker or 600 MHz Varian NMR spectrometer. ^1H Chemical shifts (δ) are reported in parts per million (ppm) relative to TMS ($\text{s}, \delta 0$). Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hexet), and m (multiplet). Complex splitting will be described by a combination of these abbreviations, i.e. dd (doublet of doublets). ^{13}C NMR chemical shifts are reported relative to CDCl_3 ($\text{t}, \delta 77.4$) unless otherwise noted. High-resolution mass spectra were recorded on either positive or negative ESI mode. Melting points were taken on an EZ-melting apparatus and were uncorrected. Infrared spectra were taken on a Mettler Toledo ReactIR 700 (serial number B929971514) with a liquid N_2 MCT detector fitted with a DiComp probe (serial number B939349478). The system was filled with liquid N_2 and allowed to cool for 1 h before use. Chromatographic purifications were performed by flash chromatography with silica gel (Fisher, 40–63 μm) packed in glass columns or by use of a Teledyne Isco Combi-Flash. The eluting solvent for the purification of each compound was determined by thin-layer chromatography (TLC) on glass plates coated with silica gel 60 F254 and visualized by ultraviolet light.

Note: for the three-component reaction, the reaction mixture must be heated to at least 110 °C in order to fully epimerize from the cis to trans diastereomer. Use of aluminium beads resulted in poor diastereoselectivity, whereas silicone oil baths led to excellent diastereoselectivity.

Synthesis of Amide-Acids for Crossover Experiments

2-(2-(benzylamino)-2-oxoethyl)benzoic acid (26a): To a flame dried round bottom flask was added homophthalic anhydride (0.81 g, 5.0 mmol) and dissolved in CH_2Cl_2 (10.0 mL, 0.5 M). Benzylamine (0.54 mL, 5.0 mmol) was added, and the reaction was stirred at rt for 24 h. The reaction was concentrated in vacuo and characterized without further purification to provide **26a** (1.3 g, 96%), a single regioisomer, as an off-white crystalline solid: mp range 135.3–140.3 °C; ^1H NMR (400 MHz, DMSO- d_6) δ 12.87 (s, 1H), 8.38 (t, $J = 6.0$ Hz, 1H), 7.83 (dd, $J = 7.7, 1.5$ Hz, 1H), 7.48 (td, $J = 7.5, 1.5$ Hz, 1H), 7.38–7.17 (m, 7H), 4.27 (d, $J = 5.9$ Hz, 2H), 3.92 (s, 2H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, DMSO- d_6) δ 170.1, 168.6, 139.6, 137.0, 131.9, 131.5, 131.2, 130.2, 128.2, 127.1, 126.7 (2 carbons), 42.2, 40.5; IR: 2961.0 (broad), 2153.4, 1716.5, 1619.0, 1552.3 cm^{-1} ; AMM (ESI-TOF) m/z calcd for $\text{C}_{16}\text{H}_{14}\text{NO}_3^-$ [M-H]⁻ 268.0979, found 268.0981.

2-(2-((4-chlorobenzyl)amino)-2-oxoethyl)benzoic acid (26b): To a flame dried round bottom flask was added homophthalic anhydride (0.081 g, 0.5 mmol) and dissolved in toluene (1.0 mL, 0.5 M). *p*-chlorobenzylamine (0.060 mL, 0.5 mmol) was added, and the reaction was stirred for 30 minutes. The reaction was concentrated in vacuo and characterized without further purification to afford **26b**, a single regioisomer, as a white crystalline solid (0.134 g, 96%): mp

range 172.7–173.9 °C; ^1H NMR (400 MHz, DMSO-d6) δ 8.40 (t, J = 6.1 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.42 – 7.23 (m, 6H), 4.25 (d, J = 6.0 Hz, 2H), 3.92 (s, 2H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, DMSO-d6) δ 170.4, 168.7, 138.8, 137.0, 132.1, 131.7, 131.3, 131.2, 130.3, 129.1, 128.2, 126.9, 41.7, 40.7.; AMM (ESI-TOF) m/z calcd for $\text{C}_{16}\text{H}_{13}\text{ClNO}_3^-$ [M-H] $^-$ 302.0589, found 302.0594.

Synthesis of S1 and S2: To a flame dried round bottom flask was added (1.55 g, 7 mmol) and *p*-chlorobenzylamine (0.851 mL, 7 mmol) and dissolved in acetone (70 mL, 0.1 M). After 10 minutes, K_2CO_3 (0.967 mg, 7 mmol), KI (1.162 g, 7 mmol), and *p*-methoxybenzylchloride (1.03 mL, 7 mmol) were added, and the reaction was stirred overnight. The crude reaction mixture was concentrated in vacuo, then dissolved in EtOAc and H_2O , extracted with EtOAc (3x 20 mL), and dried over Na_2SO_4 . Purification by gradient flash column chromatography (20–100% EtOAc:Hexanes) afforded regiosomer **S1** as an off white amorphous solid (0.393 g, 12%) and **S2** (0.080 g, 3%) as an off white amorphous solid.

4-methoxybenzyl 4-((4-chlorobenzyl)amino)-4-oxo-3-(*p*-tolylthio)butanoate (S1): The structure of **S1** was assigned based on the comparison of *J* coupling values.²⁵ ^1H NMR (400 MHz, CDCl_3) δ 7.27 (dd, J = 8.4, 6.4 Hz, 4H), 7.23 – 7.18 (m, 2H), 7.14 – 7.02 (m, 4H), 6.94 – 6.82 (m, 2H), 6.66 (s, 1H), 5.15 – 4.94 (m, 2H), 4.46 – 4.28 (m, 2H), 3.95 (dd, J = 7.5, 6.3 Hz, 1H), 3.80 (s, 3H), 3.12 (dd, J = 16.9, 7.5 Hz, 1H), 2.78 (dd, J = 16.9, 6.3 Hz, 1H), 2.32 (s, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 170.9, 169.9, 159.7, 138.8, 136.4, 133.3, 133.1, 130.2, 130.1, 129.1, 128.8, 128.5, 127.7, 114.0, 66.7, 55.3, 48.3, 43.3, 36.7, 21.1.; AMM (ESI-TOF) m/z calcd for $\text{C}_{26}\text{H}_{26}\text{ClNO}_4\text{SNa}^+$ [M+Na] $^+$ 506.1163, found 506.1182.

4-methoxybenzyl 4-((4-chlorobenzyl)amino)-4-oxo-2-(*p*-tolylthio)butanoate (S2): The structure of **S2** was assigned based on the comparison of *J* coupling values.²⁵ ^1H NMR (400 MHz, CDCl_3) δ 7.30 – 7.09 (m, 8H), 7.02 (d, J = 7.9 Hz, 2H), 6.90 – 6.80 (m, 2H), 6.12 (t, J = 5.8 Hz, 1H), 5.07 (d, J = 12.0 Hz, 1H), 4.95 (d, J = 11.9 Hz, 1H), 4.39 – 4.23 (m, 2H), 4.07 (dd, J = 9.3, 5.8 Hz, 1H), 3.79 (s, 3H), 2.73 (dd, J = 15.1, 9.3 Hz, 1H), 2.58 (dd, J = 15.2, 5.8 Hz, 1H), 2.30 (s, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 171.5, 169.5, 159.6, 139.0, 136.6, 134.5, 133.2, 130.1, 129.8, 129.0, 128.7, 127.9, 127.5, 113.8, 66.9, 55.3, 46.3, 42.8, 38.2, 21.2.; AMM (ESI-TOF) m/z calcd for $\text{C}_{26}\text{H}_{26}\text{ClNO}_4\text{SNa}^+$ [M+Na] $^+$ 506.1163, found 506.1173.

4-((4-chlorobenzyl)amino)-4-oxo-2-(*p*-tolylthio)butanoic acid (34a): To a flame dried round bottom flask was added **S2** (0.050 g, 0.103 mmol) and dissolved in dichloromethane (5.15 mL, 0.02 M). TFA (0.052 mL, 0.2M) was added and the reaction was stirred overnight. The reaction was concentrated in vacuo. Hexanes (10 mL) was added, followed by diethyl ether (10 mL) and a white solid precipitated out. The solid was filtered and used without further purification (0.023 g, 62%); mp range 130.1–131.9 °C; ^1H NMR (400 MHz, MeOD) δ 7.41 – 7.36 (m, 2H), 7.32 – 7.23 (m, 4H), 7.15 (d, J = 7.9 Hz, 2H), 4.32 (d, J = 3.2 Hz, 2H), 3.99 (dd, J = 8.8, 6.6 Hz, 1H), 2.79 (dd, J = 15.4, 8.8 Hz, 1H), 2.63 (dd, J = 15.4, 6.6 Hz, 1H), 2.33 (s, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CD_3OD) δ 174.7, 172.4, 140.1, 138.8, 135.3, 133.9, 130.8, 130.1, 130.1, 129.5, 47.9, 43.3, 39.0, 21.2.; AMM (ESI-TOF) m/z calcd for $\text{C}_{18}\text{H}_{17}\text{ClNO}_3\text{S}^-$ [M-H] $^-$ 362.0623, found 362.0626.

4-((4-chlorobenzyl)amino)-4-oxo-3-(*p*-tolylthio)butanoic acid (34b): To a flame dried round bottom flask was added **S1** (0.384 g, 0.8 mmol) and dissolved in dichloromethane (40.0 mL, 0.02 M). TFA (4.0 mL, 0.2M) was added and the reaction was stirred overnight.

The reaction was concentrated in vacuo. Hexanes (15 mL) was added, followed by diethyl ether (15 mL) and a white solid precipitated out. The solid was filtered and used without further purification (0.243 g, 83%); mp 123.9–126.6 °C; ^1H NMR (600 MHz, DMSO-d6) δ 8.69 (t, J = 6.1 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.7 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 4.24 (qd, J = 15.5, 6.0 Hz, 2H), 3.97 (dd, J = 9.5, 5.3 Hz, 1H), 2.76 (dd, J = 16.7, 9.5 Hz, 1H), 2.29 (s, 3H), 1.09 (t, J = 7.0 Hz, 2H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, DMSO-d6) δ 172.3, 170.3, 138.7, 138.3, 133.8, 131.7, 130.1, 129.4, 129.1, 128.5, 46.5, 42.0, 37.0, 21.1.; AMM (ESI-TOF) m/z calcd for $\text{C}_{18}\text{H}_{17}\text{ClNO}_3\text{S}^-$ [M-H] $^-$ 362.0623, found 362.0628.

2-benzylisoquinoline-1,3(2H,4H)-dione (S3): To a flame dried round bottom flask was added homophthalic anhydride (0.81 mg, 0.5 mmol) and dissolved in toluene (1.0 mL). Benzylamine (0.0054 mL, 5.0 mmol) was added, and the reaction was stirred at reflux for 24 h. The reaction was then cooled and concentrated in vacuo. Purification by gradient flash column chromatography (20–100% EtOAc:Hexanes) **S3** (69.8 mg, 56%), as an off-white amorphous solid: ^1H NMR (400 MHz, CDCl_3) δ 8.22 (dd, J = 8.0, 1.4 Hz, 1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.32 – 7.26 (m, 3H), 7.26 – 7.22 (m, 1H), 5.19 (s, 2H), 4.07 (s, 2H); $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 169.9, 164.9, 137.1, 134.1, 133.7, 129.3, 129.0, 128.4, 127.8, 127.5, 127.1, 125.4, 43.3, 36.5.; AMM (ESI-TOF) m/z calcd for $\text{C}_{16}\text{H}_{14}\text{NO}_2^+$ [M+H] $^+$ 252.1019, found 252.1024.

Liquid Chromatography–Mass Spectrometry Experiments

Three-component amide-exchange experiment: To a flame dried microwave vial was added **26a** (0.135 g, 0.5 mmol), *p*-chlorobenzylamine (0.036 mL, 0.5 mmol), and dissolved in toluene (4.5 mL, 0.5 M) and heated to reflux. After 6 h the reaction was cooled to room temperature and concentrated in vacuo. The mixture was analyzed using Liquid Chromatography–Mass Spectrometry which contained masses corresponding to amides **26a**, and **26b**.

Imide exchange experiment: To a flame dried microwave vial was added **S3** (0.055 g, 0.22 mmol). **S3** was dissolved in toluene, (1.0 mL, 0.22 M), then *p*-chlorobenzylamine (0.027 mL, 0.22 mmol) was added and the reaction was heated to reflux. After 24 h, the reaction was cooled to room temperature and concentrated in vacuo. The mixture was analyzed using Liquid Chromatography–Mass Spectrometry which contained masses corresponding only to **S3** and *p*-chlorobenzylamine.

Four-component amide-exchange experiment: To a flame dried microwave vial was added **17b** (0.100 g, 0.30 mmol), *p*-chlorobenzylamine (0.036 mL, 0.30 mmol), and dissolved in toluene (4.5 mL, 0.066 M and heated to reflux. After 17 h the reaction was cooled to room temperature and concentrated in vacuo. The reaction was cooled to room temperature and concentrated in vacuo. The mixture was analyzed using Liquid Chromatography–Mass Spectrometry which contained masses corresponding to amides **17a**, **17b**, **34a**, and **34b**.

Four-component thiol-exchange experiment: To a flame dried microwave vial was added **17b** (0.100 g, 0.30 mmol), *p*-methoxythiophenol (0.036 mL, 0.30 mmol), and dissolved in toluene (4.5 mL, 0.066M) and heated to reflux. After 17 h the reaction was cooled to room temperature and concentrated in vacuo. The mixture was analyzed using Liquid Chromatography–Mass Spectrometry, which

contained masses corresponding to **17a**, **17b**, and negligible quantities of **35a** and **35b**.

General procedure for the synthesis of dihydroisoquinolones (27): Homophthalic anhydride (81.0 mg, 0.5 mmol) and Na₂SO₄ (1 equiv) were added to a flame dried microwave vial under argon and dissolved in toluene (1.0 mL, 0.5 M). Aldehyde (0.5 mmol, 1 equiv) and amine (0.5 mmol, 1 equiv) were added sequentially, and the vial was sealed shut. The vial was then placed in a silicone oil bath and heated to 110 °C. After 24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified using gradient flash column chromatography (EtOAc:Hexanes).

trans-2-benzyl-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27a): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (40-100% EtOAc:Hexanes) to afford **27a** (0.150 g, 84%), a single diastereomer, as a white solid. **27a** was also prepared on a 1 mmol scale. In this experiment, **27a** was purified by sequential trituration from hexanes then ether to afford (0.285 g, 80%), a single diastereomer, as a white solid. Finally, **27a** was also prepared in two-steps from **26a**. **26a** (0.134 g, 0.5 mmol) and Na₂SO₄ (0.071 g, 0.5 mmol) was added to a flame dried microwave vial under argon and dissolved in toluene. Benzaldehyde (0.051 mL, 0.5 mmol) was added to the reaction mixture and the vial was sealed shut. The vial was then placed in a silicone oil bath and heated to 110 °C. The vial was then placed in a silicone oil bath and heated to 110 °C. After 24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified using gradient flash column chromatography (EtOAc:Hexanes) to afford **27a** (0.146 g, 82%), a single diastereomer, as a white solid: mp 220.2-224.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.29 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.46 (td, *J* = 25.4, 7.5, 1.4 Hz, 2H), 7.26 – 7.21 (m, 5H), 7.18 – 7.12 (m, 3H), 7.11 – 7.06 (m, 1H), 7.06 – 7.02 (m, 2H), 5.66 (d, *J* = 14.5 Hz, 1H), 5.11 (s, 1H), 3.87 (s, 1H), 3.70 (d, *J* = 14.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.1, 163.8, 138.2, 136.5, 132.3, 131.3, 129.3, 129.1, 128.9 (2 carbons), 128.8, 128.4, 128.3, 128.1, 127.6, 126.3, 60.1, 50.9, 49.0.; AMM (ESI-TOF) *m/z* calcd for C₂₃H₁₈NO₃[−] [M-H][−] 356.1292, found 356.1293.

trans-2-benzyl-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27b): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27b** (0.142 g, 89%), a single diastereomer, as a yellow solid: mp 102.4-105.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.28 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.46 (td, *J* = 20.9, 7.5, 1.4 Hz, 2H), 7.23 (dd, *J* = 6.9, 2.7 Hz, 2H), 7.13 (dd, *J* = 5.3, 1.9 Hz, 3H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.76 – 6.74 (m, 2H), 5.64 (d, *J* = 14.7 Hz, 1H), 5.04 (s, 1H), 3.83 (s, 1H), 3.74 (s, 3H), 3.68 (d, *J* = 14.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.3, 163.8, 159.5, 136.7, 132.4, 131.6, 130.3, 129.5, 129.3, 129.0, 128.9, 128.5, 128.5, 127.7, 127.7, 114.4, 59.8, 55.4, 51.2, 49.0.; AMM (ESI-TOF) *m/z* calcd for C₂₄H₂₀NO₄[−] [M-H][−] 386.1398, found 386.1400.

trans-3-(4-bromophenyl)-2-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27c): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified first by trituration with hexanes, followed by gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27c** (0.192, 85%) a single diastereomer, as an off-white solid: ¹H NMR matches reported literature spectrum²⁴; ¹H NMR (400 MHz, DMSO-d6) δ 7.98 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.8

Hz, 4H), 7.25 (d, *J* = 8.7 Hz, 3H), 7.16 (d, *J* = 8.3 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 5.62 (s, 1H), 4.19 (s, 1H), 3.74 (s, 3H).

trans-2-benzyl-3-(4-cyanophenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27d): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27d** (0.167 g, 88%), a single diastereomer, as an off-white amorphous solid: ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.54 – 7.37 (m, 4H), 7.23 – 7.16 (m, 2H), 7.16 – 7.02 (m, 6H), 5.43 (d, *J* = 14.5 Hz, 1H), 5.18 (s, 1H), 3.96 (d, *J* = 14.5 Hz, 1H), 3.81 (d, *J* = 1.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 163.6, 143.7, 135.9, 132.7, 132.7, 130.7, 129.2, 129.2, 129.1, 128.9, 128.6, 128.4, 127.9, 127.1, 118.1, 112.2, 60.1, 50.7, 49.6.; AMM (ESI-TOF) *m/z* calcd for C₂₄H₁₇N₂O₃[−] [M-H][−] 381.1245, found 381.1246.

trans-2-(4-methoxyphenyl)-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27e): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27e** (0.144 g, 77%), a single diastereomer, as a brown amorphous solid: ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.20 (dd, *J* = 5.8, 3.4 Hz, 1H), 7.41 (dd, *J* = 5.7, 3.3 Hz, 2H), 7.21 – 7.14 (m, 6H), 7.13 – 7.08 (m, 2H), 6.78 – 6.71 (m, 2H), 5.52 (d, *J* = 1.4 Hz, 1H), 3.96 (d, *J* = 1.5 Hz, 1H), 3.70 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 164.3, 158.5, 139.0, 134.9, 132.7, 132.6, 129.6, 129.3, 128.9, 128.7, 128.5, 128.2, 128.1, 126.6, 114.4, 65.3, 55.4, 51.7.; AMM (ESI-TOF) *m/z* calcd for C₂₃H₁₈NO₄[−] [M-H][−] 372.1241, found 372.1241.

trans-2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27f): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (EtOAc:Hexanes) to afford **27f** (0.158 g, 76%), a single diastereomer as a yellow amorphous solid: ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.21 (m, 1H), 7.43 (qt, *J* = 7.4, 3.6 Hz, 2H), 7.22 – 7.13 (m, 2H), 7.08 (dd, *J* = 6.9, 1.8 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.79 – 6.66 (m, 4H), 5.57 (d, *J* = 14.4 Hz, 1H), 5.10 – 5.01 (m, 1H), 3.82 (d, *J* = 1.5 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.63 (d, *J* = 14.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.5, 163.7, 159.3, 159.0, 132.2, 131.6, 130.3, 130.2, 129.3, 129.1, 128.8, 128.7, 128.3, 127.5, 114.2, 113.7, 59.5, 55.3, 55.2, 51.2, 48.3.; AMM (ESI-TOF) *m/z* calcd for C₂₅H₂₂NO₅[−] [M-H][−] 416.1503, found 416.1506.

trans-2-(4-chlorobenzyl)-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27g): Prepared according to the general three component reaction procedure. The crude reaction mixture was purified by gradient flash column chromatography (EtOAc:Hexanes) to afford **27g** (0.200 g, 95%), a single diastereomer, as a white solid: mp range 247.3-249.3 °C; ¹H NMR (400 MHz, DMSO-d6) δ 7.98 (dd, *J* = 7.2, 2.0 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.30 (d, *J* = 2.3 Hz, 4H), 7.23 – 7.17 (m, 1H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.79 (d, *J* = 8.7 Hz, 2H), 5.22 (d, *J* = 15.1 Hz, 1H), 5.18 (s, 1H), 4.03 (s, 1H), 3.84 (d, *J* = 15.0 Hz, 1H), 3.66 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-d6) δ 172.1, 163.5, 158.7, 136.5, 133.9, 132.1, 131.8, 130.8, 130.0, 129.7, 128.9, 128.2, 128.0, 127.3, 127.0, 114.1, 60.8, 55.1, 51.0, 48.6.; IR: 2949.0, 2831.6, 1697.8, 1641.5 cm^{−1}; AMM (ESI-TOF) *m/z* calcd for C₂₄H₁₉ClNO₄[−] [M-H][−] 420.1008, found 420.1011.

trans-1-oxo-3-phenyl-2-propyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (27h): Homophthalic anhydride (162.0 mg, 1.0 mmol)

and Na_2SO_4 (142.0 mg, 1 mmol) were added to a flame dried microwave vial under argon and dissolved in toluene (2.0 mL, 0.5 M). Benzaldehyde (0.102 mL, 1.0 mmol) and propylamine (0.082 mL, 1.0 mmol) were added sequentially, and the vial was sealed shut. The vial was then placed in a silicone oil bath and heated to 115 °C. After 24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified using gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27h** (0.185 g, 60%), a single diastereomer, as a white amorphous solid: ^1H NMR (400 MHz, CDCl_3) δ 8.21 – 8.08 (m, 1H), 7.40 (td, J = 6.9, 4.0 Hz, 2H), 7.22 (d, J = 6.4 Hz, 3H), 7.15 – 7.08 (m, 1H), 7.08 – 7.02 (m, 2H), 5.29 (s, 1H), 4.09 – 3.97 (m, 1H), 3.94 (s, 1H), 2.82 (ddd, J = 14.0, 8.8, 5.8 Hz, 1H), 1.62 (dp, J = 14.6, 7.1 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H); ^{13}C { ^1H } NMR (101 MHz, CDCl_3) δ 174.5, 164.2, 138.6, 132.1, 131.7, 131.7, 129.4, 129.0, 128.8, 128.5, 128.0, 126.2, 61.1, 51.2, 48.7, 20.8, 11.3.; AMM (ESI-TOF) m/z calcd for $\text{C}_{19}\text{H}_{20}\text{NO}_3^+$ [M+H]⁺ 310.1438, found 310.1437.

trans-2-isopropyl-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (**27i**): Homophthalic anhydride (162.0 mg, 1.0 mmol) and Na_2SO_4 (142.0 mg, 1 mmol) were added to a flame dried microwave vial under argon and dissolved in toluene (2.0 mL, 0.5 M). Benzaldehyde (0.102 mL, 1.0 mmol) and isopropylamine (0.082 mL, 1.0 mmol) were added sequentially, and the vial was sealed shut. The vial was then placed in a silicone oil bath and heated to 115 °C. After 24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified using gradient flash column chromatography (20-100% EtOAc:Hexanes) to afford **27i** (0.261 g, 84%), a single diastereomer, as a white amorphous solid: ^1H NMR (400 MHz, CDCl_3) δ 8.16 (dd, J = 7.5, 1.6 Hz, 1H), 7.43 – 7.31 (m, 2H), 7.18 (s, 3H), 7.05 (ddd, J = 12.8, 7.5, 2.0 Hz, 3H), 5.34 (d, J = 1.6 Hz, 1H), 4.98 (hept, J = 7.0 Hz, 1H), 3.88 (d, J = 1.6 Hz, 1H), 1.21 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H); ^{13}C { ^1H } NMR (101 MHz, CDCl_3) δ 174.6, 164.1, 140.4, 132.1, 131.5, 130.1, 129.1, 128.6, 128.6, 128.0, 127.6, 126.2, 56.6, 52.2, 46.4, 20.3, 20.0.; AMM (ESI-TOF) m/z calcd for $\text{C}_{19}\text{H}_{20}\text{NO}_3^+$ [M+H]⁺ 310.1438, found 310.1438.

trans-2-benzyl-3-isopropyl-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (**27j**): Homophthalic anhydride (162.0 mg, 1.0 mmol) and Na_2SO_4 (142.0 mg, 1 mmol) were added to a flame dried microwave vial under argon and dissolved in toluene (2.0 mL, 0.5 M). Isobutyraldehyde (0.091, 1.0 mmol) and benzylamine (0.109 mL, 1.0 mmol) were added sequentially, and the vial was sealed shut. The vial was then placed in a silicone oil bath and heated to 115 °C. After 24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified using gradient flash column chromatography (EtOAc:Hexanes) to afford **27j** (0.243 g, 75%), a single diastereomer, as a yellow amorphous solid: ^1H NMR (400 MHz, CDCl_3) δ 8.15 (dd, J = 7.4, 1.7 Hz, 1H), 7.53 – 7.40 (m, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 7.19 (dd, J = 7.2, 1.6 Hz, 1H), 7.11 (t, J = 7.3 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 5.54 (d, J = 14.5 Hz, 1H), 3.96 (d, J = 14.5 Hz, 1H), 3.75 (s, 1H), 3.71 (dd, J = 7.0, 1.3 Hz, 1H), 1.91 (h, J = 6.8 Hz, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.72 (d, J = 6.7 Hz, 3H); ^{13}C { ^1H } NMR (101 MHz, MeOD) δ 174.9, 166.0, 138.5, 136.8, 133.5, 130.4, 130.1, 129.5, 129.4, 129.1, 128.5, 128.5, 65.6, 52.1, 45.9, 32.9, 20.2, 19.2.; AMM (ESI-TOF) m/z calcd for $\text{C}_{20}\text{H}_{22}\text{NO}_3^+$ [M+H]⁺ 324.1594, found 324.1595.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

The supporting information contains experimental procedures, characterization details including ^1H and ^{13}C NMR spectra, and LCMS traces.

AUTHOR INFORMATION

Corresponding Author

* Jared T. Shaw jtshaw@ucdavis.edu

Present Addresses

† If an author's address is different than the one given in the affiliation line, this information may be included here.

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

[†] It should be noted that N,O -acetal byproducts of the CCR, which are thought to proceed through carboxylate attack on the iminium ion of **4**, have been isolated.^{5,39,40} N,O -acetal byproducts have been found to form instantaneously in the case of cyclopentane fused maleic anhydride, and over the course of three days with indolenines, leading exclusively to the aforementioned byproducts with no evidence of the CCR product.^{5,40} It is likely that the zwitterionic intermediate **4** can be accessed with poor CCR substrates wherein Mannich addition is comparably high in energy.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (CHE-1764309-0, CHE-1414298). Financial support for this work was also provided by the University of British Columbia, the Canadian Foundation for Innovation (CFI-35883) and the Natural Sciences and Engineering Research Council of Canada (RCPIN-2016-04613, CRDPJ S30118-18). We also acknowledge support from the NSF (CHE-0840444) for a dual-source X-ray diffractometer. NPB and MJD acknowledge the Bradford Borge fellowship from UC Davis. Student support was provided by an NSERC CGSD scholarship (TCM). SYH thanks the Olson lab for the use of their LCMS. Finally, the authors thank Paul Cheong for helpful discussions.

REFERENCES

1. González-López, M.; Shaw, J. T., Cyclic Anhydrides in Formal Cycloadditions and Multicomponent Reactions. *Chem. Rev.* **2009**, *109* (1), 164-189.
2. Krasavin, M.; Dar'in, D., Current diversity of cyclic anhydrides for the Castagnoli-Cushman-type formal cycloaddition reactions: prospects and challenges. *Tetrahedron Lett.* **2016**, *57* (15), 1635-1640.
3. Di Maso, M. J.; Nepomuceno, G. M.; St. Peter, M. A.; Gitre, H. H.; Martin, K. S.; Shaw, J. T., Synthesis of (\pm)-Bisavenanthramide B-6 by an Anionic Anhydride Mannich Reaction. *Org. Lett.* **2016**, *18* (8), 1740-1743.
4. Younai, A.; Chin, G. F.; Shaw, J. T., Diastereoselective Synthesis of (\pm)-Heliotropamide by a One-Pot, Four-Component Reaction. *J. Org. Chem.* **2010**, *75* (23), 8333-8336.
5. Tang, Y.; Fettinger, J. C.; Shaw, J. T., One-Step Synthesis of Complex Nitrogen Heterocycles from Imines and Alkyl-Substituted Maleic Anhydrides. *Org. Lett.* **2009**, *11* (17), 3802-3805.
6. Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M., Synthesis of Cytotoxic Indenoisoquinoline Topoisomerase I Poisons. *J. Med. Chem.* **1999**, *42* (3), 446-457.
7. Castagnoli, N., Condensation of succinic anhydride with N-benzylidene-N-methylamine. Stereoselective synthesis of trans- and cis-1-methyl-4-carboxy-5-phenyl-2-pyrrolidinone. *J. Org. Chem.* **1969**, *34* (10), 3187-3189.
8. Cushman, M.; Madaj, E. J., A study and mechanistic interpretation of the electronic and steric effects that determine the stereochemical outcome of the

reaction of Schiff bases with homophthalic anhydride and 3-phenylsuccinic anhydride. *J. Org. Chem.* **1987**, *52* (5), 907-915.

9. Pattawong, O.; Tan, D. Q.; Fettinger, J. C.; Shaw, J. T.; Cheong, P. H.-Y., Stereocontrol in Asymmetric γ -Lactam Syntheses from Imines and Cyanosuccinic Anhydrides. *Org. Lett.* **2013**, *15* (19), 5130-5133.

10. Jarvis, C. L.; Hirschi, J. S.; Vetticatt, M. J.; Seidel, D., Catalytic Enantioselective Synthesis of Lactams through Formal [4+2] Cycloaddition of Imines with Homophthalic Anhydride. *Angew. Chem., Int. Ed.* **2017**, *56* (10), 2670-2674.

11. Laws, S. W.; Moore, L. C.; Di Maso, M. J.; Nguyen, Q. N. N.; Tantillo, D. J.; Shaw, J. T., Diastereoselective Base-Catalyzed Formal [4 + 2] Cycloadditions of N-Sulfonyl Imines and Cyclic Anhydrides. *Org. Lett.* **2017**, *19* (10), 2466-2469.

12. Cronin, S. A.; Gutierrez Collar, A.; Gundala, S.; Cornaggia, C.; Torrente, E.; Manoni, F.; Botte, A.; Twamley, B.; Connon, S. J., The first catalytic asymmetric cycloadditions of imines with an enolisable anhydride. *Org. Biomol. Chem.* **2016**, *14* (29), 6955-6959.

13. Yadav, J. S.; Reddy, B. V. S.; Saritha Raj, K.; Prasad, A. R., Room temperature ionic liquids promoted three-component coupling reactions: a facile synthesis of cis-isoquinolonic acids. *Tetrahedron* **2003**, *59* (10), 1805-1809.

14. Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R.; Koohshari, M., KAl(SO₄)₂.12H₂O. An efficient catalyst for the stereoselective synthesis of cis-isoquinolonic acids. *Heterocycles* **2004**, *63* (9), 2013-2017.

15. Azizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R., A stereoselective three-component reaction: KAl(SO₄)₂.12H₂O, an efficient and reusable catalyst for the one-pot synthesis of cis-isoquinolonic acids. *J. Org. Chem.* **2005**, *70* (1), 350-352.

16. Wang, L.; Liu, J.; Tian, H.; Qian, C.; Sun, J., One-pot synthesis of cis-isoquinolonic acid derivatives via three-component reaction of homophthalic anhydride with aldehydes and amines using ytterbium(III) triflate as catalyst. *Adv. Synth. Catal.* **2005**, *347* (5), 689-694.

17. Azizian, J.; Mohammadi, A. A.; Soleimani, E.; Karimi, A. R.; Mohammadizadeh, M. R., A stereoselective three-component reaction: One-pot synthesis of cis-isoquinolonic acids catalyzed by silica sulfuric acid under mild and heterogeneous conditions. *J. Heterocycl. Chem.* **2006**, *43* (1), 187-190.

18. Ng, P. Y.; Masse, C. E.; Shaw, J. T., Cycloaddition Reactions of Imines with 3-Thiosuccinic Anhydrides: Synthesis of the Tricyclic Core of Martinellic Acid. *Org. Lett.* **2006**, *8* (18), 3999-4002.

19. Yadav, J. S.; Reddy, B. V. S.; Reddy, A. R.; Narsaiah, A. V., Iodine as a mild, efficient, and cost-effective reagent for the synthesis of cis-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acids. *Synthesis* **2007**, *(20)*, 3191-3194.

20. Karimi, A. R.; Pashazadeh, R., Sulfonic acid functionalized silica: a mild, reusable and efficient heterogeneous catalyst for the highly diastereoselective synthesis of cis-isoquinolonic acids. *Synthesis* **2010**, *(3)*, 437-442.

21. Mohammadi, M. H.; Mohammadi, A. A., One-Pot, Three-Component Synthesis of Cis-Isoquinolonic Acids Using ZnCl₂, AlCl₃-SiO₂ as Catalyst. *Synth. Commun.* **2011**, *41* (4), 523-527.

22. Karimi, A. R.; Momeni, H. R.; Pashazadeh, R., L-Proline-catalyzed diastereoselective synthesis of cis-isoquinolonic acids and evaluation of their neuroprotective effects. *Tetrahedron Lett.* **2012**, *53* (27), 3440-3443.

23. Ghorbani-Choghamarani, A.; Hajjami, M.; Norouzi, M.; Abbasityula, Y.; Eigner, V.; Dušek, M., Diastereoselective and one-pot synthesis of trans-isoquinolonic acids via three-component condensation of homophthalic anhydride, aldehydes, and ammonium acetate catalyzed by aspartic acid. *Tetrahedron* **2013**, *69* (32), 6541-6544.

24. Chupakhin, E.; Dar'in, D.; Krasavin, M., The Castagnoli-Cushman reaction in a three-component format. *Tetrahedron Lett.* **2018**, *59* (26), 2595-2599.

25. Wei, J.; Shaw, J. T., Diastereoselective Synthesis of γ -Lactams by a One-Pot, Four-Component Reaction. *Org. Lett.* **2007**, *9* (20), 4077-4080.

26. Younai, A.; Fettinger, J. C.; Shaw, J. T., Influence of chiral thiols on the diastereoselective synthesis of γ -lactams from cyclic anhydrides. *Tetrahedron* **2012**, *68* (22), 4320-4327.

27. Wei, J.; Shaw, J. T., Diastereoselective Synthesis of gamma -Lactams by a One-Pot, Four-Component Reaction. *Org. Lett.* **2007**, *9* (20), 4077-4080.

28. Tan, D. Q.; Martin, K. S.; Fettinger, J. C.; Shaw, J. T., Ammonia synthons for the multicomponent assembly of complex γ -lactams. *Proc. Natl. Acad. Sci. U.S.A.* **2011**, *108* (17), 6781.

29. Biggs-Houck, J. E.; Davis, R. L.; Wei, J.; Mercado, B. Q.; Olmstead, M. M.; Tantillo, D. J.; Shaw, J. T., Carbon–Carbon Bond-Forming Reactions of α -Thioaryl Carbonyl Compounds for the Synthesis of Complex Heterocyclic Molecules. *J. Org. Chem.* **2012**, *77* (1), 160-172.

30. Martin, K. S.; Di Maso, M. J.; Fettinger, J. C.; Shaw, J. T., Synthesis of a Library of "Lead-Like" γ -Lactams by a One Pot, Four-Component Reaction. *ACS. Comb. Sci.* **2013**, *15* (7), 356-362.

31. Di Maso, M. J.; Snyder, K. M.; De Souza Fernandes, F.; Pattawong, O.; Tan, D. Q.; Fettinger, J. C.; Cheong, P. H.-Y.; Shaw, J. T., Diastereoselective Synthesis of and Mechanistic Understanding for the Formation of 2-Piperidinones from Imines and Cyano-Substituted Anhydrides. *Chem. Eur. J.* **2016**, *22* (14), 4794-4801.

32. Cornaggia, C.; Manoni, F.; Torrente, E.; Tallon, S.; Connon, S. J., A Catalytic Asymmetric Reaction Involving Enolizable Anhydrides. *Org. Lett.* **2012**, *14* (7), 1850-1853.

33. Balasubramanyan, V.; Argade, N. P., Reactions of Cyclic Anhydrides XIV. Facile Syntheses of Fused Heterocycles via Anilic Acids Pyridobenzoxazinones, Isoquinolinobenzoxazinones and Isocoumarinoquinolines. *Synth. Commun.* **1989**, *19* (18), 3103-3111.

34. Kshirsagar, U. A.; Argade, N. P., Facile approach to diverse range of 1,3-diazaheterocycles: angular/linear selectivity paradigm and a remarkable intramolecular methyl migration. *Tetrahedron* **2009**, *65* (27), 5244-5250.

35. See Supporting Information.

36. Menger, F. M.; Ladika, M., Fast hydrolysis of an aliphatic amide at neutral pH and ambient temperature. A peptidase model. *J. Am. Chem. Soc.* **1988**, *110* (20), 6794-6796.

37. de Barros, T. C.; Filho, P. B.; Loos, M.; Politi, M. J.; Chaimovich, H.; Cuccovia, I. M., Formation and decomposition of N-alkylnaphthalimides: experimental evidences and ab initio description of the reaction pathways. *J. Phys. Org. Chem.* **2011**, *24* (5), 385-397.

38. Scorsin, L.; Affeldt, R. F.; Oliveira, B. S.; Silveira, E. V.; Ferraz, M. S.; de Souza, F. P. S.; Caramori, G. F.; Menger, F. M.; Souza, B. S.; Nome, F., Coordination among Bond Formation/Cleavage in a Bifunctional-Catalyzed Fast Amide Hydrolysis: Evidence for an Optimized Intramolecular N-Protonation Event. *J. Org. Chem.* **2020**, *85* (7), 4663-4671.

39. Dar'in, D.; Bakulina, O.; Chizhova, M.; Krasavin, M., New Heterocyclic Product Space for the Castagnoli-Cushman Three-Component Reaction. *Org. Lett.* **2015**, *17* (15), 3930-3933.

40. Chizhova, M.; Dar'in, D.; Krasavin, M., Complications in the Castagnoli-Cushman reaction: An unusual course of reaction between cyclic anhydrides and sterically hindered indolines. *Tetrahedron Lett.* **2017**, *58* (35), 3470-3473.