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THE BIGGER PICTURE Material microstructures are small structural features intermediate between atoms
and macroscopic products with often decisive impact on the performance of engineering materials. A major
goal of modern materials science is to improve material properties through the control of microstructure
evolution during material processing and service. Microstructure evolution is traditionally simulated by con-
tinuum models based on partial differential equations. Here we demonstrate that convolutional recurrent
neural networks, a type of machine-learning method, can be trained to predict various microstructure evo-
lution phenomena with significantly improved efficiency. The method can learn the evolution rules from
microstructure image sequences and make reliable predictions even with incomplete information about
the systems or underlying mechanisms. This work illustrates the increasing power of data-driven ap-
proaches to address the computational challenges in microstructure modeling.
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Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Microstructural evolution is a key aspect of understanding and exploiting the processing-structure-property
relationship of materials. Modeling microstructure evolution usually relies on coarse-grained simulations with
evolution principles described by partial differential equations (PDEs). Here we demonstrate that convolu-
tional recurrent neural networks can learn the underlying physical rules and replace PDE-based simulations
in the prediction of microstructure phenomena. Neural nets are trained by self-supervised learning with im-
age sequences from simulations of several common processes, including plane-wave propagation, grain
growth, spinodal decomposition, and dendritic crystal growth. The trained networks can accurately predict
both short-term local dynamics and long-term statistical properties of microstructures assessed herein and
are capable of extrapolating beyond the training datasets in spatiotemporal domains and configurational and
parametric spaces. Such a data-driven approach offers significant advantages over PDE-based simulations
in time-stepping efficiency and offers a useful alternative, especially when the material parameters or govern-
ing PDEs are not well determined.

INTRODUCTION ture evolution under nonequilibrium conditions during material
processing or service, including ubiquitous phenomena such

Material microstructures are mesoscale structural features that as solidification, solid-state phase transformations, and grain

serve as an indispensable link between atomistic building blocks
and macroscopic properties, leading to direct impacts on the
processing-structure-property relationship of engineered mate-
rials. Tailoring material properties through controlled microstruc-

growth, is arguably a cornerstone of modern materials science.
The ability to understand and predict microstructure evolution
has therefore long been a pivotal goal of computational materials
design.
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Due to time and length scales well beyond the capability of
molecular dynamics, simulations of microstructure evolution
often rely on coarse-grained models such as partial differential
equations (PDEs) as employed in the phase-field method.'™
Nevertheless, this approach also faces notable challenges. First
of all, microstructure simulations employing PDEs remain fairly
expensive. In the temporal dimension, strict upper limits on the
minimum time-step size are dictated by the stability of numerical
schemes that employ explicit time integration for nonlinear
PDEs. Likewise, implicit time-integration methods handle larger
time steps at the expense of additional inner iteration loops at
each step. In addition, while in principle governing PDEs can
be derived from the underlying thermodynamic and kinetic con-
siderations, identifying, parametrizing, and validating PDEs in
practice require significant efforts. For complicated or less stud-
ied materials, the evolution rules might be either not fully under-
stood or too complex to be described by tractable PDEs.

We propose a machine-learning (ML) method as an alternative
to microstructure evolution modeling. Recent progress in ML,
and deep neural networks® in particular, enables a data-driven
approach to solving PDEs in place of the traditional numerical
method.® '® Based on statistical learning with big datasets, ML
models can be applied without explicit prior knowledge of the
physical mechanisms. With proper training, it is possible for
ML algorithms to infer “hidden” parameters from the input
microstructure images and identify the correct evolution trajec-
tory. Moreover, ML models allow much larger time stepping to
achieve significant speed in the temporal domain. For example,
Raissi and coworkers used a single four-layer neural network®”’
to obtain the solutions to the Burgers equation, which otherwise
require 500 Runge-Kutta iterations. Breen et al. tackled the noto-
riously difficult three-body problem with a 10-layer neural net,
skipping thousands of smaller time steps.'® Similarly, coarser
spatial grids may be used in ML models, as will be shown in
this work. Although previous studies reveal the power of neural
nets in rediscovering and solving different types of differential
equations, deep learning of microstructure evolution, which
can be described by PDEs in 2 + 1 (i.e., 2 spatial and 1 temporal)
or 3 + 1 dimensions, remains a challenging subject.

In this work, we apply the convolutional recurrent neural
network (RNN) to predict the spatiotemporal evolution of micro-
structure represented by two-dimensional (2D) image se-
quences. RNNs are neural nets designed to predict temporal
data sequences with a hidden memory unit.’®° With the devel-
opment of effective variants such as the long short-term memory
(LSTM) to address the vanishing gradient problem during back-
propagation,?’ RNNs have found widespread success in natural
language processing,”>>® speech recognition,>* and computer
vision.”>?" Recently, LSTM combined with convolutional neural
nets (CNNSs) has been proposed for predictive learning of spatio-
temporal sequences.”® Compared with other neural network ar-
chitectures designed to emulate 1 + 1 and 2 + 1 PDE solutions,
convolutional LSTM employs CNN to efficiently extract latent
spatial features of the system, which is advantageous in
capturing the spatial correlation inherent in the evolution dy-
namics. Among several variants of convolutional RNNs devel-
oped in recent years,”>" the Eidetic 3D LSTM (E3D-LSTM)
model®’ goes a step further by applying convolution to both
the spatial and the temporal dimensions (i.e., 3D convolution
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[8D-Conv] for 2 + 1 systems) for integrated spatiotemporal
feature extraction. Such a design facilitates a deeper coupling
between the spatial and the temporal domains and enables
improved performance in image sequence prediction in both
short and long times. We choose the E3D-LSTM model for this
work and use the terms E3D-LSTM and RNN interchangeably
hereafter.

We assessed RNN'’s learning ability and predictive power in
the context of four well-known evolution phenomena with
increasing levels of complexity: plane-wave propagation, grain
growth, spinodal decomposition, and dendritic crystal growth.
To facilitate comparison with physics-based models, the
training datasets were generated from PDE-based simulations
or explicit mathematical functions, whose behavior is well un-
derstood. A focus of our study is to examine to what degree
RNNSs can grasp and extract the evolution rules from the micro-
structure images it sees. To this end, extensive and stringent
tests are devised to evaluate how well RNNs generalize and
extrapolate the learning within the spatiotemporal domain
and configurational and parametric spaces. We find that the
properly trained RNN is able to extend the predictions up to
10 times the time spans of the training data, with significantly
larger time-step sizes than used in the PDEs, and to systems
of larger dimensions. It can forecast the evolution of systems
with parameters not included in the training sets or initial con-
figurations that exhibit significantly different statistical distribu-
tions from the training images. In addition to the excellent pixel-
wise comparison between the ground truth and short-term pre-
dictions, the RNN accurately captures the statistical properties
of microstructures in the examples considered (e.g., average
size, grain, particle size, or interface curvature distribution) in
the long term. The satisfactory performance of the RNN in these
tests provides compelling evidence that it is capable of
“emulating” the physical principles underlying diverse micro-
structure evolution phenomena, which explains why it is able
to make reliable predictions well beyond the scope of training
data. Such extrapolation capability further improves the RNN’s
efficiency by allowing it to be trained with a relatively small data
size. Our work illustrates the promise of ML approaches in gen-
eral as a useful alternative to physics-based simulations of
microstructure evolution.

Broadly speaking, the use of ML algorithms has grown very
rapidly in materials science in recent years.>>*° They have
seen diverse applications ranging from the discovery of new
materials®®*~*° to the predictions of materials’ properties,*'™°
the development of accurate and efficient potentials for atom-
istic simulations,*®~*° microscopic and spectroscopic data anal-
ysis and processing,*®~®? and effective inference of a material’s
properties from a limited experimental dataset.®>°* A large num-
ber of these works are devoted to material microstructure, with
encouraging results, including microstructure classification and
quantification,”®>*%>°" image segmentation,”>°° predictions
of microstructure-property relations,*”**~"° mapping process-
ing-microstructure relations,”'~"* microstructure optimiza-
tion,””™"” and equilibrium configuration prediction.”® Datasets
in these works are mainly in the form of static microstructure im-
ages. This work focuses on revealing the important temporal
correlation between images of microstructures along their evolu-
tion trajectory.
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Figure 1. Application of the RNN to predict-
ing plane-wave propagation
60 (A) Examples of output frames predicted by the
trained RNN (P) based on 10 input frames in
comparison with the ground truth (G).
(B) RMSE (black) and SSIM (blue) of the predictions
averaged over 200 testing cases as a function of the
frame index j.
(C) Relative errors of the wave-propagation
parameters (k|, w, and B) inferred from the
predicted images.
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sequence was divided into staggered 20-
frame training clips (i.e., frames 1-20, 11—
30, etc.), each of which represented a
training data point. For testing, the RNN
was used to predict the next 50 frames
based on an input of 10 consecutive
frames. A total of 1,500 tests were
performed.
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Figure 1A illustrates two representative
tests, which visually show little difference
between the ground truth and the predic-
tions. Figure 1B shows the pixel-wise
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RESULTS

We employed numerical simulations to generate sequences of
64 x 64-pixel images as training datasets for four classical
examples of evolution phenomena, i.e., plane-wave propaga-
tion, grain growth, spinodal decomposition, and dendritic crystal
growth. With varied complexity, they represent a good combina-
tion of testing problems for evaluating the capability of the RNN
in predicting microstructure evolution.

Plane-wave propagation

Before delving into problems pertinent to real materials, we first
tested the RNN with a simple toy model: plane-wave propaga-
tion dynamics of a scalar field ¢ explicitly described by the
following expression:

clx,y,t) = %sin(kxx + Ky + wt + 0o)exp(—pt) +%,
(Equation 1)

where K = (kx, ky) is the wave vector, 6 is arandom phase, and ¢
is a decay exponent. We used Equation 1 to generate image se-
quences, each of which consisted of 200 frames at a time interval
of 0.005 between two adjacent frames starting att = 0. The pa-
rameters in E%ation 1 were randomly chosen for each
sequence: 277/‘ K ‘e [0.3,0.6], 2/we [0.03,0.06], 27/ e [1.5,6],
and 6pe[0,27]. Among the generated sequences, 80 were
used for training, 20 for validation to evaluate model conver-
gence during training, and 100 for testing. Each simulation

R ———— |
10 20 30 40 50 60

comparison based on the root-mean-
square error (RMSE) and structural simi-
/ larity index measure (SSIM)"® averaged
over the 1,500 tests. Both RMSE and
SSIM vary between 0 and 1, and lower
RMSE or higher SSIM scores indicate better agreement be-
tween the predictions and the ground truth. It can be seen
that the RNN exhibits high pixel-wise accuracy in the short
term within the length of training clips, where RMSE stays
below 0.5% and SSIM above 99%. In the longer term, both
RMSE and SSIM vary with time at a greater rate, but remain
below 5% (or above 93%) for up to 50 output frames. As a
more revealing measurement of how well the RNN recognizes
the wave-propagation rules, the parameters in Equation 1
were extracted from the predicted images and compared
with thel round truth values. As shown in Figure 1D, the pre-
dicted ‘ k fand w differ from the ground truth by less than 2%,
but B shows a larger deviation up to 20%. A probable reason for
the less accurate prediction of B is that  characterizes a slower
decaying mode of wave motion and may require longer training
sequences to learn precisely its temporal behavior.
Overall, the RNN exhibits excellent performance when applied
to the simple plane-wave propagation problem. Next, we test it
against more realistic microstructure evolution problems.

Grain growth

Grain growth describes the increase in the average grain size in
polycrystals with time to reduce the excess energy associated
with grain boundaries. During the process, some grains grow,
while others shrink and disappear, leading to a persisting drop
in the number of grains in the system. The growth or shrinkage
rate of a grain in 2D polycrystals is determined by its number
of sides N according to the famous von Neumann-Mullins or
“N-6” rule:80
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e

3 (Equation 2)
where A is the grain area, and M and v are the grain boundary
mobility and energy, respectively. Equation 2 states that any
grains with fewer than six neighbors will shrink, and those
with more than six sides will grow at a rate proportional to
N— 6.

We generated the training data by performing isotropic 2D
grain growth simulations with a phase-field mode®? (see exper-
imental procedures). Simulations were performed on a 256 x
256 grid with periodic boundary conditions to accommodate
a sufficient number of grains. Subsequently, the simulation im-
ages were downsampled to 64 x 64 pixels by averaging. Each
simulation employed the same parameters but started with a
different initial configuration constructed by Voronoi tessella-
tion with 100 random seeds. It output a 20-frame clip after a
relaxation period, which was intended to remove the artifacts
in the polycrystalline structure. The time interval between two
adjacent frames corresponded to 80 PDE time steps. The first
frame in a clip contained ~75 grains and the last one had ~45
grains. A total of 2,400 clips were prepared for training and
600 for validation during training.

After training, the RNN was subjected to a set of more chal-
lenging extrapolation tests than in the wave-propagation prob-
lem. First, we applied the trained model to predict longer image
sequences with less input information. The RNN was required to
predict 199 frames based on only one input frame. Theoretically,
this was feasible, as grain growth obeys the dissipation dy-
namics described by PDEs of the first order in time (Equation 8).
Here the length of the test sequences was 10 times that of the
training clips, and more significantly, 90% of the output frames
(frame index j = 21-200) depicted coarsened polycrystalline
states never seen by the RNN during training. Figure 2A presents
two representative tests, which show that the RNN does a very
good job in the temporal extrapolation. The predictions and
ground truth were difficult to distinguish visually in the short
term, e.g., at frame indexj = 30, but visible local structure differ-
ence emerged at the later stage. Figure 2C shows that the
average RMSE of 1,000 tests rises and stabilizes around 20%,
while SSIM decreases to ~0.4 at the 200th frame. Despite the
increasing difference, the predicted polycrystalline structures
were free of any noticeable artifacts throughout the sequences.
We note that the accumulation of the discrepancy between the
ground truth and the predictions is inevitable in the long term.
This is because the grain boundary connectivity bifurcates
upon grain disappearance (see examples in Figure S1), which
leads two initially identical configurations on to divergent evolu-
tion pathways. As such, statistical measurement of the similarity
between the two polycrystalline configurations is more meaning-
ful than pixel-wise comparison, and the RNN performs very well
in this regard. As shown in Figure 2D, the error in the predicted
average grain area (A) of 1,000 testing cases remained below
5%, while (A) had a 5-fold increase. Figure 2E shows that the
predictions and the ground truth also have very good agreement
in the grain size distribution. The Euclidean distance between
them is only 0.71% at j = 50 and still has a low value of 1.61%
atj=200. The RNN thus faithfully reproduced the statistical char-
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acteristics of polycrystals even after a 10-fold extrapolation in
time. Further extension of the prediction to 1,000 frames is
presented in Figures S2A and S2B, which show that the RNN still
managed to produce realistic looking microstructure and
exhibited good agreement with the ground truth in grain size dis-
tribution. A nonnegligible portion of the trials had only one grain
remaining in the system beyondj > 1,000. While we intentionally
limited the training data to a small time span here to examine the
RNN’s extrapolating capability, its long-time prediction accuracy
can be improved by including data from the later evolution stage
into the training sets.

Next, we subjected the RNN to spatial extrapolation tests by
asking it to predict grain growth in a system much larger than
the training images. The 3D-Conv in E3D-LSTM operates on in-
puts and internal states with a fixed filter size (5 x 5 x 2 used in
this work) that is independent of the input image size. After the
weights in the 3D-Conv filters in the network are trained by 64
X 64 images to learn the spatiotemporal correlation of the sys-
tem, the same filters can slide over larger images to predict their
evolution. Therefore, the evolution rules learned by the model are
expected to be extendable to larger domains. Figure S3 presents
the results of the grain growth kinetics on a 256 x 256 mesh pre-
dicted by the RNN trained on 64 x 64-pixel images. The predic-
tions exhibit similar RMSE and SSIM compared with those for
the smaller 64 x 64-pixel domain. The spatial extensibility of
the RNN means that there is no need for retraining the model
when applying it to problems of different sizes, which is a very
appealing feature for practical applications.

As the third type of extrapolation test, the RNN was applied to
predict the evolution of artificial polycrystalline configurations
qualitatively different from the training data. Figure 2B show-
cases such an example, in which the system contains four
orderly arranged four-sided grains embedded within four larger
grains.

Its statistical difference from the training configurations is
quantified by their distinct two-point correlation functions g(r)
as shown in Figures S4A and S4B. The individual grains in the
artificial polycrystal have a strong spatial correlation as reflected
by the sharp peaks in g(r). Despite the notable morphological
difference from those generated by random Voronoi tessellation,
its evolution is accurately captured by the RNN.

The above tests demonstrate the RNN’s capability to gener-
alize and extrapolate its learning in the spatiotemporal and
configurational spaces. This is a strong indication that it has
grasped the evolution rules, which is further supported by other
evidence. Grain growth consists of two elementary processes:
the continuous shrinkage or expansion of grains without chang-
ing their number of sides, N, and the discontinuous changes in
the grain boundary connectivity when grains switch edges or
disappear. The former process is governed by the N — 6 rule
(Equation 2) resulting from the curvature-driven boundary move-
ment. In Figure 3A, we show the average growth rates for grains
with different N using data from all 1,000 tests. The predictions
faithfully reproduce the N dependence of the ground truth. On
the other hand, Figure 3B illustrates all four possible topological
events that could occur to the grain boundary network upon
grain disappearance or edge switching in a 2D system. Many in-
stances of these events exist in the training dataset and are
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Figure 2. Application of the RNN to predict-
ing grain growth
(A) Examples of RNN output frames (P) based on
one input frame in comparison with the ground truth
(G).
(B) RNN prediction of the evolution of an artificial
polycrystalline configuration, in which four small
four-sided grains are embedded in larger six-sided
grains.
G (C) RMSE (black) and SSIM (blue) of the predictions
averaged over 1,000 cases as a function of the
frame index j.
(D) Time evolution of the average grain area in 1,000
testing cases predicted by the RNN versus ground
P truth.
(E) Grain size distribution atj = 50 and 200 predicted
by the RNN versus ground truth. Effective grain
radius was calculated by \/A/m.
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observed by the RNN model during training. The numerical
examples in Figure 3B show that the trained RNN is able to
correctly predict each one of them. Therefore, the satisfactory
performance of the RNN derives from its learning of the
elementary steps of the grain growth process.

Spinodal decomposition
As a third example of microstructure evolution phenomena, we
trained the RNN to predict spinodal decomposition, which is

Spinodal decomposition consists of two
distinct stages: a fast composition modu-
lation growth stage, followed by a slower
coarsening stage, at which the length scale
of the phase-separation pattern gradually
increases due to the Gibbs-Thomson
effect.®® Due to their very different time
scales, image sequences with a fixed
time interval cannot effectively resolve
both stages at the same time. Here we
chose to train the RNN to recognize the
system evolution in the second coarsening
stage. Training and validation data were generated from 480 and
120 simulations, respectively, which employed the same param-
eters but different initial states. The system started from a uni-
form binary mixture with one of three compositions at cg =
0.25, 0.5, and 0.75, which produced different types of domain
morphologies. A random noise of amplitude Ac = 0.01 was
added to the initial configurations to trigger phase separation.
Each simulation produced 100 images, and the system
became phase separated after 2 or 3 frames. Similar to the
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Figure 3. Evidence of the RNN capturing the evolution rules of grain
growth

(A) The RNN accurately predicts the dependence of the grain growth rate
(dA(N)/dt) on the number of grain sides N. (dA(N)/dt) is averaged over grains
of the same N in all of the testing cases.

(B) Examples from testing cases show that the RNN correctly predicts the four
possible topological events when a grain disappears or loses an edge to its

neighbors. Red circles highlight where the events occur in the predicted
images.

P

wave-propagation problem, these frames were divided into
staggered 20-frame training clips (i.e., frames 1-20, 11-30, ...,
81-100). The time interval between 2 adjacent frames corre-
sponded to 370 time steps on average in phase-field simula-
tions, which employed an implicit PDE solver with variable
time-step size. To ensure conservation of mass during evolution,
the E3D-LSTM model was modified to enforce that the average
of the image pixel values remained unchanged after passing
through the neural net.

We performed temporal extrapolation tests on the trained
model in a way similar to the case of grain growth. The RNN
was asked to output 200 frames, or 10 times the training clip
length, given 1 input frame that was taken from the 50th frame
of a simulation starting from a uniform mixture. Seventy-five
percent of the output frames (j = 51-201) thus fell outside the
time span of the training sets. In addition, predictions based on
10 input frames were also tested. The results are presented in
Figure S5 and show similar performance compared with those
with 1 input frame only, which indicates that the information con-
tained in one initial frame is sufficient for the RNN to correctly
project the evolution trajectory. Figure 4A showcases several ex-
amples from a total of 510 tests with 170 each having cq = 0.25,
0.5, or 0.75. The short-term predictions up to j ~ 50 closely
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resemble the ground truth, which was quantified by the low
RMSE (<0.06) and high SSIM (>0.97) in Figure 5A. While the
discrepancy gradually accumulates with time and visible differ-
ences appear at the later stage, the long-term predictions are
realistic looking and no artifacts can be discerned. In addition,
Figure S6 confirms that the conservation of c is strictly obeyed
in the output frames. Morphology-wise, it is difficult to tell by hu-
man eyes whether the images are generated by the RNN or sim-
ulations. Such similarity is corroborated by the statistical anal-
ysis of the microstructure. In Figure 5B, we compare the
interface curvature distributions in the predicted versus ground
truth images of 170 testing cases with cq = 0.5, which have a bi-
continuous two-phase morphology. The agreement is very good
in both short and long terms, which can be quantified by the
Euclidean distance between the two distributions: 0.00936 at
frame j = 26 and 0.05811 atj = 201. On the other hand, systems
with ¢ = 0.25 or 0.75 contain individual particles of the minority
phase (c = 1 or 0) dispersed within the majority phase. Figure 5C
shows the time dependence of the average particle size (R) for
170 tests with ¢ = 0.25. The corresponding particle size distribu-
tions are presented in Figure 5D. The comparison is again satis-
factory. The predicted (R) has a maximal error of 1.04% within
the test period, and the Euclidean distance between the pre-
dicted and the true size distributions is only 0.01 at j = 26 and
0.034 at j = 201. In Figure S2C, we show an example of the
RNN prediction up to 2,000 frames. While its pixel-wise differ-
ence from the ground truth becomes larger, the predicted struc-
ture remains realistic and does not show any image blurring. The
predicted interface curvature distribution also agrees well with
the ground truth as shown in Figure S2D.

We next performed the spatial extrapolation test by applying
the trained model to a larger 256 x 256-pixel domain. As shown
in Figure S7, the RNN performs equally well in the extended sys-
tem, with RMSE and SSIM comparable to those in the smaller
domain. Furthermore, Figure 4B shows an example in which
the RNN’s ability to predict the evolution of configurations
“foreign” to the training set was tested. The initial configuration
in the test was created by placing circular particles of c = 1 with
random radii on square lattice sites in the matrix of c = 0. As re-
vealed by the two-point correlation functions in Figures S4C and
S4D, the particles in this microstructure exhibited strong spatial
correlation, while those in the training images were spatially un-
correlated. Although it never saw such a configuration during
training, the RNN captured its evolution very well.

The impressive extrapolation capability of the RNN when
applied to spinodal decomposition implies its understanding of
the physical rules of this phenomenon. The coarsening of the spi-
nodal structure is thermodynamically driven by the interface cur-
vature dependence of chemical potentials (i.e., the Gibbs-Thom-
son effect) and kinetically limited by the diffusion of the species in
the system. Figures 5B and 5D show that the RNN grasps the
Gibbs-Thomson effect, which causes the fraction of low-curva-
ture interface segments to increase with time, and Figure 5C
confirms that the diffusion-controlled coarsening kinetics is
captured by the model. Apart from the accurate statistical repre-
sentation, the examples in Figures 5E and 5F illustrate that RNN
is also capable of predicting subtle local morphological changes.
The fate of the particle highlighted by red in Figure 5E is deter-
mined by the relative sizes of its neighbor particles and itself,
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Figure 4. Application of the RNN to predicting spinodal decompo-
sition

(A) Comparison between predictions (P) and ground truth (G) from two testing
cases, in which the RNN outputs 200 frames based on 1 input frame of spi-
nodal structure generated from random perturbation to a system of uniform
composition.

(B) The RNN prediction of the evolution of an artificial biphasic configuration, in
which second-phase particles (c = 1) of randomly chosen radii are arranged in
an orderly manner within the primary phase (c = 0).

®

which exchange mass between one another via diffusion due to
the size-dependent chemical potential. The red particle first
grows at the expense of a smaller neighbor, but subsequently
shrinks by losing mass to the other two bigger particles nearby.
In Figure 5F, the particle in red receives an incoming diffusion flux
from two smaller adjacent particles. Its growth rate exhibits two
bursts, which coincide with the complete dissolution of the two
particles. The RNN’s ability to predict detailed evolution features
as demonstrated in these examples further inspires confidence
in its comprehension of the underlying physics.

Dendrite growth

In the last example, we gave the RNN a more challenging task to
predict dendritic crystallization patterns. During crystal growth,
dendritic structures, like beautiful snowflakes, often form due
to the morphological instability of the growth front, which is pro-
moted by the negative temperature and/or species concentra-
tion gradient(s) ahead of the phase boundary and the interface
energy anisotropy. Such instability phenomena are intrinsically
difficult to predict. In addition, dendrite growth is a multi-physical
process coupling phase transformation, long-range mass/heat
transport, and interface instability. As a result, microstructure im-
ages fed to the RNN do not contain the complete information of
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the system state, which further increases the difficulty of making
accurate predictions.

Here we generated training data using a phase-field model of
solidification in pure systems by Kobayashi.?® As described in
the experimental procedures, the spatiotemporal evolution of
the system state is described by two coupled PDEs for the tem-
perature (T) and phase-field (¢) variables. ¢ distinguishes be-
tween the solid (¢ = 1) and the liquid (¢ = 0) phases during solid-
ification. We use ¢(t, x,y) to create the microstructure images. T
and other parameters in the governing equation (Equation 15),
such as the normalized latent heat K, are thus hidden from the
learning process. We performed phase-field simulations on a
64 X 64 mesh, in which a small solid nucleus was placed at or
near the center and surrounded by the supercooled liquid phase.
The training and validation sets contained 800 and 200 simula-
tions, respectively. To enrich the training data, each simulation
had a different nucleus, crystal orientation 6y, and K. Specifically,
K was randomly chosen from (1.2, 2) and 6, from (0, 7/3) (crystal
was assumed to have six-fold symmetry). The nucleus was given
a random shape (circle, rectangle, or ellipse), size (2-6 pixels),
and off-center distance (5 pixels in the x and y directions).
Similar to the case of spinodal decomposition, 100 image frames
with equal time intervals were obtained from a simulation and
divided into eight staggered 20-frame training clips.

In testing, the trained RNN model was required to predict 50
frames from 10 consecutive input frames, which were taken
from the first half of a simulation. Predictions were not extended
to longer times because the dendrite tips already approached
the domain boundaries after 50 output frames in many tests,
and growth stagnated subsequently. Instead, we focused on
conducting the extrapolation tests in the model parameter
space. Specifically, K was randomly and uniformly selected
from (0.8, 2.4) to generate ground truth data in the testing cases.
This means that half of the selected K values fell outside its range
in the training data, i.e., (1.2, 2). 6y and the solid nucleus shape
were also randomized. Figure 6 presents several examples
from a total of 600 testing cases. The predicted dendritic struc-
ture matched the ground truth well in all the cases, even at K =
1.161 and 2.106, which were outside the scope of training
data. In particular, the RNN captured the fine features of the den-
drites, such as the locations of secondary side branches. It can
be seen that the crystal growth pattern depended strongly on K.
Smaller K resulted in thicker primary branches and more
compact morphology. The RNN managed to recognize the cor-
rect evolution trajectory based on the input images without prior
knowledge of the underlying K value. Figure 7A shows the RMSE
and SSIM of the predictions averaged over the 600 testing
cases. The RNN fared well in pixel-wise comparisons, although
the prediction error increased faster with time than in the cases
of grain growth and spinodal decomposition, which can be
attributed to the more complex physics of the dendrite growth
process.

As a more revealing indicator of the RNN’s performance, we
used several shape descriptors (Feret diameter dyeret, cOnvexity,
solidity) to characterize the dendrite morphology. Feret diam-
eter, which is defined as the maximum distance between two
parallel tangent lines touching the shape, provides a measure
of the linear dendrite dimension. Convexity and solidity quantify
the degrees of concavity and compactness of the crystal.
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Figure 5. Accuracy of the RNN in predicting
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Because of the diffuse-interface represen-
tation, a grain boundary typically needs to
be resolved by 5 or 6 pixels in phase-field
simulations to maintain desired numerical
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Figure 7B shows the time evolution of these descriptors from one
test, while their average errors for all 600 tests are plotted in Fig-
ure 7C. It can be seen that the RNN accurately predicted the
dendritic shape evolution with an average error less than 7%
throughout the tests. In addition to global metrics, we also exam-
ined how well the RNN reproduced local dendritic structural fea-
tures. In Figure 7D, the number of secondary branches formed
on a primary branch in a test is plotted as a function of time. It
shows that the RNN performed very well in predicting the
frequency of the side-branching events occurring near the
dendrite tip.

DISCUSSION

In addition to prediction accuracy, we compared the computa-
tional efficiency of using the RNN for microstructure evolution pre-
dictions with that of PDE-based simulations. During training and
testing, the time interval between two RNN output frames is 80
times that of the average time-step size used in the grain growth
simulation, 370 times in spinodal decomposition, and 7 times in
dendritic crystal growth. This illustrates that the RNN can improve
efficiency by using larger time steps than PDE solvers, for which
the time-step size is limited by the stability of the numerical
schemes. In the grain growth example, the RNN’s advantage in
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the performance of phase-field simulations
run on a CPU. The results are summarized
in Table S1. Averaged over more than 500
trials, the RNN accelerates the predictions
by 92 times for spinodal decomposition and 79 times for dendrite
growth when run on a GPU, and 7.6 and 8.6 times on a CPU,
respectively. The speedup is more significant in the grain growth
example (718-fold on the GPU, 87-fold on the CPU) because of
the spatial coarse graining exploited by the RNN. In our tests, it
takes 130450 s to load and initialize pretrained RNN models.
Therefore, the RNN is very efficient, especially when applied to
a large number of cases in one run so that the overhead associ-
ated with initialization is small.

The overall efficiency of the RNN in predicting microstructure
evolution also depends on the training data size and the efforts
and resources required for data collection. Figure S8 shows
the dependence of the validation error on the number of training
clips Ngjp for plane-wave propagation and grain growth. In both
cases, the improvement in model performance becomes negli-
gible after N¢jp, goes beyond ~2,000. Tests show that the optimal
accuracy can be further tuned, e.g., with the number of layers or
the number of hidden features. In principle, a large enough neural
net could be arbitrarily accurate, but in practice, training such a
model becomes infeasible. Our current model is a decent
compromise between accuracy and computational cost. On
the other hand, we find that increasing the length of training clips
beyond 20 frames does not significantly improve the prediction
accuracy. For all of the examples in this work, the time spent
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on generating the training datasets is comparable to the model
training time. The plane-wave propagation and dendrite growth
examples also demonstrate the transferability of the trained
model, which can robustly interpolate or even extrapolate pre-
dictions to parameter values not included in the training data.
Therefore, the data requirement of the RNN should not present
a major obstacle to its applications.

Despite the overall very impressive performance, our tests
show that the learning rate and predictive power of the RNN
vary with the nature of the microstructure evolution phenomena
it is applied to. Among all the examples, the RNN demonstrates
the best learning ability in predicting grain growth, because its
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Figure 6. Application of the RNN to predict-
ing dendritic crystal growth

RNN predictions (P) versus ground truth (G) from
five testing cases with different K values, in which
the RNN outputs 50 frames based on 10 input
P  frames.

(o))
o

(G  evolution rules are localized, which could
be relatively easily recognized by E3D-
LSTM through the 3D-Conv operation
that specializes in remembering local
motion. In contrast, training the RNN to
P predict spinodal decomposition is more
challenging because the long-range
mass transport inherent in the process

creates longer and stronger spatiotem-
G poral correlation, which requires more
convolution operations and longer-term
memory states to extract the essential fea-
tures. In fact, the model can be success-
p fully trained to predict grain growth with
only two E3D-LSTM layers, but four layers
are needed for spinodal decomposition to
reach similar prediction accuracy. We also
find it necessary to include longer image
sequences (100 frames) into the training
datasets for spinodal decomposition to
better inform the RNN of the evolution
trajectories. Predicting dendrite growth
presents additional challenges due to the
interface instability and the existence of
hidden variables (T) not directly seen by
the RNN.

The PDEs underlying the three micro-
structure examples investigated here
(grain growth, spinodal decomposition,
dendrite growth) describe dissipative dy-
namics, in which the system’s evolution
rate decreases with time. For example,
the growth rate of the average grain or par-
ticle size varies as t~'/2 and t=2/2 in grain
growth and spinodal decomposition,
respectively. Such behavior is common
in microstructure phenomena, as the ther-
modynamic driving force continues to
diminish during evolution. Compared with
other PDEs such as the wave equation and chaotic PDEs that
have been successfully emulated by neural networks, ML of
these problems faces a new challenge, i.e., to train the neural
nets to predict the long-time behavior based on only short-
time data with much faster evolution dynamics. Nevertheless,
we find that E3D-LSTM can utilize microstructure images from
the early stage to reliably predict the much slower evolution at
10-fold larger times. To our best knowledge, this impressive
long-term predictive ability has not been demonstrated for
similar PDE systems. We attribute it to the novel architecture of
E3D-LSTM, which integrates 3D CNN into the LSTM to better
capture the long-term spatiotemporal correlation.
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Another distinction between this work and previous NN-based
PDE emulators lies in that we intentionally require the RNN to be
trained with only partial information of the PDE solutions or to
make predictions with incomplete knowledge of the underlying
PDEs. In the grain growth case, training images are generated
from the 3-norm of 100 grain-orientation order parameters {n4,
Mo, -..» Migo}, Which are solved from the governing equations
(Equation 8). Information on grain orientation is lost in the im-
ages. The PDEs for dendrite growth (Equations 14 and 15)
involve both the phase field ¢ and the temperature field T, but
only ¢ is used to create microstructure images. Furthermore,
the RNN trained for dendrite growth is not explicitly given the
value of the latent heat parameter (K) in the PDEs during predic-
tion and instead needs to infer its value from the input image
sequence to identify the correct evolution trajectory. We made
these choices for training and testing because they reflect how
the RNN may be potentially used in real applications, in which
missing information is often the norm rather than the exception.
Like our training sets, microstructure images obtained from op-
tical or electron microscopy are usually grayscale images of
phase contrast and do not capture all the physical fields relevant
to the evolution processes. It is also common for some proper-
ties of a material system not to be known or accurately charac-
terized so that the corresponding PDE parameters are ill deter-
mined. Our study demonstrates that a well-trained RNN can
not only serve as a PDE emulator, but also infer implicit material
properties from spatiotemporal data and provide a “reduced or-
der” representation of the targeted problems to lower the data
demand and improve the training and prediction efficiency.

Over the last 3 decades, many types of microstructure from
different materials systems have been successfully simulated
by various phase-field models.” The phase-field method has
become a proven and versatile computational technique for
capturing complex microstructural morphology and coupling
multiple physical processes within a unified framework.
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dictions, respectively, at times marked by the black
squares.

Microstructures from phase-field simulations faithfully repro-
duce experimental observations in a diverse set of materials sys-
tems,®59? and therefore can serve as reliable training data to
train the RNN for predicting a wide variety of microstructure evo-
lution phenomena.

The rapid advancement in in situ and operando characteriza-
tion techniques in recent years has fueled the collection of exper-
imental spatiotemporal microstructure data from a wide range of
materials systems at an ever-increasing rate.”> " At the same
time, however, it becomes an increasing challenge to efficiently
analyze the acquired data to generate useful insights. The deep
learning approach examined in this work provides a valuable tool
for extracting high-level, quantitative information from such data.
Many types of experimental digital images could be used as
input to the RNN, including those from microscopy and tomo-
graphic reconstruction, after standard preprocessing (resizing,
denoising, segmentation, etc.). For microstructure evolution
governed by known evolution rules, the RNN could be trained
with numerical simulation results with parameter values
randomly sampled from the relevant parameter space. It can
then be applied to the experimental data of a specific system
to learn its parameters and augment operando experiments,
which often require sophisticated instruments (e.g., synchrotron
X-ray beamlines) with limited availability, by extending the obser-
vations in time and space. When dealing with new microstructure
evolution phenomena that do not have physical models yet, the
RNN could be trained directly with experimental image se-
quences and subsequently be used as a surrogate model to
probe the system behavior more conveniently and/or under con-
ditions that are difficult to access experimentally.

In conclusion, we trained a convolutional RNN (E3D-LSTM) to
predict the spatiotemporal evolution of material microstructure.
Using training data from four distinct evolution processes
(plane-wave propagation, grain growth, spinodal decomposi-
tion, and dendritic crystal growth), the RNN, which is composed
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of the same network architecture, is able to adapt efficiently to
different evolution rules. The ability of the RNN to generalize
learning beyond the training datasets was systematically exam-
ined by a series of extrapolation tests. In addition to performing
very well in pixel-wise comparison with ground truth in short-
term predictions, the RNN accurately described the statistical
properties of microstructures assessed herein over long periods
up to 10 times the training data’s time span. Without additional
training, neural nets trained on small-size images could be
straightforwardly applied to larger systems with comparable ac-
curacy. The method can reliably predict the evolution of micro-
structures whose morphology or underlying material parameters
differ qualitatively from the training data. The spatiotemporal,
configurational, and parametric extensibility demonstrated by
the RNN suggest that it is capable of learning the evolution rules
of the microstructure phenomena considered here, which pro-
vides the physical basis for its practical applications. Computa-
tionally, the RNN is not restricted by the numerical stability of
PDE solvers and can employ time-step size 1-2 orders of magni-
tude larger than PDE-based simulations in our tests. Beyond
accelerating simulations shown in this study, the ML approach
may provide a valuable pathway toward prediction of micro-
structure evolution in situations where the material parameters
or evolution principles are not completely resolved or only partial
information of the system state is available. The current E3D-
LSTM model can also be extended to predicting the spatiotem-
poral evolution of 3D systems in a straightforward manner by re-
placing the 3D-Conv operation with 4D convolution®®®° (3
spatial +1 temporal) in the network. Given the lack of optimized
4D convolution subroutines in current deep learning frameworks,
a practical solution is to extend from 2D to 3D spatial convolu-
tions in alternative RNNs such as PredRNN. Its application to
the learning of molecular dynamics trajectory will be reported
elsewhere.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Fei Zhou (zhou6@lIInl.gov).
Materials availability

This study did not generate new unique reagents.

Data and code availability

Orignial data have been deposited to Mendeley Data: https://data.mendeley.
com/datasets/xdnjy9p5zn/1.

Convolutional recurrent neural network

Unlike static data without temporal context, sequential data such as the micro-
structure evolution trajectories in the form of image sequences require special
treatment for deep neural networks to learn efficiently and accurately. De-
signed to take advantage of the temporal information of sequential inputs,
the RNN along with its LSTM variants was first successfully employed in voice
recognition and natural language processing. Recently, Shi et al.”® proposed a
convolutional RNN model to make full use of features in both spatial and tem-
poral domains for image sequence prediction. Figure S9 compares the struc-
tures of CNN, RNN, and convolutional RNN. Unlike the vanilla RNN, a convolu-
tional RNN uses a CNN instead of fully connected layers to extract latent
features from input images and represent the system state in the convolutional
latent space. When the system state is updated by the network at new times, it
is passed through a decoder, which is typically a single convolutional layer
without bias and activation, to generate predicted images in the real space.
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More recent studies replace the initially stacked chain structure®® with sophis-
ticated neural nets to improve information flow and reach better performance.
For example, Yunbo Wang and coworkers developed a series of neural net-
works for spatiotemporal predictive learning.”**' The latest E3D-LSTM model
was employed in our study. Compared with other state-of-the-art models that
use 2D convolution operations, the E3D-LSTM integrates 3D (one temporal
and two spatial dimensions) convolution (3D-Conv) deep into RNNs, which
is effective for modeling local representations in a consecutive manner. As
shown in Figure 1C of Wang et al.,®" successive input frames are encoded
by 3D-Conv encoders before being fed to the E3D-LSTM units. Outputs of
E3D-LSTM units are decoded with a 3D-Conv layer to obtain the real-space
predictions. In addition to adopting 3D-Conv as its basic operations, E3D-
LSTM exploits a self-attention mechanism to memorize long-term interactions
in addition to short-term motions. This is achieved by implementing two
distinct memory states in E3D-LSTM: spatiotemporal memory and eidetic
3D memory. The former is designed to capture the short-term motion,*® while
the latter computes the relation between local patterns and the whole memory
space to distinguish and revoke temporally distant memories.
Model setup
Each data point in the training sets is a sequence of N; 2D images generated by
ascalar field ¢c(t,x,y) (0<c<1,t = 1..Nt, x = 1...Ny, y = 1...N,). The spatial
dimensions Ny and N, are 64 unless otherwise stated. For each problem
considered, the training dataset is a 4D array c;(t,x,y) with Niora image se-
quences (i = 1...Niota). Following Wang et al.,®" four E3D-LSTM layers are
stacked together in the model (only two layers in the case of grain growth),
each with 64 hidden features. For spinodal decomposition, a normalization
layer was added at the end to enforce mass conservation. The model is imple-
mented in TensorFlow'% and trained on four NVidia V100 or 1080-TI GPUs.
Typical training time is 36 h, with an initial learning rate of 10~ that gradually
decays to 10-°. The training image size is chosen to be 64 x 64 because it
is large enough to accommodate sufficient variation in microstructure config-
urations and also provides adequate resolution to resolve interfaces in micro-
structure with at least 1-2 pixels. During training, we started from about 400
image clips and gradually increased the number of clips until the model accu-
racy reached a plateau. The validation set is 1/4 the size of the training set,
which is typical in NN training.
Data usage and augmentation
The whole dataset was randomly partitioned into three subsets: training, vali-
dation, and testing/prediction (e.g., at a ratio of 70:15:15). The validation set
was used to monitor the convergence during training, while the testing or pre-
diction set was completely withheld from training. The latter may also include
customized sequences with different spatial/temporal dimensions and/or
initial configurations. Training data were augmented by performing symmetry
operations of the 2D point group 4mm on the original images, which transform
c(t,x,y) toc(t,x.y), c(t.x,y), c(t,x,y), c(t.y,x), c(t,y,x), c(t,y.X), and c(t,y,X)
(X=Nx +1—x,y=N, +1—y). Such data transformations can be achieved by
array rearrangements and do not require additional float-point calculations.
Analysis methods
RMSE and SSIM were used in pixel-wise comparison between ground truth
and predictions. RMSE is defined as:

N Ny S N2
RMSE = $ (P (1) = Po(i:1))” (Equation 3)

— — N,N,

where py(/,j) and py(i,j) are the pixel values of ground truth and predictions,
respectively. SSIM’® is defined as:

<2/39/3p +Cq ) (2ogp +C2)

=2, /2
(pg +Pp +c1> (ag +02 +c2)

SSIM = , (Equation 4)

where p, and ai (k = g, p) are the average pixel value and variance of ground
truth or predictions, respectively, and oy, is their covariance. ¢4 and ¢ are
small constants and chosen to be ¢ =(0.01L)? and ¢, = (0.03L)?, where L
is the range of pixel values. The Euclidean distance between the distributions
of quantity g from RNN predictions and ground truth is defined as:
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(Equation 5)

dz,/iz:(q'g—q;)z.,

where n is the number of bins within the interval between the minimum and the
maximum of g, and qg and q"p are normalized counts in the i-th bin of the
ground truth and predictions, respectively. n=20 was used for all the
calculations.

Simulation method

Phase-field simulations were employed to generate the ground truth for three
microstructure evolution processes, i.e., grain growth, spinodal decomposi-
tion, and dendritic crystal growth. The phase-field method is a powerful
computational technique for modeling microstructure evolution in diverse ma-
terials systems.”™ In a phase-field model, different phases are represented by
one or multiple order parameters, and their interfaces are tracked by the level
sets of the order parameters. The spatiotemporal evolution of the microstruc-
ture is described by the governing equations of the order parameters derived
from thermodynamic and kinetic principles.

Grain growth

Isotropic grain growth in a 2D polycrystalline structure was simulated by a
multi-order-parameter phase-field mode.* In the model, a set of order param-
eters {n4(x), n2(X), ..., nn(x)} is used to represent N distinct grain orientations.
The free energy of the system is expressed as:

N
Ve, 2 .
F= /|:f(n1.,n2, s TN) + 3 E i=1(Vn)°|dV, (Equation 6)

where the homogeneous free energy density f is given by:

N nft ,’]2 3 N N 9
f=m Z"ﬂ(j’?') +§Zi:12j>in,?nj2 it (Equation 7)

which has N local minima located at (n4,75,...,ny) = (1,0,...,0),(0,1,...,0),...,

(0,0,...,1). The evolution of n;(x) (i = 1...N) follows the time-dependent Ginz-

burg-Landau or Allen-Cahn'%"'%? equation:
on; oF .
—=—L—. Equat
Py o (Equation 8)

In all the simulations, the dimensionless parameters N = 1000m = 1,» = 1,
and L =1 were used. The initial polycrystalline structure was generated by Vor-
onoi tessellation® with 100 grains. Equation 8 was solved by the forward Eu-
ler finite difference scheme with periodic boundary conditions and grid
spacing Ax = 1 and time-step size At = 0.2. Single-channel images of the poly-
crystalline structure were generated by assigning Zf’:m? as the pixel value so
that pixels were close to 0 in the grain boundary region and 1 inside the grains.
Spinodal decomposition
Spinodal decomposition was simulated by the C-H equation:®*

ac _ Ofchem 2
ﬁ_v [Mc(‘] c)V( % evee ||,

(Equation 9)
where c is the molar fraction of a species in a binary system. We used the reg-
ular solution model to describe the homogeneous free energy density:

fenem(c) = RT[cInc + (1 —c)In(1 —c)]+wc(1 —c), (Equation 10)
with a positive value assigned to the regular solution coefficient w to favor
phase separation. Equations 9 and 10 were solved with no-flux boundary con-
ditions. The dimensionless parameter values w = 0.27397, ¢ = 0.1682, and
M =1 and mesh spacing Ax =1 were used in all of the simulations. Equation 9
was solved with an implicit variable-order backward differentiation formula
(BDF) solver in COMSOL Multiphysics with an average dimensionless time-
step size of 4.01. Images were output from simulations at a time interval of
1,500, or an average of 370 steps between two frames.

Dendrite growth

We used a phase-field model developed by Kobayashi®® to simulate the den-
dritic solidification process in a pure materials system. Compared with other
more quantitative models,* % this model was chosen for its simplicity, since
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the purpose of this work was not to study dendritic growth but to use it as
an example to evaluate the RNN. The system state was described by the tem-
perature field T and an order parameter ¢, which distinguishes between the
solid (¢ = 1) and liquid (¢ = 0) phases. The free energy of the system is given
by:

Fio.Tl = [ [3e0r1of* + 0. )] o

(Equation 11)
where the anisotropy of the solid/liquid interface energy is controlled by the
orientation dependence of the gradient energy coefficient, ¢(6) =
eo(1 +dcos[n(f — 6o)]), where 6 represents the interface normal and is calcu-
lated from the gradient of  as 6 = arctan( — ¢, /¢,). We employed n =6 in sim-
ulations to produce dendrites with 6-fold symmetry. f is a double-well
potential:

(Equation 12)

m(T) = %arctan[y(Teq -7, (Equation 13)

where Tgq is the solid/liquid equilibrium temperature. The time evolution of the
coupled ¢ and T fields is governed by:

0 oF .
— = —— E t 14
Tt 50’ (Equation 14)
oT 2 o .
i v T+K§’ (Equation 15)

where constant K represents the latent heat. The following dimensionless pa-
rameters were used in all the simulations: « = 0.9, v = 10, Teq = 1, 7 = 0.001,
¢ = 0.01,and ¢ = 0.03. K and 6, varied. The system had a uniform initial tem-
perature at T(t = 0,x,y) = 0. Equations 14 and 15 were solved with a variable-
order BDF solver in COMSOL Multiphysics with mesh spacing Ax=1 and
average time-step size At = 5.7 x 10~*. Images were output from simulations
at a time interval of 0.004, or an average of seven time steps between two
frames.
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More details can be found in the supplemental information.
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