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Abstract: The world faces mounting challenges related to food, energy, and water security. Modeling approaches have emerged in the last
decade to address this problem with mixed outcomes across a range of boundaries, including local, regional, national, and by research
agendas. This paper delves into a comprehensive meta-analysis of the literature to identify the prevalence and strengths of these emergent
approaches on the agendas they were applied to, the boundary levels, nexus dimensions, and the perspectives of the social and political
dynamics. The research highlights the critical gaps that remain in the intersection of the different nexus agendas. A crucial observation was
the scarcity of food, energy, and water models that incorporate technology adoption and economic implementation of nexus projects. On the
core dimensions of the nexus, there is an important opportunity to include ecosystems, soil health, human health, and waste as key nexus
dimensions. Although it is difficult to include social and political dynamics in nexus studies, this research identified proxies including
(1) stakeholder interactions; (2) the intersection of access, security, and education; and (3) trade patterns and measures of prosperity.
DOI: 10.1061/(ASCE)WR.1943-5452.0001564. © 2022 American Society of Civil Engineers.

Introduction

We live in an interconnected world where human and environmen-
tal systems are intrinsically linked. The physical systems influenc-
ing and impacted by human activities are food, energy, and water
(FEW), and these systems are fused into a nexus concept. The con-
cept emerged to address the interrelated challenges confronting
these systems in the age of climate change, unprecedented ecologi-
cal degradation, and impacts of population growth. These systems
are intrinsically interrelated, with strong synergies and trade-offs in
resource consumption leading to challenging environmental and
socioeconomic consequences (Kurian et al. 2019; Xu et al.
2019; Mabhaudhi et al. 2018). The year 2011 set the global stage
for nexus research and prioritization of a range of challenges, such
as productivity improvement, economic development, enhanced
governance, poverty alleviation, and green growth (Hoff 2011).

Untangling the nexus challenges is paramount for the future suc-
cess of sustainability and climate change efforts to avert environ-
mental degradation and promote human flourishing. The nexus
crosses multiple spatial and temporal boundaries, from the house-
hold to the planet, from one-seasonal impact to decades-long
changes. This multidimensional nature brings to the forefront
the question of setting and implementing FEW-related projects.
From the highest level, countries determine national goals. However,

accomplishing these goals requires local and regional implementa-
tions. This downscaling of national goals to local and regional proj-
ects can be a point of conflict. Mismanaging and stressing the
interconnected systems of food, energy, and water further exacer-
bates socioeconomic inequality (Givens et al. 2018; Pittock et al.
2016; Mirzabaev et al. 2015; Romero-Lankao and Gnatz 2019;
Grindle et al. 2015).

The ideal example of the tension may be seen with hydropower
impact considerations, in which energy decisions have substantial
impacts on ecosystems, agriculture, economic development, and
migratory fish populations (Smajgl and Ward 2013; Basheer and
Elagib 2018; Pittock et al. 2016; Momblanch et al. 2019; Amjath-
Babu et al. 2019). These complexities have driven studies to ex-
plore appropriate modeling techniques, highlight trade-offs and
synergies, and identify important problems to tackle.

This paper’s methodology focused on searching academic data-
bases for “food-energy-water nexus” configurations, for a narrowed
selection of 314 studies. To achieve a better understanding of nexus
literature, the selected studies were evaluated by agenda, modeling
approach, boundary levels, nexus dimensions, data sources, and
geographic distribution. The research questions for this review in-
cluded the following:
• What agendas and boundary levels are currently pursed in the

nexus literature, and what gaps persist?
• How are different methodologies applied and to what end?
• Which alternative nexus dimensions should be promoted?
• How can social and political dynamics be better incorporated

into models?
• What is the geographic distribution of nexus studies?

We found that implementation is still a persisting challenge, but
that opportunities to enhance efforts are rising in awareness and
guidelines. Nonetheless, additional research needs to integrate
financial and sociopolitical concerns into plans and designs. We
identified complementary modeling techniques by agenda and
boundary levels, and opportunities for multimodel approaches.
For nexus dimensions, the significant nontraditional dimensions
were ecosystems, soil, health, and waste. Although these are found
in the literature, they are often tangential, and therefore require a
modeling reorientation of emphasis. On the social and political
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dynamics, we identified proxies that could bridge the modeling
perspectives to address these challenging aspects, including stake-
holder interactions, access, security and education, trade patterns,
and measures of prosperity.

The contribution of this paper to the literature is fourfold. First,
it provides a comprehensive and current overview of agendas
throughout the nexus. This offers guidance on agendas that are
underrepresented and highlights the directions that have been
covered, including a geographic distribution of agendas. Second,
the methodology used for each agenda and boundary level was
mapped, aiding scholars and decision makers to identify which
models and boundary levels to consider for their research goals
with confidence in the benefits of their choice. Third, an analysis
of alternative nexus dimension shed light on the prevalence and
models that are applied for each dimension. Fourth, it made an
identification of the proxies to assist researchers in identifying
ways to include social and political dynamic dimensions.

The paper begins with a concise introduction to the background
of the nexus literature aimed to uncover existing gaps. This is
followed by the research design and the categories that became ap-
parent in the analysis. The inductive-deductive approach elicited
findings with commentaries on the summaries of the extant literature,
research gaps, and the potentials for future work in the conclusion.
Fig. S1 shows a content layout of the comprehensive review.

Background

The extant literature has examined the nexus with emphasis on
agenda frameworks appropriate for nexus work (Endo et al. 2015).
Prior work on the water-energy (EW) nexus categorized existing
research into technological, environmental, economic, political,
and social agendas (Hamiche et al. 2016). A different approach
grouped studies according to their nexus indicators such as
flux, efficiency, and environmental impacts (Arthur et al. 2019).
Other examples include the emerging research agenda of environ-
mental livelihood security that analyzed the nexus to understand
potential linkages and limitations to livelihood perspectives (Biggs
et al. 2015), as well as climate change (Bazilian et al. 2011;
Hellegers et al. 2008; Pittock et al. 2013; Khan and Hanjra 2009;
Ravindranath et al. 2011), sustainable development (Gregory et al.
2005; Zhang et al. 2018b; DeNicola et al. 2015; Duić et al. 2013;
Rasul 2016; D’Odorico et al. 2018), urbanization (Guan et al. 2020;
Shah et al. 2021; Raub et al. 2021; Arthur et al. 2019), sector link-
ages (Mahjabin et al. 2020; Kondash et al. 2021; Opejin et al.
2020), governance, scale, and implementation (Bach et al. 2012;
Campbell 2008; Ringler et al. 2013; Jones and White 2021;
Huntington et al. 2021; Opejin et al. 2020), and power dynamics
(Bréthaut et al. 2019; Dombrowsky and Hensengerth 2018;
Covarrubias et al. 2019; Givens et al. 2018).

However, modeling and incorporating politics and social dy-
namics in nexus research is not common, and additional work is
needed in this domain (Albrecht et al. 2018). Two recent interesting
research directions are to explore the impacts of the COVID-19
pandemic on resource insecurity (Calder et al. 2021), as well as
evaluating the role of psychology to better understand the impact
of human behavior on the nexus activities (Dreyer et al. 2020). The
main criticism amounts to which complex subsystem to include, the
trade-off boundaries, lack of geopolitical influences (Guillaume
et al. 2015; Leese and Meisch 2015; Allouche et al. 2015), and
questions of novelty specification (Benson et al. 2015; Wichelns
2017; Cairns and Krzywoszynska 2016). Leading efforts are to in-
clude ecological, social, and political dimensions in additional

studies (De Grenade et al. 2016; Allouche et al. 2015; Wichelns
2017; Caputo et al. 2021; Itayi et al. 2021; Niet et al. 2021).

Reviews of nexus tools have been conducted, elaborating the
applications of existing tools and frameworks (Mohtar and Lawford
2016; Kaddoura and El Khatib 2017; Albrecht et al. 2018; Dai et al.
2018). We learned from Albrecht et al. (2018) that specific and
reproducible approaches are scarce and are unable to capture the
interactions they pursue. Yet, although there is a dominance of quan-
titative approaches, social science perspectives are limited, and the
methods exist in silos. These combine to demand for mixed-
methods approaches. The view of natural sciences’ dominance over
social perspectives is shared by Wiegleb and Bruns’ (2018) request
that both are equally engaged to overcome the perceptions that
social science is less legitimate than natural sciences, economics,
and engineering. Further, because multiple boundary analysis
frames are found in the literature, mixed boundaries raise the ques-
tion of which modeling techniques can be applied appropriately.

Review Methodology

The comprehensive meta-analysis method adopted is consistent
with the methods in standard literature review papers. The overview
of this meta-analysis methodology is provided in Fig. 1, which

Fig. 1. (Color) Methodology.
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highlights the process in three phases: defining the search criteria,
the selection process, and, lastly, the analysis. First, the aggrega-
tion of research publications was initiated by searching for “food-
energy-water nexus modeling” as search words and their combi-
nations in peer-reviewed academic journals on two indexes: Web
of Science and Google Scholar. Both titles and abstracts were
reviewed for presence of a nexus dimension. Other combina-
tions included different ordering of “food energy water,” “models,”
and “modeling of.” Second, the selection phase resulted in 314
studies between 2002 and 2019, and a diverse range of traditional
(FEW) and alternative dimensions. Following the selection crite-
ria, exclusions were based on single-dimension articles; that is,
articles pertaining only to either water or food or energy were
excluded.

In the third phase, article analysis, nine parameters were exam-
ined: (1) modeling approach, i.e., the type of model implemented,
(2) data source in the models, (3) key nexus dimensions, (4) the con-
tribution of the study, (5) agenda of the topic, (6) approach, i.e., em-
pirical, theoretical, or semitheoretical, (7) analysis level, i.e., farmer/
household, city, basin, or country, (8) frame of analysis, i.e.,
local, regional, national, global, and specific multilevel, and (9) geo-
graphical distribution of the study. Table 1 summarizes the modeling,
nexus dimensions, focus, and agendas.

To examine the nexus agendas, three qualitative steps were
taken: autocoding (NVIVO version 12) (QSR 2018), linkage

analysis (VOSViewer version 1.6.18), and word frequency
(NVIVO). Synthesizing the autocoded themes, linkages and
high-frequency terms resulted in nine research agendas: (1) eco-
nomic decisions and environmental livelihood security with respect
to FEW security and the behavior of local and regional nexus stake-
holders, (2) governance, particularly on the impacts of policies on
resource use, (3) infrastructure and supply chains, with specific at-
tention to consumption, critical infrastructure improvements, and
resource trade-offs, (4) sustainable development, with emphasis
on climate change, sustainable development goals, and growth,
(5) urbanization pertaining to sustainable cities, (6) technology
adaptation evaluating the impacts of technologies in industries,
(7) implementation process of nexus projects, (8) model utilization
for specific problems, and (9) nexus definitions. Visualizations of
the thematic clusters from the linkage analysis and word frequency
cloud are given Figs. S2 and S3.

The modeling typology was determined by the count of studies
applying a specific approach with a minimum of eight to be
included as a standalone category. In total, eight modeling ap-
proaches were identified: agent-based modeling (ABM), which
simulates decisions and interactions of agents; complex adaptive
systems (CAS) for dynamic networks of interacting subsystems;
system dynamics (SD) for stock-and-flow models and causal loop
analyses; material flow analysis (MFA), which quantifies stocks
and flows of biological and physical systems, e.g., life cycle

Table 1. Overview of key article items

Key item Framework References

Modeling 1. The contributions of the modeling approaches are summarized
in Table 3.

Tian et al. (2018), Martinez-Hernandez et al. (2017), de Fraiture
(2007), Mulligan et al. (2014), Wang et al. (2019b), Kurian
(2017), and Bieber et al. (2018)2. An overview of agenda/boundaries is presented in Table 4.

3. Aside from standalone approaches, a variety of
complementary multimodel approaches are observed:
• OPT + ABM/SD
• ABM + CAS/SD/OPT
• SD + MFA
• REG + ABM/GIS

4. Data sources are varied in the literature, with dominance of
government data, literature review, and international
organizations, in addition to less-often utilization of research
center output, surveys, interviews, and utility authority data

Nexus dimensions 1. In addition to the main nexus dimensions of food, energy, and
water, more attention is given to climate, economics,
ecosystems, and land.

Venghaus and Hake (2018), Maass (2017), Hatfield et al. (2017),
Roidt and Avellán (2019), Islas-Espinoza and de las Heras
(2015), Karabulut et al. (2018), Miller-Robbie et al. (2017), and
Sahle et al. (2019)2. Special emphasis on ecosystems, health, soil, and waste will

enhance nexus studies.

Focus 1. Infrastructure expansion and efficiency are prevalent topics. Gandiglio et al. (2017), Jalilov et al. (2016), Allam and Eltahir
(2019), Vlotman and Ballard (2014), Salmoral and Yan (2018),
Heard et al. (2017), Foran (2013), Hermann et al. (2012), Hanes
et al. (2018), Wang et al. (2018), and Liang et al. (2018)

2. River basin dynamics focus on synergies and trade-offs around
water and energy planning with agriculture production.

3. Sustainable agriculture explores improved cultivation,
biofuels, and efficiency upgrades.

4. Analysis of urban networks and urbanization impacts is an
increasing topic of interest in the literature.

5. Economic decisions continue to dominate.

Agendas 1. Prevalent agendas: Weitz et al. (2017b), Bieber et al. (2018), Yung et al. (2019), de
Amorim et al. (2018), Haltas et al. (2017), Bijl et al. (2018),
Leck et al. (2015), Basheer et al. (2018), Bizikova et al. (2013),
Hoff et al. (2019), Al-Saidi and Lahham (2019), Davies and
Garrett (2018), and Rasul (2016)

• Governance and policy evaluation
• Infrastructure and supply chains

2. Agendas with increasing research attention:
• Urbanization
• Sustainable development

3. Agendas with relatively low research attention:
• Implementation
• Technology adoption
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analysis and social accounting matrices (SAM); and governance
(GOV), a semiquantitative collection of methods for policy making
and decisions in resource management including integrative envi-
ronmental management (Visseren-Hamakers 2015; Galaz et al.
2012; Weitz et al. 2017b; Märker et al. 2018), comparative policy
analysis between agencies or nations (Sharmina et al. 2016;
Villamayor-Tomas et al. 2015; Stein et al. 2018), and political
economy in nature (Matthews and Motta 2015). The last three ap-
proaches are optimization (OPT), regression (REG), and a variety
of analytical approaches (AA) that groups all infrequent methodo-
logical instances such as geographical information systems (GIS)
(Gondhalekar and Ramsauer 2017; Wang et al. 2019b), Delphi
method for expert judgment (Smajgl et al. 2016; Smajgl and
Ward 2013), index systems (Schlör et al. 2018; Hake et al. 2016;
Wang et al. 2018), and other quantitative tools (Neto et al.
2018; Huckleberry and Potts 2019).

Results

This section presents the results categorized in our contributions,
including agenda distribution, boundary analysis, alternative nexus
dimensions, proxies for social and power dynamics, geographic
distribution of nexus studies, and modeling pathways for improved
decision making.

Nexus Agendas

Nexus agendas are not distributed equally throughout the literature,
visualized in Fig. 2. The largest share of agendas is governance and
policy evaluation, with 93 studies (29%), followed by infrastructure
and supply chains with 60 studies (19%). The middle range of stud-
ies cover economic decisions and environmental livelihood security
[41 (13%)], sustainable development [36 (12%)], and urbanization
[31 (10%)]. The lowest frequency of agendas were model applica-
tions [18 (6%)], implementation [15 (5%)], technology adoption
[10 (3%)], and nexus definitions [10 (3%)]. Fig. S4 presents a visu-
alization of the agenda distribution. Further observed in Fig. 2 is the
rising attention given to environmental security, sustainable devel-
opment, and urbanization in recent years. A list of example agenda
publications is given in Table S1.

The gap in the literature is the minimal attention given to tech-
nology adoption and implementation studies. The technology
adoption studies provided meaningful guidelines on approaches

to adopt nexus technologies or policies. First, clear institutionalized
government and business sector support is needed to address
knowledge, training, technical capacity, and stakeholder interest
(Al-Saidi and Lahham 2019; Davies and Garrett 2018). Second,
long-term consideration of life cycle analysis and economic imple-
mentation strategies are needed for successful adoption practices
(Picart-Palmade et al. 2019; Cai et al. 2018). Third, the success
of adoption is related to local technology and ecosystem consider-
ations of impacted shared-governance stakeholders (Martinez-
Hernandez et al. 2017; Halbe et al. 2015). These three guidelines
influence the broad range of technologies explored, including dis-
tributed energy solutions, water and wastewater improvements, and
urban agriculture technologies. This underrepresented agenda sug-
gests additional work is necessary to test in the field and include in
the widespread research components that complement governance-,
implementation-, and material-resource-focused studies.

Two interrelated trends emerged from reviewing implementa-
tion studies, including governance structure and framing and col-
laboration. The former relates to appropriate governance structures
and relationships with the private sector as essential for successful
project implementation. This includes aligning institutional dynam-
ics to promote cross-disciplinary collaboration and reduce admin-
istrative complexity when nexus links are quantified (Huckleberry
and Potts 2019; Weitz et al. 2017a). An important topic often over-
looked in the literature was project financing. Addressing cost
recovery and uncertainty as part of nexus designs will further pro-
mote implementation processes, especially when the private sector
and multiple stakeholders are included (Kurian 2017; Visseren-
Hamakers 2015; Yung et al. 2019). The final perspective of gov-
ernance structure centers on understanding political power
dynamics. Political influence can be excreted by both private in-
vestors and political figures and processes (Dombrowsky and
Hensengerth 2018; Weitz et al. 2017b). Thus, to reach the point
of implementing nexus research, understanding the power dynam-
ics can aid in mitigating financial and political pressures.

Power dynamics are related to framing and collaboration.
Implementation-focused research has advocated for broad stake-
holder collaboration on decision making and framing the prob-
lem from social, cultural, and local technoeconomic perspectives
(Howarth and Monasterolo 2016; Hoff et al. 2019). The notions
are straightforward: identify direct and indirect stakeholders to en-
vision, invest, and transform nexus thinking and projects (Bizikova
et al. 2013; Bielicki et al. 2019; Ringler et al. 2013). The challenge

Fig. 2. (Color) Agenda publication per year.
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with implementation studies is that they are predominantly quali-
tative, either focused on governance or conceptual. Implementation
and technology adoption are interrelated, with technology adoption
forming an internal part of broader implementation efforts. Given
the vast disproportion of nexus studies that overlooked these con-
cerns, in particular economic viability, cost recovery efforts, and
power dynamics, we find that the implementation gap is significant.

Deduction 1: The dominant agenda efforts were applied
toward policy evaluations with attention to urbanization,
sustainable development, and economic decision making.
However, the main gap is studies aimed at understanding
technology adoption and nexus implementation considera-
tions, specifically financing, cost recovery, and public–private
partnerships.

Modeling, Boundaries, and Data Framework

This section discusses the modeling approaches and how they were
applied toward the study agendas. It also sheds light on boundary
levels and their prevalent models, data availability and aggregation,
how the different nexus scales are integrated, and uncertainty and
sensitivity.

Modeling and Agendas
Fig. 3(a) shows the total distribution of approaches on top and a
heat map with colors ranging from red (low frequency) to green
(high frequency). This shows that over 60% of papers were quan-
titative, with MFA the most prevalent method, followed OPT, CAS,
ABM, SD, and REG. However, the count for AA, the aggregate
category of nonstandard approaches, supports previous claims on
the plurality of nondistinct approaches. Governance, the semiquan-
titative approach of policy and management analysis, represents
10% of the literature.

Some modeling patterns were observed. First, MFA was used
predominantly for infrastructure and supply chains, and for urbani-
zation. Comprised of SAM and life cycle analysis, MFA offers
valuable sector-based performance and their interdependencies.
The emphasis on urbanization is through the impact of regional
urban dynamics. The limitation of MFA, looking at feedback be-
tween sectors, can be mitigated via complementary model pairings.
Second, optimization was applied toward governance and policy
evaluations and infrastructure and supply chains under the lenses
of uncertainty and risk impacts to resource allocation and economic
benefit analyses. Table 2 indicates that the optimization studies in-
cluded single-objective and multiobjective approaches, and these
are grouped by type of objective function, form, decision variables,
and constraints.

Single-objective problems aimed to either maximize economic
benefit in the form of net present value and/or profit or minimize
costs and use of resources. Both objectives were approached using
linear, nonlinear, and mixed-integer programming, with the most
common decision variables including land and water allocation,
crop type, energy production, and technology expansions. The mul-
tiobject studies maximized economic benefits while minimizing
environmental impacts such as CO2 or greenhouse gas (GHG)
emissions. The constraints across all optimization problems in-
cluded groundwater and surface water supply and demand, energy
supply and demand, production characteristics, food security re-
quirements, and investment and economic limits.

Optimization approaches also offered the flexibility to comple-
ment other methods in multimodel approaches. For example,
optimization coupled with ABM was used to model policy intro-
ductions of technology and regulation in a mixed integer linear

programming (MILP) for resource allocation and technology in-
vestments (Bieber et al. 2018). With OPT and MFA, regional
FEW priorities were evaluated through use of different biofuels
(Yuan et al. 2018). Combining OPTand CAS, the impacts of hydro-
power projects on economic development, flood control, and irri-
gation were explored through an evaluation of 11 dam projects in
the Himalayan River Basin, finding a need to compensate commun-
ities and reforest the region through the economic benefits of hy-
dropower (Amjath-Babu et al. 2019). Utilizing OPT and SD, a
water-food model explored the linkages of water scarcity, econom-
ics, and agricultural impacts of various food and water scenarios
(de Fraiture 2007). Relying on CAS, OPT, and SD, Tian et al.
(2018) evaluated ecosystem services, economics, and climate im-
pacts to capture environmental degradation, economic costs, and
excess resource use (Tian et al. 2018).

Lastly, although GOV methods accounted for 10%, they made
up over half of implementation problems, and 17% of governance
and policy evaluation problems. As indicated by previous research,
a leading challenge in nexus studies is implementing and actualiz-
ing research findings.

Thus, complementing a governance approach with a quantita-
tive method could yield results more readily transmutable to deci-
sion makers. The distributions of model applications for the various
nexus problems strengthen the perspective that no single modeling
approach is superior to another. Rather, scholars and decision mak-
ers can select the most appropriate approach and combinations for
their problem. It is evident that the implementation and technology
adoption studies could further benefit from quantitative studies.
The contribution of each modeling approach is summarized in
Table 3.

Modeling and Boundary Frameworks
Fig. 3(b) shows single-boundary analyses. A third of the studies
were multilevel, with cities and river basins forming the majority
of multilevel efforts. However, there are significant challenges to
implementation, including cross-disciplinary collaboration, com-
plexity, politics, and incompatibility of institutions, which require
more precise quantification of nexus links and case studies–based
recommendations (Beck and Walker 2013; Leck et al. 2015;
Al-Saidi and Elagib 2017; Howarth and Monasterolo 2016; Lawford
2019). This partially explains why multilevel studies were predomi-
nantly qualitative, around 70%, as seen in the heat map.

With only a minor difference, regional studies were the most
prevalent, followed by national and then local. Although the local
level accounted for 19% of the studies, 80 studies (25%) covered
the local boundary as part of multilevel frameworks. With 60 stud-
ies (19%) on regional levels, there were 118 (37%) that included the
regional level in a multilevel framework. The fact that multiboun-
dary research represented only 38% of the literature is a cause to
pause and think of future work. The shift from centralized develop-
ment and planning to decentralized sheds light on the importance of
multiboundary thinking.

Table 4 offers a guide to observe prevalent agenda and modeling
pairings and the boundary levels considered. These pairings point
to the multimodel pairings that are beneficial to each agenda. Addi-
tional reference examples of different modeling applications are
given in Table S2. A MFA study could be the preliminary phase
of the project to identify synergies and trade-offs; then, an optimi-
zation model could be built to determine optimal resource use for
technology investments, and an ABM model could simulate agent
behavior concerning the adoption choices. Similarly, a willingness-
to-pay study could help with accurate representation of agent de-
cision making by fine-tuning model parameters and constraints.
Creative thinking will lead the next phase of nexus cross-disciplinary
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Fig. 3. (Color) Models, boundaries, and data: (a) count of papers by the approach and model type with agenda-model heat map; (b) count of papers by
boundary analyses with boundary-model heat map; and (c) count of papers by data sources and agencies.
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Table 2. Overview of optimization studies

Objective Optimization goal Examples Form Decision variables Constraints References

Single objective Maximize economic benefit Net present value, profit LP, NLP, MILP, MINLP Land allocation, crop type, water
allocation, energy production,
resource expansion

Water supply and demand,
energy supply and demand,
food security, crop
production

de Amorim et al. (2018), Saif
and Almansoori (2017),
Amjath-Babu et al. (2019),
Jalilov et al. (2018), Suthar
et al. (2019), Allam and El-
tahir (2019), Jalilov et al.
(2016), Sun et al. (2019), and
Avraamidou et al. (2018)

Multiagent benefit (profit) Water allocation Water supply and demand,
agent interactions

Yang et al. (2011, 2009)

Maximize environmental
benefit

Environmental impact
reduction (spatial
optimization)

LP Land and crop allocation Land availability, water
consumption, food demand
and supply

Yuan et al. (2018)

Minimize total cost System and energy cost;
Discounting

LP, NLP, MILP Land and water allocation,
technology investment, energy
production

Water supply and demand,
energy supply and demand,
production consumption,
investment balance

Karan et al. (2018), Martín
and Grossmann (2015),
Bieber et al. (2018), Zhang
et al. (2018b), and Dubreuil
et al. (2013)

Minimize resource gap Crop yield gap Tian et al. (2018)
Maximize economic benefit,
food, and energy production

Maximize net present value,
crop yields, and energy
generation; maximize profit
and crop yield

LP, MILP, MINLP Land and crop allocation; energy
alternatives; crop allocation;
livestock allocation

Food/energy output
sustainability limits;
economic constraints;
energy/water supply and
demand

Hanes et al. (2018), Zhang
et al. (2018a), and Nie et al.
(2018)

Multiobjective Minimize environmental
impact

Minimize water and energy
use, environmental impact

— — — —

Maximize economic benefit;
minimize environmental
impact

Maximize profit; minimize
negative environmental
impacts and CO2 emissions

LP, NLP Irrigation area, water allocation,
land allocation, energy
production

Water supply and demand,
energy supply and demand,
economic constraints, food
security, resource allocation
policy

Li et al. (2019a, b)

Note: LP = linear programming; NLP = nonlinear programming; MILP = mixed integer linear programming; and MINLP = mixed integer nonlinear programming.
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modeling because no single modeling approach satisfies all situa-
tions. Additional questions persist when determining which prob-
lem to focus on and how to model and address it, including data
availability and effect of scale.

Data Availability and Aggregation
The modeling approach also depends on data availability, either
from primary or secondary sources. The source and availability
of data vary, depending on project and region. To better understand
the data profile of the models used, six data categories were deter-
mined after reviewing the data sections of the modeling studies,
including government data sets, international organizations,

literature reviews, research centers, utility authorities, and surveys-
interviews. The data analysis focused on the seven quantitative mod-
eling approaches excluding the literature review, and conceptual and
governance studies. Although some governance studies were quan-
titative, they had existing sources and did not require extensive data
inputs. In total, 175 studies had their data sources analyzed as
presented in Fig. 3(c).

The largest sources of data are government databases. Fewer than
40% of quantitative studies relied on the data tracked and updated
by local, regional, and national governments, in the form of SAM
and consumption tables. A similar count of studies was dependent
on the US federal agencies, mainly the USEPA, Department of

Table 3. Summary of modeling contributions

Modeling Contributions References

Agent-based modeling (ABM) Economic decisions on local and regional levels focus on
impact of information sharing and coordination, as well
as irrigation decisions and economic adaptation plans.

Chen et al. (2012), Giuliani and Castelletti (2013),
Bitterman (2017), Pope and Gimblett (2015), Foran
(2015), Berger and Troost (2014), Berger and Ringler
(2002), Bieber et al. (2018), Yang et al. (2011),
Mulligan et al. (2014), Yang et al. (2009), and Gai and
Shittu (2021)

Agent interactions enable the evaluation of payment of
ecosystem services, ecological preservation, hydropower
trade-offs, and governance responses to climate change.
Watershed management focuses on water trading,
groundwater policy and systemwide benefits.

Complex adaptive systems (CAS) Watershed management evaluates water provision,
ecosystem services, climate change impacts, hydropower
planning. Energy and biofuels considerations consider
agriculture and land-use decisions, GHG emissions, and
carbon trading.

Karabulut et al. (2016), Nelson et al. (2009), Yang
et al. (2016), Momblanch et al. (2019), Amjath-Babu
et al. (2019), Hermann et al. (2011), Karlberg et al.
(2015), Welsch et al. (2014), and Weirich (2013)

System dynamics (SD) Household/firm level models focus on security of energy,
food choices, water and wastewater systems.
Socioeconomics, e.g., poverty alleviation, are
increasingly modeled in both causal loop and stock-and-
flow models. The focus in infrastructure models is
resource expansions and investments in energy and water
systems.

Wa’el et al. (2017, 2018), Scott et al. (2011), Dong
et al. (2019), Givens et al. (2018), Kulat et al. (2019),
and Wicaksono and Kang (2019)

Material flow analysis (MFA) MFA is predominantly used for evaluating embodied
resources in regional networks, e.g., infrastructure
improvements in demand-side strategies for resource
reduction and improved water management. A promising
field of exploration is the opportunity for energy and
nutrient extraction from wastewater.

Liu et al. (2017), Fang and Chen (2017), White et al.
(2018), Wang and Chen (2016), Chen and Chen
(2016), Wang et al. (2017, 2019a), Owen et al.
(2018), Okadera et al. (2015), Walker et al. (2014),
Valek et al. (2017), Liang et al. (2018), and Feng et al.
(2019a, b)

Governance (GOV) Highlights the importance of incorporating and
mitigating uncertainty, addressing stakeholder
coordination, providing guidelines for private sector
inclusion, and economic solutions with cost recovery.

Yung et al. (2019), Dombrowsky and Hensengerth
(2018), Weitz et al. (2017a, b), Hoff et al. (2019),
Visseren-Hamakers (2015), Kurian (2017), Gain et al.
(2015), and Bizikova et al. (2013)

Optimization (OPT) Focuses on optimal decisions under different policies for
land and resource allocation, irrigation economics under
drought scenarios, crop choices, energy and GHG
emissions.

Li et al. (2019a, b), Sun et al. (2019), Zhang et al.
(2018a), Hanes et al. (2018), Jalilov et al. (2016),
Allam and Eltahir (2019), Dubreuil et al. (2013), Saif
and Almansoori (2017), Zhang and Vesselinov
(2017), Jalilov et al. (2018), Dhaubanjar et al. (2017),
Martín and Grossmann (2015), and DeLuque and
Shittu (2019)

Infrastructure expansion projects evaluate changes to
energy, water and food systems, capacity expansions, and
reaching optimal economic benefits. Table 2 describes
objectives, goals, form, decision variables, and constraints.

Analytical approach (AA) Focuses on the synergies and trade-offs between
sustainable development goals and the FEW nexus. Uses
specialized indices for prosperity mapping and
geographic inequality. Education is key in behavioral and
cultural change of nexus understanding.

Saladini et al. (2018), Mahlknecht and González-
Bravo (2018), Fader et al. (2018), Hake et al. (2016),
Schlör et al. (2018), Terrapon-Pfaff et al. (2018),
Hamiche et al. (2016), Kraftl et al. (2019), Le Noë
(2019), Smajgl et al. (2016), Grindle et al. (2015), Bijl
et al. (2018), Martins (2018), and Doggart and Me-
shack (2017)

Trading schemes and investments influence nexus
decisions. Improved resource management requires a
holistic approach.

Regression (REG) Evaluates ecosystems and resource use through the
willingness-to-pay for services, and analyzes scenarios
using indicators of water quality and annual payment.

Gurdak et al. (2017), Song et al. (2019), Khan and
Zhao (2019), Ozturk (2015), Caixeta (2019), Han-
nibal and Portney (2019), and Abbott et al. (2017)

Explores the health impacts of FEW related non-point-
source pollution, and dietary habits. Assesses the
correlation of FEW security and political stability.
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Agriculture, and Energy Information Administration. The China
National Bureau of Statistics also tracks environmental, energy,
economic, and emissions-related statistics.

Integrating Different Nexus Scales
The challenge with data is to determine if it is used appropriately
and how to integrate multiscale nexus systems. The biggest differ-
ence in scaling effects is between climate projections and resource
consumption. On regional and national levels, climate data rely on
downscaling general circulation models (GCMs) to their respective
regional climate models (RCMs), as well as specific climate sim-
ulation based on historic climate observations in various integrated
assessment models.

These are sensitive to stochastic parameters implying a range of
uncertainties when downscaling models. Resource consumption
and input–output (SAM) tables, however, were not often simulated,
but aggregated as total consumption and outcome, such as energy
(kWh), amounts of water, tons of food, and others. Here, downscal-
ing may overestimate or underestimate the resource use of local-
ities. For example, taking the average household use of nexus
resources from a river basin and applying it to a town without purs-
ing additional efforts, such as analyzing utility data for energy,
water, and waste collection, could provide skewed results if models
were simulated with the average data.

The higher the boundary level, the greater the degree of data
aggregation required, especially when using CAS, MFA, and SD
models. In local–regional studies, although government data sets
and literature reviews were common, there was a greater reliance
on surveys, workshops, and water and energy utilities than in other
multilevel studies. However, for the regional–national boundary
levels, there was greater emphasis on international organizations,
government data sets, and research centers. These differences al-
lude to more accessible data on regional and national levels than
on local. To capture the perspective of local boundaries, additional
effort is needed to collect data. Such data collection methods were
not common in the nexus, suggesting that important perspectives
and dynamics such as social, cultural, and political dimensions may
be sidelined.

Addressing Uncertainties
Considering the impact of scaling and the type of resolution needed
for each modeling type is key to aggregating the most appropriate
data. However, uncertainty and sensitivity have an important role in
nexus studies. This is especially relevant to climate models with
parameter distributions. Thus, scholars may incorporate these per-
spectives either by including a parameter distribution and probabil-
ity function in the simulation, or by evaluating scenarios with

different parameter values. For sensitivity, it is recommended that
scholars test percent changes to key parameters and evaluate the
outcome accordingly. Addressing uncertainty will translate to robust
results with significant confidence in the solutions, whether on
resource or financial metrics (Kamdem and Shittu 2017; DeLuque
and Shittu 2019). Specifically, for studies using GCMs and RCMs
for their climate components, the recommendation is to evaluate
several scenarios associated with different climate projections.

Deduction 2: The prevalent approaches across all multiboun-
dary studies have been MFA, SD, and GOV. However, most
multiboundary studies were qualitative. Future quantitative
studies should aim at the use of interdependent multimodel
approaches, in which the output of one model serves as the
input for another, for cross-disciplinary research. Lastly, addi-
tional attention to parameter and scenario uncertainty should
be incorporated in future studies.

Other Dimensions of the Nexus

Analyzing the nexus dimension distribution provides a litmus test
for research directions. The majority of studies reviewed were FEW
focused, with 206 studies (64%). The integrated FEW (iFEW)
nexus, corresponding to studies that identified additional dimen-
sions alongside FEW, had 32 studies (10%). In total, 74% of the
studies reviewed relied on the FEW nexus as core. Of the iFEW
research studies, the two most common nexus additions were cli-
mate (12) and ecosystems (7). Broadly speaking, climate refers to
mitigating GHG emissions as a core principle (Weirich 2013;
Hermann et al. 2012; Howells et al. 2013), and ecosystems refers
to enhancing and protecting ecosystem services (De Grenade et al.
2016; Hanes et al. 2018).

Aside from FEW, a range of additional subsystems have been
explored and identified as core nexus, grouped under “Other” cat-
egory: economics, land, charcoal, health, soil, waste, environmental
justice, conflict, education, and urbanization. The dimensions and
modeling distribution are shown in Fig. 4. Of the alternative dimen-
sions, ecosystems, soil, health, and waste are lacking attention as core
dimensions, representing only a small fraction of literature despite the
many articles that consider the impacts on these subsystems. Expand-
ing nexus research into these dimensions will enhance a holistic
bottom-up approach that is human and ecological focused to balance
the top-down technological- and economics-dominant approaches.

Ecosystems
Thriving ecosystems are the foundation for industries and sociopo-
litical processes. Understanding the impact of resource consumption

Table 4. Literature on agenda-model-boundary combinations

Agenda Examples Prevalent models Main boundaries

Economic decisions and
environmental livelihood security

Farmer adaptation plans, household
decisions, and resource security

MFA/SD, ABM/OPT Regional and local–regional

Governance and policy evaluation Resource management, policy
impacts, and transboundary relations

GOV, OPT CAS Regional and regional–national

Infrastructure and supply chains Infrastructure improvements, and
synergies and trade-offs

MFA, OPT Regional and national

Sustainable development Climate change impacts, sustainable
development goals, agriculture
practices

CAS, GOV National and regional

Urbanization Sustainable cities, urban networks MFA/ABM,CAS/SD/REG/GOV Local and local–regional
Technology adoption Technology introduction, adoption

scenarios
ABM/SD, MFA Local and local–regional

Implementation Implementation process GOV, OPT Local–regional and regional
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and technological development is paramount to mitigate ecosystem
degradation, protect biodiversity, and ensure socioecological services
(Karan et al. 2018; Tscharntke et al. 2012; Colloff et al. 2019; Dong
et al. 2019). The dominant force of tapping into ecosystem services
and resources is economics. Yet, the notion is to advance past nexus
economic security, i.e., the availability of resources, and embrace the
adaptive capacity instead (Ericksen et al. 2009; De Grenade et al.
2016). This capacity relates to the human behavior, leadership,
and ability to adapt to nexus changes through learning and fair gov-
ernance (Zhang et al. 2021). The inclusion of ecosystems as a main
dimension will pave the way for a deeper understanding of resource-
use impacts (Karabulut et al. 2016; Maass 2017; Sahle et al. 2019;
Hanes et al. 2018).

A growing body of research is targeting valuation of ecosystem
services. By exploring the economic value of these services, such
as the natural filtration of water, pollination services, and fertile soil
for increased productivity, it becomes possible to capture potential
financial mechanisms to protect ecosystems in the form of cost-
saving practices and payment for ecosystem services (Nelson
et al. 2009; Chen et al. 2012; Mishra et al. 2019; Khan and
Zhao 2019). By incorporating ecosystems perspectives into plan-
ning and life cycle analysis, a better resolution of policies is
achieved.

Soil Function and Fertility
Soil degradation and erosion are major threats to nexus synergies,
reduce productivity, increase reliance on fertilizers, and increase
pollution (Hatfield et al. 2017; Campbell 2008; Kulmatov et al.
2018). The issue is that technological interventions are not always
the solution, and a tipping point may be reached when they cease
helping soil health. The challenge is that the role of soil is
overlooked in favor of profitability and productivity. Comple-
mentary to technological interventions are functional land- and

soil-management techniques that favor holistic soil approaches.
Studies related to soil have relied more on specialized analytical
tools for quantitative measurements, but most studies were concep-
tual, shedding light on the need for greater quantitative exploration
of soil as a nexus component (Campbell 2008; Schulte et al. 2015;
Hatfield et al. 2017; Roidt and Avellán 2019; Saladini et al. 2018;
Kattel 2019; Ozturk 2015).

Health
Health-focused studies also had a broad approach, using regression,
MFA, and analytical tools, with an equal amount of conceptual and
literature review papers. MFA was the dominant approach for
waste-related studies, given its advantages in capturing input-
output relationships. It is arguable that nexus technologies are
responsible for a large share of xenobiotic emissions, a group of
synthetic materials that are foreign to ecosystems and the human
body (Islas-Espinoza and de las Heras 2015). These emissions are
driven by the intense use of pesticides and fossil fuels, causing res-
piratory, neurological, cancer, and endocrine-related damages. Yet,
xenobiotic emissions are not the only threat because point-source
and non-point-source pollution of many chemicals remain a signifi-
cant obstacle (Gurdak et al. 2017), including agriculture waste such
as nitrogen and phosphorous runoffs. On the social and cultural
level, diets and urban food systems are a growing field of
health-related nexus studies. These include the impact of urbaniza-
tion, urban agriculture, and alternative diets (Song et al. 2019;
Miller-Robbie et al. 2017; Gragg et al. 2018). The question of what
people ought to eat, and whether such regulations should be made
is a fierce political issue.

Waste
The literature focused significantly on wastewater. The opportuni-
ties in wastewater systems included reduction of primary resource

Fig. 4. (Color) Dimension and modeling distribution.
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consumption, nutrients recovery, and energy supply economic ben-
efits (Gandiglio et al. 2017; Feng et al. 2019b; Kajenthira et al.
2012; Walker et al. 2014; Liang et al. 2018; Kulat et al. 2019;
Kurian et al. 2019). Current focus points for upgrading wastewater
systems included improved water and energy efficiency in treat-
ment plants and nutrient recovery for reuse, as well as capturing
methane for energy from the greater sewage system. Additional
waste perspectives revolved around food waste, a significant prob-
lem around the world, jeopardizing sustainability efforts, wasting
valuable resources, and causing economic loss (Hickey and Ozbay
2014; Vilariño et al. 2017; Scanlon et al. 2017). Addressing food
waste requires technological as well as cultural and behavioral
solutions and policy recommendations. On the technological side,
increased efficiency of irrigation, processing plants, fuels, and agri-
cultural practices can reduce primary-resource consumption on
the operation side (Vlotman and Ballard 2014; Nikmaram and
Rosentrater 2019). However, unaddressed in nexus studies was
the impact on societal behavior.

Deduction 3: Although climate change has gained traction as
a main dimension, especially with the focus on GHG emis-
sions reduction, other dimensions, including ecosystems, soil
function, human health, and waste, have not been sufficiently
covered in the nexus literature. Although some studies con-
sidered these factors, they were not prioritized. Reorienting
nexus dimensions toward these considerations will advance
the holistic bottom-up approaches that are ecosystem-based
over technology-focused analyses.

Proxies for Sociopolitical Dynamics

Modeling of political and social dynamics was not prevalent in the
literature, in part because nexus research is driven by quantitative
and resource-based thinking. When social and political dynamics
were incorporated, they tended to be qualitatively introduced in a
governance structure or as implications. In efforts to bridge the gap
in social and political modeling, we aimed to elucidate ways to cap-
ture these dynamics using proxies identified in the literature.

Stakeholder Interactions
The realm of governance models offers examples that fit the first
designation: stakeholder interaction proxies. For example, in GOV
studies, understanding the role of various stakeholders in successful
nexus coordination efforts led to improved platforms on how to
incorporate political and social interactions (Dombrowsky and
Hensengerth 2018; Weitz et al. 2017a, b). In a similar vein, guide-
lines for collaborating with the private sector aligned with techno-
logical and economic solutions, in which cost-recovery efforts
could assist with governance structures and success (Hoff et al.
2019; Visseren-Hamakers 2015; Kurian 2017). In these examples,
stakeholder dynamics and private–public collaborations served as
proxies for building knowledge on how to represent social and
political dimensions. Where research tends to focus on policy in-
tegration and overviews of existing links, as well as challenges and
opportunities, integrated environmental governance can further
shed light on platforms to address politics and social dimensions
(Gain et al. 2015; Bizikova et al. 2013; Larcom and van
Gevelt 2017).

Nexus Access, Security, Education
Access and security are established areas of concern (Bach et al.
2012; Kattel 2019; Allouche 2011; Misra 2014; Hanjra and
Qureshi 2010; Scanlon et al. 2017; Hickey and Ozbay 2014),
and from a modeling example, REG analysis was used to review

access to improved water, electricity, and average protein supply,
demonstrating a strong correlation between access to one dimen-
sion of the nexus and other dimensions (Caixeta 2019). With the
use of AA, governance structure played a more substantial role than
water availability (Huckleberry and Potts 2019). Through regres-
sion, security was found to be critical for political instability
(Abbott et al. 2017). Specifically, a low nexus index correlated with
lower stability. REG models showed that greater nexus connections
between people and natural resources will further promote sustain-
ability issues and reduce environmental inequality (Hannibal and
Portney 2019).

From an educational perspective, it is imperative to bridge gap
between academics and practitioners to enhance successful nexus
projects (Bielicki et al. 2019). Education as a proxy is directly re-
lated to understanding the role of internal feedback loops, both
qualitative and quantitative, that are often overlooked in the litera-
ture but appear to be flexible in modeling approaches. For example,
SD was applied to socioeconomic influences, poverty alleviation,
and power dynamics (Dong et al. 2019; Givens et al. 2018). To
further explore feedback, there are benefits in SD models that target
political and social understanding, even if qualitative with causal
loop diagrams (CLD) or the quantitative stock and flow models.

Trade and Prosperity
Trading schemes have received some attention as potential strate-
gies for mitigating water insecurity through virtual water trading
and foreign direct investment (Grindle et al. 2015), spatial and pro-
duction magnitude of resource consumption, and application of
agriculture and energy sources through global trade patterns (Bijl
et al. 2018). Although trade was rarely included as a nexus dimen-
sion, trade’s multiple layers of political and economic influence
have continued to be explored (Cao et al. 2018; Duan and Chen
2017; Lebel and Lebel 2018; Matthews and Motta 2015).

The prosperity proxy is influenced from work on urban studies,
in which the idea was to use infrastructure and socioenvironmental
metrics to assist in identifying future research based on a prosperity
index and mitigate geographic disparities (Schlör et al. 2018; Hake
et al. 2016). However, this proxy is in the early stages and not
prevalent in the literature. The prosperity proxy may be reinforced
by integrating the alternative dimensions of ecosystems, soil,
health, and waste. Thus, studies focusing on prosperity may help
to bridge political and social dynamics.

Deduction 4: The key proxies to integrate social and political
dynamics in nexus studies are stakeholder interactions, nexus
access, security, education, trade patterns, and prosperity.
These proxies cover the realm of public–private interactions for
projects and their financial considerations. Attention must be
on capturing feedback loops, both qualitative and quantitative.

Geographic Distribution of Studies

Countries in Asia have received the most attention, with 89 studies
(26%). China, especially countries in the Mekong River Basin,
were frequent areas of study, along with several other large river
basins in Central and South Asia. The prevalent geographies are
global studies and countries in Africa, with 40 (12%) and 38
(11%), respectively. Global studies are studies that address at least
one large region in every continent; otherwise, multiple locations
were counted in their respective regions. North America (35) and
Europe (34) each accounted for 10% of the distribution. The
Middle East and North Africa (MENA) accounted for 16 studies
(5%), followed by South America [15 (4%)], and Oceania [4 (1%)].
Some of the studies were non-geographic-specific.
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In terms of agendas, governance and policy evaluation was the
most frequent research agenda across the different geographic re-
gions, except for infrastructure and supply chains in MENA. Infra-
structure and sustainable development were generally prevalent
across all regions, which can be expected, given the prevalence of
the top two agendas. The full geographic breakdown of agendas,
excluding global and nonspecific regions, is presented in Fig. 5
with relative proportions of study volumes.

Economic decisions and environmental livelihood security vary
substantially. In Africa, Asia, and North America, it was the third
most prevalent. However, in MENA and South America, it was
least common, and in Europe, it was second to last. On a global
scale, it accounted for 12.5% of the studies. This is not to say that
MENA, South America, and Europe do not value environmental
livelihood security, but, rather, studies potentially prioritized other
agendas. One possible reason is that Africa and Asia are already
receiving much attention across the board and therefore more at-
tention to livelihood security. However, because South America
and MENA experience significant FEW stressors, it would be
beneficial to further conduct livelihood security research in those
regions. Another observation is that urbanization studies were
clustered in Asia, North America, and Europe. Given the growing
urbanization trends in South America, Africa, and MENA, addi-
tional efforts should explore the nexus considerations of urbani-
zation in these regions.

What is evident from this comprehensive review is that from a
geographic perspective, not enough empirical attention has been
focused on MENA, South America, and Oceania. Although non-
geographic-specific studies might use examples from South America,
few studies conducted empirical reviews focused on South American
countries. Additional work on island nations is warranted, given the
impacts of climate change on those communities.

Deduction 5: The majority of nexus studies were applied to-
ward countries in Asia, followed by Africa, North America,

and Europe, generally in large river basins. Separating MENA
from Africa suggests a shift in agendas, with MENA focusing
on infrastructure and supply chains, and Africa on governance
and economic decisions. In South America and Africa,
urbanization requires attention, whereas environmental secu-
rity is crucial in MENA and South America.

Data and Modeling as Pathways to Improved
Decision Making

Having a better understanding of the modeling environment can
directly help in making better decisions and effective nexus so-
lutions. The steps necessary to achieve this gleaned from this re-
view are discussed. First, it is important to map the stakeholders to
the decisions in the ecosystem. For boundary levels, the recom-
mendation is to capture local–regional and regional–national
decision thresholds. For nexus dimensions, it is imperative to ex-
amine other sociotechnical aspects such as soils, health, and
waste. Once the boundaries and dimensions are defined, a map-
ping of the stakeholders to the relevant inputs and outputs could
be achieved.

Second, a mixed-methods approach should be sought after that
integrates the quantitative approach of the research with the quali-
tative aspects of governance perspectives. This step is intended to
be broadly understood and not dictate the type of quantitative mod-
els to pursue. Emphasis must be on including governance perspec-
tives into input for scenario identification and the evaluation of
trade-offs. The recommendation is to combine models as part of
multiphase methodologies in which the output of one model feeds
into the input for the second model. Such combinations could in-
clude MFA to identify resource synergies and trade-offs, while an
optimization model could evaluate interventions or systems dynam-
ics models with ABM techniques to evaluate resource feedback and
user decision-making.

Fig. 5. (Color) Geographic distribution of agendas.
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Although the goal is to differentiate complex models from com-
plementary models, the challenge with complex adaptive models is
that they require intensive granular data. If such data were easily
accessible, the use of complex models could be expanded and gen-
eralized, leading to fine-tuned solutions. However, data of this
nature may often be unique to a specific location, implying that
replication in other domains may not be feasible. An outcome
of this review is the need to highlight nonadaptive but complemen-
tary model combinations. This might ameliorate the shortfall of
data granularity in favor of aggregate data. The main limitation in
this approach is the loss of internal feedback dynamics across the
sectors. However, this limitation can be mitigated by conducting
uncertainty analyses. When understanding internal feedback is the
goal of the research, such methodologies should consider the use of
system dynamics models as part of the mixed-methods approach.
These steps of stakeholder integration, mixed quantitative and gov-
ernance models, and financial analysis (Gai et al. 2020; Ogunrinde
et al. 2020) will ensure identification of efficient technological, pol-
icy, economic, or social solutions, and the results are relevant for all
stakeholders.

Research Gaps

The outcome of this review illuminates the prevalent topics and
methods across the literature, as well as those underrepresented.
Fig. S5 shows the identified research gaps. These identified gaps
follow the results of the main research questions guiding this paper.
For the first question of agenda efforts, the main agendas are gov-
ernance and policy evaluations and infrastructure and supply
chains, with urbanization and economic decisions growing in the
literature. From a geography perspective, there is a greater need for
urbanization and economic decision studies in South America and
Africa. The main gap, however, is in how to pursue implementation
and understand the challenges of technology adoption. Several
critical infrastructure topics are receiving heightened attention: nu-
trient and energy recovery across the sectors, extensive urban agri-
culture, and distributed renewable energy generation to support
local and regional development. The challenge is in financing and
implementing these projects. Therefore, future research exploring
optimal implementation strategy would advance nexus potential by
providing guidelines to take recommendations into practice.

Pertaining to modeling decisions of agendas and boundary
analysis concerning the first and second research questions, the
main underrepresented topics are implementation and technology
adoption. The significant gap is addressing financial implementa-
tion that addresses capital investments and cost recovery. An inte-
gral component is to address all stakeholders in framework and
collaboration efforts, in order to include social, cultural, and politi-
cal perspectives into nexus project planning, design, and implemen-
tation. These considerations are central to both physical and social
systems and across boundaries. Because the literature is saturated
with material-focused research, which is paramount to understand
what ought to be done, we now need to focus on how it ought to be
achieved.

Our review highlighted modeling examples applied to different
agendas and boundary levels for insights. There is no generic plat-
form that captures all nexus components without limitations. Our
model summary table and multimodel analysis would assist schol-
ars in suggesting which complementary model pairings, based on
desired agenda and boundary, are beneficial. The next phase of
nexus research should prioritize model interactions across multiple
boundaries, such as GOV interactions with CAS and ABM; MFA
and OPT; REG and ABM; and SD with CAS. This list is not

exclusive, and researchers are encouraged to identify further ben-
eficial interactions that offer nexus benefits while minimizing lim-
itations of each modeling approach.

Evaluating the different nexus dimensions, the third research
question enabled the identification of important directions to reor-
ient research to ecosystems, soil, health, and waste as core dimen-
sions. The reorientation is significant. We find a growing push to
ask bottom-up questions to steer research focus, especially the pro-
motion of productive ecosystem services, fertile soil considera-
tions, and health and waste as leading drivers. Placing people
and the environment at the center is a natural extension, and a much
needed one, to the dominant material-driven nexus work. This
would also allow a greater flexibility in capturing local stakeholders
and social and political dynamics, which we support with identi-
fying proxies.

Illuminating the fourth research question provides the social and
political proxies as opportunities to understand how to capture and
study social and political dynamics. The proxies of stakeholder in-
teractions, access, security, education, and trade and prosperity of-
fer various perspectives, depending on their application. Although
questions of access and security are increasingly incorporated in
research, they are often of circumstantial relevance. The idea is to
design research that would prioritize these proxies as drivers or ob-
jective functions as appropriate for the agenda and setting. These
proxies are bridge points, and a balance is necessary, perhaps most
seen with trade. Observing trade patterns alone will not promote
social and political dynamics by itself, but rather illustrate which
stakeholders hold greater influence. However, exploring trade pat-
terns when access and prosperity are optimized could proxy the
impact of social and political dynamics. These combinations are
numerous, and it is up to future scholars to be creative and explore
additional directions, especially when aligned with human-ecosystem-
based research.

Lastly, exploring the geographic distribution of studies, the
fifth research question suggests a greater need to focus on South
America and Oceania. Special attention should be paid to urbani-
zation, economic decisions, and environmental security in South
America, Latin America, Africa (especially MENA), and Oceania.

Conclusion

The nexus concept is a valuable framework to address the chal-
lenges of managing the world’s food, energy, and water resources.
Although the main strand of literature is focused on food, energy,
and water, growing attention has been aimed at re-evaluating the
nexus into human-ecosystem perspectives. As the field developed,
so did the modeling tools and approaches. Different modeling ap-
proaches are applicable to evaluate different nexus agendas, boun-
daries, and dimensions. Because regions around the world have
their own unique characteristics and socioeconomic dimensions, no
generic model or solution may be applicable to every situation. The
key is to understand how to integrate complementary model ap-
proaches to capture the benefits of each and potentially reduce their
limitations. Addressing the research gaps identified in this paper
will lead the way for additional nexus research benefits as guidance
for future work.

Our findings align with earlier nexus ideas that urge for a greater
attention to implementation, deeper nexus dimensions that are fo-
cused on human and ecosystems, and inclusion of social and politi-
cal dynamics. For example, implementation studies could explore
the optimal ways to deploy and finance energy and nutrient recov-
ery systems, extensive urban agriculture, or river basin ecosystem
management practices, and integrate the social and political
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perspectives needed for successful adoption practices. Our contri-
bution is in capturing the current prevalent and underrepresented
agendas, boundaries, dimensions, opportunities to include social
and political dynamics, and geographic distributions. The new direc-
tions of human-ecosystem-centered perspectives and implementation-
thinking endeavors will pave the way forward to an increasingly
holistic field of knowledge and practice.
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