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Major theories of consciousness predict that complex electroencephalographic (EEG) activity is required for
consciousness, yet it is not clear how such activity arises in the corticothalamic system. The thalamus is well-
known to control cortical excitability via interlaminar projections, but whether thalamic input is needed for
complexity is not known. We hypothesized that the thalamus facilitates complex activity by adjusting synaptic
connectivity, thereby increasing the availability of different configurations of cortical neurons (cortical “states™),
as well as the probability of state transitions. To test this hypothesis, we characterized EEG activity from pre-
frontal cortex (PFC) in traumatic brain injury (TBI) patients with and without injuries to thalamocortical pro-
jections, measured with diffusion tensor imaging (DTI). We found that injury to thalamic projections (especially
from the mediodorsal thalamus) was strongly associated with unconsciousness and delta-band EEG activity.
Using advanced signal processing techniques, we found that lack of thalamic input led to 1.) attractor dynamics
for cortical networks with a tendency to visit the same states, 2.) a reduced repertoire of possible states, and 3.)
high predictability of transitions between states. These results imply that complex PFC activity associated with
consciousness depends on thalamic input. Our model implies that restoration of cortical connectivity is a critical
function of the thalamus after brain injury. We draw a critical connection between thalamic input and complex
cortical activity associated with consciousness.

1. Introduction

The return of consciousness following severe traumatic brain injury
(TBI) is uncertain and hard to predict (Winans et al., 2019). Several lines
of research including neuroimaging, behavioral analysis, and electro-
physiological recordings have been focused on detecting early signs of
recovery of consciousness following TBI (Synek, 1988; Casali et al.,
2013; Sitt et al., 2014; Zhao et al., 2021; Wang et al., 2021; Cosgrove
et al., 2022). The correlation between complex electroencephalography
(EEG) activity and consciousness was originally noted by Hans Berger
(Berger, 1929), and has been replicated many times since (Casali et al.,
2013; Sitt et al., 2014; King et al., 2013). However, it is not clear how
this complex cortical activity arises. The cortex switches between syn-
chronized and desynchronized modes of activity based on wakefulness

and attentional demands; these states depend on whether thalamic
neurons, which project to the cortex, are in phasic or tonic firing modes,
respectively (Glenn and Steriade, 1982; Domich et al., 1986; Llinas and
Steriade, 2006). The oscillations that characterize these states are
well-described (Berger, 1929); however, it is not clear what conse-
quences synchronization and desynchronization have for cortical func-
tion. Desynchronized activity is more complex, and thus more capable of
encoding information, which accords with a key prediction of Integrated
Information Theory, an influential theory of consciousness (Koch et al.,
2016).

Desynchronized activity can vary with task state and level of arousal,
and it is not clear how it arises mechanistically (Pfurtscheller and Ara-
nibar, 1977). Dynamic adjustment of synaptic gain is a likely mecha-
nistic contributor to desynchronization; when synaptic gain is adjusted,
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it facilitates transitions between chaotic activity and dynamic attractor
states used for high-reliability information transmission (Laje and Buo-
nomano, 2013). Recent reports have highlighted the role of the medi-
odorsal thalamus in adjusting synaptic gain in the prefrontal cortex to
facilitate neuronal ensemble formation in response to behavioral de-
mands (Schmitt et al., 2017). Building on these findings, our group
recently demonstrated that withdrawal of gain adjustment by the thal-
amus results in highly predictable, attractor-like dynamics (Mofakham
et al., 2021). Therefore, we hypothesized that lack of thalamic input
strongly constrains the flexibility of the cortex, and only allows it to
adopt a small number of possible states. This hypothesis leads to the
prediction that the thalamus is a key driver of flexibility in the cortex,
and patients who lack thalamic input will be unconscious, but partial
thalamic injuries will allow for partial consciousness.

In the present report, we tested this hypothesis by evaluating un-
conscious TBI patients with diffusion tensor imaging (DTI) and EEG
recordings. We utilized machine learning and dynamical systems tools
to uncover the underlying phase space governing the cortical network
dynamics and its temporal evolution as a function of thalamic integrity.
We found that return to consciousness (RTC) was associated with pre-
served thalamic projections, which support complex and unpredictable
cortical dynamics.

2. Methods
2.1. Ethics statement

This study was a retrospective study that was approved by the Stony
Brook University Hospital (SBUH) Committee on Research Involving
Human Subjects (CORIHS) with a waiver of consent (IRB2019-00464).

2.2. Study subjects

In this study, we identified fifteen TBI patients (age > 18) with an
initial Glasgow Coma Scale (GCS) < 8 and analyzable DTI and EEG re-
cordings. The patient characteristics are listed in Table 1. We identified
the date that patients followed a simple verbal command for the first
time after injury. We stratified patients in two ways: (1) clinical outcome
and (2) the thalamo-prefrontal structural integrity. Favorable outcome
was defined as the ability to follow commands within two months of
injury and a Glasgow Outcome Score (GOS) of more than two (patient is
not dead or in persistent vegetative state) at discharge. The structural
integrity was measured using FA values adjusted for sex and age.

2.3. EEG recordings
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EEG with a sampling frequency of 256 Hz. For each patient, we identi-
fied a minimum of forty minutes of resting data with minimal sedation
and artifact. Then, we used custom MATLAB codes to analyze these
signals. Before analysis, we preprocessed these EEG recordings by
screening for artifact, mean subtraction, bipolar re-referencing, and
bandpass filtering (0.5—30 Hz).

2.4. Frequency analysis

We calculated the power spectral density (PSD) using Welch’s
overlapped segment averaging estimator with a Hamming window and
50% overlap. Frequency analysis was performed over the 0.5—30 Hz
range. In order to quantify and compare power spectra across patients,
we normalized the area under the curve of the power spectrum (within
the range of 0.5-30 Hz) for each patient (Fig. 1). Then, we compared the
power at theta (4—8 Hz), alpha (8—12 Hz), and beta (12—30 Hz) bands
to the delta band power shown in Fig. 1C.

2.5. Lempel-Ziv complexity analysis

We utilized the Lempel-Ziv complexity measure (LZ), a widely used
measure of complexity in biological sciences, to quantify EEG re-
cordings. The LZ metric assesses the complexity of the signal by the
number of unique patterns found in that signal. Before the LZ complexity
analysis, the signals were band-pass filtered (0.5-10 Hz, 4th order
Butterworth notch filter) and converted to one-dimensional binary sig-
nals using the median method. We normalized the output of the LZ
analysis to the length of the sequence.

2.6. Phase space reconstruction

As described by Takens’s theorem, delay embedding methodology
provides a framework for reconstructing the phase space of the under-
lying global dynamics of a system using only one of its variables. For
instance, a single EEG channel recording (we used the Fz-Cz channel)
provides information about the global dynamics of the cortical net-
works. Prior to the delay embedding analysis, we preprocessed the scalp
EEG data by subtracting the mean, bandpass filtering (0.5—20 Hz), and
bipolar preprocessing (subtracting Cz from the Fz channel). Then, we
used an artifact-free ten minutes of resting data from the Fz-Cz channel
to reconstruct the underlying attractor of cortical recordings in the
phase space for our fifteen TBI patients.

The delay embedding method requires an estimation of two pa-
rameters: (1) the embedding dimension (m) and (2) the time delay (7).
Here, we used autocorrelation to estimate an appropriate time delay. In
particular, the time that autocorrelation drops below zero determines

We recorded scalp EEG leads in an 18-contact standard 10-20 system the appropriate delay period. MATLAB’s built-in
Table 1
Patient characteristics.
@™ () 3) @ ) (6) @)
Patient Gender Age GCS at EEG Days to Follow Commands GOS Discharge Average FA Values for Whole Thalamus Minimum Sedation
1 M 84 7 3 1 0.035 No sedation
2 M 63 6 24 3 0.03 Fentanyl 50 mcg q1h
3 F 25 7 11 3 0.027 No sedation
4 M 30 7 3 4 0.025 Fentanyl 25 mcg q2h
5 M 70 7 15 4 0.025 Fentanyl 25 mcg q2h
6 M 72 7 10 3 0.013 No sedation
7 M 84 7 53 2 0.012 Fentanyl 25 mcg x1
8 F 44 7 6 3 0.01 Fentanyl 25 mcg q2h
9 M 57 3 Never 1 —0.003 Oxycodone 5 mg
10 M 24 3 12 2 -0.013 Precedex 0.3 mcg/kg/hr
11 M 76 3 Never 1 —0.017 No sedation
12 F 34 6 127 2 —0.022 Fentanyl 25 mcg q2h
13 M 43 6 178 3 —0.032 Fentanyl 25 mcg q2h
14 F 74 3 Never 1 —0.042 Fentanyl 50 mcg q1h
15 M 27 7 144 3 —0.095 Fentanyl 50 mcg q2h
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Fig. 1. EEG signatures of thalamic injury. (A) The EEG recording and power spectrum density for two patients with favorable and unfavorable outcomes are
plotted in blue and red. Power spectrum density was calculated for one-minute windows and averaged across 60 windows with 30 s of overlap. (B) Tractography
derived from DTI imaging for the two patients in panel (A), which shows intact thalamic projections to PFC (right) in the patient with a favorable outcome and loss of
tracts (left) for the patient with unfavorable outcome. (C) Ratios of EEG power at theta, alpha, and beta were calculated and plotted for each of the fifteen patients in
this study. These measurements are color-coded based on the integrity of thalamic tracts projecting to mPFC, DLPFC, and ACC measured using FA values (blue dots
represent patients with intact projections and red dots are those with damaged projections). Shaded blue and red circles are included to visually display regions of the
plot associated with mostly poor (red) and intact (blue) thalamo-prefrontal connectivity. The kmeans method (using MATLAB) detected the centroids associated with
two clusters (low frequency and high frequency) and the Euclidian distance to the higher frequency centroid was significantly lower for patients with intact tha-
lamocortical projections compared to the patients with injuries to their thalamocortical projections (P-value = 0.01). In general, impaired projections were associated
with low beta and variable amounts of alpha and theta activity. (D) Tractography results with whole thalamus (left) and MD (right) as seed regions reveal a direct
correlation between the integrity of thalamus-PFC connectivity and patient outcomes. Note that the mean FA values are age and sex corrected.

phaseSpaceReconstruction function was employed to calculate the suffi- 2.8. Gaussian process prediction
cient embedding dimension using the false nearest neighbors (FNN)
algorithm. The phaseSpaceReconstruction function reconstructs the phase
space using these two parameters.

We utilized our advanced, house-developed machine learning tool
called Sequential Ensemble Gaussian Process, an online Bayesian model,
to assess the predictability of these EEG signals (Lu et al., 2020). First,
we downsampled (by 5), normalized, and bandpass filtered (Butter-
worth, 0.5—30 Hz) forty minute EEG recordings from Fz-Cz channels.

2.7. Recurrence plots and recurrence quantification analysis

We utilized recurrence plots and Recurrence Quantification Analysis
(RQA) to visualize and quantify temporal developments of the m-
dimensional reconstructed EEG recordings’ phase space. Here, we used
RQA to explore the temporal statistics of state recurrence in the recon-

structed phase space.

Recurrence plots were formed by calculating the Euclidean distance

Next, we divided the signal into twelve segments of 10,100 decimated
samples—the first 10,000 as the training set and the remaining 100
samples for testing. Then, we used the median relative absolute error
(MdRAE) to compare the one-step forward predictability of signals
across patients and the MdRAE for each segment (Fig. 2E, F, and Sup-
plementary Fig. 4). After training the first 10,000 samples, we also

examined the predictability of these signals over the following 100
samples step-by-step without observing those values. The procedure is
demonstrated in Supplementary Fig. 1.

of each state, in the reconstructed m-dimensional phase space, to any
other states. When the state trajectory visits a neighborhood of a pre-
viously visited state, the Euclidean distance between the current state
and the previously visited state drops under a certain threshold, and
RQA marks this time as a state recurrence (R;j< threshold). This state
recurrence is plotted as a single point in the recurrence plot.

We divided the ten-minute reconstructed phase space into 58 twenty
second windows (with a ten-second overlap). Next, we formed the
recurrence plots for each time window, followed by RQA quantification
that included recurrence rates, determinism, and trapping time. Finally,
we compared the RP statistics to estimate determinism and trapping
time. For consistency, we kept the recurrence rate fixed at 10% across
patients. Determinism was calculated based on the fraction of recur-
rence points that formed parallel lines to the main diagonal. While the
fraction of points that formed the vertical lines to the total recurrence is
a measure of the trapping time.

2.9. Yule-Simon processes

We also applied a Yule-Simon process generative model to the EEG
time series (the Fz-Cz channel in particular) to identify the latent
structure within the data and study its statistical properties. Specifically,
the Yule-Simon generative model provides a Bayesian nonparametric
prior over partitions of a sequential set of measurements. Such a prior
acts as a flexible model that explains how the data we observe was
created. Once we observe the EEG time-series data, the objective then
becomes to invert the generative process and infer the latent model
variables conditioned on the measurements. We can think of this as an
inverse problem where we observe the output of a probabilistic system
and need to find the posterior distribution of the system given the
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Fig. 2. Reconstruction of the underlying phase space of EEG recordings reveals high levels of determinism (predictability) for patients with severe in-
juries to their thalamocortical projections. (A) shows the phase space reconstruction of EEG recordings for two patients with preserved (left, in blue) and poor
(right, in red) integrity of thalamocortical projections. When thalamic projections are intact (blue) the phase space of cortical dynamics is complex. Still, when
thalamic projections are damaged, the reconstructed phase space of cortical networks is structured, the number of visited states is limited, and the trajectory of
visiting states is predictable. (B) The recurrence plots of the reconstructed phase space show these differences more clearly as it is based on all dimensions (not only
the first two dimensions) of the reconstructed phase space. A repeated trajectory of visited states on the recurrence plots manifests itself as a diagonal line parallel to
the main diagonal (black line). The degree of determinism of a dynamical system can be estimated by the percentage of recurrence states on the diagonal lines
parallel to the main diagonal to the total recurrence of the system. For the patient shown in panel A with thalamic injury (red), the recurrence plots look ordered with
long lines parallel to the main diagonal. (C, D) Across all of our 15 patients, determinism significantly and negatively correlates with the integrity of thalamocortical
projections measured with FA values (adjusted for sex and age) and patients’ outcomes. (E) Two examples of EEG recordings from two TBI patients (Fz-Cz channel),
one with intact (left) and the other one with injured (right) thalamo-prefrontal connections, are shown. The dashed lines are the predicted values with a shaded pink
area for the confidence interval, and the solid lines are the actual observed values. A TBI patient with intact thalamo-prefrontal connectivity deflects the prediction
confidence interval within a few steps. In contrast, the prediction trajectory in the patient with injured thalamo-prefrontal connectivity remains close to the predicted
values. (F) One-step prediction measured with MARAE remained higher over an extended period in patients with intact thalamo-frontal connectivity (left) and those
with favorable outcomes (right).

output.

The Yule-Simon model is closely related to Polya urn processes,
where preferential attachment plays a crucial role in how the state of the
system evolves. Consider an urn with a single white ball and a black
balls. The process proceeds by sequentially drawing balls from the urn.
Similar to the Polya urn model, each time a white ball is drawn, the
white ball is replaced in the urn with an additional white ball. When a
black ball is drawn, the urn resets to its initial state with 1 white ball and
a black balls—adding white balls to the urn after each white draw in-
creases the probability of drawing additional white balls in the future.
This is a preferential attachment effect that has the potential to generate
highly long runs between system resets. As a result, the distribution of
the waiting time between resets follows a power-law distribution where
a controls the tail probabilities.

To apply the Yule-Simon model to EEG time series data, we use a
latent Yule-Simon process as a state variable to control the dynamics of
the observation sequence. To connect this idea to the above urn dis-
cussion, each time the system resets to its initial state (i.e., a black ball is
drawn from the urn), the model parameters change. Between system
resets, the model parameters remain constant. We can write this as the

following hierarchical stochastic process:

s:|n, a ~ Bernoulli(a(n, + a)”’! )
Ala,b ~ Gamma(a, b)
y,{{/l},x, ~ Normal(OJ;t'/Q)

Xy = X1 + 5
1—s,
Ny = (”r + 1) '

where the observation sequence, y;, is modeled as a zero-mean Gaussian
process with switching variance controlled by the latent state of the
system, x;. The Yule-Simon process is implemented as a Bernoulli pro-
cess with feedback using the counter, n;. Each time a white ball is drawn,
s evaluates to 0, the counter, n;, increments by one, and the state of the
system, x;, remains constant. Each time a black ball is drawn, s, evaluates
to one, the counter, n,, resets to one, and the state of the system x;, in-
crements by one. Thus, the state variable x; is a monotonic counter that
increases by one each time the model parameters change. This variable
is used as an index into the infinite set {A} which is randomly drawn
from a Gamma prior. The implication of this is the number of latent
states can be theoretically infinite. When applying the inference process,
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the number of states (or sequence partitions) is primarily determined
from the data itself, and the size of {A} is increased dynamically to
support the complexity of the given data set.

The inference was carried out by Markov Chain Monte Carlo
(MCMC) sampling techniques. Here we give a high-level description of
the process and refer the interested reader to (Hensley and Djuric, 2017)
for more information on the specific sampling methods. Because the
model posterior distribution is analytically intractable, we used MCMC
sampling methods to draw random samples from the model posterior
distribution. These samples can then be used to perform subsequent data
analysis. MCMC works by simulating a Markov chain with the same
stationary distribution as the posterior distribution we are interested in
sampling from. Once the Markov chain converges, each step we take in
the simulation will be a sample from the posterior distribution.

Our inference algorithm uses 3 MCMC samplers that have inter-
leaved updates. The first sampler is a Gibbs sampler used to sample the
state variable change points. This is the primary sampler used to parti-
tion the measurements into sets with similar statistics which are then
used to update the set of precisions {A} using the conjugacy properties of
the Normal and Gamma distributions. The second sampler is another
Gibbs sampler for the hyperparameter, a, which we model with a
Gamma prior and follow the approach of Leisen (Leisen et al., 2017).
The third sampler is a Metropolis-Hastings sampler for the hyper-
parameters, a, b, of the Gamma distribution which are modeled using
the appropriate conjugate prior when both shape and rate parameters
are unknown. To prepare the EEG data for the inference process, we
began by applying the following transformation:

v = log(z}) —log(; ;)

where z; is the measured EEG time series data at time t and log() is the
natural logarithm function. This operation is used extensively in finance
to analyze the prices of market returns as it has several attractive
properties. For this work, applying the “log-return” transformation
provides a simple way to remove the mean process from the data as the
generative model assumes the measurements are zero-mean. Addition-
ally, this operation itself reveals interesting structures within the data
which are not immediately obvious. As a final step before applying
MCMC, the transformed time-series data for each patent was normalized
by the standard deviation.

Next, the first 10,000 samples for each patient (Fs = 256 Hz) were
divided into blocks of 1000 samples each of which is approximately 3.9 s
long. The MCMC inference procedure was then applied to each 1000-
sample block independently. Each Markov chain was run for 5000
steps with a 1000 step burn-in, although the Markov chain typically
converged to the posterior much faster. The number of latent state
transitions within each 1000-sample block was then estimated by taking
the median over all the MCMC steps after burn-in. The median number
of state transitions for each block for each patient was then used to study
the differences between patients, with the main hypothesis being that
patients with bad connectivity will have fewer state transitions on
average than patients with good connectivity.

2.10. MRI and DTI acquisition

This study includes a secondary analysis of MRI scans; the detailed
methodology for MRI and DTI analysis was reported in Cosgrove et al.
(Cosgrove et al., 2022) In brief, MRI scans were obtained post-injury
(mean: 11 days) to serve clinical purposes. All images were acquired
on the same 3 T Siemens Trio MRI scanners. Structural images were
collected via a 3D MPRAGE T1 weighted sequence with an isotropic
voxel size of 1 x 1 x 1 mm?, and TE/ TR/ TI = 2.272/ 2300/ 915 ms, FA
= 8. DTI images were collected with EPI sequence with a single b-value
of 1000, slice thickness of 4 mm, TE/TR = 90/5400 ms, in-plane reso-
lution of 2 x 2 mm?, and 30 diffusion directions. The regions of interest
(ROIs) were drawn manually using FMRIB software due to the severe
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brain distortion in this population of sTBI patients. Tracts between the
whole thalamus and the mediodorsal thalamic nucleus (MD) and each of
the combined prefrontal cortex regions were mapped using DSI Studio
software (http://dsi-studio.labsolver.org). PFC regions included medial
PFC (mPFC), anterior cingulate cortex (ACC), and dorsolateral PFC
(DLPFC). Whole thalamus and MD ROIs were set as seed regions and PFC
ROIs as end regions. The analysis in this paper is based on the whole
thalamus seed, except as noted in Fig. 1. The tracking parameters were
set to terminate at 10,000 tracts. Mean FA values of these tracts asso-
ciated with mPFC, DLPFC, and ACC, after adjusting for sex and age, were
calculated and compared to patient clinical outcomes and patterns of
EEG activity. For all analyses, we assigned group membership to each
patient based on whole thalamus to PFC connectivity (average of all
three PFC subregions, see Results), which was similar to MD-PFC
connectivity.

2.11. Statistics

We utilized a General Linear Model (GLM) to adjust FA values based
on age and sex. We calculated a Student’s t-test using SPSS to compare
the mean FA values between the favorable and unfavorable outcomes.
Additionally, the level of determinism and trapping time were catego-
rized based on the integrity of the thalamo-prefrontal circuit (high FA
versus low FA values) and the final cognitive outcome of these groups
(favorable vs. unfavorable outcomes).

3. Results

We identified 15 severe TBI patients (9 males) who underwent MRI/
DTI scans as part of clinical care (Table 1). We reviewed their charts to
determine the date when they returned to consciousness (defined as
command following), and their outcome at discharge and six months
following injury. We stratified patients in two ways: 1) clinical outcome
and 2) the integrity of their thalamo-prefrontal circuit. Clinical outcome:
Patients who were capable of following verbal commands within two
months of injury and a Glasgow Outcome Score (GOS) of more than two
at discharge were considered to have a favorable outcome, while those
who expired or had prolonged unconsciousness (more than 60 days) or a
GOS of less than three, were considered to have unfavorable outcomes.
To classify the integrity of the thalamo-prefrontal circuit, we classified
patients into two groups based on their thalamo-prefrontal circuit
integrity measured by fractional anisotropy (FA), obtained from DTI
analysis. After adjusting for sex and age, the residual FA values for
thalamo-prefrontal connections were computed. We grouped patients
into two groups: 1.) Low FA values, associated with poor integrity of
thalamo-prefrontal connectivity and 2.) High FA values (FA > median),
associated with preserved connectivity. The threshold used to group
these patients was based on the median FA values of thalamo-prefrontal
connectivity in a larger group of patients at our institution (Cosgrove
et al., 2022). We previously reported the association of low FA values of
thalamo-prefrontal connections with prolonged RTC (Cosgrove et al.,
2022).

3.1. Thalamic input to the cortex correlates with complex, high-frequency
PFC activity

Previous studies have linked simple, slow oscillations in EEG
(particularly delta band) to poor outcomes in TBI patients (Synek, 1988;
Forgacs et al., 2017). Fig. 1A shows a power spectrum analysis for two
TBI patients with an unfavorable (red) and a favorable outcome (blue).
We correlated power in canonical frequency bands to patient outcomes.
The power spectrum of patients with unfavorable outcomes was domi-
nated mainly by delta oscillations. In contrast, the power spectrum of
those with favorable outcomes showed more prominent alpha and beta
components. The unfavorable outcomes were generally associated with
power law-type (1/f) EEG spectra consistent with previous findings
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(Synek, 1988; Sitt et al., 2014). Delta band activity results from deaf-
ferentation of the cortex and thalamus, based on slice physiology
(Timofeev et al., 2000) and human experiments (Forgacs et al., 2017).
However, data on how the EEG power spectrum relates to the integrity
of the thalamo-prefrontal circuit in the TBI setting is sparse. We exam-
ined this relationship by correlating the power spectrum with fractional
anisotropy (FA), adjusted for sex and age, obtained from tractography of
thalamic projections to the cortex (Fig. 1B & C). We found a subspace in
the power spectrum coordinates associated with poor integrity of
thalamic inputs to PFC (red sphere, that mostly includes red dots in
Fig. 1C). A cluster of patients characterized by intact thalamic fibers had
variable amounts of theta power but preserved alpha and beta power
(blue region, that includes mostly blue dots in Fig. 1C). This clustering
was less evident when we clustered by power spectrum and patient
outcomes, without taking thalamic integrity into account.

In addition, the complexity analysis of the EEG signals showed a
direct relationship with the integrity of the thalamo-prefrontal circuit
and the complexity of the EEG signals (Supplementary Fig. 2), consistent
with previous studies that linked the complexity of electrophysiological
recordings to the return of goal-directed behavior and consciousness
(Casali et al., 2013). Remarkably, the integrity of whole thalamus-PFC
and MD-PFC connectivity correlated directly and significantly with pa-
tients’ cognitive outcomes, measured by the ability to follow a verbal
command (Fig. 1D).

3.2. Cortical dynamics are trapped in an attractor with predictable
dynamics when deprived of thalamic input

To shed light on the role of the thalamus in shaping the cortical
network dynamics, we used delay embedding methodology to recon-
struct the underlying dynamical system of the cortical states, as repre-
sented in EEG recordings. These recordings are noisy, non-linear, and
high-dimensional, making extraction of the underlying state dynamics
challenging. Delay embedding methodology transforms a one-dimen-
sional EEG time series into an m-dimensional phase space where each
point represents a cortical state. The reconstructed phase space includes
all the states available for the cortical networks represented in EEG and
their temporal trajectory (Mofakham et al., 2021). Fig. 2A shows the
reconstructed phase space of two sTBI patients with and without
thalamic injury. We found that preserved thalamic projections were
associated with complex, seemingly chaotic phase spaces (Fig. 2A, left
panel). We observed that in comatose patients with impaired thalamic
projections, the phase space is highly structured, resembling a low
dimensional limit-cycle attractor (Fig. 2A, right panel). We have previ-
ously reported similar findings with intracranial recordings in TBI pa-
tients (Mofakham et al., 2021). These data are consistent with the
hypothesis that thalamic input is required for rich cortical dynamics.

To quantify the extent to which thalamic injury results in recurrence
of the attractor states, we utilized Poincaré recurrence plots (RP) anal-
ysis. A recurrence plot is a t x t matrix where t is time, and each point in
the recurrence plot represents a time that a specific state in the phase
space has been revisited (Fig. 2B; more examples are shown in Supple-
mentary Fig. 3). Attractors are defined as dynamical features that cause
the system dynamics to revisit a constrained set of states repeatedly
(Strogatz, 2018). The parallel lines to the main diagonal in a RP repre-
sent a sequence of repeatedly visited states, measuring the system’s
determinism level. The vertical lines in a RP represent trapping time, the
time that the trajectory is trapped at the revisiting state. Higher trapping
time implies more constraints on the state transition. When we stratified
the patients by low and high FA values of thalamic projections, we found
that the group with low FA values (injuries extended to the thalamus)
are associated with both higher levels of determinism of EEG activity
and longer trapping time (Fig. 2C, P = 0.006 and 0.002, respectively).

We correlated the determinism in the trajectory of states to the
cognitive outcomes of these patients (i.e. the ability to follow com-
mands). We stratified the patients into two groups, favorable and

Progress in Neurobiology 210 (2022) 102215

unfavorable outcomes, where those with favorable outcomes were
capable of following commands within two months of injury. Notably,
we found: (1) a direct relationship between behavioral performance and
integrity of thalamo-prefrontal connectivity (Fig. 1D), (2) an inverse
relationship between determinism and the cognitive capacity to follow
commands (Fig. 2D).

3.3. Highly predictable cortical dynamics when thalamic input is absent

William James noted that frogs with interrupted thalamocortical
projections behave “like automata,” whereas intact thalamocortical
projections lead to unpredictable behavior (James, 1918). We thus
sought to find out whether and to what extent this cortical attractor
associated with loss of thalamic input is predictable. To see if EEG is
predictable when thalamic input is absent, we utilized the
state-of-the-art Sequential Ensemble Gaussian Process (Urteaga et al.,
2015; Djuric et al., 2002) an online Bayesian methodology to model EEG
recordings obtained from these patients. We analyzed segments of
artifact-free EEG recordings. For each segment, we used the first 10,000
samples for training and the rest for prediction. We trained the model
using the first 10,000 samples, whereas the last 100 samples were pre-
dicted. After training the first 10,000 samples, we performed (1)
one-step prediction and (2) prediction of the following 100 samples
based on the trained model from the 10,000 samples. We adopted the
median relative absolute error (MdRAE) as a measure of predictive
power. The predictive power for the one-step forward prediction was
significantly higher in patients with injuries to their thalamo-prefrontal
connections (P-value = 0.01, Fig. 2F). To obtain a more stable number
and observe the change of predictive power with time, we divided the
time series into twelve segments. The one-step prediction error
measured by MARAE remained consistently higher and more variable
for patients with intact thalamo-prefrontal connections (Supplementary
Fig. 4). Supplementary Fig. 4B shows the median of the MARAE across
patients with intact (in blue) and those with injured thalamo-prefrontal
connections (in red) in each segment. Then, we examined the predictive
power for 100 steps ahead. Supplementary Fig. 4A shows that for most
of the patients with injuries to their thalamo-prefrontal connections, our
metric could predict the evolution of their dynamics accurately with a
narrow confidence interval instead of patients with intact
thalamo-prefrontal connections.

3.4. The cortical attractor has a limited repertoire of possible states with a
predictable trajectory

We hypothesized that thalamic input supports the ad-hoc assembly
of new cortical states for ongoing cognitive activity. Thus, injuries to the
thalamo-prefrontal inputs hinder the formation of spontaneous cortical
ensembles and constrain the possible trajectories of the cortical states.
Unconsciousness was previously associated with a decreased EEG
microstate repertoire, especially in the alpha band (Fingelkurts et al.,
2012). Our dynamical findings (see above) were consistent with this
view, but we sought to 1.) quantify the number of states and state
transitions and 2.) replicate our findings with a technique which does
not rely on dynamical systems. Therefore, we quantified the number of
possible states of EEG using a novel technique called Yule-Simon anal-
ysis. Yule-Simon processes are statistical processes closely related to urn
processes that model latent state transitions. In brief, in the Yule-Simon
processes a state is either maintained or transitioned to a new state,
where the likelihood of a transition is inversely proportional to the time
spent in the current state (a “rich get richer” process). With these simple
assumptions, we can use Bayesian analysis to quantify the occupancy of
the current state and the likelihood of a state transition. The transition
probabilities are calculated by Markov Chain Monte Carlo (MCMC)
sampling, which estimates the posterior distribution of the underlying
Yule-Simon process. Fig. 3 shows the estimated Yule-Simon process for
patients with and without thalamic injury. For technical reasons, it is
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Fig. 3. Yule-Simon process reveals a limited number of available cortical states in patients with thalamic injury. (A) Amplitude plots show the transformed
raw data used for inference along with estimated 2 sigma bounds for the posterior data generating process. MCMC sample plots show binary matrices where light blue
pixels indicate a sampled state transition corresponding to the upper amplitude plots. (B) Distributions for the number of states for patients with high/low FA values
with statistically significant mean difference (p = 4e-08). (C) The number of states for each patient for sequential 1000 sample batches used to construct distributions
in (B). Here, patients are ranked based on the average FA values from whole thalamus to ACC, mPFC, and DLPFC.

easier to perform inferences on the difference of the logarithm of the raw
data squared. Two examples of this transformation applied to EEG
tracings from patients are shown in Fig. 3A: one with no injuries to their
thalamic projections (left panel) and one with impaired
thalamo-prefrontal projections (right panel). The bottom panel in
Fig. 3A shows the MCMC sampling results for 5000 iterations. Each plot
is a binary image where light blue indicates a sampled state transition.
We can think of each row as a random draw from the posterior
Yule-Simon process conditioned on the measurements for each patient
as shown in the upper plot. As more MCMC steps are taken, we see the
emergence of vertical lines, which indicates a high probability of state
transition. This analysis revealed a statistically significant tendency (p =
4e-08) to be stuck at the visiting state for a longer period and change
states less frequently for patients with low FA values as shown in Fig. 3B.
As described previously, we divided the first 10,000 samples for each
patient into 1000 sample batches. After applying the MCMC inference to
each batch, we observed a consistent trend shown in Fig. 3C.

4. Discussion

In this manuscript, we tested our hypothesis that distributed, adap-
tive complex cortical dynamics associated with recovery of conscious-
ness result from thalamic modulation of cortical connectivity. We also
reported that thalamo-prefrontal connectivity is needed to recover
cognitive capacity, defined by performing goal-directed behavior, after
TBI (Cosgrove et al., 2022). Here, we found that the phase space of
cortical dynamics in the absence of thalamo-prefrontal connections re-
sembles a low-dimensional global attractor state with a limited and

predictable trajectory of visiting states available. We confirmed these
findings with multiple techniques, including RP analysis, Gaussian
process prediction, and Yule-Simon analysis. In summary, impaired
thalamic input is associated with constrained state dynamics, prolonged
state occupancy, and high predictability. Taken together, our findings
imply that the thalamus is critical to maximizing the flexibility of the
cortex, which is essential for goal-directed behavior.

We propose that thalamic input controls the evolution of cortical
assemblies and shapes the global landscape of cortical dynamics leading
to complex EEG dynamics. When withdrawn, cortical network dynamics
appear to be trapped in a global coma attractor state, which constrains
the formation of cell assemblies needed for neuronal computations
supporting goal-directed behaviors. In the context of brain injury, the
global coma attractor only includes a narrow and predictable repertoire
of possible states that results in a dysfunctional cortical network. Our
results are in line with the new view of the thalamus: the thalamus is not
a simple relay center, but it can dynamically control the distributed
adaptive dynamics within and across cortical networks to support the
ongoing cognitive task. Multiple reports also support this view and
define a new role for the thalamus, in particular higher-order thalamic
nuclei such as MD, as the regulator of cortical connectivity. Schmitt and
colleagues describe the first thalamocortical model of this phenomenon
in a working memory two-alternative forced choice task, where MD
thalamus supports formation of neuronal ensembles responsible for
maintaining the memory during the delay period (Schmitt et al., 2017).
Similarly, MD has been shown to play a critical role in the selectivity of
cognitive tasks as its activity sustains PFC representations during the
delay period of a working memory task (Bolkan et al., 2017). Indeed,
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inhibition of MD has the opposite effect and interferes with prefrontal
connectivity and cognition (Parnaudeau et al., 2013). Two more recent
studies suggest that MD regulates the excitatory-inhibitory balance
within PFC in order to modulate its activity and connectivity (Mukherjee
et al., 2020, 2021). However, future investigations will have to dissect
the role of MD subpopulations expressing GRIK4 and D, receptors in
controlling state diversity in the cortex. In agreement with these find-
ings, a computational model of the thalamocortical system revealed that
small thalamic regions can in fact control the dynamics of a large
cortical area (Logiaco et al., 2021).

In the past two decades, several other studies have highlighted the
role of the thalamus as the regulator of the global brain state, including
awareness, attention, and cognition (Ruff, 2007; Schiff et al., 2007;
Theyel et al., 2010; Kastner and Saalman, 2012; Saalmann and Kastner,
2015; Shine et al., 2019; Redinbaugh et al., 2020; Shine, 2021). Schiff
and colleagues previously reported that central thalamus stimulation in
a comatose TBI patient resulted in behavioral improvement (Schiff et al.,
2007). Thirteen years later macaque experiments showed that thalamic
firing rate was correlated with consciousness and central lateral
thalamic stimulation aroused two monkeys from anesthesia (Ruff, 2007;
Schiff et al., 2007; Redinbaugh et al., 2020). However, the role of other
higher-order thalamic nuclei, such as the mediodorsal thalamus, in the
return of goal-directed behavior following TBI is still unknown. Our data
provide evidence that thalamic projections to the prefrontal cortex
support the flexibility of cortical networks (Duncan, 2001) required for
the return of goal-directed behavior.

An alternative possibility could be that cortical networks are inde-
pendent self-organizing entities that adaptively reconfigure their con-
nectivity independent of a remote secondary amplifier center (i.e., the
thalamus). The higher-order cognitive functions required for goal-
directed behavior are coded in the coordinated activity of cortical
neuronal ensembles, an idea first introduced by Donald Hebb (2005).
Wenzel and colleagues visualized formation of these ensembles in ro-
dent and human experiments using a clustering technique (“t-Distrib-
uted Stochastic Neighbor Embedding”, t-SNE) on spike-sorted Utah
array data and calcium imaging of the conscious state and showed that
they break down into individual cells under anesthesia (Wenzel et al.,
2019). The activity of these neuronal ensembles should be cohesive to be
reliably activated in response to stimuli. Their cohesiveness is due to an
increased gain of synaptic connections within the ensemble compared to
the rest of the network. However, hardwired connections cannot explain
the flexibility and computational capacity of the brain. Previous studies
have shown that a significant fraction of PFC cells can be freely recruited
to the pool of cells representing the ongoing task-relevant features,
which conflicts with the idea that the cortex is hardwired (Duncan,
2001; Duncan and Miller, 2002). Instead, they suggest that the effective
connectivity of cortical cells can be changed adaptively depending on
the current context to form or activate ad hoc neuronal ensembles
needed for different tasks. Together, based on recent experimental and
computational data, the involvement of thalamus as an additional layer
of control, via adjusting the synaptic gain of cortical cells to activate and
deactivate ensembles depending on the context seems likely.

In summary, we found that withdrawal of thalamic input results in a
cortical attractor state with a limited number of states available, leading
to a limited cognitive capacity. Our finding has further implications for
developing future neuromodulatory approaches. Our model prediction
is that augmenting the thalamic activity in patients with thalamic injury
could expand the repertoire of available cortical states by facilitating the
return of cortical neuronal ensembles required for cognitive functions.
However, further investigations are necessary to examine this
prediction.

4.1. Study limitations

Limitations of our study include the relatively small sample size and
the limitation of our analysis to the thalamo-prefrontal circuit. Our
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sample size represents a convenience sample of severe TBI patients who
underwent imaging; at present, it is very challenging to study this
population because of the difficulty of obtaining imaging. Another
minor issue is that two patients in the unfavorable group and one patient
in the favorable group underwent procedures to remove large pieces of
skull; however, these surgeries would typically increase the relative
content of higher frequencies (Cobb et al., 1979; Brigo et al., 2011). We
thus consider major bias from cranial surgery unlikely. Severe TBI pa-
tients are underrepresented in extensive studies such as TRACK-TBI.
Thus, our study represents important pilot data for larger cohorts. We
also expect that other studies will involve multiple corticothalamic cir-
cuits; this too is challenging because of the inherent difficulty of the
region of interest (ROI) identification in injured brains. Future studies
will use machine learning-guided ROI drawing to facilitate these ana-
lyses. Finally, we have tried to carefully specify that the return of
goal-directed behavior (i.e., command following) is our proxy for con-
sciousness throughout. Command-following is not required for con-
sciousness, given multiple conditions that can impair this behavior, such
as spinal cord injury and locked-in syndrome. Moreover, the phenom-
enon of “covert consciousness” appears to be widespread in ICU cohorts
(Edlow et al., 2017; Claassen et al., 2019). Nonetheless, command
following is a common clinical assessment method (Teasdale and Jen-
nett, 1974) which strongly correlates with outcome (Whyte et al., 2013).
In future studies, we will attempt to distinguish covert from overt
command following, and the relative contributions of complex activity
to each behavior.

5. Conclusion

The integrity of the thalamic projections to the prefrontal cortex
supports cortical dynamics which are diverse, complex, and have low-
predictability. These dynamics are important to establish a flexible
repertoire of cortical states needed for the return of goal-directed
behavior after TBI.
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