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ABSTRACT | Fusing probabilistic information is a fundamental

task in signal and data processing with relevance to many

fields of technology and science. In this work, we investigate

the fusion of multiple probability density functions (pdfs) of

a continuous random variable or vector. Although the case of

continuous random variables and the problem of pdf fusion fre-

quently arise in multisensor signal processing, statistical infer-

ence, and machine learning, a universally accepted method

for pdf fusion does not exist. The diversity of approaches,

perspectives, and solutions related to pdf fusion motivates

a unified presentation of the theory and methodology of the

field. We discuss three different approaches to fusing pdfs. In

the axiomatic approach, the fusion rule is defined indirectly by

a set of properties (axioms). In the optimization approach, it

is the result of minimizing an objective function that involves

an information-theoretic divergence or a distance measure. In

the supra-Bayesian approach, the fusion center interprets the

pdfs to be fused as random observations. Our work is partly a

survey, reviewing in a structured and coherent fashion many

of the concepts and methods that have been developed in

the literature. In addition, we present new results for each of

the three approaches. Our original contributions include new

fusion rules, axioms, and axiomatic and optimization-based
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characterizations; a new formulation of supra-Bayesian fusion

in terms of finite-dimensional parametrizations; and a study

of supra-Bayesian fusion of posterior pdfs for linear Gaussian

models.
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N O M E N C L AT U R E
Probabilistic Opinion Pooling
qk(θ) Pdf of agent k.
q(θ) Aggregate (fused) pdf.
Qk(A) Probability of event A according to qk(θ).
Q(A) Probability of event A according to q(θ).
µqk

Mean associated with qk(θ).
µq Mean associated with q(θ).
Σqk Covariance matrix associated with qk(θ).
Σq Covariance matrix associated with q(θ).

Supra-Bayesian Framework
yk Local observation vector of agent k.
y Global observation vector (stacking all yk).
tk Local statistic of agent k.
t Stacked vector of all local statistics tk.
p(θ) Prior pdf.
�k(θ) Local observation likelihood function

of agent k.
�(θ) Global observation likelihood function.
λk(θ) Local tk-likelihood function of agent k.
λ(θ) Global t-likelihood function.
πk(θ) Local posterior pdf of agent k.
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General Notation
g Pooling function.
g[q1, . . . , qK ](θ) Fused pdf resulting from application

of pooling function g to pdfs
q1(θ), . . . , qK(θ).

Eψ[·] Expectation operator with respect to
pdf ψ(θ).

E[·] Expectation operator with respect to
the joint pdf of all involved random
variables.

N (θ; µ,Σ) Pdf of a Gaussian random vector θ

with meanµ and covariance matrixΣ.

I. I N T R O D U C T I O N
The fusion of multiple probabilistic descriptions of a ran-
dom quantity is a fundamental task with applications
in many fields, including multisensor signal processing
[1]–[8], machine learning [9]–[12], robotics [4], smart
environments [13], medicine [14], transportation [15],
precision agriculture [16], pharmacology [17], weather
forecasting [18], [19], economics [20], [21], and finan-
cial engineering [22]. While this task has been studied
for several decades, an in-depth treatment with a focus
on continuous random variables and, accordingly, on the
fusion of probability density functions (pdfs) appears to be
lacking. This article attempts to fill this gap. Our focus on
continuous random variables is motivated by the fact that
continuously distributed quantities are the primary object
of interest in many applications.

The fusion of pdfs can be considered in different con-
texts, and several different techniques for this task have
been proposed in the literature. Our treatment is partly a
survey of existing concepts and techniques with an empha-
sis on a structured and coherent presentation. In addition,
we present numerous original contributions related to
axiomatic, optimization-based, and Bayesian approaches
to pdf fusion.

A. Motivation

The field of pdf fusion is multifaceted and somewhat
fuzzy: there are many possible approaches to the problem
of finding a pdf fusion rule, and there is no universally
accepted measure of performance [23], [24]. An appropri-
ate fusion rule and performance measure depend on the
scenario and application. This situation can be aggravated
by the fact that different fusion rules could lead to very
different results.

Although, in specific applications, certain pdf fusion
rules have been established and found to be useful, the
rationales of these rules and their possible alternatives are
not always obvious. Thus, it is both theoretically inter-
esting and practically relevant to study the problem of
pdf fusion and the existing viewpoints and solutions in a
general way that abstracts from specific applications, and
to put these viewpoints and solutions into a higher level
perspective. Our hope is that this analysis will support an

informed choice of a pdf fusion rule for specific scenarios
and applications. Accordingly, rather than considering a
single framework or method for pdf fusion, this article
reviews the different approaches that have been developed
over several decades in different disciplines and by differ-
ent communities. In addition, these approaches are cate-
gorized into three fundamental approaches to principled
pdf fusion, which we term the axiomatic, optimization, and
supra-Bayesian approaches.

Fusing pdfs is a special variant of the general task of
“data fusion” or “information fusion,” and one may ask
why it can be advantageous to perform data/information
fusion at the level of pdfs. Possible answers include the
following [20], [24], [25].

1) A pdf constitutes a complete probabilistic description
of a continuous random variable or random vector. In
addition to its mean or its mode (which can be used as
point estimates of the random variable or vector), this
description includes further important information,
such as effective support, multimodality, tail decay,
and a detailed characterization of the “dispersion”
around the mean. Moreover, it enables the calculation
of quantitative measures of the accuracy of point
estimates.

2) A pdf provides a standardized and “genesis-agnostic”
representation of the state of information of an agent
or sensor, i.e., it abstracts from the intricacies of the
processing employed by the agent or sensor to obtain
it from the raw data. This “no questions asked” char-
acteristic enables or facilitates an information fusion
even between heterogeneous agents that employ dif-
ferent sensing modalities and/or different types of
data preprocessing. Furthermore, the lack of a trans-
parent relation to the raw data is a desirable feature
in privacy-sensitive applications.

3) Because a pdf provides a standardized, genesis-
agnostic representation, pdf fusion is well suited
to a decentralized (peer-to-peer) network topol-
ogy. In decentralized, possibly ad hoc networks, a
distributed in-network type of processing is used
where each agent communicates with a limited set
of neighboring agents, and typically, little or no
information about the characteristics of far-away
agents is available locally. The pdf format here facil-
itates the dissemination of information through the
network.

4) Computationally efficient pdf fusion algorithms based
on parametric pdf representations are available. For
example, the fusion of Gaussian pdfs reduces to
fusing the corresponding means and variances or
covariance matrices. More generally, there are effi-
cient algorithms for fusing Gaussian mixture pdfs.
In distributed implementations, parametric pdf rep-
resentations enable pdf fusion with low or moderate
communication cost. Thus, pdf fusion is attractive
because detailed probabilistic information can be
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fused with moderate complexity in terms of compu-
tation and communication.

B. Probabilistic Opinion Pooling

Consider K “agents,” “experts,” or “models,” each pro-
viding an “opinion” about an unknown random object that
may be a scalar or vector. In the probabilistic setting stud-
ied in this work, the opinions provided by the agents are
not point estimates of the random object but probability
distributions. More specifically, we focus on the case of a
continuous random variable or vector θ, where the opinion
of agent k is expressed by a pdf qk(θ).

The problem studied in this article is to combine, or
fuse, the pdfs of the K agents, qk(θ) for k = 1, 2, . . . , K,
into an aggregate pdf q(θ). This problem is traditionally
referred to as probabilistic opinion pooling although that
term is also used for the fusion of discrete (categorical)
distributions. We assume that the combination of the agent
pdfs qk(θ) is done by a central agent or unit, termed a
“fusion center,” which has access to all the agent pdfs.
The function employed by the fusion center to map the
qk(θ) into the aggregate (fused) pdf q(θ) is termed a fusion
rule or a pooling function. Many different pooling functions
have been proposed in the literature based on various mod-
els and considerations. Important examples include the
linear pooling function (a weighted arithmetic mean, also
known as arithmetic mean density) [26], [27] and the log-
linear pooling function (a weighted geometric mean, also
referred to as Chernoff fusion or geometric mean density)
[27]–[31]. For Gaussian pdfs, the covariance intersection
technique [29], [32] is an instance of a log-linear pooling
function. These and several other pooling functions will be
discussed in Sections III–VII.

An alternative to the centralized setting for probabilistic
opinion pooling described above would be a decentralized
network of agents without a dedicated fusion center [8],
[30], [33], [34]. Here, the agents communicate their pdfs
only locally, i.e., to neighboring agents, and each agent can
be considered to act as a local fusion center. In this “in-
network” or “network-centric” type of probabilistic opinion
pooling, the agents use a distributed communication-and-
fusion protocol, such as flooding, consensus, gossip, or dif-
fusion, to disseminate their local pdfs through the network
and emulate a given overall pooling function. This relies on
a suitable pdf representation, such as a Gaussian, Gaussian
mixture, or particle representation. The fusion methods
that we discuss in this work are also relevant to decen-
tralized probabilistic opinion pooling. We note, however,
that there are numerous methods for in-network signal
and information processing in which the local processing
results that are being combined are not pdfs. For example,
some methods combine local likelihood functions [1],
[35], [36] or messages within a message passing algo-
rithm, such as belief propagation [7], [37], or certain iter-
ated quantities within a networkwide adaptation-diffusion
procedure [38], to name a few.

C. Relevance and Applications

Probabilistic opinion pooling is a fundamental and
elementary functionality with widespread applications.
Historically, the first motivation was to combine expert
opinions into an aggregate opinion [26]. Nowadays, it is
more likely that the different probability distributions do
not represent the opinions of multiple experts but origi-
nate from the use of multiple sensors, models, processors,
or datasets. In particular, probabilistic opinion pooling is
often formulated in a Bayesian setting as the fusion of
local posterior pdfs that are produced by multiple agents
using local implementations of Bayesian inference [39].
The ideal aggregate pdf here is the global posterior pdf,
which takes into account all the data available to the
agents. However, the calculation of the global posterior
pdf generally requires additional knowledge besides the
local posterior pdfs, such as the local likelihood functions,
the prior pdfs used by the agents, and possible statistical
dependencies between the agents. By contrast, probabilis-
tic opinion pooling requires only the local posterior pdfs.
In many settings, it is easily and widely applicable because
it does not make any assumptions about the local inference
methods, the types of the sensors, or the nature of the local
data, which can all be different at different agents.

From the viewpoint of the processed data, there is a
wide range of scenarios for probabilistic opinion pooling.
Two extreme cases are particularly important: all the
agents process different data, or they process exactly the
same data. Furthermore, the processing may be carried
out with completely unrelated models but with the same
objective (e.g., predicting future observations or classifying
observations).

Current applications of probabilistic opinion pooling
include, but are not limited to, the following selection.

1) In multisensor signal processing applications of prob-
abilistic opinion pooling, multiple sensors derive local
pdfs based on local observations and either sub-
mit these pdfs (or finite-dimensional representations
thereof) to a fusion center or fuse them in a distrib-
uted, peer-to-peer manner [1], [3], [27], [30]–[33],
[39]–[42]. In particular, probabilistic opinion pooling
plays an important role in multisensor target tracking
[2], [3], [5], [6], [8], [30], [43]–[46]. For tracking
an unknown number of targets, probabilistic opinion
pooling has recently also been applied to the “multi-
object” pdfs or to the probability hypothesis densities
(PHDs) (i.e., the “densities” of the first moment mea-
sures) of finite point processes, also known as random
finite sets [2], [5], [6], [8], [43]–[50]. Although, in
this work, we do not consider finite point processes,
much of our discussion is also relevant in that domain.
The application of probabilistic opinion pooling to
multisensor target tracking will be discussed in more
detail in Section II-A.

2) In probabilistic machine learning, several scenarios
suggest the combination of probability distributions.
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For example, the concept of ensemble learning [9]
is based on applying multiple learning algorithms
whose outputs are combined to obtain an aggregate
result that is more accurate than that of any of
the individual learning algorithms in the ensemble.
Furthermore, in federated learning [12], [51], [52],
multiple edge devices learn statistical models indi-
vidually from their local datasets without explicitly
exchanging these datasets, and a fusion center aggre-
gates the learned models without having access to the
original data. This is attractive for privacy-sensitive
applications since no private data have to be shared.
More details on probabilistic machine learning are
provided in Section II-B.

3) The main goal in the combination of forecasts
[53], [54] is the estimation of a parameter by com-
bining several different models. To this end, certain
methods perform a fusion of pdfs and usually refer to
it as “combining density forecasts” [20], [55], [56].
This application will be addressed in more detail in
Section II-C.

4) In Bayesian model averaging, several different models
are used to derive different posterior pdfs based on
the same data [57], [58]. An aggregate pdf is derived
as a weighted average of the individual pdfs, where
the weights are given by the posterior probabilities of
the models. The Bayesian model averaging has been
widely used in phylogenetics [59], [60], economics
[21], [61], ecology [62], and many other fields
[63], [64].

5) Traditional implementations of Monte Carlo-based
inference schemes do not easily scale to large datasets
(“big data”). A common expedient then is to par-
tition the dataset into subsets and obtain a par-
tial posterior pdf approximation for each subset.
The partial approximations are subsequently fused
into an approximation of the overall posterior pdf,
which, thereby, takes into account the full dataset
[65]–[67]. More details on this application are given
in Section II-B. Another approach [68], [69] directly
fuses sample representations of distributions by inter-
preting these samples as a weighted sum of Dirac
measures.

To focus the scope of this work, we assume for the most
part that the fusion center does not have any additional
data about the random vector θ beyond the pdfs provided
by the agents. (Here, an exception is given by the supra-
Bayesian setting studied in Sections VIII and IX, where we
assume that the fusion center knows a statistical model
related to θ.) In particular, the fusion center cannot access
any training data that were used by the agents and it
does not have any validation data that it could use to
validate the agents’ pdfs. Thus, although the fundamental
problems are similar, we will not consider several ensemble
learning methods, such as stacking [70], [71], or many
other machine learning settings related to probabilistic

fusion [72]–[74]. Furthermore, given our focus on pdfs
rather than discrete probability distributions, we will not
touch upon methods tailored to the combination of clas-
sifiers, another large and growing field [75]. Finally, we
are interested in obtaining a pdf and not merely a point
estimate of θ. This is motivated by the fact that the pdf
of θ contains all the probabilistic information about θ and
can, thus, be used to obtain point estimates or other types
of statistics. Hence, certain works on multimodel inference
[76] and on the combination of forecasts [53], [54], [77]
share some ideas with this work but ultimately have a
different focus.

D. Approaches to Probabilistic Opinion Pooling

Although the probabilistic opinion pooling problem may
appear simple and elementary, no single pooling function is
universally accepted or uniformly best. Generally speaking,
we would like the pooling function to involve the agent
pdfs qk(θ) in a way that follows some rationale. This
rationale and the resulting choice of a pooling function
may depend on the overall problem setting, application-
specific aspects, side constraints, additional information
available to the fusion center, and other considerations.
The probabilistic opinion pooling problem has been stud-
ied for many decades, and substantial research efforts
have been dedicated to the definition or derivation of
pooling functions. One of the earliest works is [26], where
the linear pooling function was introduced. Several sur-
vey articles on probabilistic opinion pooling with detailed
literature reviews have been published [23], [78]–[80];
however, they often focus on discrete random variables.

In this work, we consider three principled approaches
to defining a pooling function for pdfs. In what we call
the axiomatic approach, the pooling function is defined
indirectly by a set of properties (axioms) that it is required
to satisfy. For example, it may be reasonable to require
that the aggregate pdf q(θ) does not depend on the
indexing order of the agent pdfs qk(θ), or that for equal
qk(θ)—i.e., unanimity among all the agents—the aggre-
gate pdf q(θ) conforms to that unanimous opinion. Most
of the early literature in the field was dedicated to the
axiomatic approach [23], [80]. An axiomatic approach is
also adopted in the literature based on imprecise probabili-
ties [81]. There, the idea is to define pooling operators that
map from the agents’ probability mass functions (pmfs)
to a set of pmfs rather than a single pmf. To the best of
our knowledge, the concept of imprecise probabilities has
so far been considered only for discrete probability spaces
[81], [82].

In the optimization approach, the pooling function is
the result of an optimization, i.e., the minimization or
maximization of an objective function. Usually, the idea is
that the aggregate pdf q(θ) should be as close as possible
to all the agent pdfs qk(θ) simultaneously. This can be
formulated as a minimization involving an information-
theoretic divergence [83]–[85] or a distance measure [48],
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[84], [86]. The resulting optimum q(θ) can typically be
interpreted as an “average” of qk(θ).

Finally, the supra-Bayesian approach considers the fusion
center as a Bayesian observer that interprets the agent
pdfs qk(θ) as random observations. This Bayesian observer
builds on additional information about the dependence of
these pdfs on θ (represented by the conditional probabil-
ity distribution p(q1, . . . , qK | θ) of the random functions
q1, . . . , qK given θ) to calculate a posterior pdf, which
then constitutes the fusion result [87], [88]. Most of
the early literature [89]–[91] describes p(q1, . . . , qK | θ)

implicitly by assuming that the joint distribution of the
errors µk − θ (where µk is the expectation of θ induced
by the pdf qk) is multivariate Gaussian. This reduces the
fusion problem to the calculation of the posterior pdf for
a simple Bayesian linear Gaussian model where the µk

are treated as observations at the fusion center and the
covariance structure is known. The practically most impor-
tant scenario in the supra-Bayesian framework is where
each agent has access to certain random observations that
are statistically dependent on the random vector θ, and
both the agents and the fusion center have knowledge of
a prior distribution of θ and the local likelihood functions
of the agents. The agent pdf qk(θ) is here given by the
agent’s local posterior pdf. The fusion center is also aware
of any statistical dependencies between the observations of
different agents, which are described by a global likelihood
function.

E. Contributions and Article Organization

The diversity of approaches, perspectives, and solutions
related to probabilistic opinion pooling motivates a survey
that presents the theory and methodology of the field in a
coherent manner. This article attempts to answer this call.
In addition, it provides a number of original contributions
and results, including the following.

1) A rigorous and coherent treatment of probabilistic
opinion pooling for a continuous random vector θ and,
accordingly, for the fusion of pdfs. In particular, for
the first time, the axiomatic approach is rigorously
and thoroughly discussed for pdfs (see Section IV).
So far, the focus in the literature has mostly been
on discrete probability distributions, and it has been
claimed that analogous results hold for pdfs. Although
this is indeed often the case, the nonatomic structure
of the pdf setting sometimes allows for stronger or
different results.

2) The definition of a new pooling function, referred to
as “generalized multiplicative pooling function” (see
Section III-B8).

3) Two new axioms for pooling functions, referred
to as “factorization preservation” and “generalized
Bayesianity” (see Axioms 9 and 12).

4) Several new theorems presenting axiomatic char-
acterizations of pooling functions for pdfs and
related results (see Theorems 1, 2, and 6–11 and

Appendices A–F). These theorems are partly adapta-
tions of existing results formulated for discrete prob-
ability distributions and partly entirely new results.

5) Proofs of the following results: The pooling function
minimizing the weighted sum of α-divergences is
given by the weighted Hölder mean; the pooling
function minimizing the weighted sum of Pearson
χ2-divergences is given by the weighted harmonic
mean; and the pooling function minimizing the
weighted sum of L2 distances is given by the weighted
arithmetic mean (see Theorems 14 and 16 and
Appendices G and I). Furthermore, we derive the
solution to the problem of minimizing a general
class of weighted symmetric distance functions (see
Theorem 17 and Appendix J).

6) A new framework of supra-Bayesian fusion of poste-
rior pdfs in terms of finite-dimensional “local statis-
tics” (see Sections VIII-B–VIII-D). Our results include
an explicit pooling function for the case of agents col-
lecting conditionally independent observations (see
Theorem 18), a formal definition of and result for
finite-dimensional supra-Bayesian fusion (see Defin-
ition 1 and Theorem 19), and a general procedure
for establishing a fusion rule for the case of agents
collecting conditionally dependent observations (see
Section VIII-D).

7) A detailed study of supra-Bayesian fusion of posterior
pdfs for linear Gaussian models (see Section IX),
including the derivation of explicit pooling functions
and fusion rules (see Sections IX-C and IX-D and
Appendices K and L).

The structure of this article is given as follows. In
Section II, we illustrate the applicability and relevance of
probabilistic opinion pooling by discussing three specific
example applications. In Section III, we formulate the
probabilistic opinion pooling problem for pdfs and present
a collection of specific pooling functions. Section IV dis-
cusses the axiomatic approach to opinion pooling and pro-
vides several new characterization theorems. In Section V,
we consider the optimization approach to opinion pool-
ing. We describe various optimization criteria and show
that they partly lead to the same pooling functions as
the axiomatic approach and partly to different pooling
functions, such as the family of Hölder means. The fusion
of Gaussian distributions using the pooling functions from
Sections III and V is considered in Section VI. Section VII
addresses the choice of the weights involved in the two
most prominent and popular pooling functions, namely,
the linear and log-linear pooling functions, as well as the
choice of the parameter α involved in the Hölder pooling
function. In Section VIII, we present a new view of the
supra-Bayesian pooling approach using finite-dimensional
parametrizations. The results of Section VIII are spe-
cialized to linear Gaussian models in Section IX. The
model of Section IX includes as a special case the supra-
Bayesian setting presented in [89]–[91]. We broaden this
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setting significantly and present detailed fusion rules. In
Section X, we provide suggestions for future research,
and in Section XI, we provide a summary of our main
insights and results. Detailed proofs of our main results
are provided in the appendices.

F. Notation

We will use the following basic notation. Vectors are
denoted by boldface lower case letters (e.g., t and θ),
matrices by boldface upper case letters (e.g., H and Σ),
and sets and events by calligraphic letters (e.g., A). The
transpose is written as (·) .T We write Id for the identity
matrix of dimension d, 0d1×d2 for the d1 × d2 zero matrix,
1d for the all-one vector of dimension d, and ⊗ for the
Kronecker product. The symbol P denotes the set of all
pdfs, and SK denotes the probability simplex on [0, 1]K ,
i.e., the set of all (w1, . . . , wK) ∈ [0, 1]K with

�K
k=1 wk = 1.

For a set or event A, we denote the complement as Ac,
the indicator function as �A, and the Lebesgue measure as
|A|. Further notation is listed in the Nomenclature at the
beginning of this article.

II. I L L U S T R AT I V E A P P L I C AT I O N S
To illustrate the broad applicability of probabilistic opinion
pooling or, more concretely, of the fusion of pdfs, we
consider three illustrative applications in more detail.

A. Target Tracking

Target tracking aims to estimate the time-varying state
(e.g., position and velocity) of a “target” from a sequence
of observations [92], [93]. Applications include aeronau-
tical and maritime situational awareness, surveillance,
autonomous driving, biomedical analytics, remote sensing,
and robotics. The performance of target tracking can be
enhanced by using multiple sensors. This can be done in
an optimal manner if the multisensor observation model is
completely known, including possible statistical dependen-
cies between the observations. However, in many cases, a
simplified approach to multisensor target tracking based
on probabilistic opinion pooling is adopted. Each sensor
node operates a Bayesian filter that, at each time step,
calculates a local posterior pdf of the current state based
solely on the observation of that sensor. Fig. 1 illustrates
the local posterior pdfs of two sensor nodes at two different
time steps. The local posterior pdfs of the various sensor
nodes are then fused using, typically, log-linear pooling or
its second-order version known as covariance intersection
[3], [27], [29]–[33], [40], [41], [94] (see Sections III-
B3 and VI-B). This approach is practically convenient
because: 1) the multisensor fusion is decoupled from the
filtering and 2) it works for any choice of Bayesian filter
methods used at the sensor nodes and for any sensing
modalities, even when they are different at different sensor
nodes. These characteristics make the probabilistic opinion
pooling approach well suited to heterogeneous and/or
decentralized sensor networks.

Fig. 1. Schematic illustration of the state trajectory of a target

and the local posterior pdfs of two sensor nodes at two different

time steps.

A nontrivial extension of target tracking is multitar-
get tracking, which involves an unknown time-varying
number of targets and a more complicated observation
model [95]–[102]. More specifically, targets can appear
and disappear randomly, and there are missed detections
(i.e., some sensors do not produce observations for some
of the targets), clutter or false-alarm observations (which
are not related to any target), and an observation-origin
uncertainty (i.e., the sensor nodes do not know whether
a given observation originated from a target, and from
which target, or is clutter). Probabilistic opinion pooling
can be used both for “vector-based” multitarget tracking
methods, which describe the joint state of the targets by a
random vector, and “set-based” methods, which describe
it by a random finite set or equivalently a finite point
process [97], [100], [103]. In the vector-based case, the
target states are fused individually using, typically, log-
linear pooling or covariance intersection. This presupposes
an association of the target states across the sensors
[104], [105].

In set-based methods, on the other hand, probabilis-
tic opinion pooling is applied either to the posterior
multiobject pdfs or the posterior PHDs of the sensor
nodes, which provide two alternative joint descriptions
of all the target states [97], [100]. Here, both log-
linear pooling—also termed geometric average fusion,
exponential mixture density, generalized covariance inter-
section, or Kullback–Leibler averaging [2], [5], [8],
[43], [50], [85], [106]–[108]—and linear pooling (see
Section III-B1)—also termed arithmetic average fusion and
minimum information loss fusion [5], [43]–[46], [48],
[85], [108]–[111]—have been used. Log-linear pooling
is more sensitive to missed detections, whereas linear
pooling is more sensitive to clutter. Regarding this sen-
sitivity tradeoff, we note that pooling functions that are
intermediate between the linear and log-linear ones are
provided by the family of Hölder pooling functions to be
presented and discussed in Sections III-B5 and V-C.

Finally, both log-linear pooling and linear pooling have
recently been generalized to multitarget tracking meth-
ods based on labeled random finite sets, which track the
identities of the targets in addition to their states [6],
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[47], [49], [112]–[114]. Some of these methods require
a label association step that is similar in spirit to the target
association step required by vector-based methods [47],
[49], [113], [114].

B. Probabilistic Machine Learning

Probabilistic machine learning [115], [116] has recently
seen applications in many different areas, including quan-
tum molecular dynamics [117], medical diagnosis [118],
[119], scene understanding [120], and geotechnical engi-
neering [121]. In machine learning, uncertainty quantifi-
cation for predictive models is required for problems that
involve risk assessment. Unfortunately, classical machine
learning models do not account for parameter and pre-
diction uncertainty, which makes them more susceptible
to failure when dealing with unseen and/or unrelated
data [122]. This is a prominent issue for deep learn-
ing models [123]. One way to account for predictive
uncertainty in machine learning is to adopt a Bayesian
framework: using training data, a prior pdf over the
model parameters is updated to obtain a posterior pdf.
This posterior pdf is then used to calculate a predictive
pdf for unobserved data (test data). This pdf is often
represented in a parametric form—e.g., a Gaussian pdf is
parameterized by its mean and covariance matrix—or by
a set of samples. Examples of Bayesian machine learning
models include Bayesian linear regression, Bayesian neural
networks [124], [125], Gaussian processes [126], and
deep Gaussian processes [127].

In certain scenarios of probabilistic machine learning,
probabilistic opinion pooling can be used to resolve prac-
tical challenges. For example, the choice of a model (or
an architecture or a set of parameters) is frequently not
obvious, and thus, there is a model uncertainty that has
to be taken into account to ensure robustness and gen-
eralization. A class of methods dealing with this issue is
known as ensemble learning. The learning is carried out by
a collection of algorithms based on different models, and
the final result of classification, regression, or clustering is
obtained by combining the individual results [128]–[133].
The combination of the results of individual probabilistic
learning algorithms can be implemented via probabilistic
opinion pooling, i.e., by fusing the predictive pdfs pro-
duced by the individual algorithms. An example in the con-
text of binary classification is shown in Fig. 2. Probabilistic
opinion pooling in ensemble learning has been success-
fully applied, e.g., in the context of deep ensembles [9],
neural network ensembles [10], and ensemble Gaussian
processes [11]. We note that, in ensemble learning, unlike
in multisensor signal processing and, in particular, target
tracking as discussed in Section II-A, all the algorithms may
operate on the same set of data.

Another practical challenge in machine learning is posed
by privacy-sensitive scenarios. Here, local (private) data
observed at individual nodes may not be disseminated
across the nodes or to a fusion center and, thus, can be

Fig. 2. Bayesian machine learning in the context of binary

classification with two agents. Each agent obtains a posterior pdf

from training data and uses it to derive its predictive pdf of the

probability that test data belong to the positive class. These

predictive pdfs are subsequently combined to obtain an aggregate

predictive pdf.

used only to train local models at the respective nodes. This
framework, often referred to as federated learning, requires
the combination of local models at a fusion center [12],
[51], [52], [134]. Although, in many instances of feder-
ated learning, updates are also communicated from the
fusion center to the nodes, several works consider problem
settings along the lines of probabilistic opinion pooling.
For example, agnostic federated learning [135] combines
sample representations of probability distributions trained
on private data into an aggregate distribution.

Finally, the application of machine learning methods to
“big data” scenarios calls for divide-and-conquer strategies
that partition the data into much smaller sets, perform
learning on each set, and combine the respective predictive
or posterior distributions [65]–[67], [136]. Here, a focus
has so far been on Markov chain Monte Carlo (MCMC)
samplers for Bayesian inference [65]–[67]. For example,
in [65], the idea is to generate a “subposterior” for each
small dataset and combine the subposteriors using the
multiplicative pooling function (see Section III-B7). Each
subposterior is initially represented by a set of samples
produced by an MCMC sampler but is then converted into
a continuous pdf given by a kernel density estimate. The
different pdfs are finally fused to form an approximation to
the overall posterior pdf. This approach can be motivated
by the fact, to be shown in Section VIII-A, that, under
a suitable conditional independence assumption, a multi-
plicative pooling function operating on the subposteriors
gives the overall posterior pdf.

The use of probabilistic machine learning has so far
been restricted by the fact that many popular methods
of machine learning do not provide probabilistic results.
However, we expect that the outcomes of recent and
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Fig. 3. Density forecasts of a variable (e.g., inflation) beyond 2021

made by two experts, visualized as fan charts. The values of past

years are already observed and thus fixed, while predictions farther

into the future become increasingly uncertain.

ongoing research will remove this limitation and thereby
increase the successful application of probabilistic opinion
pooling in this field.

C. Forecasting

The goal of forecasting is to predict future values
of some variable of interest based on present and past
observed data [137]. An issue that may limit the perfor-
mance of forecasting is a lack of confidence in the underly-
ing model. This issue can be addressed by the combination
of forecasts, which fuses the forecasting results obtained
with several different models [53], [54], [56]. While
classical work has considered point forecasts, probabilistic
forecasting uses a description of the variable of interest in
terms of probability distributions. Here, for a long time, the
focus was on discrete probability distributions [18], and
accordingly, continuous random variables were approxi-
mated by discrete random variables through quantization.
For example, in meteorology, the amount of precipitation
was binned into a finite number of categories [138].

By contrast, the idea of density forecasting is to predict
continuous random variables directly in terms of their
pdfs [139]. This is visualized by Fig. 3, which shows a
fan chart representation of density forecasts made by two
experts. Density forecasting was suggested already more
than 50 years ago [140], [141]. However, the combination
of density forecasts [142]—which is a special setting of the
fusion of pdfs—was considered only much later. Sugges-
tions to combine density forecasts started with [20] and
[55], which discussed the optimization of the weights in
the linear pooling function based on training data. At about
the same time, the use of Bayesian model averaging [57]
in forecasting was proposed [143], again resulting in a
linear pooling function. Also subsequent work focused
on linear pooling [24]. Nonlinear pooling functions were
mostly obtained by a preprocessing of the individual
pdfs (e.g., in the spread-adjusted linear pool [144]) or
by a postprocessing of the aggregate pdf (e.g., in the
Beta-transformed linear pool [142]). Recently, the com-
bination of density forecasts has also been studied in a

nonparametric Bayesian setting based on the Beta-
transformed linear pool [145].

While the combination of density forecasts has the
same goal as pdf fusion—namely, to fuse pdfs from dif-
ferent sources—there are two distinctive features. First,
realizations of the random variable to be predicted are
observed on a regular basis, which enables an evaluation
of density forecasts and their combinations based on new
data. A significant part of the literature focuses on this
aspect. Although beyond the scope of our work, such an
evaluation can obviously be performed also within the
general setting of pdf fusion if the required data are
available. Second, forecasts usually concern 1-D random
variables. This implies that the combination of forecasts
can be formulated in terms of the 1-D cumulative distri-
bution function (cdf), and more specific properties, such
as calibration [142], can be studied. Also the combination
of forecasts—in particular, the choice of weights—is often
based on new data and the evaluation of the fused 1-D
cdf [146].

Probabilistic forecasting has been used in the broad
domains of meteorology [18] and economics [20], [61],
[139], [147] and, more specifically and more recently, in
many disciplines, including wind forecasting [148], [149],
electric load forecasting [150], electricity price forecast-
ing [151], and solar power forecasting [152]. The com-
bination of density forecasts has been considered, e.g., in
[20], [149], and [152], and we conjecture that successful
deployments of this variant of pdf fusion will emerge in
many further applications of probabilistic forecasting.

III. P R O B A B I L I S T I C O P I N I O N
P O O L I N G
A. Basic Framework

In probabilistic opinion pooling, we are interested in
fusing the pdfs of K agents or “experts” into a single pdf.
Let θ ∈ Θ ⊆ R

dθ be a continuous random variable or
vector defined on some probability space.1 Furthermore,
let the pdf qk(θ) ∈ P represent the opinion of the kth agent.
The sequence of all opinions (q1, q2, . . . , qK) ∈ PK is called
the opinion profile. We consider events to be (measurable)
subsets of Θ. The probability of an event A ⊆ Θ according
to the opinion of the kth agent is given by

Qk(A) =

�
A

qk(θ)dθ.

Given an opinion profile (q1, q2, . . . , qK), a pooling function
g : PK → P is used to fuse the agents’ pdfs qk(θ) into a
single pdf

q(θ) = g[q1, . . . , qK ](θ).

1Our results extend to arbitrary probability measures that are
absolutely continuous with respect to a σ-finite nonatomic measure.
However, to keep the presentation more easily accessible, we present
all results in the familiar setting of pdfs on R

dθ .
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The probability of an event A ⊆ Θ according to the fused
pdf q(θ) is then given by

Q(A) =

�
A

q(θ)dθ.

The fused pdf q(θ) summarizes the opinions of the K

agents and will be referred to as the aggregate pdf. The
fusion of the agent opinions via the pooling function is
done (at least virtually) at a fusion center.

B. Pooling Functions

Over the years, many different pooling functions g have
been proposed. We summarize some of them in the follow-
ing. These pooling functions will be reconsidered in later
sections.

1) Linear Pooling: A popular pooling function is the
linear pooling function, which was introduced in [26].
Linear pooling aggregates the agent opinions through a
weighted arithmetic average, i.e.,

g[q1, . . . , qK ](θ) =

K�
k=1

wkqk(θ) (1)

where (w1, . . . , wK) ∈ SK .
One can establish a connection between linear opinion

pooling and model averaging [57]. Let us consider the joint
distribution q(θ, M) of the unknown random vector θ and
a discrete “model” random variable M ∈ {M1, . . . , MK}.
Furthermore, let q(θ|Mk) denote the pdf of θ conditioned
on model Mk and let P (Mk) denote the probability of Mk.
Then, the marginal pdf of θ is given by

q(θ) =
K�

k=1

P (Mk)q(θ|Mk). (2)

This is equivalent to the linear pooling operation (1),
wherein the agent pdf qk(θ) is interpreted as the pdf of
θ under model Mk, the weight wk equals the probability of
Mk, and the aggregate pdf q(θ) is the marginal pdf of θ.

2) Generalized Linear Pooling: The generalized linear
pooling function defined in [153] includes an arbitrary pdf
q0 in the weighted arithmetic average (1), i.e.,

g[q1, . . . , qK ](θ) =
K�

k=0

wkqk(θ) (3)

where (w0, . . . , wK) ∈ SK+1. We note that, in the gen-
eral, measure-theoretic formulation of generalized linear
opinion pooling in [153], some weights wk are allowed
to be negative. However, in the setting of fusing pdfs,
this would result in a fusion rule g that does not give a
valid (nonnegative) pdf for all possible opinion profiles

(q1, . . . , qK). Thus, we restrict to nonnegative weights. One
possible interpretation of the pdf q0 is as the opinion of
the fusion center. Alternatively, q0 can be interpreted as a
regularization.

3) Log-Linear Pooling: Another popular pooling func-
tion is the log-linear pooling function [28]. This function
aggregates the agent opinions using a weighted geometric
average, i.e.,

g[q1, . . . , qK ](θ) = c

K�
k=1

(qk(θ))wk (4)

where c is a normalization factor given by

c =
1�

Θ

�K
k=1 (qk(θ))wk dθ

(5)

and (w1, . . . , wK) ∈ SK . To avoid the possibility of the
integral in (5) being zero and, thus, c being undefined, this
pooling function is usually only defined for pdfs that are
positive on the domain Θ. We will refer to opinion profiles
(q1, . . . , qK) that satisfy

qk(θ) > 0 for all θ ∈ Θ (6)

as positive opinion profiles.
The pooling function is called “log-linear” because it

is a linear function of the agent pdfs in the log-domain,
i.e., the logarithm of the right-hand side of (4) is

log

�
c

K�
k=1

(qk(θ))wk

�
= log(c) +

K�
k=1

wk log(qk(θ))

which is a weighted arithmetic average [up to the additive
constant log(c)]. We will, therefore, refer to the powers
w1, . . . , wK as “weights.”

4) Generalized Log-Linear Pooling: Similar to the gen-
eralized linear pooling function, a generalization of the
log-linear pooling function can be obtained by including
a function ξ0 as an additional factor. However, in contrast
to the generalized linear pooling function, ξ0 is not nec-
essarily a pdf. More specifically, the generalized log-linear
pooling function [154] is defined as

g[q1, . . . , qK ](θ) = c ξ0(θ)
K�

k=1

(qk(θ))wk (7)

where

c =
1�

Θ
ξ0(θ)

�K
k=1 (qk(θ))wk dθ

ξ0 is a bounded, positive function, and (w1, . . . , wK) ∈ SK .
Here, we again restrict to positive opinion profiles.
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The function ξ0 can be used, e.g., to include the opinion
of the fusion center or regularize the fused density.

5) Hölder Pooling: The following pooling function was
apparently first suggested in [78] as a generalization of
the linear and log-linear pooling functions:

g[q1, . . . , qK ](θ) = c

�
K�

k=1

wk(qk(θ))α

�1/α

(8)

where

c =
1�

Θ

	�K
k=1 wk(qk(θ))α


1/α
dθ

and α ∈ R \ {0}. While, for α ≥ 1, it can be shown that c

is defined for arbitrary opinion profiles, in the other cases,
we have to restrict to opinion profiles such that c is defined.
Because the pooling function in (8) is the weighted Hölder
mean (also called the generalized average) [155] of the
agent pdfs qk(θ), we will refer to (8) as the Hölder pooling
function. The linear and log-linear pooling functions are
special cases of the Hölder pooling function for α = 1 and
α → 0, respectively.

6) Inverse-Linear Pooling: The inverse-linear pooling
function (weighted harmonic average) is defined as

g[q1, . . . , qK ](θ) = c

�
K�

k=1

wk

qk(θ)

�−1

(9)

where

c =
1�

Θ

	�K
k=1

wk
qk(θ)


−1
dθ

.

This is the special case of the Hölder pooling function for
α = −1.

7) Multiplicative Pooling: Themultiplicative pooling func-
tion, as proposed in [80] for pmfs, is defined as

g[q1, . . . , qK ](θ) = c (q0(θ))1−K
K�

k=1

qk(θ) (10)

where

c =
1�

Θ
(q0(θ))1−K �K

k=1 qk(θ)dθ

and q0 is a positive pdf called the calibrating pdf. Here, we
restrict to positive opinion profiles and further assume that
qk(θ)/q0(θ) is bounded for all k = 1, . . . , K. These assump-
tions guarantee that the normalization constant c is well-
defined and nonzero. In Section VIII-A, we will show that,
within the supra-Bayesian framework, the multiplicative
pooling function is the correct fusion rule for combining
posterior pdfs in the case of conditionally independent
observations. In that case, the calibrating pdf q0 is the prior
pdf used by the agents to form their posterior pdfs.

8) Generalized Multiplicative Pooling: We propose
another pooling function that is a generalization of
both the generalized log-linear pooling function and
the multiplicative pooling function. In addition to a
calibrating pdf q0, we also allow for arbitrary weights
in the generalized log-linear pooling function (7). More
specifically, we define the generalized multiplicative pooling
function as

g[q1, . . . , qK ](θ) = c (q0(θ))1−
�K

k=1 wk

K�
k=1

(qk(θ))wk (11)

where

c =
1�

Θ
(q0(θ))1−

�K
k=1 wk

�K
k=1 (qk(θ))wk dθ

q0 is a positive calibrating pdf, and the weights
w1, . . . , wK ∈ R are arbitrary real numbers. We again
restrict to positive opinion profiles and assume that
(qk(θ)/q0(θ))wk is bounded for all k = 1, . . . , K. In
Section IX-C, we will show that, within the supra-Bayesian
framework with a linear Gaussian model, the generalized
multiplicative pooling function is the correct fusion rule for
combining posterior pdfs.

9) Dictatorship Pooling: The dictatorship pooling function
maps the opinion profile to a single agent opinion, i.e.,

g[q1, . . . , qK ](θ) = qk(θ) (12)

for some fixed k ∈ {1, . . . , K}. Although this function is a
valid pooling function, one would not normally expect it to
be a good choice.

10) Dogmatic Pooling: The dogmatic pooling function
enforces a fixed pdf q0 independently of the opinion pro-
file, i.e.,

g[q1, . . . , qK ](θ) = q0(θ). (13)

Again, this pooling function will not be suitable in most
applications.

IV. A X I O M AT I C A P P R O A C H
Fundamentally, we would like the pooling function
g[q1, . . . , qK ] to depend directly on all the agent pdfs qk in a
way that follows some rationale. One principled approach
to probabilistic opinion pooling is the axiomatic approach,
which seeks to determine all pooling functions that satisfy
a set of desirable properties (axioms). In this section, we
first formulate some axioms and then rigorously analyze
the relationships between these axioms and the pooling
functions presented in Section III-B.

A. Axioms

To begin, one basic restriction we may impose on
the pooling function is that it be a symmetric function,
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i.e., a function whose arguments can be interchanged
without altering the output of the function. This means
that there is no “natural order” of the agents, and all agents
are treated equally. This is formally stated in the following
axiom.

Axiom 1 (Symmetry): For all permutations β : K → K
of the set K = {1, . . . , K} and all opinion profiles
(q1, . . . , qK), the pooling function g satisfies

g[q1, . . . , qK ](θ) = g[qβ(1), . . . , qβ(K)](θ).

A symmetric pooling function seems to be desirable and
natural since it treats the pdfs of the agents equally at
the fusion center. However, if certain agents are known
a priori to be more “reliable” or “informative” than other
agents, then it may be reasonable to emphasize them in the
pooling function. For example, in the linear or log-linear
pooling function, we may assign larger weights wk. If this
is done in a fixed manner, the pooling function is no longer
symmetric. On the other hand, if the weights are chosen
adaptively such that each weight is an explicit function of
the opinion profile and this adaptation rule involves each
agent in the same way, then all agents are treated equally
and the resulting pooling function is still symmetric. This
will be further discussed in Section VII.

Another basic property for a pooling function is the
preservation of agreement among agents. For instance, if
each of the agents believes that a certain event A ⊂ Θ is a
null event, i.e., the probability ofA is 0 according to all the
agents, then A should also be a null event according to the
aggregate pdf. This property is called the zero preservation
property (ZPP) [156].

Axiom 2 (ZPP): For any event A ⊂ Θ, if Qk(A) = 0 for
all k, then Q(A) = 0.

The next property, termed unanimity preservation [80],
asserts that, if the opinions of the agents are identical,
then the aggregate pdf should conform to that unanimous
opinion.

Axiom 3 (Unanimity Preservation): If, for all eventsA ⊆
Θ, the probabilities Qk(A) = pA coincide for all k, then
Q(A) = pA. Equivalently, if2 qk(θ) = q0(θ) for all k and
some pdf q0(θ), then q(θ) = q0(θ).

Another property that may be desirable in a pool-
ing function is the strong setwise function property
(SSFP) [156]. The SSFP states that the probability of an
event A ⊆ Θ according to the aggregate pdf q(θ) can be
expressed as a function of the probabilities of that event
according to each agent, i.e., Q1(A), . . . , QK(A).

Axiom 4 (SSFP): There exists a function h : [0, 1]K →
[0, 1] such that, for all opinion profiles (q1, . . . , qK) and for
all events A ⊆ Θ,

Q(A) = h(Q1(A), . . . , QK(A)). (14)

2We consider two pdfs to be equal if they are equal almost every-
where with respect to the Lebesgue measure.

We note that this axiom is in general not equivalent to
the property that there exists a function h̃ : [0,∞)K →
[0,∞) such that, for all opinion profiles (q1, . . . , qK) and
each point θ ∈ Θ,

q(θ) = h̃(q1(θ), . . . , qK(θ)). (15)

In particular, for the case that Θ has finite Lebesgue
measure |Θ|, the dogmatic pooling function q(θ) = 1/|Θ|
for θ ∈ Θ trivially satisfies (15) but not (14) (as a simple
consequence of Theorem 1 in Section IV-B).

A more relaxed criterion than the SSFP is the weak
setwise function property (WSFP) [156]. The WSFP
states that the probability of an event according to
the aggregate pdf is a function of the probabilities
of that event according to each agent and the event
itself.

Axiom 5 (WSFP): For all events A ⊆ Θ, there exists a
generally A-dependent function hA : [0, 1]K → [0, 1] such
that, for all opinion profiles (q1, . . . , qK),

Q(A) = hA(Q1(A), . . . , QK(A)). (16)

The WSFP is also equivalent to the so-called mar-
ginalization property, which states that marginalization
and fusion are commutative operations. Formulating the
marginalization property requires a measure-theoretic lan-
guage that is beyond the scope of this article. We, thus,
omit a discussion of the marginalization property and refer
the interested reader to [153] and [156].

Another relaxation of the SSFP is the likelihood princi-
ple [28]. Here, the value of the aggregate pdf q(θ) at some
point θ may only depend on the values of all qk(θ) at the
same θ up to a normalization constant that can depend on
the opinion profile.

Axiom 6 (Likelihood Principle): There exists a function
h : [0,∞)K → [0,∞) such that, for all opinion profiles
(q1, . . . , qK) and each point θ ∈ Θ,

q(θ) =
h(q1(θ), . . . , qK(θ))�

Θ
h(q1(θ

′), . . . , qK(θ′))dθ′ .

The name “likelihood principle” is motivated by viewing
the pdfs as normalized likelihood functions: in this view-
point, the idea is that the fused likelihood at θ should
only depend on the local likelihoods at θ up to normal-
ization [28]. Note that (15) is a significantly stronger
assumption because the function h̃ in (15) has to normalize
to one.

We can also formulate a weak version of the like-
lihood principle, where the function h may depend
on θ [28].

Axiom 7 (Weak Likelihood Principle): For all θ ∈ Θ,
there exists a generally θ-dependent function
hθ : [0,∞)K → [0,∞) such that, for all opinion
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profiles (q1, . . . , qK),

q(θ) =
hθ(q1(θ), . . . , qK(θ))�

Θ
hθ(q1(θ

′), . . . , qK(θ′))dθ′ .

Another important axiom is independence preservation3

[157]. This axiom asserts that, if all the agents agree that
two events A,B ⊆ Θ are independent, then these events
should be independent also according to the aggregate pdf.

Axiom 8 (Independence Preservation): For any events
A,B ⊆ Θ, if

Qk(A∩ B) = Qk(A)Qk(B)

for all k ∈ {1, . . . , K}, then Q(A∩ B) = Q(A)Q(B).
A relaxation of independence preservation that, to the

best of our knowledge, has not been considered before is to
assume the preservation of a given factorization structure.

Axiom 9 (Factorization Preservation): For any functions
f1 : Θ → R

d1 and f2 : Θ → R
d2 , if there exist functions qk,1

and qk,2 such that

qk(θ) = qk,1(f1(θ))qk,2(f2(θ))

for all k ∈ {1, . . . , K}, then there exist functions qa,1 and
qa,2 such that

q(θ) = qa,1(f1(θ))qa,2(f2(θ)).

This axiom expresses, in particular, preservation of
the independence of components of θ. Assume that
θ = (θ1, θ2) and all agent pdfs factor according to
qk(θ) = qk,1(θ1)qk,2(θ2). Then, choosing f1(θ) = θ1 and
f2(θ) = θ2, factorization preservation implies that also the
aggregate pdf preserves the independence of θ1 and θ2,
i.e., q(θ) = qa,1(θ1)qa,2(θ2).

The final axioms that we consider are motivated by
Bayesian updating of probabilities. More specifically, we
interpret each agent pdf qk(θ) as the agent’s belief about
an unknown quantity θ after observing some data. When
observing new (additional) data, qk(θ) is updated by mul-
tiplying it by a likelihood function � : Θ → [0,∞), which
relates the agent’s new data to θ. The updated belief of the
kth agent, q

(�)
k (θ), is, thus, given as

q
(�)
k (θ) =

�(θ)qk(θ)�
Θ

�(θ′)qk(θ′)dθ′ . (17)

To avoid degenerate cases, one usually assumes in the fol-
lowing axioms that all pdfs are positive on the domain Θ.
Thus, we restrict the statements of the axioms to positive

3Independence preservation should not be confused with the WSFP,
which is sometimes referred to as the independence or eventwise
independence property (e.g., [80]).

opinion profiles. The first axiom related to the Bayesian
framework is known as external Bayesianity [28], [158].

Axiom 10 (External Bayesianity): For all functions
� : Θ → [0,∞) and all positive opinion profiles (q1, . . . , qK)

satisfying 0 <
�
Θ

�(θ)qk(θ)dθ < ∞ for all k ∈ {1, . . . , K},
we have

q(�)(θ) = g
�
q
(�)
1 , . . . , q

(�)
K

�
(θ)

where q
(�)
k is given in (17) and

q(�)(θ) � �(θ)q(θ)�
Θ

�(θ′)q(θ′)dθ′ (18)

with q(θ) = g[q1, . . . , qK ](θ).
This axiom is motivated by the following Bayesian sce-

nario. Assume that q1, . . . , qK are prior pdfs of K agents.
Some data are observed, and the resulting likelihood
function � is provided to all agents. Then, a pooling
function g satisfying external Bayesianity gives the same
fusion result if it first aggregates the priors qk into a
fused prior q, and then q is updated according to (18),
or if it aggregates the posterior pdfs q

(�)
k resulting from

all agents updating their priors according to (17). Thus,
external Bayesianity states that pdf updating and fusion
are commutative operations. Such a property is desir-
able in applications where the agents share identical data
(i.e., a global likelihood function) but have distinct prior
distributions [159].

The second axiom related to the Bayesian framework
is known as individualized Bayesianity [80]. This axiom is
motivated by the idea of combining posterior probabilities,
where each agent’s posterior probability is based on private
data (i.e., a local likelihood function) in contrast to all
agents sharing identical data.

Axiom 11 (Individualized Bayesianity): For all k ∈
{1, . . . , K}, all bounded, positive4 functions � : Θ → [0,∞),
and all positive opinion profiles (q1, . . . , qK), we have

q(�)(θ) = g
�
q1, . . . , qk−1, q

(�)
k , qk+1, . . . , qK

�
(θ) (19)

where q
(�)
k and q(�) are defined by (17) and (18),

respectively.
This axiom is motivated by a scenario that is partly

different from the scenario motivating external Bayesian-
ity. We again assume that q1, . . . , qK are prior pdfs of
the agents. For some arbitrary but fixed k, the kth agent
observes (private) data in terms of a likelihood func-
tion �. Then, a pooling function g satisfying individual-
ized Bayesianity gives the same fusion result if it first
aggregates the priors qk into a fused prior q, and then
q is updated according to (18), or if it aggregates the
priors of all but the kth agent and the posterior pdf q

(�)
k

resulting from the kth agent updating its prior according

4The assumption of boundedness and positivity is needed to obtain
the characterization theorems involving individualized Bayesianity in
Section IV-B.
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Table 1 Axioms Satisfied by the Pooling Functions Presented in Section III-B. (∗: Satisfied If and Only If All Weights Are Equal)

to (17). Thus, individualized Bayesianity states that pdf
updating at a single agent and fusion are commutative
operations.

Finally, we state a novel axiom that generalizes individu-
alized Bayesianity. We, thus, call it generalized Bayesianity.

Axiom 12 (Generalized Bayesianity): For all bounded,
positive functions �k : Θ → [0,∞), k ∈ {1, . . . , K},
there exists a fused likelihood function h[�1, . . . , �K ]

such that, for all positive opinion profiles (q1, . . . , qK),
we have

q(h[�1,...,�K ])(θ) = g[q
(�1)
1 , . . . , q

(�K)
K ](θ) (20)

where q
(�k)
k and q(h[�1,...,�K ]) are defined by (17) and (18),

respectively.
This axiom states that fusing q

(�1)
1 , . . . , q

(�K)
K , i.e., the

result of updating q1, . . . , qK , is equivalent to updating
q, i.e., the result of fusing q1, . . . , qK , by a “fused likeli-
hood function” h[�1, . . . , �K ]. Note that the fused likelihood
function is not allowed to depend on the opinion profile
(q1, . . . , qK).

The axioms related to the Bayesian framework pre-
sented above are not directly related to the supra-Bayesian
approach presented in Sections VIII and IX. More specif-
ically, in the supra-Bayesian framework, we have explicit
likelihood functions, and thus, the pooling function does
not necessarily satisfy properties that relate to arbitrary
likelihood functions as in the axioms above.

B. Relations Between Axioms and
Pooling Functions

Having presented various pooling functions in
Section III-B and various axioms in Section IV-A, we
next analyze which pooling functions satisfy which axioms
and, conversely, which axioms imply which pooling
functions. Our results are summarized in Table 1. In what
follows, we will abbreviate the various axioms as A1, A2,
and so on.

Theorem 1: The linear pooling function in (1) satisfies
the ZPP (A2), unanimity preservation (A3), the SSFP (A4),
the WSFP (A5), the likelihood principle (A6), and the

weak likelihood principle (A7). In addition, it satisfies
the symmetry axiom (A1) if and only if all weights are
equal, i.e., w1 = w2 = · · · = wK = 1/K. Furthermore,
for a pooling function g, the following statements are
equivalent.

1) g is a linear pooling function.
2) g satisfies the SSFP (A4).
3) g satisfies the WSFP (A5) and the ZPP (A2).
4) g satisfies the WSFP (A5) and unanimity preserva-

tion (A3).

The equivalence of 1–3 was first proven in [156] for
pmfs and in [153] for arbitrary probability measures.
However, to the best of our knowledge, a proof for pdfs
has not been provided so far.5 In [80], the equivalence of
4 and 3 was presented for pmfs. In Appendix A, we give a
proof of Theorem 1 for pdfs.

Theorem 2: The generalized linear pooling function
in (3) satisfies the WSFP (A5) and the weak likelihood
principle (A7). Conversely, any pooling function that sat-
isfies the WSFP (A5) is a generalized linear pooling func-
tion. In addition, the generalized linear pooling function
satisfies the symmetry axiom (A1) if and only if all weights
except w0 are equal, i.e., w1 = w2 = · · · = wK .

The measure-theoretic equivalence of generalized lin-
ear pooling functions with possibly negative weights and
pooling functions satisfying the WSFP (A5) was proven
in [153]. However, in the case of the fusion of pdfs
considered here, the generalized linear pooling functions
cannot have negative weights. Accordingly, we present a
proof with the necessary adaptations in Appendix B.

We next turn to pooling functions that include multi-
plication of pdfs or of powers of pdfs. In this context, we
restrict to positive opinion profiles, i.e., we assume that (6)
is satisfied. Note that, in this setting, the ZPP (A2) is not

5Note that the proof for arbitrary probability measures in [153]
does not imply the result for pdfs. Indeed, in our pdf framework, only
probability measures that are absolutely continuous with respect to a
fixed reference measure (usually the Lebesgue measure) are considered.
This implicates the following difference from the framework of [153]:
whereas we only assume that an axiom holds for all pdfs, in [153] it is
assumed to hold also for other probability measures such as, e.g., a Dirac
measure. Therefore, if in [153] it is stated that, e.g., the assumption 2
implies 1, then this refers to a stronger version of 2.
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applicable since Qk(A) = 0 is not possible except for sets
A of Lebesgue measure zero; therefore, we will disregard
the ZPP in the following considerations.

Theorem 3: The log-linear pooling function in (4) satis-
fies unanimity preservation (A3), the likelihood principle
(A6), the weak likelihood principle (A7), factorization
preservation (A9), external Bayesianity (A10), and gener-
alized Bayesianity (A12). In addition, it satisfies the sym-
metry axiom (A1) if and only if all weights are equal, i.e.,
w1 = w2 = · · · = wK = 1/K. Furthermore, for a pooling
function g, the following statements are equivalent.
1) g is a log-linear pooling function.
2) g satisfies the likelihood principle (A6) and external

Bayesianity (A10).
3) g satisfies unanimity preservation (A3), the weak like-

lihood principle (A7), and external Bayesianity (A10).
The equivalence of 1 and 2 was proven in [28] and the

equivalence of 1 and 3 in [154]. The remaining claimed
axioms follow straightforwardly from the definition of the
log-linear pooling function in (4).

Theorem 4: The generalized log-linear pooling function
in (7) satisfies the weak likelihood principle (A7), factor-
ization preservation (A9), external Bayesianity (A10), and
generalized Bayesianity (A12). In addition, it satisfies the
symmetry axiom (A1) if and only if all weights except
w0 are equal, i.e., w1 = w2 = · · · = wK . Furthermore,
for a pooling function g, the following statements are
equivalent.
1) g is a generalized log-linear pooling function.
2) g satisfies the weak likelihood principle (A7) and

external Bayesianity (A10).
This characterization theorem was proven in [154].

We note that the assumption of fusing pdfs (rather than
general measures) is essential. In particular, for pmfs,
axioms A7 and A10 would imply only a modified general-
ized log-linear pooling function that may contain negative
weights [154]. In [154], one can also find a characteriza-
tion of all pooling functions that satisfy external Bayesian-
ity (A10). However, these pooling functions do not have a
simple structure.

Theorem 5: The Hölder pooling function in (8) satisfies
unanimity preservation (A3), the likelihood principle (A6),
and the weak likelihood principle (A7). In addition, it
satisfies the symmetry axiom (A1) if and only if all weights
are equal, i.e., w1 = w2 = · · · = wK .

The proof of this theorem is straightforward and, thus,
omitted. Because the inverse-linear pooling function (9) is
a special case of the Hölder pooling function, it follows that
it also satisfies A3, A6, and A7.

Theorem 6: The multiplicative pooling function in (10)
satisfies the symmetry axiom (A1), the weak likelihood
principle (A7), factorization preservation (A9), individ-
ualized Bayesianity (A11), and generalized Bayesianity
(A12). Furthermore, for a pooling function g, the following
statements are equivalent.
1) g is a multiplicative pooling function with calibrating

pdf q0.

2) g satisfies individualized Bayesianity (A11), and there
exists a pdf q0(θ) such that g[q0, . . . , q0](θ) = q0(θ).

The claimed axioms follow straightforwardly from the
definition of the pooling function. A result similar to the
equivalence of 1 and 2 was proven for pmfs in [80]. We
provide a proof for pdfs in Appendix C.

Theorem 7: The generalized multiplicative pooling
function in (11) satisfies the weak likelihood principle
(A7), factorization preservation (A9), and generalized
Bayesianity (A12). In addition, it satisfies the symmetry
axiom (A1) if and only if all weights are equal, i.e.,
w1 = w2 = · · · = wK .

Again, the claimed axioms follow straightforwardly from
the definition of the pooling function.

Theorem 8: The dictatorship pooling function in (12)
satisfies the ZPP (A2), unanimity preservation (A3), the
SSFP (A4), the WSFP (A5), the likelihood principle
(A6), the weak likelihood principle (A7), independence
preservation (A8), factorization preservation (A9), exter-
nal Bayesianity (A10), and generalized Bayesianity (A12).
Furthermore, for a pooling function g, the following state-
ments are equivalent.
1) g is a dictatorship pooling function.
2) g satisfies the SSFP (A4) and independence preserva-

tion (A8).
3) g satisfies the WSFP (A5) and independence preser-

vation (A8).
4) g satisfies the SSFP (A4) and external Bayesian-

ity (A10).
5) g satisfies the WSFP (A5) and external Bayesian-

ity (A10).
6) g satisfies the SSFP (A4) and generalized Bayesian-

ity (A12).
Our statements regarding the satisfied axioms follow

easily from the definition of the dictatorship pooling
function. The equivalence of 1 and 2 was proven in
[153, Th. 3.1]. In Appendix D, we strengthen this result
and show that the WSFP—instead of the (stronger) SSFP—
in combination with independence preservation suffices
to axiomatically define the dictatorship pooling function,
i.e., that 3 implies 2. The equivalence of 1 and 4 was
proven in [160]. In fact, in [160], even the equivalence
of 1 and 5 is shown by proving that the version of external
Bayesianity considered in [160] implies the ZPP. However,
our formulation of external Bayesianity assumes positive
opinion profiles, and thus, the ZPP cannot be proven. To
close this gap, we further show in Appendix D that 5
implies 4. Finally, we also show in Appendix D that 6
implies 1.

We note that the dictatorship pooling function is a spe-
cial case of both the linear and log-linear pooling functions
when one of the weights is 1 and all the others are 0.
The fact that the dictatorship pooling function satisfies ten
axioms shows that a pooling function that satisfies many
axioms is not necessarily a useful pooling function.

Turning to the dogmatic pooling function, we first
present a preliminary result that is proven in Appendix E.
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Fig. 4. Venn diagrams representing the implication structure for the axioms from Section IV-A. (a) A4–A7 and A10–A12, as well as

intersections resulting in dictatorship (Dict) or dogmatic (Dogm) pooling functions. (b) A2–A8, as well as intersections resulting in

dictatorship (Dict) pooling functions. Note that the diagrams illustrate the currently known implications, and some regions that appear

nonempty in the diagrams may actually be empty sets. For better visibility, the sets F4, F8, and F10 are highlighted by different line patterns.

Lemma 9: Assume that a pooling function g satisfies
the WSFP (A5) and generalized Bayesianity (A12). Then,
g is either a dogmatic pooling function or a dictatorship
pooling function.

The following characterization of the dogmatic pooling
function now follows easily.

Theorem 10: The dogmatic pooling function in (13)
satisfies the symmetry axiom (A1), the WSFP (A5), the
weak likelihood principle (A7), and generalized Bayesian-
ity (A12). Conversely, a pooling function that satisfies the
symmetry axiom (A1), the WSFP (A5), and generalized
Bayesianity (A12) is a dogmatic pooling function.

It is obvious that the dogmatic pooling function satis-
fies the stated axioms. The converse follows because, by
Lemma 9, the pooling function must be either a dogmatic
pooling function or a dictatorship pooling function, but of
these only the dogmatic pooling function is symmetric.

Based on the theorems above, we can establish an impli-
cation structure for the different axioms from Section IV-A,
which indicates which axioms imply which other axioms.
To formalize this structure, we will designate the set of
all pooling functions that satisfy Axiom i as Fi. The next
theorem states the currently known implications. Venn dia-
grams representing the implication structure are presented
in Fig. 4.

Theorem 11: For the axioms introduced in Section IV-A,
the following implications hold.

1) The SSFP (A4) implies the ZPP (A2), unanimity
preservation (A3), the WSFP (A5), the likelihood
principle (A6), and the weak likelihood principle
(A7), i.e., F4 ⊆ F2 ∩F3 ∩F5 ∩F6 ∩F7. Furthermore,
F4 = F2 ∩ F5 = F3 ∩ F5.

2) The WSFP (A5) implies the weak likelihood principle
(A7), i.e., F5 ⊆ F7.

3) The likelihood principle (A6) implies the weak likeli-
hood principle (A7), i.e., F6 ⊆ F7.

4) Independence preservation (A8) implies the ZPP
(A2), i.e., F8 ⊆ F2.

5) Individualized Bayesianity (A11) implies generalized
Bayesianity (A12), i.e., F11 ⊆ F12.

Most of these implications follow from our earlier the-
orems. For completeness, we provide a proof of, or refer-
ences for, all implications in Appendix F.

V. O P T I M I Z AT I O N A P P R O A C H
In Section IV-B, we identified pooling functions that sat-
isfy certain axioms. An alternative approach to establish-
ing pooling functions for probabilistic opinion pooling is
the optimization approach. Here, a pooling function is
obtained by minimizing the weighted average of some
discrepancy measure between the pdfs of the K agents,
q1(θ), . . . , qK(θ), and the aggregate pdf q(θ). The underly-
ing idea is to make the aggregate pdf as similar as possible
to all the agent pdfs simultaneously. As we will see, the
obtained q(θ) turns out to be some sort of average of the
agent pdfs q1(θ), . . . , qK(θ).

One class of discrepancy measures that can be consid-
ered is f -divergences. For a convex function f : R+ →
R with f(1) = 0, the f -divergence between two pdfs
qk(θ) and ϕ(θ) with common domain Θ is defined as
[161]–[164]

Df (qk‖ϕ) =

�
Θ

ϕ(θ)f



qk(θ)

ϕ(θ)

�
dθ. (21)

The fusion of the agent pdfs q1(θ), . . . , qK(θ) can then be
based on defining the aggregate pdf q(θ) as the pdf that
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Table 2 Optimization-Based Definition of Pooling Functions: Some Pooling Functions Along With the Underlying f -Divergence Df (qk ‖ϕ) and Squared

Distance Function d2(qk, ϕ) � ‖χ(qk)− χ�ϕ�‖2
2 Used in the Optimization Problems in (22) and (32), Respectively

minimizes a weighted average of f -divergences6:

q = arg min
ϕ∈P

K�
k=1

wkDf (qk‖ϕ) (22)

where the weights satisfy (w1, . . . , wK) ∈ SK . In what fol-
lows, we consider some specific f -divergences and derive
the associated pooling functions defined by (22). These
results are summarized in Table 2.

A. Kullback–Leibler Divergence

For f(x) = x log x, the f -divergence is the Kullback–
Leibler divergence (KLD) [167]

DKL(qk‖ϕ) =

�
Θ

qk(θ) log



qk(θ)

ϕ(θ)

�
dθ. (23)

Under this choice of divergence, the pooling function that
solves the optimization problem in (22) is the linear pool-
ing function in (1):

Theorem 12: Let f(x) = x log x (i.e., Df (qk‖ϕ) =

DKL(qk‖ϕ)) and (w1, . . . , wK) ∈ SK . Then, the solution to
the optimization problem in (22) is

q(θ) =
K�

k=1

wkqk(θ).

A proof of this theorem can be found in [83]. The
proof is based on the fact that minimizing the weighted
average of KLDs is equivalent to minimizing the cross-
entropy

H(qmix, ϕ) = −
�

Θ

qmix(θ) log (ϕ(θ)) dθ

6This minimization establishes a conceptual link to a central problem
in the field of robust hypothesis testing, namely, the identification of
a vector of “least favorable” pdfs within a given set of hypothesized
pdfs. For two pdfs, this problem can be shown to be equivalent to the
joint minimization of all f -divergences (21) for all twice differentiable
convex functions f [165], [166]. The solution to this minimization
can be interpreted as the pdfs that are maximally similar within the
set of hypothesized pdfs, which means that a statistical test between
the respective pdfs is “as hard as possible.” It is interesting that an
interpretation as a maximally similar pdf holds for both the optimization
approach to pdf fusion and robust hypothesis testing.

between the mixture pdf qmix(θ) =
�K

k=1 wkqk(θ) and the
pdf ϕ ∈ P . That is,

arg min
ϕ∈P

K�
k=1

wkDKL(qk‖ϕ) = arg min
ϕ∈P

H(qmix, ϕ).

The cross-entropy H(qmix, ϕ) is minimized if and only if
qmix(θ) and ϕ(θ) are equal. This follows from the fact
that H(qmix, ϕ) is equal to the sum of the KLD between
qmix(θ) and ϕ(θ) and the differential entropy of qmix(θ)

[129, Ch. 2], i.e.,

H(qmix, ϕ) = DKL(qmix‖ϕ) −
�

Θ

qmix(θ) log(qmix(θ))dθ.

Hence, H(qmix, ϕ) is minimized if and only if DKL(qmix‖ϕ)

is minimized, which implies that ϕ(θ) = qmix(θ).

B. Reverse Kullback–Leibler Divergence

Next, consider f(x) = − log x. In this case, the
f -divergence equals the KLD whose arguments are
reversed with respect to (23) [168], i.e.,

DKL(ϕ‖qk) =

�
Θ

ϕ(θ) log



ϕ(θ)

qk(θ)

�
dθ.

We refer to DKL(ϕ‖qk) as the reverse KLD. For the reverse
KLD, the solution to the optimization problem in (22) is
the log-linear pooling function in (4):

Theorem 13: Let f(x) = − log x (i.e., Df (qk‖ϕ) =

DKL(ϕ‖qk)) and (w1, . . . , wK) ∈ SK . Then, the solution to
the optimization problem in (22) is

q(θ) = c
K�

k=1

(qk(θ))wk

where c = 1
Æ�

Θ

�K
k=1 (qk(θ))wk dθ.

A proof of this theorem can be found in [83] and [169].
The idea behind the proof is to derive a lower bound on the
weighted average of reverse KLDs using Jensen’s inequality
and then to show that the lower bound is achieved if and
only if (4) is satisfied.
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C. α-Divergences

We have shown that both the linear and log-linear
pooling functions can be derived using the optimization
approach involving the KLD or reverse KLD, respectively.
These two results can be extended to an entire family
of divergences and a corresponding family of pooling
functions that are both parameterized by a real parame-
ter α. Indeed, let us consider the f -divergence Df (qk‖ϕ)

induced by

f(x) = fα(x) � xα − 1

α(α − 1)

where x > 0 and α ∈ R \ {0, 1}. This yields the family of
α-divergences defined as [170]–[172]

Dα(qk‖ϕ) � Dfα (qk‖ϕ) (24)

=
1

α(α − 1)

�
Θ

ϕ(θ)
(qk(θ))α − (ϕ(θ))α

(ϕ(θ))α
dθ.

(25)

We remark that the α-divergence equals the so-called
Hellinger divergence up to a scaling factor and is also a
one-to-one transformation of the Rényi divergence [164].
Using the optimization approach for the α-divergences,
we obtain the α-parameterized family of Hölder pooling
functions in (8). As noted earlier, this family comprises the
linear, log-linear, and inverse-linear pooling functions as
special cases.

Theorem 14: Let f(x) = fα(x) = (xα − 1)/(α(α − 1))

[i.e., Df (qk‖ϕ) = Dα(qk‖ϕ)] with α ∈ R \ {0, 1} and
(w1, . . . , wK) ∈ SK . Then, the solution to the optimization
problem in (22) is

q(θ) = c

�
K�

k=1

wk(qk(θ))α

�1/α

(26)

where c = 1
Æ�

Θ

	�K
k=1 wk(qk(θ))α


1/α
dθ.

Although this result was mentioned in [84, Fig. 1], to
the best of our knowledge, a proof does not exist in the
literature. We provide a proof in Appendix G.

In the limiting case α → 0, the Hölder pooling function
(26) becomes the log-linear pooling function (weighted
geometric average) in (4), while for α = 1, it equals
the linear pooling function (weighted arithmetic average)
in (1). These results are consistent with the fact that
limα→0 Dα(qk‖ϕ) = DKL(ϕ‖qk) and limα→1 Dα(qk‖ϕ) =

DKL(qk‖ϕ) [171]. For α = −1, the Hölder pooling func-
tion (26) becomes the inverse-linear pooling function (9).
Furthermore, the α-divergence in the case α = 2 is
(up to a scaling factor 2) equal to the Pearson
χ2-divergence [164], [173]

χ2(qk, ϕ) �
�

Θ

(qk(θ) − ϕ(θ))2

ϕ(θ)
dθ

=

�
Θ

ϕ(θ)
(qk(θ))2 − (ϕ(θ))2

(ϕ(θ))2
dθ.

The corresponding Hölder pooling function (26) is

q(θ) = c

�
K�

k=1

wk(qk(θ))2
�1/2

where c = 1
Æ�

Θ

	�K
k=1 wk(qk(θ))2


1/2
dθ.

D. Reverse α-Divergences

As for the KLD, one can exchange the order of qk and
ϕ in the α-divergence in (25). Again, this is equivalent to
changing to a different f -divergence. More precisely, it is
stated in [162, eq. (1.13)] (see also [164, Proposition 2])
that

Df (ϕ‖qk) = Df∗(qk‖ϕ) (27)

where f∗(x) = xf(1/x). Based on this result, we show in
Appendix H that

Dα(ϕ‖qk) = Dα∗(qk‖ϕ)

where α∗ = 1−α. Thus, Theorem 14 implies the following
result.

Corollary 15: The solution to the optimization problem

q = arg min
ϕ∈P

K�
k=1

wkDα(ϕ‖qk) (28)

is

q(θ) = c

�
K�

k=1

wk(qk(θ))α∗
�1/α∗

(29)

where c = 1
Æ�

Θ

	�K
k=1 wk(qk(θ))α∗
1/α∗

dθ and α∗ =

1 − α.
In particular, the reverse α-divergence for α = 2

corresponds to the Pearson χ2-divergence in the reverse
direction, i.e., χ2(ϕ, qk) =

�
Θ

(qk(θ) − ϕ(θ))2/qk(θ)dθ. In
this case, α∗ = 1 − 2 = −1, and the corresponding
Hölder pooling function (29) is the inverse-linear pooling
function (9).

E. Symmetric Discrepancy Measures

As mentioned at the beginning of this section, the opti-
mization approach defines pooling functions by minimiz-
ing a weighted average of discrepancy measures between
the agent pdfs and the aggregate pdf. So far, our focus has
been on minimizing a weighted average of f -divergences,
where our choices of f yielded asymmetric discrepancy
measures. Through this approach, we derived pooling
functions that are the weighted arithmetic, geometric,
harmonic, and Hölder averages of the agent pdfs. Inter-
estingly, these fusion rules can also be derived using an
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alternative formulation, where the goal is to minimize
a weighted average of symmetric discrepancy measures
(distance functions). Let d(qk, ϕ) be a symmetric function
expressing a distance between the kth agent pdf qk(θ)

and the pdf ϕ(θ), where symmetric means that d(qk, ϕ) =

d(ϕ, qk). Then, we can define the aggregate pdf to be the
solution to the following optimization problem:

q(θ) = arg min
ϕ∈P

K�
k=1

wkd2(qk, ϕ) (30)

where (w1, . . . , wK) ∈ SK . The resulting q(θ) has been
referred to as Fréchet mean [44].

An important distance function is the L2 distance func-
tion defined as

‖qk − ϕ‖2 =

��
Θ

(qk(θ) − ϕ(θ))2 dθ. (31)

The linear pooling function can be obtained alternatively
by minimizing a weighted average of squaredL2 distances.

Theorem 16: Let d(qk, ϕ) = ‖qk − ϕ‖2 and
(w1, . . . , wK) ∈ SK . Then, the solution to the optimization
problem in (30) is

q(θ) =
K�

k=1

wkqk(θ).

This result was mentioned without proof in [84, Fig. 1].
We provide a proof in Appendix I.

Unfortunately, for arbitrary distance functions d(qk, ϕ),
an analytical solution to the optimization problem in (30)
does not exist. This is due to the difficulty in satisfying the
constraint ϕ ∈ P , which ensures that the obtained aggre-
gate pdf q(θ) is a valid pdf. To overcome this difficulty,
following [44], we can instead solve the unconstrained
version of the optimization problem in (30), i.e.,

q̃(θ) = arg min
ϕ

K�
k=1

wkd2(qk, ϕ) (32)

and then normalize the result, i.e.,

q(θ) =
q̃(θ)�

Θ
q̃(θ′)dθ′ .

However, we emphasize that the obtained q(θ) is generally
different from the solution of the constrained optimization
problem in (30), and it is not guaranteed to be nonnega-
tive.

Using this unconstrained approach, the minimization for
the L2 distance function (31) results again in the linear
pooling function [44]. Here, the solution satisfies the con-
straint q ∈ P without explicitly enforcing it. Furthermore,

the log-linear [44], inverse-linear, and Hölder pooling
functions can be derived in an analogous manner using
suitable distance functions. We can arrive at all of these
results and many more in a unified manner by considering
the general class of distance functions d(qk, ϕ) defined as

‖χ(qk) − χ(ϕ)‖2 =

��
Θ

(χ(qk(θ)) − χ(ϕ(θ)))2 dθ (33)

where χ : (0,∞) → (a, b) with a ∈ R ∪ {−∞} and b ∈
R∪{∞} is an invertible function. Solving the optimization
problem (32) for the distance functions (33) leads to the
rich class of pooling functions stated by the following
result.

Theorem 17: Let d(qk, ϕ) = ‖χ(qk) − χ(ϕ)‖2 and
(w1, . . . , wK) ∈ SK . Then, the solution to the optimization
problem in (32) is

q̃(θ) = χ−1

�
K�

k=1

wkχ(qk(θ))

�
. (34)

A proof is provided in Appendix J, and the functions χ

leading to the linear, log-linear, inverse-linear, and Hölder
pooling functions are listed in Table 2. Note that the
solution q̃(θ) in (34) is always nonnegative because the
domain of χ is (0,∞).

VI. G A U S S I A N D E N S I T I E S
In Sections III–V, we discussed a variety of pooling func-
tions that can be used to fuse the pdfs of several agents
into a single aggregate pdf. We now consider the practically
important special case where the opinions of the agents are
represented by Gaussian pdfs. That is, we assume that

qk(θ) = N (θ; µqk
,Σqk), k = 1, . . . , K (35)

where N (θ; µqk
, Σqk ) denotes a multivariate Gaussian

pdf with mean µqk
= Eqk [θ] and covariance matrix

Σqk = Eqk [(θ − µqk
)(θ − µqk

)ᵀ ]. An important aspect of
the Gaussian case is the fact that each agent pdf qk(θ)

is completely characterized by its first- and second-order
moments µqk

and Σqk .

A. Linear Pooling

The fusion of Gaussian pdfs using the linear pooling
function in (1) results in an aggregate pdf that is a mixture
of Gaussians, i.e.,

q(θ) =

K�
k=1

wkN (θ; µqk
,Σqk ). (36)

A convenient property in this context is that the expected
value of a function h(θ) with respect to the pdf q(θ) in
(1) is the weighted average of the expected values of
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h(θ) with respect to the agent pdfs q1(θ), . . . , qK(θ), i.e.,
Eq[h(θ)] =

�K
k=1 wkEqk [h(θ)]. This implies that the mean

of the aggregate pdf in (36), µq = Eq[θ], is simply the
weighted average of the agent means, i.e.,

µq =

K�
k=1

wkµqk
. (37)

Similarly, the covariance matrix of the aggregate pdf in
(36), Σq = Eq[(θ − µq)(θ − µq)

ᵀ ], is obtained as [174]

Σq =
K�

k=1

wk

	
Σqk + (µqk

− µq)(µqk
− µq)

ᵀ
 . (38)

Thus, the mean and covariance matrix of the aggregate
pdf q(θ) can be calculated easily from the agent means
and covariance matrices. This is useful from a practical
perspective because it provides a way for obtaining an
estimate of the parameters (e.g., mean) and a measure of
uncertainty for that estimate (e.g., covariance matrix). It
is important to note, however, that, since q(θ) is a mixture
of Gaussians and, therefore, is non-Gaussian, it is not fully
characterized by its mean and covariance matrix. Indeed, a
mixture of Gaussians can have properties that a Gaussian
cannot have, including heavy tails, multiple modes, and
nonzero skewness [175].

In the case that the agent pdfs are Gaussian, the connec-
tion of linear opinion pooling to model averaging estab-
lished in Section III-B1 extends to an estimation technique
in the Kalman filtering literature called multiple model
adaptive estimation (MMAE) [176]. MMAE uses a bank
of Kalman filters to estimate an unknown state (time-
varying parameter), where each Kalman filter assumes a
distinct model describing the state’s time evolution and its
relation to the observed data. In this context, µqk

is the
local state estimate provided by the kth Kalman filter at a
given time, while Σqk is the covariance of that estimate.
The local state estimates are then combined according to
(37) to obtain a final state estimate µq , whose covariance
Σq is determined by (38). Here, the weight wk equals
the posterior probability of the model assumed by the kth
Kalman filter.

B. Log-Linear Pooling

The fusion of the Gaussian pdfs qk(θ) in (35) by the log-
linear pooling function in (4) results in an aggregate pdf
that is also Gaussian, i.e.,

q(θ) = N (θ; µq ,Σq)

with the mean vector

µq =

�
K�

k=1

wkΣ
−1
qk

�−1 K�
j=1

wjΣ
−1
qj

µqj
(39)

and the covariance matrix

Σq =

�
K�

k=1

wkΣ
−1
qk

�−1

. (40)

Unlike the case of linear pooling, since the aggregate pdf
q(θ) is Gaussian, it is unimodal and symmetric about the
mean µq, and it is, moreover, fully characterized by the
mean µq and covariance Σq.

There is a strong link between log-linear pooling of
Gaussian pdfs and a second-order fusion method called
covariance intersection [29], [32], which is often employed
in distributed (decentralized) Kalman filter implementa-
tions [3], [41], [94]. In the covariance intersection con-
text, there are K agents, each of which uses its own
local observations to form a local estimate of an unknown
quantity θ. The goal of covariance intersection is to fuse
the local estimates in a way that does not underesti-
mate the overall covariance of the fused estimate. Let µqk

be the local estimate of the kth agent, whose covariance is
denoted by Σqk . The fused state estimate µq is determined
according to (39), while the corresponding covariance
matrix Σq is given by (40). The weights w1, . . . , wK used
in (39) and (40) are typically chosen to minimize the
determinant or the trace of Σq [29].

C. Hölder Pooling

Finally, we consider the Hölder pooling functions. The
normalization factor c in the Hölder pooling function
in (8) for general α ∈ R \ {0, 1} involves an intractable
integral and cannot be evaluated, even if the agent pdfs
are Gaussian. Therefore, typically, the aggregate pdf q(θ)

resulting from the Hölder pooling function is only known
up to a normalization factor. Computing expected values
with respect to q(θ) would require the use of numerical
integration techniques, such as the trapezoidal quadrature
rule or Monte Carlo methods [177]. Because numerical
integration techniques are plagued by the curse of dimen-
sionality [178], computing expectations with respect to
q(θ) under the Hölder pooling function becomes challeng-
ing when the dimension of θ is large.

To illustrate the behavior of the linear and log-linear
pooling functions, and to demonstrate the effect of dif-
ferent choices of α on the Hölder pooling function, we
present in Fig. 5 simulation results for two different sets of
K = 2 Gaussian agent pdfs qk(θ) with θ ∈ R. We used the
trapezoidal quadrature rule to compute the normalization
factor of the aggregate pdf. Fig. 5(a) shows the fusion
of two Gaussian pdfs with different means but the same
variance. In this case, the value of α in the Hölder pooling
function controls the multimodality of the aggregate pdf,
in the sense that smaller (larger) values of α attenuate
(enhance) the modes of the agent pdfs in the aggregate
pdf. Fig. 5(b) shows the fusion of two Gaussian pdfs with
the same mean but different variances. In this case, the
value of α controls the shape of the tails of the aggregate
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Fig. 5. Results of Hölder pooling of two pdfs q��θ� and q��θ� using weights w� � w� � �.� and different values of α. The pdfs are defined as

follows. (a) q��θ� � N�θ�−�.�,�� and q��θ� � N�θ� �.�,�� (different means, same variance). (b) q��θ� � N�θ� �, �� and q�(θ� � N�θ� �, �.�� (same

mean, different variances). Note that α� −�, α→ �, and α � � correspond to the inverse-linear, log-linear, and linear pooling functions,

respectively.

pdf, in the sense that smaller (larger) values of α lead to
less heavy (heavier) tails.

VII. C H O O S I N G T H E P O O L I N G
PA R A M E T E R S
An important consideration in opinion pooling is the
choice of the parameters involved in the various pooling
functions. While most of our discussion will concern the
weights w1, . . . , wK , we also provide some insight on the
choice of the parameter α in the Hölder pooling function.

The problem of choosing the weights in probabilistic
opinion pooling is well researched. The simplest approach

is to assign equal weights to all agents, i.e., wk =

1/K for all k [55]. However, alternative strategies for
assigning weights have been proposed for linear pooling
[179]–[181] and log-linear pooling [159], [182], [183].
These strategies are usually based on solving some opti-
mization problem, where the definition of the objective
function depends on how the weights are interpreted by
the fusion center. In some instances, the optimization of
the weights solely depends on the agent pdfs. In other
scenarios, weight assignment takes into consideration data
that are observed at the fusion center and is based on
a Bayesian interpretation involving likelihood functions
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or posterior distributions. These data-dependent methods
have also been extended to the sequential case, where
observed data are streamed and the weights are updated
when new data become available [179].

In the following, we describe several options for choos-
ing the weights in linear pooling and log-linear pooling.
We focus on methods that do not assume that the fusion
center has observed any data. At this point, it is important
to emphasize that, in both the axiomatic and optimization
approaches to probabilistic opinion pooling, the weights
wk were assumed fixed, i.e., not dependent on the agent
pdfs qk(θ). If, on the other hand, the weights are chosen
adaptively according to an additional optimization proce-
dure that involves the agent pdfs qk(θ), then this implies
a deviation from the strict mathematical framework estab-
lished by both the axiomatic and optimization approaches.
For example, the linear pooling function with adaptively
chosen weights is no longer linear in the agent pdfs qk(θ).

A. Linear Pooling

The problem of assigning the weights in the linear pool-
ing function has been considered in many works (see [179]
for a review). One approach is based on interpreting the
weight wk as a veridical probability, i.e, as the probability
that the true pdf of θ is qk(θ) [184]. Accordingly, wk is
chosen to equal a prior or posterior estimate of that prob-
ability. This approach is connected to the model-averaging
view of linear opinion pooling mentioned in Section III-B1
since, in (2), P (Mk) equals the probability that the model
of the kth agent, Mk, is the correct one. When data are con-
sidered, the weights wk equal the posterior probabilities of
the models Mk, and this is exactly how they are assigned
in the MMAE algorithm mentioned in Section VI-A
[174], [176].

Alternatively, the weights can be assigned according to
the predictive performance of each agent by viewing the
weights as outranking probabilities [185]. In this view, wk

is the probability that predictions made based on qk(θ) will
outperform the predictions based on the pdfs of the other
agents. This rationale for choosing the weights requires
consideration of data and a mechanism for assessing the
predictive performance of the agents.

Another idea is to interpret the weights as a measure of
distance [186]. Based on this interpretation, agents that
have “middle of the road” opinions are assigned higher
weights, while those that have more extreme (controver-
sial) opinions are assigned lower weights. The opposite
strategy would in principle also be possible, namely, giving
more weight to controversial opinions. Such weight assign-
ments can be achieved by assigning a nonnegative score γk

to each agent pdf qk(θ). For example, one can choose the
score γk to be inversely related to themaximum discrepancy
between agent k and the other agents, i.e.,

γk =
1

max
j∈{1,...,K}

DKL(qk‖qj)
≥ 0, k = 1, . . . , K. (41)

Here, the KLD is used to measure the discrepancy between
agents although other divergences can be used instead.
The weight of each agent is then obtained as a normalized
version of γk, i.e.,

wk =
γk�K

j=1 γj

, k = 1, . . . , K.

Finally, there are also iterative schemes for weight
assignment, where each agent considers itself to be a
fusion center and assigns weights to all the other agents.
The weights are iteratively updated until a consensus is
reached. In [187], the weight vector of each agent is
updated by multiplying it by a transition matrix, and under
some conditions, a consensus is reached asymptotically.
The work [188] builds on this idea but updates the weights
according to how closely the agent pdfs agree using a
scoring function similar to (41).

B. Log-Linear Pooling

The choice of the weights in the log-linear pooling
function has been considered less intensely in the liter-
ature. Some of the aforementioned methods for linear
opinion pooling can also be applied to log-linear opinion
pooling; for example, the scoring rule in (41) is still
reasonable. Moreover, as mentioned in Section VI-B, for
Gaussian agent pdfs, log-linear pooling corresponds to the
covariance intersection fusion method. Here, the weights
can be chosen using schemes proposed in the covariance
intersection literature, such as minimizing the trace or
determinant of the covariance matrix in (40) [29].

One criterion proposed in the literature that does not
require the consideration of data is the minimum KLD
criterion [183]. If there is no basis for determining the
reliability of each agent, one can choose the weights such
that the aggregate pdf is maximally close to all the agent
pdfs simultaneously. This is the criterion that was used in
Section V to find an optimal pooling function for given
weights wk. Similar to Section V-A, the criterion can be
formulated as a minimization of the average of the KLDs
between the agent pdfs qk(θ) and the aggregate pdf q(θ).
Introducing the weight vector w � (w1, . . . , wK), the
optimal weights are defined as

w� = arg min
w∈SK

L(w)

with

L(w) � 1

K

K�
k=1

DKL(qk‖q)

=
1

K

K�
k=1

DKL



qk

���� c

K�
�=1

(q�(θ))w�

�
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where expression (4) was inserted for q(θ). Using the KLD
definition (23), one can obtain [183]

L(w) = − log c(w) +
1

K

K�
k=1

�
j �=k

wjDKL(qk‖qj) (42)

where c(w) is the normalization factor in (5), which
depends on w. The objective function L(w) is convex,
since the first term − log c(w) is convex [159] and the
second term is a linear function of w. Therefore, tools from
convex optimization can be used to compute the optimal
weight vector w�. We note that the minimum KLD criterion
would also be a reasonable criterion for use with other
pooling functions; however, the expression for L(w) in
(42) applies specifically to the log-linear pooling function.

Furthermore, we remark that, if the average of the
reverse KLDs, i.e.,

L̃(w) � 1

K

K�
k=1

DKL(q‖qk)

=
1

K

K�
k=1

DKL



c

K�
�=1

(q�(θ))w�

���� qk

�
(43)

was chosen as the objective function to be minimized, the
optimal weights would be given by

arg min
w∈SK

L̃(w) =



1

K
, . . . ,

1

K

�
. (44)

Indeed, let q�(θ) be defined by (4) with weights w =

(1/K, . . . , 1/K), i.e.,

q�(θ) � c

K�
k=1

(qk(θ))1/K . (45)

By Theorem 13, q�(θ) minimizes the objective function in
(43) over all pdfs ϕ, i.e.,

q� = arg min
ϕ∈P

1

K

K�
k=1

DKL(ϕ‖qk). (46)

Thus, we have

L̃(w)
(43)
=

1

K

K�
k=1

DKL



c

K�
�=1

(q�(θ))w�

���� qk

�
(46)

≥ 1

K

K�
k=1

DKL(q�‖qk)

(45)
=

1

K

K�
k=1

DKL



c

K�
�=1

(q�(θ))1/K

���� qk

�
(43)
= L̃

		
1
K

, . . . , 1
K




.

Thus, for any w, L̃(w) is lower bounded by
L̃
		

1/K, . . . , 1/K



. This proves (44).

Other approaches minimize an alternative KLD crite-
rion [182], [189] or take a Bayesian approach by speci-
fying a prior distribution over the weights [183]. However,
these approaches require data to be available and usually
lead to closed-form solutions only if the prior pdfs take
the form of conjugate priors for the considered likelihood
functions.

C. Hölder Pooling

In addition to the weights, the parameter α involved in
the Hölder pooling function in (8) strongly impacts the
resulting aggregate pdf, as was demonstrated in Fig. 5.
An appropriate choice of α depends on the application at
hand. For example, in risk assessment, the choice of α is
relevant to quantification of uncertainty. In a risk-averse
scenario, one may opt to choose a larger value of α or
at least a positive α. Indeed, for any α > 0, the supports
of the agent pdfs are preserved by the fusion in the sense
that the support of the aggregate pdf equals the union of
the supports of all the agent pdfs. Furthermore, a larger
α tends to yield a larger uncertainty in the aggregate pdf.
This latter characteristic is related to the fact, shown in
Fig. 5, that a larger α tends to promote multimodality
and/or heavy-tailed properties in the aggregate pdf.

If one instead chooses a small positive value of α, then
components of different agent pdfs that occur at different
θ locations will have substantially less influence on the
aggregate pdf. This means, in particular, that an “outlier
behavior” of one agent will tend to be attenuated in
the fusion process. Furthermore, for α = 0 (log-linear
pooling), if the pdf of any agent k is zero for some θ0,
i.e., qk(θ0) = 0, this implies that the aggregate pdf is also
zero at θ0 irrespectively of the values of the other agent
pdfs. This “veto property” can be problematic in certain
situations. Finally, for α < 0, Hölder pooling is restricted
to positive opinion profiles, which implies that all agents
have to agree on the support Θ of θ.

Hölder pooling appears to be practically relevant mostly
for values of α in [0, 1]. Here, we recall that α = 0 and
α = 1 correspond to the log-linear pooling function and the
linear pooling function, respectively; furthermore, values
of α between 0 and 1 correspond to pooling functions
whose characteristics—e.g., with regard to multimodality
and tail decay—are intermediate between those of the
linear and log-linear pooling functions, as demonstrated in
Fig. 5. An application where this observation is potentially
relevant was considered in Section II-A.

VIII. S U P R A-B A Y E S I A N F R A M E W O R K
The supra-Bayesian framework is fundamentally different
from the approaches discussed so far. In this section, we
consider θ to be a random variable with prior pdf p(θ)

and assume that the fusion center follows a Bayesian
update rule to derive a posterior pdf. Our focus will be
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on scenarios where observations (data) that depend on θ

are obtained by the agents but are not known to the fusion
center. We will start this section with a formulation using
conditionally independent observations and extend from
there to the general supra-Bayesian framework.

A. Agents Collecting Conditionally
Independent Observations

Let us consider a scenario with K agents where each
agent k ∈ {1, . . . , K} obtains observations yk ∈ R

dyk .
These observations are statistically related to the random
vector θ ∈ R

dθ according to the “local” likelihood functions
p(yk | θ). We consider the observations fixed (i.e., already
observed) and emphasize the dependence of p(yk | θ) on
θ by writing the local likelihood functions as �k(θ) �
p(yk | θ). Furthermore, each agent has access to the prior
pdf p(θ) and is, thus, able to calculate its local posterior
πk(θ) � p(θ | yk) according to Bayes’ rule, i.e.,

πk(θ) = p(θ | yk) =
�k(θ)p(θ)�

Θ
�k(θ′)p(θ′) dθ′ . (47)

We further assume that the local observations yk are con-
ditionally independent given θ for all k ∈ {1, . . . , K}. This
implies that the “global” likelihood function �(θ) � p(y | θ)

for y � [yᵀ
1 , . . . , yᵀ

K ]ᵀ factors into the local likelihood
functions �k(θ) = p(yk | θ), i.e.,

�(θ) =
K�

k=1

�k(θ). (48)

The task of the fusion center is to fuse the local posteri-
ors πk(θ) provided by the agents into an aggregate (fused)
pdf g[π1, . . . , πK ](θ). We assume that the fusion center is
aware of the statistical properties of all the observations
(i.e., the conditional pdfs p(yk | θ)) and the prior p(θ)

but does not have access to the observations yk directly.
From a Bayesian viewpoint, the best possible fusion result
is the posterior pdf of θ using the observations from all
the agents as represented by the total observation vector
y, i.e., p(θ | y). We will refer to p(θ | y) as oracle posterior
because the fusion center does not know the observations y
explicitly. Nevertheless, the following result shows that the
fusion center is still able to fuse the πk(θ) into the oracle
posterior p(θ | y).

Theorem 18: Let θ be a random vector with prior p(θ).
Furthermore, let the local observations y1, . . . , yK given θ

be mutually independent and distributed according to
p(yk | θ). Then, the global posterior p(θ | y) with y =

[yᵀ
1 , . . . , yᵀ

K ]ᵀ is given by

p(θ | y) = g[π1, . . . , πK ](θ) = c (p(θ))1−K
K�

k=1

πk(θ) (49)

where c = 1/
�
Θ
(p(θ))1−K

	�K
k=1 πk(θ)



dθ is a normal-

ization factor and the local posteriors πk(θ) are given
by (47).

Proof: We recall that �(θ) = p(y | θ), �k(θ) = p(yk | θ),
and πk(θ) = p(θ | yk). We have by Bayes’ rule that

p(θ | y) ∝ p(θ)�(θ)

(48)
= p(θ)

K�
k=1

�k(θ)

∝ p(θ)

K�
k=1

p(θ | yk)

p(θ)

= (p(θ))1−K
K�

k=1

πk(θ). (50)

Since p(θ | y) is a conditional pdf, normalizing the function
in (50) gives (49). �

The fusion rule in (49) is recognized to be an instance
of the multiplicative pooling function in (10), where the
calibrating pdf q0(θ) is given by the prior p(θ). Thus,
Theorem 18 states that the multiplicative pooling function
applied to the local posteriors πk(θ) provides the oracle
posterior p(θ | y) in the case of conditionally independent
local observations yk.

We note that the fusion center could calculate p(θ | y)
equally well from the local likelihood functions �k(θ) =

p(yk | θ), rather than from the local posteriors πk(θ).
Indeed, the fusion rule (49) can be interpreted as first
dividing each local posterior πk(θ) by the prior p(θ) to
obtain the local likelihood function p(yk | θ), then fusing
(multiplying) the local likelihood functions into the global
likelihood function p(y | θ), and, finally, multiplying by the
prior to obtain the oracle posterior p(θ | y). (This corre-
sponds to reading the proof of Theorem 18 bottom up.)
Thus, in the present scenario of conditionally independent
observations yk, the agents may also communicate their
local likelihood functions �k(θ) to the fusion center, rather
than their posteriors πk(θ).

B. Supra-Bayesian Framework and Local Statistics

To generalize the scenario considered in Section VIII-A,
we take the perspective of the fusion center. In our
Bayesian setting, the fusion center aims to calculate the
posterior distribution of θ, given all the information it
has access to. However, in more general settings than the
case of conditionally independent observations discussed
in Section VIII-A, we cannot expect that the fusion center
is able to calculate the oracle posterior p(θ | y). This is
because the fusion center does not have direct access to the
observations yk; rather, it observes the effect of the yk only
indirectly through the local posteriors πk(θ) = p(θ | yk).
In addition to knowing the local posteriors πk(θ), the
fusion center is aware of the prior p(θ) and the conditional
distribution p(y | θ) (as a function of y and θ, not for the
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fixed, observed y). Finally, the fusion center knows how the
agents derive their local posteriors πk(θ) = p(θ | yk) given
their local observations yk, i.e., it is aware that each πk

depends on θ in a well-defined probabilistic way, namely,
by the two-step process of first generating a random yk

given θ according to the conditional pdf p(yk | θ) and then
deriving πk from yk using (47).

This setup can be formulated generically via an abstract
“observation model” p(π1, . . . , πK | θ) in which the local
posteriors πK are considered as “observations.” This
approach is known in the literature as the supra-Bayesian
model [87], [88]. In this abstract setting, we no longer
have to consider the intermediate step of generating the
observations yk given θ, and we no longer have to assume
that the local pdfs πk are generated as posteriors. Instead,
we directly define an observation model by specifying a
probability distribution over the local pdfs πk given θ.
Thus, at the fusion center, the local pdfs of all agents are
considered as observations, i.e., as random objects whose
statistical relation to θ is described by the “likelihood
function” p(π1, . . . , πK | θ). As always in Bayesian settings,
we need in addition some prior p(θ). By Bayes’ theorem,
we can then express the posterior distribution of θ given
the local pdfs πk as

p(θ |π1, . . . , πK) =
p(π1, . . . , πK | θ)p(θ)�

Θ
p(π1, . . . , πK | θ′)p(θ′) dθ′ (51)

which is considered to be the supra-Bayesian fusion
result, also to be referred to as “supra-Bayesian
posterior.”

For any given θ, p(π1, . . . , πK | θ) is a probability
distribution over the infinite-dimensional space of
functions that is given by the K-fold Cartesian product
of the space of all pdfs P . It is both mathematically and
practically convenient to restrict to a finite-dimensional
subset of this space. Indeed, a finite-dimensional parame-
terization is very often used in practical applications. In
particular, if πk depends deterministically on some finite-
dimensional observation yk, then πk is obviously restricted
to a finite-dimensional subset. Thus, we will hereafter
assume that each πk depends deterministically and in
a one-to-one manner on a finite-dimensional random
vector tk ∈ R

dtk . Then, the probability distribution
p(π1, . . . , πK | θ) simplifies to a conventional conditional
pdf p(t1, . . . , tK | θ). This finite-dimensional setting is
formalized by the following definition.

Definition 1: A finite-dimensional supra-Bayesian model
for a parameter θ ∈ Θ ⊆ R

dθ consists of the following:

1) a prior pdf p(θ);
2) a conditional pdf p(t | θ), where t = [tᵀ1 , . . . , tᵀK ]ᵀ with

tk ∈ R
dtk for k = 1, . . . , K;

3) for each k ∈ {1, . . . , K}, a one-to-one mapping
ψk : Rdtk → P .

The vectors tk are referred to as local statistics and the
functions πk(θ) = ψk[tk](θ) as local pdfs.

In a finite-dimensional supra-Bayesian model, each local
pdf πk is uniquely defined by a corresponding local sta-
tistic tk. As a consequence, the conditional distribution
p(π1, . . . , πK | θ) is implicitly given by the conditional pdf
p(t | θ) with t = [tᵀ1 , . . . , tᵀK ]ᵀ , and we will refer to λ(θ) �
p(t | θ) as global likelihood function. The function ψk

specifies which family of distributions πk belongs to. For
example, if we want to model the fact that πk(θ) belongs
to the family of Gaussian distributions with fixed and
known covariance matrix Σ, then we define ψk[µk](θ) =

N (θ; µk,Σ). In this example, then, tk = µk.
In Definition 1, we further assumed that there is a

one-to-one relation between the local pdf πk and tk, i.e.,
different vectors tk and �tk correspond to different pdfs πk

and �πk. In addition to the fact that the pdf πk is uniquely
specified by the vector tk, this assumption also implies that
we can uniquely determine tk from πk, i.e., tk is a function
of πk, and we can, thus, interpret it as a statistic of πk. This
justifies the designation of the vectors tk as local statistics.
In summary, the local statistic tk represents the information
provided by the pdf πk of agent k in a more accessible,
finite-dimensional way.

The following result is an immediate consequence of our
definition of a finite-dimensional supra-Bayesian model
(see Definition 1) and Bayes’ theorem: the one-to-one
relationship between πk and tk for each k ∈ {1, . . . , K}
implies that p(θ |π1, . . . , πK) = p(θ | t), and Bayes’ theo-
rem implies that p(θ | t) ∝ p(t | θ)p(θ).

Theorem 19: In a finite-dimensional supra-Bayesian
model, the supra-Bayesian fusion result (or supra-Bayesian
posterior) is given by

p(θ |π1, . . . , πK) = p(θ | t) =
λ(θ)p(θ)�

Θ
λ(θ′)p(θ′)dθ′ (52)

where λ(θ) = p(t | θ).
Since the fusion center knows t, p(t | θ), and p(θ), it is

able to calculate (52). However, in general, (52) does not
provide an explicit rule for fusing the pdfs πk(θ) into the
supra-Bayesian posterior p(θ | t), i.e., it does not specify a
pooling function g such that p(θ | t) = g[π1, . . . , πK ](θ).
Nevertheless, we can already deduce an interesting fact
from the structure of (52): The supra-Bayesian posterior
is proportional to the product of the prior p(θ) and the
global likelihood function λ(θ) and, thus, depends on
the pdfs πk(θ) only indirectly via the global likelihood
function λ(θ). Hence, the actual task in supra-Bayesian
fusion is to establish a rule for obtaining the global like-
lihood function λ(θ) = p(t | θ) from the local posteriors
πk(θ) or, equivalently, from the vector of local statistics
t = [tᵀ1 , . . . , tᵀK ]ᵀ . In what follows, we will see that this
approach can result in interesting fusion rules for spe-
cific scenarios. In particular, we will consider condition-
ally independent agents in Section VIII-C and dependent
agents in Section VIII-D. Furthermore, the special case
given by the linear Gaussian model will be studied in
Section IX.
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C. Supra-Bayesian Fusion for Conditionally
Independent Agents

Generalizing the scenario in Section VIII-A, we assume
that, given θ, the information provided by each agent
to the fusion center is conditionally independent of the
information provided by the other agents. In our finite-
dimensional supra-Bayesian model, this means that the
tk are conditionally independent given θ, i.e., the global
likelihood function λ(θ) factors according to

λ(θ) = p(t | θ) =

K�
k=1

p(tk | θ) =

K�
k=1

λk(θ) (53)

where we introduced the local likelihood functions
λk(θ) � p(tk | θ). Because conditional independence of
the tk is equivalent to conditional independence of the
random local pdfs πk, we immediately obtain the following
corollary by inserting (53) into (52).

Corollary 20: In a finite-dimensional supra-Bayesian
model where the local pdfs πk are conditionally indepen-
dent given θ, the supra-Bayesian fusion result (or supra-
Bayesian posterior) is given by

p(θ |π1, . . . , πK) = p(θ | t) =

	�K
k=1 λk(θ)



p(θ)�

Θ

	�K
k=1 λk(θ′)



p(θ′) dθ′

(54)

where λk(θ) = p(tk | θ).
To establish a link to the scenario of Section VIII-A,

let us consider the local statistics tk and the global like-
lihood function λ(θ) = p(t | θ) in that scenario. Recall
that, in Section VIII-A, we assumed that each agent has
observations yk ∈ R

dyk related to θ according to the
local observation likelihood function �k(θ) = p(yk | θ), and
these observations are conditionally independent given
θ. The local pdfs πk(θ)—which, in this scenario, are the
local posteriors p(θ | yk)—are given by (47), and they are,
thus, parametrized by the local observations yk. How-
ever, in common observation models, the observations
yk cannot be uniquely reconstructed from the posterior
pdf πk(θ). Indeed, local statistics tk that parametrize the
local posteriors πk(θ) in a one-to-one manner are usually
obtained as some function Tk(yk) of the observations,
where Tk : Rdyk → R

dtk with dtk ≤ dyk is, in general,
not invertible. The random variable tk = Tk(yk) is then a
sufficient statistic [190, Sec. 6.2] of yk for θ, i.e.,

p(θ | yk) = p(θ | tk). (55)

Thus, our local statistic tk uniquely parametrizing the
local posterior πk(θ) is given by tk = Tk(yk), with a non-
invertible, possibly dimension-reducing function Tk. The
local statistics tk given θ are conditionally independent
for k = 1, . . . , K because they are deterministic functions

of the conditionally independent observations yk. Hence,
the factorization (53) holds, and indeed, we have a finite-
dimensional supra-Bayesian model with a prior p(θ), a
likelihood function p(t | θ), and local pdfs πk that are given
by πk(θ) = p(θ | tk), i.e., ψk[tk](θ) = p(θ | tk). Thus,
the supra-Bayesian fusion result p(θ | t) is given by the
expression in (54). We will now demonstrate that p(θ | t)
coincides with the fusion result given in (49). Recalling
that λk(θ) = p(tk | θ), the supra-Bayesian fusion result
(54) becomes

p(θ | t) ∝

 K�

k=1

p(tk | θ)

�
p(θ)

∝

 K�

k=1

p(θ | tk)

p(θ)

�
p(θ)

= (p(θ))1−K
K�

k=1

p(θ | tk)

where we used Bayes’ theorem. By (55), we further have

p(θ | t) ∝ (p(θ))1−K
K�

k=1

p(θ | yk)

= (p(θ))1−K
K�

k=1

πk(θ) (56)

which, indeed, equals the fusion rule (49). In particular, a
comparison with (49) shows that, for conditionally inde-
pendent yk, the supra-Bayesian posterior p(θ | t) coincides
with the oracle posterior p(θ | y). Thus, in this case, t is a
sufficient statistic of y for θ.

Example 1 (Exponential Families): A convenient and
versatile class of likelihood functions is given by
exponential families [191]. Let us specialize the results
discussed above to these models. A local observation
likelihood function of the exponential family type can be
written as

p(yk | θ) = hk(yk) exp
	
η(θ)ᵀTk(yk) − Ak(θ)



(57)

with some functions hk(yk) ≥ 0, η(θ) ∈ R
dθ , and

Tk(yk) ∈ R
dθ . The function Ak(θ) is determined by the

other functions via the fact that p(yk | θ) is normalized.
We assume that the observations yk are conditionally
independent given θ. Furthermore, the fusion center is
supposed to know the conditional pdfs p(yk | θ) in terms
of the functions η, hk, Tk, and Ak for all k (but, as always,
it does not know the yk) and to be also aware of the
prior p(θ).

For the likelihood function (57), it is known that the
local statistic tk = Tk(yk) is a sufficient statistic of yk for θ

[191, Proposition 1.5]. To verify that there is a one-to-one
relation between the local posterior πk and tk, we have to
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show that tk can be recovered from πk. We have

πk(θ) ∝ p(θ)p(yk | θ) ∝ p(θ) exp(η(θ)ᵀtk − Ak(θ)). (58)

Then,

log



πk(θ)

p(θ)
exp(Ak(θ))

�
= η(θ)ᵀtk + C (59)

where C is a constant that does not depend on θ. To be
able to solve (59) for tk and C, we make the technical
assumption that there exist dθ + 1 different θj such that
the matrix

B �

����
η(θ1)

ᵀ 1
...

...
η(θdθ+1)

ᵀ 1

���� ∈ R
(dθ+1)×(dθ+1) (60)

is nonsingular. Then, evaluating (59) at θ1, . . . , θdθ+1 gives
a system of dθ + 1 equations that can be written as

B

�
tk
C

�
=

�������
log



πk(θ1)
p(θ1)

exp(Ak(θ1))

�
...

log



πk(θdθ+1)

p(θdθ+1)
exp(Ak(θdθ+1))

�
������� .

Because B is nonsingular, this equation can be solved for
tk and C. Thus, we are able to recover tk from πk. We
conclude that our exponential family model is a finite-
dimensional supra-Bayesian model.

Using (58) in (56), the supra-Bayesian fusion result is
obtained as

p(θ | t) ∝ (p(θ))1−K
K�

k=1

p(θ) exp
	
η(θ)ᵀtk − Ak(θ)



= p(θ) exp

	
η(θ)ᵀ t̄− Ā(θ)



(61)

with

t̄ =
K�

k=1

tk, Ā(θ) =
K�

k=1

Ak(θ).

We see that, for conditionally independent observations yk,
p(θ | t) depends on the observations yk only via the local
statistics tk = Tk(yk), and furthermore, supra-Bayesian
fusion essentially amounts to the summation of the local
statistics tk and the normalization functions Ak(θ).

This simple summation rule is augmented when the
prior p(θ) is chosen as

p(θ) ∝ exp(η(θ)ᵀt0 − A0(θ)) (62)

for some vector t0 and function A0(θ). Inserting (62)
into (61), we obtain

p(θ | t) ∝ exp
	
η(θ)ᵀtpost − Apost(θ)



(63)

with

tpost = t̄ + t0 =
K�

k=0

tk (64)

and

Apost(θ) = Ā(θ) + A0(θ) =

K�
k=0

Ak(θ). (65)

In particular, when all Ak(θ) for k = 1, . . . , K are equal
to the same A(θ) and A0(θ) = a0A(θ), then the prior
becomes the conjugate prior [191, Definition 4.18]

p(θ) ∝ exp(η(θ)ᵀt0 − a0A(θ))

with the two hyperparameters t0 and a0 > 0. Here, the
supra-Bayesian fusion result simplifies to

p(θ | t) ∝ exp
	
η(θ)ᵀtpost − (K + a0)A(θ)



.

We see that p(θ | t) has the same form as the prior p(θ),
while the hyperparameters t0 and a0 are replaced by tpost =

t0 + t̄ and a0 + K, respectively.
An important special case of the exponential family

setting is given by linear Gaussian observations. This case
will be considered in Section IX, both for conditionally
dependent and independent observations (see, in partic-
ular, Example 2).

D. Supra-Bayesian Fusion for Agents Collecting
Dependent Observations

Similar to the setting of independent agents studied
in Section VIII-C, we consider K agents that obtain
observations yk ∈ R

dyk distributed according to the
local observation likelihood functions p(yk | θ) with k ∈
{1, . . . , K}. Again, each agent has access also to the prior
pdf p(θ), and the local posterior pdfs πk(θ) are still
given by (47). However, in contrast to Section VIII-C,
we do not assume that the observations are condition-
ally independent. We assume that the fusion center is
aware of the conditional pdf7 p(y | θ) of all observations
y = [yᵀ

1 , . . . , yᵀ
K ]ᵀ given θ, the prior pdf p(θ), and the

local posterior pdfs πk(θ) = p(θ | yk). We emphasize that,
although the fusion center has access to p(y | θ) as a
function of y and θ, it does not know the global observation
y and, thus, cannot use p(y | θ) as a global likelihood
function.

7Note that the conditional pdfs p(yk |θ) are marginals of the
conditional pdf p(y |θ).
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To establish a supra-Bayesian fusion scheme for this
scenario, we again consider a finite-dimensional supra-
Bayesian model, i.e., for each agent k, there exists a
local statistic tk such that πk(θ) = ψk[tk](θ), and there
is a one-to-one relation between tk and the local poste-
rior πk. Because πk(θ) = p(θ | yk), the local pdf πk is
also uniquely determined by yk, and thus, the one-to-
one relation between πk and tk implies that there exists
a function Tk : Rdyk → R

dtk such that tk = Tk(yk). As
before, the function Tk is not one-to-one in general, i.e., it
is not possible to recover yk from tk. However, tk is again
a sufficient statistic of yk for θ, i.e., p(θ | yk) = p(θ | tk).

Because the local observations yk are subvectors of the
global observation y = [yᵀ

1 , . . . , yᵀ
K ]ᵀ ∈ R

dy , we can
introduce T : Rdy → R

�K
k=1 dtk as

T (y) = [T1(y1)
ᵀ , . . . , TK(yK)ᵀ ]

ᵀ

and, thus, we have

t = [tᵀ1 , . . . , tᵀK ]
ᵀ

= T (y).

The random vector t summarizes all the information that
the agents communicate to the fusion center, and it is
thus known to the fusion center (whereas y is not).
Note that, although each tk is a sufficient statistic of yk

for θ, the global statistic t is, in general, not a suffi-
cient statistic of y. This is due to the fact that t gener-
ally does not capture all the dependencies between the
individual yk.

Because t = T (y), we can use the general change-
of-variables formula [192, Sec. 3.4.3] to calculate the
conditional pdf p(t | θ) from the conditional pdf p(y | θ),
provided that the function T is differentiable. Since t
summarizes the information communicated by the agents
to the fusion center, λ(θ) = p(t | θ) is the global likelihood
function that the fusion center has to use in the calcu-
lation of the supra-Bayesian posterior p(θ | t) according
to (52). Therefore, to obtain the supra-Bayesian fusion
rule g[π1, . . . , πK ], based on (52), we have to perform the
following three steps.

1) Identify the local statistics tk that uniquely represent
the local posterior pdfs πk within the given statistical
model.

2) Apply the general change-of-variables formula to
transform the (known) conditional pdf p(y | θ) into
the global likelihood function λ(θ) = p(t | θ).

3) Calculate the supra-Bayesian posterior p(θ | t) accord-
ing to (52).

While this three-step process can, in principle, be per-
formed in any setting satisfying our assumptions, an
explicit characterization of the resulting supra-Bayesian
fusion rule (pooling function) g[π1, . . . , πK ] can only be
derived for special cases. The important case of a linear
Gaussian model will be explored in the following.

IX. S U P R A-B A Y E S I A N F U S I O N F O R T H E
L I N E A R G A U S S I A N M O D E L
We consider the supra-Bayesian pdf fusion for the linear
observation model

y = Hθ + n (66)

where H ∈ R
dy×dθ is a known observation matrix and n ∈

R
dy is additive zero-mean Gaussian noise with a known

covariance matrix Σ, i.e., p(n) = N (n;0, Σ). Thus, y given
θ is Gaussian distributed with mean Hθ and covariance
matrix Σ, i.e.,

p(y | θ) = N (y;Hθ,Σ). (67)

The local observation at agent k is given as yk = Hkθ +

nk ∈ R
dyk , where

H =

��������
H1

H2

...

HK

�������� (68)

withHk ∈ R
dyk

×dθ and n = [nᵀ
1 , . . . ,nᵀ

K ]ᵀ . Thus, each local
observation yk given θ is again Gaussian with mean Hkθ

and covariance matrix Σkk ∈ R
dyk

×dyk . We note that the
overall covariance matrix Σ is block-structured according
to

Σ =

�����
Σ11 · · · Σ1K

...
. . .

...

ΣK1 · · · ΣKK

����� (69)

where the off-diagonal cross-covariance matrices Σkk′ for
k �= k′ describe the conditional dependence between the
observations of different agents. The case of conditionally
independent observations yk is obtained for Σkk′ = 0 for
all k �= k′. For simplicity, we further assume that, for all
k = 1, . . . , K, dyk ≥ dθ, Hk has full rank, and Σkk is
positive definite. The local observation likelihood functions
are here given by

�k(θ) = p(yk | θ)

= N (yk;Hkθ,Σkk)

∝ exp



− (yk −Hkθ)ᵀΣ−1

kk (yk −Hkθ)

2

�
. (70)

A. Local Statistics

We can rewrite (70) as

�k(θ) ∝ exp



− (θ − Vkyk)ᵀHᵀ

kΣ
−1
kk Hk(θ − Vkyk)

2

�
= exp



− (θ − tk)ᵀHᵀ

kΣ
−1
kk Hk(θ − tk)

2

�
(71)
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where

Vk =
	
Hᵀ

kΣ
−1
kk Hk


−1
Hᵀ

kΣ
−1
kk (72)

and

tk = Vkyk =
	
Hᵀ

kΣ
−1
kk Hk


−1
Hᵀ

kΣ
−1
kk yk. (73)

The proportionality in (71) is as a function of θ, i.e., the
proportionality constant will depend on yk.

We claim that tk in (73) qualifies as a local statis-
tic in a finite-dimensional supra-Bayesian model. For a
proof, we note that the local posteriors are again given
as πk(θ) = p(θ | yk) ∝ �k(θ)p(θ). To see that there is
a one-to-one relation between the local posterior πk and
the finite-dimensional parameter tk ∈ R

dθ , recall that the
fusion center is aware of the prior p(θ) and the matrices
H and Σ. In particular, the fusion center is aware of Hk

and Σkk, and thus, it is able to recover from tk the local
observation likelihood function �k(θ) in (71) and, in turn,
the local posterior πk(θ) ∝ �k(θ)p(θ). Conversely, the
fusion center is able to obtain tk from the local posterior
πk(θ) by first dividing by the prior p(θ), normalizing as a
function of θ (to obtain a function proportional to �k(θ)),
and, finally, calculating the mean of the resulting pdf in
θ [which is tk according to (71)]. Thus, tk is related
to πk in a one-to-one manner, and hence, it is a local
statistic.

Example 2 (Conditionally Independent Agents): In the
case of conditionally independent agents, i.e., the
observations yk are conditionally independent given θ,
we can easily calculate the supra-Bayesian posterior.
Indeed, the structure of the local likelihood function
in (71) shows that we are in the exponential family
setting of Example 1. More specifically, we can rewrite
(71) as

�k(θ) ∝ exp



θᵀ t̃k − θᵀHᵀ

kΣ
−1
kk Hkθ

2

�
(74)

where

t̃k = Hᵀ
kΣ

−1
kk Hktk = Hᵀ

kΣ
−1
kk yk

is a bijective transformation of tk and, thus, also a valid
choice for a local statistic. Considering a Gaussian prior
p(θ) with mean µ0 and covariance matrix Σ0, we can
rewrite p(θ) as

p(θ) ∝ exp



θᵀ t̃0 − θᵀΣ−1

0 θ

2

�
(75)

where t̃0 = Σ−1
0 µ0. Comparing (74) with (57) and

(75) with (62), we see that �k(θ) = p(yk | θ) belongs
to the exponential family (57) with tk formally replaced
by t̃k and Ak(θ) = θᵀHᵀ

kΣ
−1
kk Hkθ/2. Furthermore, p(θ)

conforms to (62) with A0(θ) = θᵀΣ−1
0 θ/2. With our

assumption of conditionally independent agents, we can
use the result (63)–(65) and obtain for the supra-Bayesian

fusion result

p(θ | t)

∝ exp



θᵀ


 K�
k=0

t̃k
�
− θᵀ	Σ−1

0 +
�K

k=1 H
ᵀ
kΣ

−1
kk Hk



θ

2

�
.

(76)

This is again a Gaussian pdf, with mean

µ1 = Σ1

K�
k=0

t̃k = Σ1



Σ−1

0 µ0 +
K�

k=1

Hᵀ
kΣ

−1
kk yk

�

and covariance matrix

Σ1 =



Σ−1

0 +

K�
k=1

Hᵀ
kΣ

−1
kk Hk

�−1

.

It is straightforward to verify that (76) is equal to
the oracle posterior p(θ | y). Thus, we see once again
(cf. Section VIII-C) that, although the supra-Bayesian
fusion result depends on the observations yk only via the
local statistics t̃k, it still equals the oracle posterior p(θ | y),
as if the fusion center had access to all observations yk

directly. As we will see below, this crucially depends on
our assumption of conditionally independent agents and
is no longer true if we assume conditional dependencies
between the observations.

B. Global Likelihood Function

In Section IX-A, for the general linear Gaussian model
with conditionally dependent yk, we identified local sta-
tistics tk = Tk(yk) = Vkyk that are related in a one-
to-one manner to the local posteriors πk. The next step
according to our three-step program from Section VIII-D is
to calculate the global likelihood function λ(θ) = p(t | θ)

by transforming the conditional pdf p(y | θ) into the condi-
tional pdf p(t | θ). According to (67), the conditional pdf of
y given θ is8

p(y | θ) ∝ exp



− (y−Hθ)ᵀΣ−1(y−Hθ)

2

�
. (77)

We further have that

t = [tᵀ1 , . . . , tᵀK ]ᵀ = Vy (78)

where V = diag(V1, . . . ,VK) denotes the block-diagonal
matrix with block entries Vk on the diagonal. Thus, t is a
linear function of y, and hence, t given θ is Gaussian and

8This conditional pdf only exists if the covariance matrix Σ is
positive definite. However, the derivations that follow do not require
the existence of a pdf and are also valid if Σ is positive semidefinite.
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has mean VHθ and covariance matrix

�Σ = VΣVᵀ . (79)

We assume that �Σ is nonsingular. The mean can be simpli-
fied to

VHθ =

������
V1H1

V2H2

...
VKHK

������ θ =

������
Idθ

Idθ

...
Idθ

������ θ =

������
θ

θ
...
θ

������ = 1K ⊗ θ

where we used (68) and the fact that, by (72),

VkHk = Idθ
. (80)

The global likelihood function λ(θ) is, thus, obtained as

λ(θ) = p(t | θ)

= N (t;1K ⊗ θ, �Σ)

∝ exp



− (t− 1K ⊗ θ)ᵀ �Σ−1

(t− 1K ⊗ θ)

2

�
. (81)

To summarize, for the linear Gaussian model, local sta-
tistics tk characterizing the local posteriors πk are given
by (73), and the corresponding global likelihood function
λ(θ) = p(t | θ) is given by (81).

C. Supra-Bayesian Fusion Rule for a Scalar θ

After identifying local statistics tk and calculating the
global likelihood function λ(θ) = p(t | θ), the final step
in the derivation of the supra-Bayesian fusion rule is to
calculate the supra-Bayesian posterior p(θ | t) according
to (52). We first develop the supra-Bayesian fusion rule
for the case that dθ = 1, i.e., for a scalar random variable
θ ∈ R. Here, the observation matrix H reduces to a vector
h ∈ R

dy , and the observation model (66) is given by

y = h θ + n.

Similarly, the local observation at agent k is given as yk =

hkθ + nk with hk ∈ R
dyk , and the local statistic at agent k

follows from (73) as

tk = vᵀ
kyk ∈ R (82)

where Vk reduces to the (row) vector

vᵀ
k =

1

hᵀ
kΣ

−1
kk hk

hᵀ
kΣ

−1
kk . (83)

Note that V = diag(vᵀ
1 , . . . , vᵀ

K) is still a matrix. In this
case, we can give the following explicit fusion rule, which
is derived in Appendix K-A.

Theorem 21: For dθ = 1, let �k(θ) = p(yk | θ) denote the
local observation likelihood functions given by (70) for k =

1, . . . , K, and let λ(θ) = p(t | θ) be the global likelihood
function given by (81). Then,

λ(θ) ∝
K�

k=1

(�k(θ))wk (84)

where

wk =
1ᵀ

K
�Σ−1

ek

hᵀ
kΣ

−1
kk hk

(85)

with �Σ = VΣVᵀ and ek denoting the kth unit vector in R
K .

Furthermore, for a given prior p(θ) and local posteriors
πk(θ) = p(θ | yk) ∝ p(θ)�k(θ), the supra-Bayesian fusion
result g[π1, . . . , πK ](θ) = p(θ | t) ∝ p(θ)λ(θ) is given by

g[π1, . . . , πK ](θ) ∝ (p(θ))1−
�K

k=1 wk

K�
k=1

(πk(θ))wk . (86)

We emphasize that, in this theorem, we do not assume
that the observations yk are conditionally independent
given θ. Furthermore, it should be noted that the weights
wk in (85) do not generally sum to one, and they may be
negative. Thus, the fusion rule (86) is an instance of the
generalized multiplicative pooling function in (11).

Finally, if the prior p(θ) is Gaussian, we can show that
the supra-Bayesian fusion result p(θ | t) is again Gaussian
and reduce the fusion rule (86) to a second-order rule
involving only the mean and variance.

Corollary 22: Under the assumptions of Theorem 21, let
the prior p(θ) be Gaussian with mean µ0 and variance σ2

0 ,
i.e., p(θ) = N (θ; µ0, σ

2
0). Then, the supra-Bayesian fusion

result p(θ | t) is again Gaussian, i.e., p(θ | t) = N (θ; µ1, σ
2
1),

with mean

µ1 =
�σ2�σ2 + σ2

0

	
σ2

01
ᵀ
K

�Σ−1
t + µ0



(87)

and variance

σ2
1 =

�σ2σ2
0�σ2 + σ2

0

where �Σ = VΣVᵀ ,

�σ2 =
1

1ᵀ
K

�Σ−1
1K

(88)

and t = [t1, . . . , tK ]ᵀ is given by (82) and (83).
As mentioned before, the supra-Bayesian fusion result

p(θ | t) is, in general, different from the oracle posterior
p(θ | y). Indeed, the oracle posterior is proportional to
the product of the prior p(θ) and the global observation
likelihood function p(y | θ) in (77). It can then easily be
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seen that the oracle posterior p(θ | y) is also Gaussian but
with mean

µ2 =
�σ2

2�σ2
2 + σ2

0

	
σ2

0h
ᵀΣ−1y + µ0



(89)

and variance

σ2
2 =

�σ2
2σ2

0�σ2
2 + σ2

0

where

�σ2
2 =

1

hᵀΣ−1h
. (90)

To better understand the difference, we note that, in (87),

1ᵀ
K

�Σ−1
t = hᵀVᵀ(VΣVᵀ)−1Vy

and in (88),

1ᵀ
K

�Σ−1
1K = hᵀVᵀ(VΣVᵀ)−1Vh

where we used (78)–(80). Comparing with hᵀΣ−1y and
hᵀΣ−1h arising in (89) and (90), respectively, we conclude
that the difference between the oracle posterior and the
supra-Bayesian posterior is that the matrix Σ−1 involved
in the former is replaced by Vᵀ(VΣVᵀ)−1V.

A simplified version of Theorem 21 has been shown
in [91] and is the setting of the early supra-Bayesian
approaches. More specifically, in [91], it is assumed that
a fusion center obtains from K agents estimates µk of a
scalar random variable θ. These estimates can be inter-
preted as our local statistics tk. Furthermore, the fusion
center has a Gaussian prior for θ and knows that the vector
of the estimation errors of all agents, u = [u1, . . . , uK ]ᵀ

with uk = µk − θ, also follows a Gaussian distribution with
zero mean and some covariance matrix �Σ (in general, the
errors may be correlated). Equivalently, conditionally on θ,
the estimates µ = [µ1, . . . , µK ]ᵀ follow a Gaussian distrib-
ution with mean 1Kθ and the same covariance matrix �Σ.
Thus, the setting in [91] directly assumes the conditional
distribution of t given θ without starting from any detailed
observation model.

To get a better intuition about the role of the weights
wk and the meaning of negative weights in the setting of
Theorem 21, we will consider a specific example.

Example 3 (Private and Shared Observations): We assu-
me that agent k has rk private observations, i.e., obser-
vations that no other agent observes, and r0 shared
observations, i.e., observations that all agents know jointly.
The resulting total number of observations is, thus, dy =�K

k=1(r0 + rk). However, there are only r0 +
�K

k=1 rk

different observations. We assume that these different
observations given θ are independent and have variance
one and mean θ. To embed this scenario into our linear
model, we choose hk = 1r0+rk and the submatrices of the

covariance matrix Σ in (69) as

Σkk′ =

�
Ir0 0r0×rk′

0rk×r0 0rk×rk′

�
∈ R

(r0+rk)×(r0+rk′ ) (91)

for k �= k′ and

Σkk = Ir0+rk .

Thus, we have that

yk = 1r0+rkθ + nk

where nk is a vector of independent identically distrib-
uted standard Gaussian random variables, i.e., p(nk) =

N (nk;0(r0+rk)×1, Ir0+rk). The covariance structure (91)
between the nk, for k ∈ {1, . . . , K}, implies that, for
i ∈ {1, . . . , r0}, the ith entry of nk and the ith entry of
nk′ with k′ �= k coincide with probability one, i.e.,

E[(nk,i − nk′,i)
2] = E[n2

k,i]� �� �
=1

+E[n2
k′,i]� �� �

=1

−2E[nk,ink′,i]� �� �
=1

= 0.

Thus, the first r0 observations are the same for all agents.
With these choices and assuming that rk > 0 and

r0 > 0, a tedious but straightforward calculation (for
details see Appendix K-B) shows that the weights wk in
(85) simplify to

wk = 1 − K − 1

rk


 K�
k′=0

1

rk′

�−1

. (92)

In particular, we see that all weights are upper bounded
by 1 and are emphasized according to their amount of
independent information as given by rk. More surprising
is the possibility of negative weights for agents with few
private observations (e.g., the setting K = 3, r1 = 1, and
r0 = r2 = r3 = 4 gives w1 = −1/7). An explanation for this
result is that negatively weighting agents with few private
observations can counteract the repeated counting of the
shared observations that are part of all agents’ posteriors.
More generally, it follows from (92) that wk ≥ 0 if and
only if

rk ≥ (K − 1)

�
K�

k′=0

1

rk′

�−1

or, equivalently,

K�
k′=0

rk

rk′
≥ K − 1.
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The sum of all weights is given by

K�
k=1

wk = K − (K − 1)

�
K�

k′=0

1

rk′

�−1 K�
k=1

1

rk
. (93)

From this expression, we readily conclude that

1 ≤
K�

k=1

wk ≤ K. (94)

Indeed, this follows from the fact that the second term
on the right-hand side of (93), (K − 1)

	�K
k′=0(1/rk′)


−1

×�K
k=1(1/rk), is nonnegative and upper bounded by K−1

since
	�K

k′=0(1/rk′)

−1 �K

k=1(1/rk) ≤ 1. The twofold
bound (94) shows that, although some weights may be
negative, the sum of all weights is always between the
sum of all weights in the log-linear pooling function in (4)
(there, the sum was 1) and the sum of all weights in the
multiplicative pooling function in (10) (there, all weights
were 1, and hence, the sum was K).

Another conclusion that we can draw is that varying
the number of shared observations r0—while keeping the
number of private observations rk fixed—corresponds to
an “interpolation” between the multiplicative pooling func-
tion and the log-linear pooling function. First, consider
the case that the agents have the same number of private
observations, i.e., r1 = · · · = rK . When r0 = 0, a derivation
similar to that in Appendix K-B gives wk = 1. This implies
that, when the agents do not share any observations, the
pooling function in (86) corresponds exactly to the stan-
dard multiplicative pooling function in (10). On the other
hand, as the number of shared observations r0 increases,
the pooling function behaves closer to a symmetric log-
linear pooling function (i.e., using wk = 1/K). Indeed, it
follows from (92) that

lim
r0→∞

wk =
1

K
.

If we remove the restriction that r1 = · · · = rK , the
connection to multiplicative pooling still holds; however,
the connection to log-linear pooling only holds under the
condition of nonnegative weights, i.e., wk ≥ 0 for all
k, which may be violated if some agents hold only few
private observations compared to the total number of
observations.

D. Supra-Bayesian Fusion Rule for a Vector θ

We can generalize Theorem 21 to a vector θ ∈ R
dθ

with dθ > 1. However, formally, the weights wk in (85)
become matrices Wk and, thus, cannot be used as powers
in a fusion rule. Hence, the following fusion result is
more complicated, and the relation to the 1-D case is not
obvious. A proof is provided in Appendix L-A.

Theorem 23: Let �k(θ) = p(yk | θ) denote the local
observation likelihood functions given by (70) for k =

1, . . . , K, and let λ(θ) = p(t | θ) be the global likelihood
function given by (81). Then,

λ(θ) ∝ ξ0(θ)

K�
k=1

�k(Wkθ) (95)

where

Wk =
	
Hᵀ

kΣ
−1
kk Hk


−1
(ek ⊗ Idθ

)ᵀ �Σ−1
(1K ⊗ Idθ

) (96)

with ek denoting the kth unit vector in R
K and �Σ = VΣVᵀ ,

and

ξ0(θ) = exp



−θᵀGθ

2

�
. (97)

Here,

G = �Σ−1 −
K�

k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk HkWk (98)

with

�Σ−1
= (1K ⊗ Idθ

)ᵀ �Σ−1
(1K ⊗ Idθ

). (99)

Furthermore, for a given prior p(θ) and local posteriors
πk(θ) = p(θ | yk) ∝ p(θ)�k(θ), the supra-Bayesian fusion
result g[π1, . . . , πK ](θ) = p(θ | t) ∝ p(θ)λ(θ) is given by

g[π1, . . . , πK ](θ) ∝ p(θ)ξ0(θ)

K�
k=1

πk(Wkθ)

p(Wkθ)
. (100)

Finally, if the prior p(θ) is Gaussian, then the supra-
Bayesian fusion result p(θ | t) is again Gaussian, and the
fusion rule (100) can be reduced to a second-order rule
involving only the mean and covariance matrix.

Corollary 24: Under the assumptions of Theorem 23,
let the prior p(θ) be Gaussian with mean µ0 and covari-
ance matrix Σ0, i.e., p(θ) = N (θ; µ0,Σ0). Then, the
supra-Bayesian fusion result p(θ | t) is again Gaussian, i.e.,
p(θ | t) = N (θ; µ1,Σ1), with mean

µ1 =
	�Σ−1

+ Σ−1
0


−1	
(1K ⊗ Idθ

)ᵀ �Σ−1
t + Σ−1

0 µ0



(101)

and covariance matrix

Σ1 =
	�Σ−1

+ Σ−1
0


−1
(102)

where �Σ−1
is given by (99).

Here, we recall that t = [tᵀ1 , . . . , tᵀK ]ᵀ with tk given by
(73). A proof of Corollary 24 is provided in Appendix L-B.
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The supra-Bayesian fusion result in (100) has an intrigu-
ing structure: the agent pdfs are first preprocessed by a
multiplication in the argument and then combined via a
generalized multiplicative pooling function. The relevance
of this fusion rule beyond the linear Gaussian setting,
especially for approximately linear Gaussian observation
models, is an open issue.

As in the scalar case, the supra-Bayesian fusion result
p(θ | t) is, in general, different from the oracle posterior
p(θ | y). Again, the oracle posterior is proportional to the
product of the prior p(θ) and the global observation likeli-
hood function p(y | θ) in (77); it is easily seen that p(θ | y)
is also Gaussian but with mean

µ2 =
	�Σ−1

2 + Σ−1
0


−1	HᵀΣ−1y + Σ−1
0 µ0



(103)

and covariance matrix

Σ2 =
	�Σ−1

2 + Σ−1
0


−1

where �Σ−1

2 = HᵀΣ−1H. (104)

The difference can be better understood by noting that
in (101)

(1K ⊗ Idθ
)ᵀ �Σ−1

t = HᵀVᵀ(VΣVᵀ)−1Vy

and in (99)

(1K ⊗ Idθ
)ᵀ �Σ−1

(1K ⊗ Idθ
) = HᵀVᵀ(VΣVᵀ)−1VH

where we used (78)–(80). Comparing with HᵀΣ−1y and
HᵀΣ−1H in (103) and (104), respectively, we conclude
that, as in the scalar case considered earlier, the difference
between the oracle posterior and the supra-Bayesian pos-
terior is that Σ−1 involved in the former is replaced by
Vᵀ(VΣVᵀ)−1V.

X. O U T L O O K
The fusion of pdfs presents numerous interesting aspects
beyond those considered in our treatment. Moreover, cer-
tain extensions can be envisioned. In what follows, we
suggest some related directions of future research.

1) Our discussion of pdf fusion emphasized theoretical
considerations. In practical implementations, a finite-
dimensional representation or parametrization of the
agent pdfs qk(θ) is required. Popular examples are
Gaussian, Gaussian mixture, and particle represen-
tations [31], [68], [69]. Since these representations
are usually approximations of the true pdfs, a rel-
evant issue is the tradeoff between low representa-
tion complexity (small number of parameters) and
high accuracy of the approximation. Furthermore,

algorithms implementing a given pooling function
for a given type of parametric representation are
required. Examples of finite-dimensional parametric
fusion rules were considered in Sections VI and IX.

2) In the case of a centralized agent network where
each agent pdf qk(θ) is transmitted to the fusion
center via a channel, communication cost is another
practical issue. Although a low-dimensional paramet-
ric representation of the agent pdfs may be used
to achieve a low communication cost, the reduction
of communication cost is ultimately a source coding
(rate-distortion) problem.

3) In many cases, the aggregate pdf q(θ) =

g[q1, . . . , qK ](θ) is not used as the final result
but arises as part of a method performing a statistical
inference task, such as estimation, detection,
classification, or clustering. In this setting, the
pooling function (or certain parameters within a
given family of pooling functions) should be chosen
or optimized such that the performance of the
statistical inference method is maximized. Note that
this is different from the optimization approach
considered in Section V.

4) Our discussion assumed the existence of a fusion
center that has access to all pdfs qk(θ). In a decen-
tralized agent network, there is no fusion center and
each agent is able to communicate only with certain
neighboring agents. Besides the basic necessity of
using a distributed communication-and-fusion proto-
col, challenging aspects in the decentralized setting
include communication cost, efficient representation
of pdfs, and repeated counting of information along
cycles in the network graph.

5) In many scenarios, the agent pdfs qk(θ) are time-
varying, and a temporal sequence q

(n)
k (θ), where n =

1, 2, . . . is a discrete time index, is available at the kth
agent. This serial setting suggests a sequential variant
of pdf fusion in which, at each time n, the fused
pdf is not calculated from scratch, but the previous
fusion result is updated using the new set of q

(n)
k (θ).

Practical implementations of sequential updating can
be based on both parametric and nonparametric rep-
resentations of the pdfs.

6) The fusion of multiobject pdfs or PHDs of finite
point processes (random finite sets), especially in the
context of multitarget tracking, is a topic of active
research [2], [5], [6], [8], [43]–[50], [85], [106]–
[114]. While the current focus is on the finite point
process counterparts of the linear and log-linear pool-
ing functions, it would also be interesting to inves-
tigate the applicability of the other pooling functions
considered in Sections III and V. In particular, the fact
that the family of Hölder pooling functions offers
fusion characteristics that are intermediate between
those of the linear and log-linear pooling functions
may be relevant to multitarget tracking. Furthermore,
it may be rewarding to reformulate and develop our
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results on supra-Bayesian pdf fusion in the context of
finite point processes.

7) Big data problems allow a natural application of pdf
fusion. When the data to be processed are so large
in size that they exceed the capacity of a single com-
puter, it is logical to partition them and process the
different parts separately. Furthermore, data related
to some quantity of interest may be available in
heterogeneous form, so that all of the data cannot
be processed within a single framework, and hence,
different parts have to be processed separately. In
either case, the individual processing results can be
represented as summaries, which then need to be
fused into one overall summary. The concepts and
techniques presented in this article provide sugges-
tions regarding the construction and fusion of the
summaries. This is of particular interest in the con-
text of modern machine learning methods [65]–[67],
[136], [193].

8) Ensemble learning [128], [130], i.e., the combination
of the results of multiple learning algorithms, is cur-
rently one of the most successful learning paradigms.
At the same time, there is a growing demand for
probabilistic machine learning methods that provide
along with a point estimate also a measure of relia-
bility. Up until now, only few works have considered
ensembles of probabilistic machine learning methods.
We conjecture that the success of the ensemble learn-
ing paradigm will soon lead to its increased use also
in probabilistic machine learning. At that point, it is
likely that probabilistic opinion pooling will outper-
form the simple linear voting rules that are currently
used to combine point estimates.

9) With a collaborative machine learning methodol-
ogy known as federated learning, a learning algo-
rithm is trained across multiple decentralized edge
devices or servers that hold local data, which are
not exchanged [134]. In other words, model parame-
ters are learned collectively by many interconnected
devices without sharing or disclosing local training
data. The devices send summaries instead of raw data
to a server for fusion. Here, again, fusion plays a
central role. The fusion process can be challenging in
the case of a large number of heterogeneous devices
with different constraints. Using pdfs to represent
the local summaries enables the use of different pdf
representations at the individual devices, from simple
parametric models to complex kernel density esti-
mates, which can still be combined in a meaningful
way. Moreover, different levels of quality of the local
data can be taken into account by using appropriate
weights in the pooling function used for pdf fusion.

10) A potential theoretical basis of pdf fusion that has
not been explored in this work is information geom-
etry, which studies probability theory and statistics
using tools from differential geometry [42]. The focus
of information geometry is on statistical manifolds

whose points correspond to probability distributions.
This theoretical framework can be exploited for fusion
by assuming that the agent pdfs belong to a para-
metric family with the structure of a Riemannian
manifold [42]. One can then formulate pdf fusion,
e.g., by considering the fused pdf to be an informative
barycenter of the manifold [194].

11) Within the finite-dimensional supra-Bayesian set-
ting, an explicit fusion rule was obtained for lin-
ear Gaussian observation models (see Section IX).
This fusion rule can formally be used also for
nonlinear/non-Gaussian models with known first and
second moments. However, it is here unclear how
close the obtained fusion result will be to the
true supra-Bayesian fusion result. Characterizing the
error for approximately linear Gaussian observation
models is an interesting topic for future research.
Another interesting topic is the derivation of explicit
supra-Bayesian fusion rules for simple nonlinear/non-
Gaussian observation models.

12) Our supra-Bayesian framework is currently limited to
a finite-dimensional setting. Although this is the set-
ting most frequently encountered in practical appli-
cations, it would be interesting to find a definition
of a likelihood function for random pdfs that do not
admit a finite-dimensional parameterization. For this,
nonparametric Bayesian models [195] appear to be
a feasible starting point. The challenge is to model a
useful and nontrivial dependence on the parameter
θ that accounts for the constraint that random pdfs
must be nonnegative and integrate to one with prob-
ability one.

XI. C O N C L U S I O N
The problem of fusing multiple pdfs qk(θ), k = 1, . . . , K of
a continuous random vector θ into an aggregate pdf q(θ) =

g[q1, . . . , qK ](θ) has many possible solutions, and indeed,
several different approaches to this fusion problem have
been developed in the past decades. We have attempted
to survey and study these approaches and the related
solutions in a structured and coherent manner. Our discus-
sion has emphasized a first basic distinction between the
axiomatic approach, the optimization approach, and the
conceptually more complex supra-Bayesian framework.

Regarding the axiomatic approach, we formulated a set
of axioms and determined the axioms satisfied by each
considered pooling function. This analysis demonstrated
the prominent roles of the linear, log-linear, and multiplica-
tive pooling functions within the axiomatic framework.
However, it also revealed that several desirable axioms are
effectively incompatible, and postulating those simultane-
ously implies a dictatorship pooling function.

Regarding the optimization approach, besides other
results, we proved that the minimization of the weighted
sum of α-divergences yields the family of Hölder mean
pooling functions. This family contains the two most pop-
ular pooling functions—the linear and log-linear pooling
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functions—as special cases. Moreover, it offers an infinite
number of further interesting pooling functions with differ-
ent multimodality and tail decay characteristics depending
on the choice of a single parameter.

The supra-Bayesian framework is different from the
classical probabilistic opinion pooling framework in that
the pdfs qk(θ) are modeled as random observations, and
additional information regarding the statistical structure of
θ is available to the fusion center. In this framework, the
optimal aggregate pdf q(θ) is the global posterior pdf of θ

given the pdfs qk(θ). Since random functions are difficult
to work with, we introduced the finite-dimensional supra-
Bayesian model based on random “local statistics.” Using
this framework, we formulated a general procedure for
obtaining the supra-Bayesian posterior pdf conditioned on
all the local statistics, and we derived explicit fusion rules
for special cases.

While the theory of pdf fusion appears mature, interest-
ing directions of future work are related to implementation
and application aspects. We provided some suggestions
including implementations using parametric representa-
tions, integration into probabilistic methods for multiagent
signal processing, machine learning, and forecasting,
and extensions to decentralized scenarios and point
processes. �

A P P E N D I X A
P R O O F O F T H E O R E M 1
A. Axioms Satisfied by the Linear Pooling
Function

We first show that all the mentioned axioms are satisfied
by the linear pooling function. Let g[q1, . . . , qK ](θ) =�K

k=1 wkqk(θ) with (w1, . . . , wK) ∈ SK . We first show
the ZPP (A2). Assume that, for some event A, we have
Qk(A) = 0 for all k = 1, . . . , K. Because Qk(A) =�
A qk(θ) dθ and qk(θ) is nonnegative, this implies that

qk(θ) = 0 for almost all θ ∈ A and all k = 1, . . . , K. Thus,

q(θ) = g[q1, . . . , qK ](θ) =

K�
k=1

wkqk(θ) = 0

for almost all θ ∈ A. Hence, Q(A) =
�
A q(θ) dθ = 0, which

concludes the proof of the ZPP.
We next show unanimity preservation (A3). To this end,

assume that qk(θ) = q0(θ) for all k = 1, . . . , K. Then,

q(θ) = g[q1, . . . , qK ](θ)

=
K�

k=1

wkqk(θ)

= q0(θ)
K�

k=1

wk

= q0(θ)

which shows unanimity preservation.
To show the SSFP (A4), we define h : [0, 1]K → [0, 1] as

h(p1, . . . , pK) �
K�

k=1

wkpk. (105)

For an arbitrary set A ⊆ Θ and any opinion profile
(q1, . . . , qK), we have that

Q(A) =

�
A

q(θ) dθ

=

�
A

K�
k=1

wkqk(θ) dθ

=
K�

k=1

wk

�
A

qk(θ) dθ

=
K�

k=1

wkQk(A)

= h(Q1(A), . . . , QK(A))

i.e., h satisfies the condition stated in A4.
The WSFP (A5) follows by setting hA = h with h

given in (105). The likelihood principles (A6 and A7) are
obviously satisfied with

h(t1, . . . , tK) �
K�

k=1

wktk

and hθ = h, respectively, as is the symmetry statement.

B. Equivalence Statement

We now prove the other direction, namely, that each of
the assumptions 2–4 stated in Theorem 1 implies that g is a
linear pooling function. More specifically, we will show the
chain of implications 4 ⇒ 3 ⇒ 2 ⇒ 1. Because we already
showed 1 ⇒ 4, this implies that 1–4 are equivalent and,
thus, concludes the proof.

1) 4 Implies 3: We assume that g satisfies 4, i.e., the
WSFP (A5) and unanimity preservation (A3). We will show
that this implies that g satisfies the ZPP (A2), i.e., 4 implies
3. Let hA : [0, 1]K → [0, 1] denote the function satisfying
(16) for all opinion profiles. For any set A that satisfies
|Ac| > 0, let us choose qk(θ) = �Ac (θ)/|Ac| for all
k = 1, . . . , K. Then, Qk(A) =

�
A qk(θ)dθ = 0 for all k.

By unanimity preservation, this implies that Q(A) = 0. On
the other hand, we have

Q(A)
(16)
= hA(Q1(A), . . . , QK(A)) = hA(0, . . . , 0)

and, hence,
hA(0, . . . , 0) = 0 (106)

for any set A such that |Ac| > 0.
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To show the ZPP, assume that, for a given opinion profile
(q1, . . . , qK), we have Qk(A) = 0 for all k = 1, . . . , K. Note
that this is only possible if |Ac| > 0 as otherwise Qk(Θ) =

Qk(A) + Qk(Ac) = 0. Thus, we can calculate Q(A) as

Q(A)
(16)
= hA(Q1(A), . . . , QK(A)) = hA(0, . . . , 0)

(106)
= 0

which shows that the ZPP (A2) is satisfied.

2) 3 Implies 2: Next, we show that 3, i.e., the WSFP (A5)
and the ZPP (A2), implies 2, i.e., the SSFP (A4). Let again
hA : [0, 1]K → [0, 1] denote the function satisfying (16) for
all opinion profiles. Our proof consists of three steps.

1) Show that, for two nontrivial events A and B (i.e.,
|A|, |Ac|, |B|, |Bc| > 0) that have a nontrivial intersec-
tion and a nontrivial union, we have hA = hB.

2) Show that, for any nontrivial events A and B, there
exists a nontrivial event C such that A ∩ C, A ∪ C,
B ∩ C, and B ∪ C are all nontrivial. This implies by
step 1 that hA = hC and hB = hC, and thus, hA = hB.
Therefore, setting h � hA, we have hA′ = h for all
nontrivial events A′, and hence, the same function h

satisfies (14) for all nontrivial events.
3) Show that the function h satisfies (14) also for trivial

events.

To show step 1, we consider two nontrivial eventsA and
B that have a nontrivial intersection, in particular, |A∩B| >

0, and a nontrivial union, in particular, |(A ∪ B)c| > 0.
We fix arbitrary (p1, . . . , pK) ∈ [0, 1]K and will show that
hA(p1, . . . , pK) = hB(p1, . . . , pK). Because |A ∩B| > 0 and
|(A ∪ B)c| > 0, there exists an opinion profile (q1, . . . , qK)

such that

Qk(A∩ B) = pk (107)

and

Qk

	
(A∪ B)c
 = 1 − pk (108)

for all k = 1, . . . , K. Because Θ = (A ∪ B) ∪ (A ∪ B)c is a
disjoint union and Qk(Θ) = 1, (108) implies that Qk(A ∪
B) = pk. Hence, as also Qk(A ∩ B) = pk by (107), the
difference set (A∪ B) \ (A∩ B) satisfies

Qk

	
(A ∪ B) \ (A∩ B)



= 0. (109)

Because (A∪B) \ (A∩B) = (A\B)∪ (B \A), this implies
that Qk(A \ B) = 0 and Qk(B \ A) = 0. Thus,

Qk(A) = Qk

	
(A \ B) ∪ (A∩ B)



= Qk(A \ B) + Qk(A∩ B)

= pk (110)

and, similarly,

Qk(B) = pk. (111)

Furthermore,

Qk

	
(A \ B) ∪ (B \ A)



= Qk

	
(A∪ B) \ (A ∩ B)


(109)
= 0

(112)

for all k = 1, . . . , K. By the ZPP, (112) implies that Q
	
(A \

B) ∪ (B \ A)



= 0, and in turn, Q
	A \ B


= Q
	B \A


= 0.
Thus,

Q(A) = Q(A \ B) + Q(A∩ B)

= Q(A∩ B)

= Q(B \ A) + Q(A∩ B)

= Q(B). (113)

For the functions hA and hB, these properties imply that

hA(p1, . . . , pK)
(110)
= hA(Q1(A), . . . , QK(A))

(16)
= Q(A)

(113)
= Q(B)

(16)
= hB(Q1(B), . . . , QK(B))

(111)
= hB(p1, . . . , pK)

i.e.,

hA(p1, . . . , pK) = hB(p1, . . . , pK) (114)

for any nontrivial events A,B ⊆ Θ that have a nontrivial
intersection and a nontrivial union.

To show step 2, we first construct a set C ⊆ A ∪ B such
that A ∩ C, B ∩ C, A ∪ C, and B ∪ C are nontrivial. If |A ∩
B| > 0, then C = A ∩ B can easily be seen to satisfy these
assumptions. If |A∩B| = 0, we choose C = CA∪CB, where
CA ⊆ A with |CA|, |A \ CA| > 0 and CB ⊆ B with |CB|, |B \
CB| > 0. The separations A = CA ∪ (A \ CA) and B =

CB ∪ (B \ CB) are possible because the Lebesgue measure
is nonatomic, i.e., any set of positive Lebesgue measure
can be separated into two disjoint sets of positive Lebesgue
measure.

Now, we choose

h(p1, . . . , pK) = hA(p1, . . . , pK) (115)

for any nontrivial setA. Then, for any nontrivial set B ⊆ Θ,
we construct C as above and obtain

h(Q1(B), . . . , QK(B))
(115)
= hA(Q1(B), . . . , QK(B))

(114)
= hC(Q1(B), . . . , QK(B))

(114)
= hB(Q1(B), . . . , QK(B))

(16)
= Q(B) (116)

i.e., (14) is satisfied for any nontrivial set B.
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It remains to show step 3, i.e., with this choice of h, (14)
is also satisfied by trivial sets. For trivial sets A, i.e., such
that |A| = 0 or |Ac| = 0, we have Qk(A) = 0 or Qk(A) =

1 for all k = 1, . . . , K, respectively. Also, the fused result
must satisfy Q(A) = 0 or Q(A) = 1, respectively. Thus,
we have to show h(0, . . . , 0) = 0 and h(1, . . . , 1) = 1 for
our choice of h in (115). To this end, let B ⊆ Θ be any
nontrivial set and choose an opinion profile (q1, . . . , qK)

such that Qk(B) = 0 for all k = 1, . . . , K. Then, the ZPP
implies that Q(B) = 0. On the other hand, since B is a
nontrivial set and, thus, (116) is satisfied, we have

h(0, . . . , 0) = h(Q1(B), . . . , QK(B))
(116)
= Q(B).

Thus, h(0, . . . , 0) = 0. Furthermore, Qk(B) = 0 and
Q(B) = 0 imply that Qk(Bc) = 1 and Q(Bc) = 1,
respectively. Hence,

h(1, . . . , 1) = h(Q1(Bc), . . . , QK(Bc))
(116)
= Q(Bc).

Thus, h(1, . . . , 1) = 1. Hence, we identified a function h

such that (14) holds for all sets A ⊆ Θ. This concludes the
proof that 3 implies 2.

3) 2 Implies 1: Finally, we show that 2, i.e., the SSFP
(A4), implies 1, i.e., g is a linear pooling function. Let
h denote the function satisfying (14). Furthermore, let
A,B, C ⊆ Θ be disjoint events of positive Lebesgue mea-
sure. For arbitrary p1, p̃1, . . . , pK , p̃K ∈ [0, 1] satisfying
pk + p̃k ≤ 1 for all k = 1, . . . , K, we define an opinion
profile (q1, . . . , qK) such that Qk(A) = pk, Qk(B) = p̃k,
and Qk(C) = 1 − pk − p̃k. Because A and B are disjoint,
Qk(A∪B) = pk + p̃k and Q(A∪B) = Q(A) + Q(B). Thus,

h(p1 + p̃1, . . . , pK + p̃K)

= h(Q1(A∪ B), . . . , QK(A∪ B))

(14)
= Q(A∪ B)

= Q(A) + Q(B)

(14)
= h(Q1(A), . . . , QK(A)) + h(Q1(B), . . . , QK(B))

= h(p1, . . . , pK) + h(p̃1, . . . , p̃K)

i.e., h is an additive function on its domain [0, 1]K . It can,
moreover, be extended to an additive function on R

K .
Because h is also bounded by 1 on [0, 1]K , it must be linear
according to [196, p. 215, Th. 1], i.e.,

h(p1, . . . , pK) =
K�

k=1

wkpk. (117)

Here, the weights wk must be in [0, 1] because
h(p1, . . . , pK) ∈ [0, 1] for all (p1, . . . , pK) ∈ [0, 1]K .
Furthermore, because 1 = Q(Θ) = h(Q1(Θ), . . . ,

QK(Θ)) = h(1, . . . , 1) =
�K

k=1 wk, the weights must sum
to one. Thus, we have for any event A ⊆ Θ

�
A

q(θ) dθ = Q(A)

(14)
= h(Q1(A), . . . , QK(A))

(117)
=

K�
k=1

wkQk(A)

=

�
A

K�
k=1

wkqk(θ) dθ

which implies that q(θ) =
�K

k=1 wkqk(θ).

A P P E N D I X B
P R O O F O F T H E O R E M 2
A. Axioms Satisfied by the Generalized Linear
Pooling Function

First, we show that all the mentioned axioms are
satisfied by the generalized linear pooling function. Let
g[q1, . . . , qK ](θ) =

�K
k=0 wkqk(θ) with (w0, . . . , wK) ∈

SK+1. To show the WSFP (A5), we define for an event
A ⊆ Θ

hA(p1, . . . , pK) = w0

�
A

q0(θ) dθ +
K�

k=1

wkpk (118)

for all (p1, . . . , pK) ∈ [0, 1]K . For any opinion profile
(q1, . . . , qK), we then have that

Q(A) =

�
A

q(θ) dθ

=

�
A

K�
k=0

wkqk(θ) dθ

=

K�
k=0

wk

�
A

qk(θ) dθ

= w0

�
A

q0(θ) dθ +

K�
k=1

wkQk(A)

(118)
= hA(Q1(A), . . . , QK(A))

i.e., hA satisfies the condition stated in A5. The weak
likelihood principle (A7) is obviously satisfied with

hθ(t1, . . . , tK) = w0q0(θ) +

K�
k=1

wktk

as is the symmetry statement in Theorem 2.

B. Converse Statement

Now, we prove the converse statement in Theorem 2,
i.e., any pooling function g that satisfies the WSFP (A5) is a
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generalized linear pooling function. For each eventA ⊆ Θ,
let hA : [0, 1]K → [0, 1] denote the function satisfying (16)
for all opinion profiles. Our proof consists of three steps.
First, we construct the pdf q0 and the corresponding weight
w0 ≤ 1. In the second step, we show that, by adapting
each function hA to h̃A =

	
hA −w0

�
A q0(θ) dθ



/(1−w0),

we obtain a linear pooling function. Finally, we show
that this implies that g is a generalized linear pooling
function.

1) Step 1: Construct q0 and w0: We define

Q0(A) = hA(0, . . . , 0) (119)

for all nontrivial (i.e., |A|, |Ac| > 0) events A ⊆ Θ. The
pdf q0 will be a weighted version of a density associated
with Q0. Thus, we first show that Q0 can be expressed as
an integral Q0(A) =

�
A q̃0(θ) dθ.

Let A0 be a fixed nontrivial event. Because |Ac
0| >

0, there exists an opinion profile (q
(A0)
1 , . . . , q

(A0)
K ) such

that Q
(A0)
k (A0) =

�
A0

q
(A0)
k (θ) dθ = 0 for all k =

1, . . . , K. We denote the fused pdf of this particu-
lar profile as q(A0)(θ) and the resulting probability
measure as

Q(A0)(A) =

�
A0

q(A0)(θ) dθ. (120)

Then,

Q(A0)(A)
(16)
= hA(Q

(A0)
1 (A), . . . , Q

(A0)
K (A)).

In particular, for any eventA ⊆ A0, we have Q
(A0)
k (A) = 0

for all k = 1, . . . , K (because Q
(A0)
k (A) ≤ Q

(A0)
k (A0) = 0),

and thus, we obtain further

Q(A0)(A) = hA(0, . . . , 0)
(119)
= Q0(A).

Recalling (120), we conclude that the fused pdf q(A0)(θ)

satisfies

Q0(A) =

�
A

q(A0)(θ) dθ for any event A ⊆ A0. (121)

Following the same steps with A0 replaced by Ac
0, we

obtain a pdf q(Ac
0)(θ) such that

Q0(A) =

�
A

q(Ac
0)(θ) dθ for any event A ⊆ Ac

0. (122)

Now, for an arbitrary nontrivial event B ⊆ Θ, there exists
an opinion profile (q

(B)
1 , . . . , q

(B)
K ) such that Q

(B)
k (B) =�

B q
(B)
k (θ) dθ = 0 for all k = 1, . . . , K. Again, we denote

the fused probability measure as Q(B). We, thus, obtain for

Q0(B) as defined by (119)

Q0(B) = hB(0, . . . , 0)

= hB
�
Q

(B)
1 (B), . . . , Q

(B)
K (B)

�
(16)
= Q(B)(B). (123)

Because B can be decomposed into disjoint subsets accord-
ing to B = (B ∩ A0) ∪ (B ∩ Ac

0), we further obtain
from (123)

Q0(B) = Q(B)(B ∩ A0) + Q(B)(B ∩Ac
0)

(16)
= hB∩A0

�
Q

(B)
1 (B ∩ A0), . . . , Q

(B)
K (B ∩A0)

�
+ hB∩Ac

0

�
Q

(B)
1 (B ∩Ac

0), . . . , Q
(B)
K (B ∩Ac

0)
�

(a)
= hB∩A0(0, . . . , 0) + hB∩Ac

0
(0, . . . , 0)

(119)
= Q0(B ∩A0) + Q0(B ∩Ac

0)

where we used Q
(B)
k (B) = 0 in (a). Using (121) with A =

B ∩A0 and (122) with A = B ∩Ac
0, this implies that

Q0(B) =

�
B∩A0

q(A0)(θ) dθ +

�
B∩Ac

0

q(Ac
0)(θ) dθ

=

�
B

q̃0(θ) dθ

where we defined

q̃0(θ) �
�

q(A0)(θ), if θ ∈ A0

q(Ac
0)(θ), if θ ∈ Ac

0.

Thus, we found an integral representation for Q0 and can
define

Q0(B) =

�
B

q̃0(θ) dθ (124)

also for trivial events B. The nonnegativity of q(A0)(θ) and
q(Ac

0)(θ) implies that q̃0(θ) is nonnegative, and in turn, Q0

is a measure. However, q̃0(θ) is not a pdf in general.
We define

w0 � Q0(Θ) (125)

(note that this implies that w0 ≥ 0) and

q0(θ) � q̃0(θ)

w0
(126)

provided w0 �= 0. If w0 = 0, we choose q0(θ) as an
arbitrary pdf. We claim that w0 ≤ 1. To prove this claim,
let Bn be a sequence of nontrivial events such that Bn ⊆
Bn+1 and limn→∞ Bn = Θ. For each Bn, there exists an
opinion profile (q

(Bn)
1 , . . . , q

(Bn)
K ) such that Q

(Bn)
k (Bn) =�

Bn
q
(Bn)
k (θ) dθ = 0 for all k = 1, . . . , K. Again, we denote

the sequence of fused probability measures as Q(Bn).
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Following the steps in (123), we have that

Q0(Bn) = Q(Bn)(Bn) ≤ 1

because Q(Bn) is a probability measure. The continuity
from below of measures [197, Lem. 3.4] implies that w0 =

Q0(Θ) = limn→∞ Q0(Bn) ≤ 1.
A similar argument can be employed to show (for later

use) that, for any nontrivial event A ⊆ Θ and arbitrary
probabilities pk,

hA(p1, . . . , pK) ≥ Q0(A). (127)

Indeed, for any nontrivial event A ⊆ Θ, let Bn ⊆ A be a
sequence satisfying |A \ Bn| > 0, Bn ⊆ Bn+1 for all n ∈ N,
and limn→∞ Bn = A. Then, for each n ∈ N, there exists an
opinion profile (q

(Bn)
1 , . . . , q

(Bn)
K ) satisfying Q

(Bn)
k (Bn) = 0,

Q
(Bn)
k (A \ Bn) = pk, and, in turn, Q

(Bn)
k (A) = pk. Again,

we denote the sequence of fused probability measures as
Q(Bn). Following the steps in (123), Q0(Bn) = Q(Bn)(Bn).
Thus, we have

hA(p1, . . . , pK) = hA
�
Q

(Bn)
1 (A), . . . , Q

(Bn)
K (A)

�
(16)
= Q(Bn)(A)

≥ Q(Bn)(Bn)

= Q0(Bn). (128)

Here, hA(p1, . . . , pK) does not depend on n. Hence, we can
take the limit on the right-hand side of (128) and obtain

hA(p1, . . . , pK) ≥ lim
n→∞

Q0(Bn) = Q0(A)

using again the continuity from below of Q0.

2) Step 2: Define h̃A and Prove That It Defines a Linear
Pooling Function: We define

h̃A(p1, . . . , pK) � hA(p1, . . . , pK) − Q0(A)

1 − w0
. (129)

Here, we have to assume that w0 < 1. Thus, we first show
that g is a generalized linear pooling function in the case
w0 = 1. In this case, for any nontrivial event A ⊆ Θ and
arbitrary probabilities pk, we choose an opinion profile that
satisfies Qk(A) = pk and, hence, Qk(Ac) = 1 − pk for all
k = 1, . . . , K. We then have

1 = Q(A) + Q(Ac)

(16)
= hA(p1, . . . , pK) + hAc (1 − p1, . . . , 1 − pK)

(127)

≥ Q0(A) + Q0(Ac)
(125)
= w0

= 1.

Thus, the inequality in the third line is actually an equal-
ity, which is only possible if hA(p1, . . . , pK) = Q0(A).
Because A and pk were chosen arbitrarily, we have
hA(p1, . . . , pK) = Q0(A) independently of the probabili-
ties pk. By (16), this further implies, for any opinion profile
(q1, . . . , qK), that the aggregate pdf q satisfies

�
A

q(θ) dθ = Q(A)

(16)
= hA(Q1(A), . . . , QK(A))

= Q0(A)

(124)
=

�
A

q̃0(θ) dθ

for all events A. Hence, q(θ) = q̃0(θ), which implies that g

is a dogmatic pooling function (which is a special case of
a generalized linear pooling function with weights w0 = 1,
wk = 0 for k = 1, . . . , K). This concludes the proof for the
special case w0 = 1, and thus, we can assume w0 < 1 in
what follows.

We define a new fusion rule g̃ by

g̃[q1, . . . , qK ](θ) � g[q1, . . . , qK ](θ) − w0q0(θ)

1 − w0
(130)

and claim that it satisfies the WSFP with the functions h̃A
defined by (129). Indeed, we have, for any opinion profile
(q1, . . . , qK) and any event A ⊆ Θ, that

Q̃(A) =

�
A

g̃[q1, . . . , qK ](θ) dθ

=

�
A

g[q1, . . . , qK ](θ) − w0q0(θ)

1 − w0
dθ

(a)
=

hA(Q1(A), . . . , QK(A)) − �
A q̃0(θ) dθ

1 − w0

(124)
=

hA(Q1(A), . . . , QK(A)) − Q0(A)

1 − w0

(129)
= h̃A(Q1(A), . . . , QK(A)) (131)

where we used in (a) that, by (16), hA(Q1(A), . . . ,

QK(A)) = Q(A) =
�
A g[q1, . . . , qK ](θ) dθ and, by (126),

w0q0(θ) = q̃0(θ). Furthermore, we claim that g̃ satisfies
the ZPP. To prove this, let (q1, . . . , qK) be an opinion profile
and A a nontrivial event such that Qk(A) = 0 for all
k = 1, . . . , K. Because hA(0, . . . , 0) = Q0(A), we have

Q̃(A)
(131)
= h̃A(Q1(A), . . . , QK(A))

= h̃A(0, . . . , 0)

(129)
=

hA(0, . . . , 0) − Q0(A)

1 − w0

=
Q0(A) − Q0(A)

1 − w0

= 0

proving the ZPP.
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Finally, to see that g̃ is a valid pooling function, we first
show that, for any (p1, . . . , pK) ∈ [0, 1]K , the function
h̃A(p1, . . . , pK) is nonnegative. This follows from (129),
(127), and our assumption w0 < 1. Hence, the mea-
sure Q̃ is nonnegative, and thus, also the associated den-
sity g̃[q1, . . . , qK ](θ) must be nonnegative. The fact that
g̃[q1, . . . , qK ](θ) integrates to one follows directly from the
definition (130) and the fact that g[q1, . . . , qK ](θ) and q0

are pdfs.
Because g̃ is a pooling function that satisfies the WSFP

and the ZPP, Theorem 1 implies that it is a linear pooling
function, i.e.,

g̃[q1, . . . , qK ](θ) =

K�
k=1

wkqk(θ) (132)

with (w1, . . . , wK) ∈ SK .

3) Step 3: Conclude That g̃ Is a Generalized Linear Pooling
Function: Combining (130) and (132), we obtain

K�
k=1

wkqk(θ) =
g[q1, . . . , qK ](θ) − w0q0(θ)

1 − w0

or, equivalently,

g[q1, . . . , qK ](θ) = w0q0(θ) +
K�

k=1

(1 − w0)wkqk(θ).

From
�K

k=1 wk = 1, it follows that w0 +
�K

k=1(1 − w0)wk

is one. Thus, g is a generalized linear pooling function.

A P P E N D I X C
P R O O F O F T H E E Q U I VA L E N C E
S TAT E M E N T I N T H E O R E M 6
We only show that 2, i.e., g satisfies individualized
Bayesianity (A11) and g[q0, . . . , q0](θ) = q0(θ) for some
pdf q0, implies 1, i.e., g is a multiplicative pooling function.
The other direction is obvious.

Thus, let us assume that g[q0, . . . , q0](θ) = q0(θ) for
some pdf q0. We have to show that, for any opinion profile
(q1, . . . , qK) such that qk/q0 is bounded for all k = 1, . . . , K

(recall that we only consider those opinion profiles in the
multiplicative pooling function), q is of the form (10), i.e.,

g[q1, . . . , qK ](θ) ∝ (q0(θ))1−K
K�

k=1

qk(θ).

To this end, we first note that qk = q
(�k)
0 [see (17)] with

�k = qk/q0 for all k = 1, . . . , K. Thus,

g[q1, . . . , qK ](θ) = g
�
q
(q1/q0)
0 , . . . , q

(qK /q0)
0

�
(θ).

By iteratively using individualized Bayesianity (19) with
� = qk/q0 for each k = 1, . . . , K, we obtain further

g[q1, . . . , qK ](θ) ∝ g
�
q0, q

(q2/q0)
0 , . . . , q

(qK/q0)
0

�
(θ)

q1(θ)

q0(θ)

∝ g[q0, . . . , q0](θ)

K�
k=1

qk(θ)

q0(θ)

= (q0(θ))1−K
K�

k=1

qk(θ)

which is (10) and, thus, concludes the proof.

A P P E N D I X D
PA R T I A L P R O O F O F T H E O R E M 8
A. 3 Implies 2

We first show that 3, i.e., the WSFP (A5) and indepen-
dence preservation (A8), implies 2, i.e., the SSFP (A4)
and independence preservation (A8). To this end, we show
that independence preservation implies the ZPP (A2). The
ZPP and the assumed WSFP, in turn, imply the SSFP by
Theorem 1.

To show that independence preservation implies the ZPP,
assume that, for some event A, we have Qk(A) = 0 for all
k = 1, . . . , K. This implies that

Qk(A∩ A) = Qk(A) = 0 = Qk(A)Qk(A).

Independence preservation now implies that also Q must
satisfy Q(A∩ A) = Q(A)Q(A), and thus, either Q(A) = 0

or Q(A) = 1. In the first case, the proof of the ZPP is
finished. In the second case, i.e., Q(A) = 1, there must
exist a subset B ⊆ A such that Q(B) = 1/2. However,
because B ⊆ A and Qk(A) = 0, we have that also
Qk(B) = 0, and thus, we again have that Qk(B ∩ B) =

0 = Qk(B)Qk(B). This implies that Q(B) is either 0 or 1,
which is a contradiction to Q(B) = 1/2. Thus, Q(A) = 0

is the only valid conclusion, which proves that the ZPP is
satisfied.

B. 5 Implies 4

We next show that 5, i.e., the WSFP (A5) and external
Bayesianity (A10), implies 4, i.e., the SSFP (A4) and
external Bayesianity (A10). Thus, we have to show that
the WSFP and external Bayesianity imply the SSFP.

By Theorem 2, the WSFP implies the weak likelihood
principle (A7). Furthermore, by Theorem 4, the weak
likelihood principle and external Bayesianity imply that g

is a generalized log-linear pooling function, i.e.,

g[q1, . . . , qK ](θ) = c ξ0(θ)

K�
k=1

(qk(θ))wk (133)

for all positive opinion profiles. Finally, by Theorem 2, the
WSFP implies that g is also a generalized linear pooling
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function, i.e.,

g[q1, . . . , qK ](θ) =

K�
k=0

w′
kqk(θ) (134)

for all opinion profiles. Thus, combining (133) and (134),
we have

c ξ0(θ)
K�

k=1

(qk(θ))wk =
K�

k=0

w′
kqk(θ) (135)

for all positive opinion profiles. Note that q0(θ) is not
necessarily positive, i.e., it may be zero for certain values
of θ.

We choose an arbitrary positive pdf q̃0(θ) and ε ∈ (0, 1)

and consider the opinion profile (εq̃0 + (1− ε)q0, . . . , εq̃0 +

(1 − ε)q0). Since q̃0(θ) is positive, this is a positive opinion
profile for any ε ∈ (0, 1). Using it in (135) gives

c ξ0(θ)
	
εq̃0(θ) + (1 − ε)q0(θ)



= w′

0q0(θ) + (1 − w′
0)

	
εq̃0(θ) + (1 − ε)q0(θ)



where

�K
k=1 wk = 1 and

�K
k=0 w′

k = 1 were used, or
equivalently,

c ξ0(θ) = w′
0

q0(θ)

εq̃0(θ) + (1 − ε)q0(θ)
+ 1 − w′

0. (136)

Taking the limit ε → 0 in (136), we obtain

c ξ0(θ) =

�
1, if q0(θ) > 0

1 − w′
0, if q0(θ) = 0.

(137)

Inserting into (133) and evaluating (133) for the opinion
profile (q̃0, . . . , q̃0) yield

g[q̃0, . . . , q̃0](θ) =

�
q̃0(θ), if q0(θ) > 0

(1 − w′
0)q̃0(θ), if q0(θ) = 0.

Because g[q̃0, . . . , q̃0](θ) is a pdf, this implies that

1 =

�
Θ

g[q̃0, . . . , q̃0](θ) dθ

=

�
{θ∈Θ:q0(θ)>0}

q̃0(θ) dθ

+
	
1 − w′

0


 �
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ. (138)

On the other hand, because q̃0(θ) is a pdf, we have

1 =

�
Θ

q̃0(θ) dθ

=

�
{θ∈Θ:q0(θ)>0}

q̃0(θ) dθ +

�
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ.

(139)

Combining (138) and (139), we obtain

(1 − w′
0)

�
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ =

�
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ

or, equivalently,

w′
0

�
{θ∈Θ:q0(θ)=0}

q̃0(θ) dθ = 0.

Since q̃0(θ) is a positive pdf on Θ, this can only hold if
either w′

0 = 0 or |{θ ∈ Θ : q0(θ) = 0}| = 0. In the first case,
(134) implies that g is actually a linear pooling function,
and thus, by Theorem 1, g satisfies the SSFP. In the second
case, q0(θ) > 0 almost everywhere, and thus, (137) states
that c ξ0(θ) = 1. Using the opinion profile (q1, . . . , qK) =

(q̃0, . . . , q̃0) in (135) gives

q̃0(θ) = w′
0q0(θ) +

	
1 − w′

0



q̃0(θ). (140)

In particular, let us partition Θ into disjoint sets A1 and
A2 satisfying

�
A1

q0(θ)dθ =
�
A2

q0(θ)dθ = 1/2, and let us
choose

q̃0(θ) =

�
3
2
q0(θ), if θ ∈ A1

1
2
q0(θ), if θ ∈ A2.

Then, (140) yields for all θ ∈ A1

3

2
q0(θ) = w′

0q0(θ) + (1 − w′
0)

3

2
q0(θ) =



3

2
− 1

2
w′

0

�
q0(θ).

This implies w′
0 = 0, and hence, we again conclude from

(134) that g is actually a linear pooling function, and thus,
by Theorem 1, g satisfies the SSFP.

C. 6 Implies 1

Finally, we prove that 6, i.e., the SSFP (A4) and gener-
alized Bayesianity (A12), implies 1, i.e., g is a dictatorship
pooling function. By Theorem 1, the SSFP implies that g is
a linear pooling function, i.e.,

g[q1, . . . , qK ](θ) =

K�
k=1

wkqk(θ) (141)

with (w1, . . . , wK) ∈ SK . We will show that, for an arbi-
trary k, the weight wk is either 0 or 1, which is equivalent
to g being a dictatorship pooling function.

We first choose a positive function f and two disjoint
sets A and B such that Θ = A ∪ B and

�
A f(θ) dθ =�

B f(θ) dθ = 1. We fix an arbitrary k and define an opinion
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profile (q1, . . . , qK) by setting

qk(θ) =

�
1
3
f(θ), if θ ∈ A

2
3
f(θ), if θ ∈ B

and qk′ = q0 for all k′ �= k, where

q0(θ) =
1

2
f(θ). (142)

Inserting this opinion profile into the fusion rule (141) and
using

�
k′ �=k wk′ = 1 − wk gives

g[q1, . . . , qK ](θ) =

�	
1
3
wk + 1

2
(1 − wk)



f(θ), if θ ∈ A	

2
3
wk + 1

2
(1 − wk)



f(θ), if θ ∈ B

=

�	
1
2
− 1

6
wk



f(θ), if θ ∈ A	

1
2

+ 1
6
wk



f(θ), if θ ∈ B.

(143)

Next, we use generalized Bayesianity with �k′ = � for all
k′ = 1, . . . , K, where

�(θ) =

�
1, if θ ∈ A
2, if θ ∈ B.

We easily obtain [see (17)]

q
(�)
k (θ) =

�
1
5
f(θ), if θ ∈ A

4
5
f(θ), if θ ∈ B

and

q
(�)
0 (θ) =

�
1
3
f(θ), if θ ∈ A

2
3
f(θ), if θ ∈ B.

(144)

Now, (141) gives

g[q
(�)
1 , . . . , q

(�)
K ](θ) =

�	
1
5
wk + 1

3
(1 − wk)



f(θ), if θ ∈ A	

4
5
wk + 2

3
(1 − wk)



f(θ), if θ ∈ B

=

�	
1
3
− 2

15
wk



f(θ), if θ ∈ A	

2
3

+ 2
15

wk



f(θ), if θ ∈ B.

(145)

On the other hand, because g satisfies generalized
Bayesianity, there exists a function h[�, . . . , �] such that

g
 
q
(�)
1 , . . . , q

(�)
K

!
(θ) =

g[q1, . . . , qK ](θ)h[�, . . . , �](θ)

c�
(146)

where c� =
�
Θ

g[q1, . . . , qK ](θ)h[�, . . . , �](θ) dθ. Inserting
(143) and (145) into (146) gives

1

3
− 2

15
wk =

	
1
2
− 1

6
wk



h[�, . . . , �](θ)

c�
(147)

for all θ ∈ A and

2

3
+

2

15
wk =

	
1
2

+ 1
6
wk



h[�, . . . , �](θ)

c�
(148)

for all θ ∈ B.
Using again the generalized Bayesianity of g, we also

have

g
 
q
(�)
0 , . . . , q

(�)
0

!
(θ) =

g[q0, . . . , q0](θ)h[�, . . . , �](θ)

c0,�
(149)

where c0,� =
�
Θ

g[q0, . . . , q0](θ)h[�, . . . , �](θ) dθ. Because
linear pooling functions are unanimity preserving (see
Theorem 1), we have g

 
q
(�)
0 , . . . , q

(�)
0

!
(θ) = q

(�)
0 (θ) and

g[q0, . . . , q0](θ) = q0(θ), and thus, (149) is equivalent to

q
(�)
0 (θ) =

q0(θ)h[�, . . . , �](θ)

c0,�

or, inserting (144) and (142),

1

3
=

1
2
h[�, . . . , �](θ)

c0,�

for all θ ∈ A and

2

3
=

1
2
h[�, . . . , �](θ)

c0,�

for all θ ∈ B. Thus, we obtain

h[�, . . . , �](θ) =

�
2
3
c0,�, if θ ∈ A

4
3
c0,�, if θ ∈ B.

Inserting this into (147) and (148) yields

1

3
− 2

15
wk =

	
1
2
− 1

6
wk



2
3
c0,�

c�

and

2

3
+

2

15
wk =

	
1
2

+ 1
6
wk



4
3
c0,�

c�

or, equivalently,

1
3
− 2

15
wk

1
3
− 1

9
wk

=
c0,�

c�
=

2
3

+ 2
15

wk

2
3

+ 2
9
wk

.

This amounts to the quadratic equation w2
k−wk = 0, which

has the solutions wk = 0 and wk = 1. Since k was arbitrary,
this concludes the proof.
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A P P E N D I X E
P R O O F O F L E M M A 9
By Theorem 2, the WSFP implies that g is a generalized
linear pooling function, i.e.,

g[q1, . . . , qK ](θ) =

K�
k=0

wkqk(θ) (150)

with (w0, . . . , wK) ∈ SK+1. We will show that w0 is either 0
or 1, which is equivalent to g being either a linear pooling
function or a dogmatic pooling function.

We first choose two disjoint sets A and B such that Θ =

A ∪ B and
�
A q0(θ) dθ =

�
B q0(θ) dθ = 1/2. Furthermore,

we choose an opinion profile (q1, . . . , qK) as

qk(θ) =

�
2
3
q0(θ), if θ ∈ A

4
3
q0(θ), if θ ∈ B

for all k = 1, . . . , K. Inserting this opinion profile into
(150) and using

�K
k=1 wk = 1 − w0 gives

g[q1, . . . , qK ](θ) =

�	
w0 + 2

3
(1 − w0)



q0(θ), if θ ∈ A	

w0 + 4
3
(1 − w0)



q0(θ), if θ ∈ B

=

�	
2
3

+ 1
3
w0



q0(θ), if θ ∈ A	

4
3
− 1

3
w0



q0(θ), if θ ∈ B.

(151)

Next, we use generalized Bayesianity with �k = � for all
k = 1, . . . , K, where

�(θ) =

�
1, if θ ∈ A
2, if θ ∈ B.

(152)

We easily obtain [see (17)]

q
(�)
k (θ) =

�
2
5
q0(θ), if θ ∈ A

8
5
q0(θ), if θ ∈ B

and, then, (150) gives

g[q
(�)
1 , . . . , q

(�)
K ](θ) =

�	
w0 + 2

5
(1 − w0)



q0(θ), if θ ∈ A	

w0 + 8
5
(1 − w0)



q0(θ), if θ ∈ B

=

�	
2
5

+ 3
5
w0



q0(θ), if θ ∈ A	

8
5
− 3

5
w0



q0(θ), if θ ∈ B.

(153)

Because g satisfies generalized Bayesianity, we have that
there exists a function h[�, . . . , �] such that

g
 
q
(�)
1 , . . . , q

(�)
K

!
(θ) =

g[q1, . . . , qK ](θ)h[�, . . . , �](θ)

c�
(154)

where c� =
�
Θ

g[q1, . . . , qK ](θ)h[�, . . . , �](θ)dθ. Inserting
(151) and (153) into (154) gives

2

5
+

3

5
w0 =

	
2
3

+ 1
3
w0



h[�, . . . , �](θ)

c�
(155)

for all θ ∈ A and

8

5
− 3

5
w0 =

	
4
3
− 1

3
w0



h[�, . . . , �](θ)

c�
(156)

for all θ ∈ B.
Again using the generalized Bayesianity of g, we also

have

g
 
q
(�)
0 , . . . , q

(�)
0

!
(θ) =

g[q0, . . . , q0](θ)h[�, . . . , �](θ)

c0,�
(157)

where c0,� =
�
Θ

g[q0, . . . , q0](θ)h[�, . . . , �](θ)dθ. Using
(152) and (17), we obtain

q
(�)
0 (θ) =

�
2
3
q0(θ), if θ ∈ A

4
3
q0(θ), if θ ∈ B.

Inserting into (150) yields

g
 
q
(�)
0 , . . . , q

(�)
0

!
(θ) =

�	
w0 + 2

3
(1 − w0)



q0(θ), if θ ∈ A	

w0 + 4
3
(1 − w0)



q0(θ), if θ ∈ B

=

�	
2
3

+ 1
3
w0



q0(θ), if θ ∈ A	

4
3
− 1

3
w0



q0(θ), if θ ∈ B.

(158)

Furthermore, again by (150), g[q0, . . . , q0](θ) = q0(θ).
Inserting this and (158) into (157), we obtain

2

3
+

1

3
w0 =

h[�, . . . , �](θ)

c0,�

for all θ ∈ A and

4

3
− 1

3
w0 =

h[�, . . . , �](θ)

c0,�

for all θ ∈ B. Thus,

h[�, . . . , �](θ) =

�	
2
3

+ 1
3
w0



c0,�, if θ ∈ A	

4
3
− 1

3
w0



c0,�, if θ ∈ B.

Inserting this into (155) and (156) gives

2

5
+

3

5
w0 =

	
2
3

+ 1
3
w0


2
c0,�

c�
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and

8

5
− 3

5
w0 =

	
4
3
− 1

3
w0


2
c0,�

c�

or, equivalently,

2
5

+ 3
5
w0	

2
3

+ 1
3
w0


2 =
c0,�

c�
=

8
5
− 3

5
w0	

4
3
− 1

3
w0


2 .

This amounts to the cubic equation w3
0 − 3w2

0 + 2w0 = 0,
which has the solutions w0 = 0, w0 = 1, and w0 = 2.
Since w0 cannot be larger than one, only the solutions
w0 = 0 and w0 = 1 remain. In the first case, g is a linear
pooling function, which satisfies the SSFP by Theorem 1.
Hence, since g satisfies both the SSFP and generalized
Bayesiantity, it reduces to a dictatorship pooling function
by Theorem 8. In the second case, g is a dogmatic pooling
function.

A P P E N D I X F
P R O O F O F T H E O R E M 1 1
The implications in 1 follow from Theorem 1 because the
SSFP implies that g is a linear pooling function and, in turn,
satisfies the ZPP (A2), unanimity preservation (A3), the
WSFP (A5), the likelihood principle (A6), and the weak
likelihood principle (A7). Similarly, the implications in 2
follow from Theorem 2. Implication 3 follows directly from
the concerned axioms. Implication 4 is shown in the first
part of the proof of Theorem 8 in Appendix D. It remains to
show implication 5, i.e., individualized Bayesianity implies
generalized Bayesianity. This can easily be seen by defining

h[�1, . . . , �K ](θ) �
K�

k=1

�k(θ). (159)

Indeed, because g satisfies individualized Bayesianity, iter-
ative application of (19) implies that

g[q
(�1)
1 , . . . , q

(�K)
K ](θ) ∝ g

�
q1, q

(�2)
2 , . . . , q

(�K)
K

�
(θ)�1(θ)

∝ g[q1, . . . , qK ](θ)

K�
k=1

�k(θ)

∝ g[q1, . . . , qK ]

	�K
k=1 �k



(θ).

Thus, (20) is satisfied by h defined in (159).

A P P E N D I X G
P R O O F O F T H E O R E M 1 4
( C O N S T R A I N E D M I N I M I Z AT I O N
O F T H E W E I G H T E D AV E R A G E
O F α - D I V E R G E N C E S )
Let fα(x) = (xα − 1)/(α(α − 1)). The inverse function is
given by

f−1
α (x) = (xα(α − 1) + 1)1/α . (160)

Furthermore, we have that, for two functions p1(θ) and
p2(θ),

fα



p1(θ)

p2(θ)

�
=

�
p1(θ)
p2(θ)

�α

− 1

α(α − 1)

=
(p1(θ))α − (p2(θ))α

(p2(θ))αα(α − 1)

=
(p1(θ))α − 1

(p2(θ))αα(α − 1)
− (p2(θ))α − 1

(p2(θ))αα(α − 1)

=
fα(p1(θ)) − fα(p2(θ))

(p2(θ))α
. (161)

Therefore, the objective function in (22) for f(x) = fα(x)

can be written as

K�
k=1

wkDα(qk‖ϕ)

=

K�
k=1

wk

�
Θ

ϕ(θ)fα



qk(θ)

ϕ(θ)

�
dθ

(161)
=

K�
k=1

wk

�
Θ

ϕ(θ)
fα(qk(θ)) − fα(ϕ(θ))

(ϕ(θ))α dθ.

Interchanging the summation and the integral gives

K�
k=1

wkDα(qk‖ϕ)

=

�
Θ

ϕ(θ)
K�

k=1

wk
fα(qk(θ)) − fα(ϕ(θ))

(ϕ(θ))α dθ

(a)
=

�
Θ

ϕ(θ)

��K
k=1 wkfα(qk(θ))

�
− fα(ϕ(θ))

(ϕ(θ))α dθ

=

�
Θ

ϕ(θ)
fα

�
f−1

α

��K
k=1 wkfα(qk(θ))

��
− fα(ϕ(θ))

(ϕ(θ))α dθ

(161)
=

�
Θ

ϕ(θ)fα

��f−1
α

��K
k=1 wkfα(qk(θ))

�
ϕ(θ)

�� dθ

where we used in (a) that
�K

k=1 wk = 1. Since ϕ is a pdf
and fα(x) = (xα − 1)/(α(α − 1)) is a convex function for
α ∈ R \ {0, 1}, we can apply Jensen’s inequality9 to obtain
the following lower bound on the objective function:

�
Θ

ϕ(θ)fα

��f−1
α

��K
k=1 wkfα(qk(θ))

�
ϕ(θ)

�� dθ

≥ fα

���
Θ

ϕ(θ)
f−1

α

��K
k=1 wkfα(qk(θ))

�
ϕ(θ)

dθ

��
9Jensen’s inequality [198, Th. 3.3] asserts that, for a pdf ϕ(·), a

measurable function ζ(·), and a convex function ψ(·), we have that�
ψ(ζ(θ))ϕ(θ)dθ ≥ ψ

� �
ζ(θ)ϕ(θ)dθ

�
with equality if and only if

the function ζ is constant almost everywhere.
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= fα

��
Θ

f−1
α

�
K�

k=1

wkfα(qk(θ))

�
dθ

�
(162)

with equality if and only if the function

ζ(θ) �
f−1

α

��K
k=1 wkfα(qk(θ))

�
ϕ(θ)

is constant almost everywhere. Note that this is equivalent
to ϕ(θ) ∝ f−1

α (
�K

k=1 wkfα(qk(θ))). Since the right-hand
side of (162) is independent of ϕ, it is a lower bound for
any choice of ϕ, and hence, the function ϕ(θ) minimizing
the objective function (which is the desired solution q(θ)

in (22)) is the one for which this lower bound is achieved
with equality, i.e.,

q(θ) ∝ f−1
α

�
K�

k=1

wkfα(qk(θ))

�

(160)
=

��
K�

k=1

wkfα(qk(θ))

�
α(α − 1) + 1

�1/α

=

�
K�

k=1

wk (qk(θ))α −
K�

k=1

wk + 1

�1/α

=

�
K�

k=1

wk (qk(θ))α

�1/α

.

We conclude that the solution to (22) when f(x) =

fα(x) is q(θ) = c
	�K

k=1 wk(qk(θ))α

1/α, where c =

1/
�
Θ

	�K
k=1 wk(qk(θ))α


1/α
dθ.

A P P E N D I X H
C H A R A C T E R I Z AT I O N O F T H E
R E V E R S E α - D I V E R G E N C E
We will show that Dα(ϕ‖qk) = Dα∗(qk‖ϕ), where α∗ =

1 − α. To this end, we will use (27) with f(x) = fα(x) =

(xα − 1)/(α(α − 1)). Using f∗(x) = xf(1/x), we have

f∗
α(x) = x

x−α − 1

α(α − 1)

=
x−α+1 − x

α(α − 1)

=
x−(α−1) − 1

α(α − 1)
− 1

α(α − 1)
(x − 1)

= fα∗(x) − 1

α(α − 1)
(x − 1).

Thus, up to the additive term −(1/(α(α − 1)))(x − 1), the
function f∗

α(x) is equal to fα∗(x). Now, by [164, Proposi-
tion 1], an f -divergence does not change if f(x) is replaced
by f(x)+c(x−1) for an arbitrary c ∈ R. Hence, f∗

α and fα∗

result in the same f -divergence, and (27) together with

(24) implies that

Dα(ϕ‖qk) = Dfα(ϕ‖qk)

= Df∗
α
(qk‖ϕ)

= Dfα∗ (qk‖ϕ)

= Dα∗(qk‖ϕ).

A P P E N D I X I
P R O O F O F T H E O R E M 1 6
( C O N S T R A I N E D M I N I M I Z AT I O N
O F T H E W E I G H T E D A V E R A G E O F
S Q U A R E D L2 D I S TA N C E S )
We want to find

q = arg min
ϕ∈P

K�
k=1

wk‖qk − ϕ‖2
2. (163)

To this end, we note that

min
ϕ∈P

K�
k=1

wk‖qk − ϕ‖2
2

= min
ϕ∈P

�
Θ

K�
k=1

wk

	
qk(θ) − ϕ(θ)


2
dθ

≥
�

Θ

min
ϕ(θ)≥0

" K�
k=1

wk

	
qk(θ) − ϕ(θ)


2
#

dθ. (164)

For each fixed θ, the function value ϕ(θ) that achieves the
minimum minϕ(θ)≥0

�K
k=1 wk

	
qk(θ)−ϕ(θ)


2 is easily seen
to be

ϕ∗(θ) =
K�

k=1

wkqk(θ).

Because ϕ∗ ∈ P (due to (w1, . . . , wK) ∈ SK), we have that

K�
k=1

wk‖qk − ϕ∗‖2
2 ≥ min

ϕ∈P

K�
k=1

wk‖qk − ϕ‖2
2

(164)

≥
�

Θ

K�
k=1

wk

	
qk(θ) − ϕ∗(θ)


2
dθ

=
K�

k=1

wk‖qk − ϕ∗‖2
2. (165)

Thus, all inequalities in (165) are actually equalities. In
particular,

K�
k=1

wk‖qk − ϕ∗‖2
2 = min

ϕ∈P

K�
k=1

wk‖qk − ϕ‖2
2

i.e., q = ϕ∗ solves (163).
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A P P E N D I X J
P R O O F O F T H E O R E M 1 7
( U N C O N S T R A I N E D M I N I M I Z AT I O N
O F T H E W E I G H T E D AV E R A G E
O F G E N E R A L D I S TA N C E S )
Let χϕ(θ) � χ(ϕ(θ)) and χqk (θ) � χ(qk(θ)). We want to
find

q̃ = arg min
ϕ

K�
k=1

wk‖χqk − χϕ‖2
2. (166)

To this end, we first derive

χ∗ = arg min
χ

K�
k=1

wk‖χqk − χ‖2
2. (167)

Following the same steps as in Appendix I with qk replaced
by χqk and ϕ replaced by χ, it is easy to see that

χ∗(θ) =
K�

k=1

wkχ(qk(θ)). (168)

Because χ(qk(θ)) ∈ (a, b), the convex combination�K
k=1 wkχ(qk(θ)) is again in (a, b). Thus, χ∗(θ) is in the

range of χ, and we can define

ϕ∗(θ) � χ−1	χ∗(θ)


. (169)

This implies that

χϕ∗(θ) = χ(ϕ∗(θ)) = χ∗(θ). (170)

We claim that q̃ defined in (166) equals ϕ∗. Indeed, we
have for any ϕ

K�
k=1

wk‖χqk − χϕ‖2
2 ≥ min

χ

K�
k=1

wk‖χqk − χ‖2
2

(167)
=

K�
k=1

wk‖χqk − χ∗‖2
2

(170)
=

K�
k=1

wk‖χqk − χϕ∗‖2
2

from which we conclude that ϕ∗ achieves the minimum
in (166) and, thus, equals q̃. We then obtain the optimal
nonnormalized pooling function as

q̃(θ) = ϕ∗(θ)
(169)
= χ−1	χ∗(θ)



(168)
= χ−1


 K�
k=1

wkχ(qk(θ))

�
.

A P P E N D I X K
P R O O F S O F T H E F U S I O N R U L E F O R
A S C A L A R PA R A M E T E R
A. Proof of Theorem 21

For dθ = 1, the local observation likelihood functions
from (71) are given by

�k(θ) ∝ exp



−θ2hᵀ

kΣ
−1
kk hk

2
+ θhᵀ

kΣ
−1
kk hktk

�
(171)

where tk = vᵀ
kyk = hᵀ

kΣ
−1
kk yk/(hᵀ

kΣ
−1
kk hk) according to

(82) and (83). Furthermore, the global likelihood function
(81) can be rewritten as

λ(θ) ∝ exp



− (t− 1Kθ)ᵀ �Σ−1

(t− 1Kθ)

2

�
∝ exp



− θ2

2�σ2
+ θ1ᵀ

K
�Σ−1

t
�

(172)

where �σ2 = 1/(1ᵀ
K

�Σ−1
1K). The relation (84) follows from

K�
k=1

(�k(θ))wk

(171)∝ exp


 K�
k=1

wk



−θ2hᵀ

kΣ
−1
kk hk

2
+ θhᵀ

kΣ
−1
kk hktk

��
(85)
= exp



−

�K
k=1 θ21ᵀ

K
�Σ−1

ek

2
+

K�
k=1

θ1ᵀ
K

�Σ−1
ektk

�
(a)
= exp



− θ2

2�σ2
+ θ1ᵀ

K
�Σ−1

t
�

(172)∝ λ(θ)

where we used in (a) that
�K

k=1 ek = 1K and
�K

k=1 ektk =

t. Finally, the fusion rule for the posteriors in (86) easily
follows from (84), i.e.,

p(θ | t) ∝ p(θ)λ(θ)

(84)∝ p(θ)

K�
k=1

(�k(θ))wk

∝ p(θ)

K�
k=1



πk(θ)

p(θ)

�wk

= (p(θ))1−
�K

k=1 wk

K�
k=1

(πk(θ))wk .

B. Calculation of the Weights in Example 3

We will show expression (92) for wk. The vectors vᵀ
k in

(83) are given as

vᵀ
k =

1

1ᵀ
r0+rk

1r0+rk

1ᵀ
r0+rk

=
1

r0 + rk
1ᵀ

r0+rk
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and, in turn, the matrix �Σ in (79) is given by the entries

�Σkk′ = vᵀ
kΣkk′vk′

=
1

r0 + rk
1ᵀ

r0+rk
Σkk′

1

r0 + rk′
1r0+rk′

=
r0

(r0 + rk)(r0 + rk′)

for k �= k′ and

�Σkk =
1

r0 + rk
.

It is easily verified that we can rewrite �Σ as the following
sum of a diagonal matrix and a rank one matrix:

�Σ =

����
r1

(r0+r1)2

. . .
rK

(r0+rK)2

����

+

����
1

r0+r1
...
1

r0+rK

���� r0

�
1

r0+r1
· · · 1

r0+rK

�
.

By the matrix inversion lemma [199, eq. (0.7.4.2)], we
can, hence, calculate �Σ−1

as

�Σ−1
=

����
(r0+r1)2

r1

. . .
(r0+rK)2

rK

����

−

 K�

k=0

1

rk

�−1

����
r0+r1

r1
...

r0+rK
rK

�����
r0+r1

r1
· · · r0+rK

rK

�
.

To calculate the weights wk in (85), we have to sum over
the kth column of �Σ−1

and divide by 1ᵀ
r0+rk

1r0+rk = r0 +

rk, i.e.,

wk =
1

r0 + rk

�
(r0 + rk)2

rk
−

�K
k′=1

(r0+rk)(r0+rk′ )
rkrk′�K

k′=0
1

rk′

�

=
r0 + rk

rk
−

�K
k′=1

r0+rk′
rkrk′�K

k′=0
1

rk′

=
r0 + rk

rk
−

K
rk

+ r0
rk

�K
k′=1

1
rk′�K

k′=0
1

rk′

=
r0 + rk

rk
−

K−1
rk

+ r0
rk

�K
k′=0

1
rk′�K

k′=0
1

rk′

=
r0

rk
+ 1 −

K−1
rk�K

k′=0
1

rk′

− r0

rk

= 1 − K − 1

rk


 K�
k′=0

1

rk′

�−1

.

A P P E N D I X L
P R O O F S O F T H E F U S I O N R U L E F O R
A V E C T O R PA R A M E T E R
A. Proof of Theorem 23

We can rewrite (81) as

λ(θ)

∝ exp



− ((1K ⊗ Idθ

)θ − t)ᵀ �Σ−1
((1K ⊗ Idθ

)θ − t)
2

�

∝ exp



−θᵀ(1K ⊗ Idθ

)ᵀ �Σ−1
(1K ⊗ Idθ

)θ

2

+ θᵀ(1K ⊗ Idθ
)ᵀ �Σ−1

t
�

(99)
= exp



−θᵀ �Σ−1

θ

2
+ θᵀ(1K ⊗ Idθ

)ᵀ �Σ−1
t
�

. (173)

Furthermore, from (71), we see that

�k(θ) ∝ exp



−θᵀHᵀ

kΣ
−1
kk Hkθ

2
+ θᵀHᵀ

kΣ
−1
kk Hktk

�

where tk = Vkyk. Thus, we have

K�
k=1

�k(Wkθ)

∝ exp



−θᵀ	�K

k=1 W
ᵀ
kH

ᵀ
kΣ

−1
kk HkWk



θ

2

+ θᵀ
K�

k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk Hktk

�
(98)
= exp



−θᵀ	�Σ−1 − G



θ

2
+ θᵀ

K�
k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk Hktk

�

=
1

ξ0(θ)
exp



−θᵀ �Σ−1

θ

2
+ θᵀ

K�
k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk Hktk

�
(174)

with ξ0(θ) as defined in (97). By comparing (173) and
(174), we see that (95) holds, provided that

(1K ⊗ Idθ
)ᵀ �Σ−1

t =
K�

k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk Hktk. (175)

Inserting (96) into the right-hand side of (175), we obtain

K�
k=1

Wᵀ
kH

ᵀ
kΣ

−1
kk Hktk = (1K ⊗ Idθ

)ᵀ �Σ−1
K�

k=1

(ek ⊗ Idθ
)tk

= (1K ⊗ Idθ
)ᵀ �Σ−1

t

concluding the proof of (95).
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Finally, the fusion rule (100) easily follows from (95), i.e.,

p(θ | t) ∝ p(θ)λ(θ)

∝ p(θ)ξ0(θ)
K�

k=1

�k(Wkθ)

∝ p(θ)ξ0(θ)

K�
k=1

πk(Wkθ)

p(Wkθ)
.

B. Proof of Corollary 24

We start directly from p(θ | t) ∝ p(θ)λ(θ). By (173)
and our choice of prior p(θ) = N (θ; µ0,Σ0) ∝
exp

	−θᵀΣ−1
0 θ/2 + θᵀΣ−1

0 µ0



, we have that

p(θ)λ(θ) ∝ exp

�
−θᵀ �Σ−1

θ + θᵀΣ−1
0 θ

2

+ θᵀ(1K ⊗ Idθ
)ᵀ �Σ−1

t + θᵀΣ−1
0 µ0

�

= exp

�
− θᵀ	�Σ−1

+ Σ−1
0



θ

2

+ θᵀ	(1K ⊗ Idθ
)ᵀ �Σ−1

t + Σ−1
0 µ0


�

= exp



−θᵀΣ−1

1 θ

2
+ θᵀΣ−1

1 µ1

�
∝ exp



− (θ − µ1)

ᵀΣ−1
1 (θ − µ1)

2

�
(176)

with µ1 and Σ1 given by (101) and (102), respectively.
Expression (176) is proportional to the pdf of a Gaussian
with mean µ1 and covariance matrix Σ1.
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